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1 The spaces

1.1 The (generalized) symmetric spaces

Our basic datum is a connected reductive group G/Q. Let GW /Q be its derived
group and let C'/Q its centre. Then GV /Q is semi simple and C'/Q is a torus.
The multiplication provides a canonical map

m:CxGY 5@ (1)

it is is an isogeny, this means that the kernel o = CNG™ of this map is a finite
group scheme of multiplicative type. A finite group scheme of multiplicative
type is simply an abelian group together with an action of the Galois group
Gal(Q/Q) on it. If we have such an isogeny as in (1) we write G = C' - GV,

Let S/Q be the maximal Q -split torus in C/Q. Up to isogeny we have
C = (1 - S where C is the maximal anisotropic subtorus of C'/Q. We also
introduce the group G; = GV - C;. We have an exact sequence

15 G0 56l o 5,



the quotient C” is a torus and the restricted map de : C — C’ is an isogeny.

I G /Q is the simply connected covering of G(1)| then we get an isogeny
m:G=GY xC, x5 =G (2)

Let g, g(", ¢, ¢1,3 be the Lie algebras of G/Q,GM/Q, C/Q,C1/Q, S/Q, then
the differential of m; induces an isomorphism

Dy, ig— gY@ o; (3)

On g we have the Killing form B : g X g — Q be the Killing form, it is
defined by the rule

(T1,Ts) — trace(ad(T7) o ad(T2)) (4)

(See [chap2] 1.2.2) The Killing form is actually a bilinear form on g™ = g/(c;®3)
and the restriction B : g x g() — Q is nondegenerate (see chap2 and chap4).

An automorphism © : G xgR — G xq R is called a Cartan involution
if ©2 = Id and if the bilinear form

Be(T1,T2) = B(T1,0(13)) (5)

on g ® R is negative definite.
If © is a Cartan involution then it induces an automorphism -also called ©-
on the Lie algebra gr = g ® R and decomposes it into a + and a — eigenspace

gr=CtDp (6)

and then clearly the + eigenspace ¢ is a Lie subalgebra and [p, p] C €. The Killing
form is negative definite on ¢ and positive definite on p. This explains the above
assertion on Bg.

The topological group of real points G(V)(R) is connected (see ref?). Then
we have the classical theorem

Theorem 1.1. The fized group K&l;) = é(l)(R)e is a mazximal compact sub-
group and it is also connected. The Cartan involutions are conjugate under the
action of GV(R), and therefore the mazimal compact subgroups of G (R) are
conjugate.

We introduce the space X1 of Cartan involutions on G xg R, it is a
homogenous space under the action of G(l)(R) by conjugation and if we choose

a © or K&l)) then

X0 = G0 (R)/KY (7
This is the symmetric space attached to G(Y) xg R.

Proposition 1.1. The symmetric space X(1) = é(l)(R)/K&l)) is diffeomorphic
to R, where d = dimp, it carries a Riemannian metric which is G(l)(]R) n-
variant.



We have to be aware that it may happen that © is the identity. Then
é(l)(R) = K& and our symmetric space is a point.

We extend © to an involution on G x R it will be simply the identity on the
other two factors. Then it also induces an involution, again called © on G x R.

We return to our reductive group G/Q. We compare it to G via the ho-
momorphism m; in (2). Let K¢ be the connected component of the identity
of the maximal compact subgroup in C1(R) and let Z'(R)" be the connected
component of the identity of the group of real points a subtorus Z’ C S. Then
we put

Koo =mi(KY) x K$ x Z'(R)%)
This group K is connected and if we divide by Z’'(R)? it is compact, more
precisely we can say that K., /Z'(R)? is the connected component of a maximal
compact subgroup in G(R)/Z'(R)". The choice of the subtorus Z’ is arbitrary
and in a certain sense irrelevant. We could choose Z’ = Z then we call Ko
saturated , this choice is very convenient but it certain situations it is better to
make a different choice, for instance we may choose Z' = 1.

To such a pair (G, K ) we attach the (generalized) symmetric space
X =GR)/Kx.

Here are a few comments concerning the structure of this space. (see also
Chap II. 1.3) We observe that by construction K., is connected, hence we
have that Ko, C G(R)°. So if as usual mo(G(R)) denotes the set of connected
components, then we see that

mo(X) = mo(G(R)).

The connected component of the identity of é(R) maps under m; to the
connected component of he identity of G(R), i.e.

GR) = GVY(R) x C1(R)° x S(R)® — G(R)°

and if we divide by KL x K& x Z'(R)?, resp. K., we get a diffeomorphism
with the connected component corresponding to the identity

GYR)/KY x C1(R)°/KS x S(R)°/Z'(R) = X, C X.

We want to describe the other connected components of X. It is well known that
we can find a maximal split torus Sy ¢ G x R which is invariant under our
given Cartan involution ©. The homomorphism m; maps G (R) — GM(R).
The fixed group G(l)(]R)@ is a compact subgroup whose connected component
of the identity is the image of Ké};) under mj. Our torus 5’1 sits as the first
component in the maximal split torus

SQ = 5’1 X Cfplit x S

Then it is clear that © induces the involution ¢ t=1 on S;. Let Sy be the
image of So under m;. We have the following proposition



Proposition 1.2. a)The group of 2-division points So[2] normalizes K.
b) We have an exact sequence

— 55[2] = S2[2] = m(G(R)) — 0

c) If KO is the image of K x K& then KO - S5[2] is a mazimal compact
subgroup of G(R).

Proof. Rather obvious, the surjectivity of r requires an argument in Galois
cohomology. (Details later) O

Now we can write down all the connected components. We choose a system
E of representatives for S2[2]/S2[2] and for any ¢ € = we get a diffeomorphism

GOR)/KL x ¢y (R)/KS x S(R)°/Z'(R) — Xe C X
(8)

g 98
We may formulate this differently

Proposition 1.3. The multiplication from the left by S2[2] on G(R) induces
an action of S3[2]/52[2] on X and this action is simple transitive on the set of
connected components.

Let xg = Ko € X. For any other point z € X we find an element g € X
which translates zo to x. Then the derivative of the translation provides an
isomorphism between the tangent spaces

Dy : Toy = p =5 T

This isomorphism depends of course on the choice of g. ( This will play a role
in section (4.1)). But we apply this to the highest exterior power and get an
isomorphism
Dy A(p) = AU(T,)

which does not depend on the choice of g because the connected group K acts
trivially on A%(p). Hence we can say that we can find a consistent orientation
on X : We chose a generator in A%(p) the D, yields a generator in A%(T}).

If our reductive group is an anisotropic torus 7'/Q, then we have for the
connected component of the identity

TR)® = (R%p)" x (81",
Then our maximal compact subgroup KZ is simply the product of the circles
and
Xr=T(R)/KL
is nothing else than as disjoint union of copies of R®. The situation is similar
for a split torus but then we have the freedom, to divide out the connected
component of a subtorus.

As a standard example we can take G/Q = Gly/Q, then the connected
component of the real points of the centre is RZ, and in this case we can take
Ko = S0(2) - RZ, C Gly(R)). In this case the symmetric space is the union
of an upper and a lower half plane. It we choose for our split torus S;/R the
standard diagonal torus, then S;[2] is the group of diagonal matrices with entries
+1 and this normalizes K.



1.2 The locally symmetric spaces

Let A be the ring of adeles, we decompose it into its finite and its infinite
part: A =R x Ay. We have the group of adeles G(A) = G(R) x G(Ay). We
denote elements in the adele group by underlined letters g,h... and so on. If
we decompose an element ¢ into its finite and its infinite part then we denote
this by geo X g, Let Ky be a (variable) open compact subgroup of G(Ay). We
always assume that this group is a product of local groups Ky = Hp K.

To get such subgroups we choose an integral structure (explain at some other
place) G/Spec(Z). Then we know that we have K, = G(Z,) for almost all p.
Furthermore we know that G x Spec(Z,)/Spec(Z,) is a reductive group scheme
for almost all primes p.

If G/Spec(Z) and K are given, then we select a finite set ¥ of finite primes
which contains the primes p where G/Z, is not reductive and those where K,
is not equal to G(Z,). This set ¥ will be called the set of ramified primes.

The general agreement will be that we use letters G, T,U, ... for group
schemes over the integers, or over Z, and then their general fiber will be
G,T.U,....

Readers who are not so familiar with this language may think of the simple
example where G/Q = GSp,,/Q is the group of symplectic similitudes on V =
Q" =Qe1 @ ®Qe, ®Qf; ® --- ® Qf,, with the standard symplectic form
which is given by < e;, f; >= 1 for all ¢ and where all other products zero.
The vector space contains the lattice L = Z>" =Ze, ®--- D Ze, L[ LD - D
Zf,. This lattice defines a unique integral structure G/Z on G/Q for which
G(Zy) = {9 € G(Qp)|lg(L ® Zp) = (L @ Zp)}. In this case the group scheme
is reductive over Spec(Z). This integral structure gives us a privileged choice
of an open maximal compact subgroup: Within the ring Ay of finite adeles
we have the ring 7 = liin Z/mZ of integral finite adeles and we can consider

K? =G(Z) = [1,6(Z,). This is a very specific choice. In this case the set
Y =0, we say that Ky = K? is unramified.

Starting from there we can define new subgroups K; by imposing some
congruence conditions at a finite set % of primes. These congruence conditions
then define congruence subgroups K, C KS. This set X of places where we
impose congruence condition will then be the set of ramified primes.(See the
example further down.) Then we define the level subgroup

Ky =[] & > [] 9(Z0). 9)

peEX PES

The space (G(R)/Kx) x (G(Af)/Ky) can be seen as a product of the sym-
metric space and an infinite discrete set, on this space G(Q) acts properly dis-
continuously (see below) and the quotients

SE, = G\ (GR)/Ku x G(Af)/Kf)

are the locally symmetric spaces whose topological properties we want to study.
We denote by

m: G(R)/ Ko x G(Af)/Kf = SE, = G(Q\ (G(R)/Kx x G(Af)/Ky),

the projection map.



To get an idea of how this space looks like we consider the action of G(Q)
on the discrete space G(Ay)/Ky. It follows from classical finiteness results that

this quotient is finite, let us pick representatives {ggf)}i:l_m. We look at the
stabilizer of the coset g?)K #/Ky in G(Q). This stabilizer is obviously equal to

O] , ,
Yy =G@Qn g(fl)Kf (gy))_l which is an arithmetic subgroup of G(Q). This
subgroup acts properly discontinuously on X (See Chap. II, 1.6).
()
Now we call the level subgroup K neat, if all the subgroups 'Y are torsion
free. It is not hard to see, that for any choice of K we can pass to a subgroup
of finite index K }, which is neat. Then we have

1.2.1 For any subgroup Ky the space SIG(f s a finite union of quotient spaces

(4) (3)
% \ X where X = G(R)/Ky and the T; = T% are varying arithmetic
congruence subgroups. If K¢ is neat, these spaces are locally symmetric spaces.
If Ky is not neat then we may pass to a neat subgroup K} which is even normal

in Ky: We get a covering SG} — SIG(f which induces coverings T\ X — T;\ X,
where the F;- are torsion free and normal in I';. So we see that in general the
quotients are orbifold locally symmetric spaces. For any point y € ng we can
find a neighborhood V,, such that 7=1(V,) is the disjoint union of connected
components Wy, x = (a:oo,gf) e n Yy), and V, =T, __ \ng, where T'y__ is the

stabilizer of xo intersected with T'2r .

We will consider the special case where G/Q is the generic fibre of a split
reductive scheme G/Z. In that case we can choose Ky = Hp G(Zy), this is then
a maximal compact subgroup in G(Ay). Then K is unramified we will also say
that the space ng is unramified. If in addition the derived group G(")/Q is
simply connected, then it is not difficult to see, that G(Q) acts transitively on
G(Ay)/K; and hence we get

S, = G(ZL)\X.

The homomorphism G(Z) — m(C'(R)) is surjective we can conclude that
G(Z) acts transitively on 7y(X) and if Ty is the stabilizer of a connected com-
ponent X° of X then we find

Si, = To\X?

especially we see that the quotient is connected. We discuss an example.

We start from the group G/Spec(Z) = Gl,, /Spec(Z) then we may choose
Ko =80(n) x R, C Gl (R). and X = Gl,(R)/K is the disjoint union of
two copies of the space X of positive definite symmetric (n x n) matrices up to
homothetie by a positive scalar (or what amounts to the same with determinant
one). If we choose Ky as above then we find

Si, = Sl(Z)\X.

We have another special case. Let us assume that G/Q is semi simple and
simply connected. The group G x R is a product of simple groups over R and
we assume in addition that no no simple factor is compact. Then we have the



strong approximation theorem (Kneser and Platonov) which says that for any
choice of Ky the map from G(Q) to G(Af)/K is surjective, i.e. any g, € G(Ay)

can be written as g, = aky,a € G(Q),k; € Ky. This clearly implies that then
G _
Sk, =N\GR)/Kx (10)
where I' = Ky N G(Q).

There is a contrasting case, this is the case when G/Q is still semi simple
and simply connected, but where G(R) is compact. In this case our symmetric
space X is simply a point * and

SK, = GQ\(x x G(Ay)/Ky).

In this case the topological space is just a discrete set of points. So it looks
as if this is an entirely uninteresting and trivial case, but this is not so. To
determine the finite set and the stabilizers is a highly non trivial task. Later
we will construct sheaves and discuss the action of the Hecke algebra on the
cohomology of these sheaves. Then it turns out that this case is as difficult as
the case where I'\ X becomes an honest space.

In the choice of our group K., a subtorus Z’ C S enters. The choice of
this subtorus has very little influence on the structure of our locally symmetric
space S[G(f. Remember that the isogeny m in (1) induces an isogeny C' — C’ and
this isogeny yields an isogeny from S to the maximal split subtorus S’ C C".
This homomorphism induces an isomorphism S(R)? — S’'(R)Y. If G (R) is the
inverse image of the the group of 2-division points S’[2] then we get from this
isomorphism that G(R) = G1(R) x S(R). If we now consider the two spaces
S[Céf and (ng)T7 the first one defined with an arbitrary torus Z’ the second one
with Z’ = S then the arguments above imply that

SE, = (S§,)T x (S[R)’/Z'(R)") (11)

the second factor on the right hand side is isomorphic to R? and since we are
interested in the cohomology group of this space, it is irrelevant.

In certain situations we encounter cases where it is natural to choose a
subgroup K., which is slightly larger and not connected. If this is the case we
denote the connected component K. éé)
and a finite map

and we get two locally symmetric spaces

G(@)\ (GR/ED x G(As)/K}) = G\ (GR)/ Koo x GlAg)/Ky) (12)

This map is a covering if Ky is neat and the space on the right is a quotient
of the space on the left by an action of the finite elementary abelian [2]-group
Koo/ K.

In accordance with the terminology in number theory we call the space SIG(f

narrow if K&l;) = K, and in general we call the space on the left the narrow

cover of G(R)/K x G(Ay)/Ky.



1.3 The group of connected components, the structure of

If we keep our assumptions that G/Q is split and G)/Q simply connected.
Then it is straightforward to show that under our assumptions we have a bijec-
tion

m0(SE,) — mo(S§, (13)

’
K¢S xKg?/)

We have seen in the previous section that we can choose a consistent orien-
tation on X = G(R)/K provided K is narrow. Then it clear this induces
also a consistent orientation on ng.

1.4 The Borel-Serre compactification

In general the space SI% is not compact. Recall that in the definition of this
quotient the choice of a subtorus Z’/Q of S/Q enters. This If Z’ # S then the
quotient will never be compact. But this kind of non compactness is ”uninter-
esting”. In the following we assume that Z' = S.

In this case we have the criterion of Borel - Harish-Chandra which says

The quotient space Sﬁf is compact if and only if the group G/Q has no
proper parabolic subgroup over Q.

If we have a non trivial parabolic subgroup P/Q then we add a boundary
part 8p$§f to S[G(f it will depend only the G(Q)-conjugacy class of P. We will
describe this boundary piece later. We define the Borel-Serre boundary

a(sgf) = UaPSIC({f7
P

where P runs over the set of G(Q) conjugacy classes of parabolic subgroups.
We will put a topology on this space and if Q C P then 3@‘5}% will be in the

closure of 8PSI%. Then
SR, = SR, VasE)
will be a compact Hausdorff-space.

We describe the construction of this compactification in more detail. In
chap4.pdf 2.7.1 we studied the group Hom(P, G,,) and have seen that

Hom(P,G,,) ® Q = Hom(Sp,G,,) @ Q.

For any character v € Hom(P,G,,) we get a homomorphism v4 : P(A) —
G (A) = Ig, the group of ideles. We have the idele norm | | :  + |z| from the
idele group to R%, and then we get by composing

Iy : P(A) = RZ,.

It is obvious that we can extend this definition to characters v € Hom(P, G,,) ®
Q, for such a v we find a positive non zero integer m such that my € Hom(P, G,,)
and then we define

1
[v] = (Jmy])™

10



Later we will even extend this to a homomorphism Hom(P, G,,)®C — Hom(P(A),C*)

by the rule
1@z (14)

If we have a parabolic subgroup P/Q and a point (x,gf) € X xG(Ay)/Ky
then we attach to it a (strictly positive) number

PP, (2,4,)) = volu,u(U(Q) N g K g, \U(R)). (15)

This needs explanation. The group U(Q) N ngngjl = FU,gf is a cocompact
discrete lattice in U(R), we can describe it as the group of elements v € U(Q)
which fix g Kp, so it can be viewed as a lattice of integral elements where
integrality is determined by g - The point x defines a positive definite bilinear

form Be, on the Lie algebra g ® R, and this bilinear form can be restricted
to the Lie-algebra up ® R and this provides a volume form d,u on U(R) the
above number is the volume of the nilmanifold FU,gf\U(R) with respect to this
measure.

If we are in the special case that G = Sly/Q and K; = Sly(Z) then a
parabolic subgroup P is a point r = % € P1(Q) (or 0o) and then p(P, (z,1)) is
small if z lies in a small Farey circle, i.e. it is close to r.

These numbers have some obvious properties
a) They are invariant under conjugation by an element a € G(Q), this means
we have

p(a~!Pa, (:agf)) = p(P,a(%gf))
b) If p € P(A) then we have

P(Paﬁ(%gf)) :p(Pv ($agf))|PP|2

The G(Q) conjugacy classes of parabolic are in one to one correspondence
with the subsets 7’ of the set relative simple roots mg :The minimal parabolic
corresponds to the empty set, the non proper parabolic subgroup G/Q corre-
sponds to mg itself. In general 7’ is the set of relative simple roots of the semi
simple part of the reductive quotient of the parabolic subgroup. For a parabolic
subgroup P’ corresponding to ' we put d(P’) = #(ng \ 7). For any i € 7g \ 7’
we have a fundamental character

Yi : P — Gy

We have the Borel-Serre compactification

;L. QG e
7. SKf — SKf

The compactification is a manifold with corners, the boundary is stratified

a(S%,) =Jor(SE))
P

11



where P runs over the G(Q) conjugacy classes of parabolic subgroups. If P C @
then the stratum Jg (ng) C ap(ng).

Locally at a point z € ap(ng) we find neighborhoods of x in S‘gf which
are of the form

UI = Wx X {"'7ui7'-'}i€rrc\7r/;0§u7:<e (16)

where W, is a neighborhood of x in the orbifold 81:(5‘%). The intersection

(o)
U,=U,;N ng consists of those elements where all the u; > 0.

1.5 The easiest but very important example

If we take for instance G/Z = Gly/Z and if we pick an integer N then we can
define the congruence subgroup K¢(N) = [[, Kp(N) C G(Z). It is defined by
the condition that at all primes p dividing N the subgroup

K,(N)={y€ Q(Z)hf =Id mod p™}

where of course p"» is the exact power of p dividing N. At the other primes we
take the full group of integral points. For the discussion of the example we put
K¢(N) = Kjy.

If we consider the action of G(Q) on G(Af)/K; then the determinant gives
us a map

Gl (Q\GL2(Af)/ Ky = Gm(Af)/Q Uy

where Uy is the group of unit ideles in Iy ; = G, (Af) which satisfy u, = 1
mod p™. This map is a bijection as one can easily see from strong approxima-
tion in Sly, and the right hand side is equal to (Z/NZ)*/{£1}. At the infinite
place we have that our symmetric space has two connected components, we have

X =Gl(R)/SO(2) =C\R =H, UH_

where H are the upper and lower half plane, respectively. We have a complex
structure on X which is invariant under the action of Gla(R). The connected
components of this quotient correspond (one to one)to the elements in

G (A)/Gn(Q)(Gn(R)® x Un) = Ig/QRE oty = (Z/NZ)".
We put I'(N) = G(Q) N Ky and then the components are

roon (5 D) e (0 0) o

where t runs through a set of representatives of Ip/Q*R%Un = (Z/NZ)*.
These connected components are Riemann surfaces which are not compact.
They can be compactified by adding a finite number of points, the so called
cusps. These are in one to one correspondence with the orbits of I'(N) on
PY(Q) (see reduction theory).
(Compare to Borel-Serre)
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2 The sheaves, their cohomology and the action
of the Hecke algebra

2.1 Basic data and simple properties

Let M be a finite dimensional Q-vector space, let
r:G/Q — GI(M)

a rational representation. This representation r provides a sheaf M on SIG;f
whose sections on an open subset V' C Sﬁf are given by

MV) = {s: 771 (V) = M]|s locally constant and s(yv) = 7(7)s(v),y € G(Q)}.

We call this the right module description of M.
We can describe the stalk of the sheaf in a point y € ng, we choose a point

T = (woo,gf) in 7~!(y) and we choose a neighborhood V,, as in 1.2.1. Then we

can evaluate an element s € M(V,) at z and this must be an element in M+,
this means we get an isomorphism

er s My — M res.

By definition we have e, = vez.

In our previous example such a representation r is of the following form: We
take the homogeneous polynomials P(X,Y") of degree n in two variables and
with coefficients in Q. This is a Q-vector space of dimension n + 1, we choose
another integer m and now we define an action of Gla/Q on this vector space

(i Z) P(X,Y)=P(aX+cY,bX+dY)det((CCL Z)yn.

This Gly module will be called M, [m] and it yields sheaves M,,[m] on our space
59
h

It is sometimes reasonable to start from an absolutely irreducible represen-
tation and therefore we consider representations defined after a base change
r:G xg F — GI(M) where M is a finite dimensional F' vector space and the
action is absolutely irreducible. Since G(Q) acts on M we can define a sheaf
M of F vector spaces.

If our group is a torus T/Q, then we can find a finite normal extension E/Q
such that T' xg E is split and then we denote by

X*(T) =Hom(T x E,Gy,) resp X.(T) = Hom(G,,,T xq E) (17)

the character (resp. ) cocharacter module of T'/Q. Both modules come with
an action of the Galois group Gal(E/Q). In this case an absolutely irreducible
representation is simply a character v € X*(T') and we denote by E[y] a one
dimensional E-vector space on which T'/Q acts by 7. Then E[’y] is a sheaf of
F-vector spaces on S};}p

13



2.1.1 Integral coefficient systems

We assume again that we have a rational representation of our group G/Q, the
following considerations easily generalize to the case of an arbitrary number field
as base field. We want to define a subsheaf MZ C M. To do this we embed the
field Q — A and we consider the resulting sheaf of A -modules M Ay We
consider the diagram

G(R)/ Koo x (G(Af)/ Ky

y

G(R)/ K x G(A) 11

—

GQN\GR)/ Koo x G(Ay

)
)
(18)

this means that the division by the action by K; on the right and by G(Q)
on the left (this gives II) is divided into two steps: In the lower diagram the
projection II is division by the action of G(Q) and then IIy gives the division
by the action of Ky on the right.

The sheaf M ®q Ay can be rewritten. For any open subset V C Sﬁf we
consider W = II"1(V) and by definition
Mg Ap(V) = {s: (W) = M &g Afls(v(we, k) = Y(5(200. 9,)),

where these sections s are locally constant in the variable x.,. For any s €
M@ Af(V) we define a map §: W — M ® Ay by the formula

5(%072 ):Qfls(%oag Kf)v
! f !

this makes sense because M ® Ay is a G(Ay)— module. For v € G(Q) we
have E(fy(xoo,gf)) = §((xoo,gf)) hence we can view § as a map

51 GQ\G(R) /Koo x G(Af) » M ®g Ay

We consider the projection

I, : G(Q\G(R)/Ku x G(Af) = G(Q\G(R) /Koo x G(Af)/Kf = SE,
and then it becomes clear that M ® A ¢ can be described as

M@AHV) = {5: (IT1(V) = M ®g Aj]
5 locally constant in z., and §((xoc,gfﬁf)) = E}lé((xm,gf))}.

14



Hence we have identified the sheaf M ®q Ay which is defined in terms of the

action of G(Q) on M to the sheaf M/Q_)EAf which is defined in terms of the
action of K¢ on M ®q Ay.

Now we assume that our group scheme G/Q is the generic fiber of a flat
group scheme G/Spec(Z) (See 1.2). We choose our maximal compact subgroup
Ky =TI, Kp such that K;, C G(Z,) and with equality for all primes outside a
finite set X. We can extend the vector space M to a free Z module My of the
same rank which provides a representation G/Spec(Z) — Gl(Mz).

As usual Z will be the ring of integral adeles. Then it is clear that MzQRZ C
M ®q Ay is invariant under Ky and hence we can define the sub sheaf

—~—

Mz 7 c Mag Ay,

this is the sheave where the sections § have values in Mz @ Z. We put

Mz =Mz®ZNM,
of course it depends on our choice of My C M. We get two exact sequences
of sheaves

—~

0 - My — M - M®(Q/Z) =0
4 { 4

—_—~ —~

0 - MQZ — MBEA}C - M®(As/Z) =0

The far most vertical arrow to the right is an isomorphism, the inclusions
Z — Z and Q — Ay are flat. Writing down the resulting long exact sequences
provides a diagram

- H*(S{,, My) EEN H*(S§,, M) -
iz Lig
— HYS{, . M®L) 5 HY(SZ , Megh;) -

The above remarks imply that the vertical arrows are injective, the horizontal
arrows in the middle have the same kernel and kokernel. This implies

Proposition 2.1. The integral cohomology
H. (ng ? MZ)

consists of those elements in H® (SIGq,M ® Z) which under ja go to an element
in the image under ig or in brief

H*(S§,, Mz) = j, *(im(ig))

This generalizes to the case where we have a representation r : G x F —
GIl(M) where M is a vector space over F. If our group scheme is an extension
of a flat group scheme G/Spec(OF) then can find a lattice Me,. which yields a
representation of G — Gl(Mo,.). Then we can define the sheaf M, and define
the cohomology groups ~

(8¢, Mo,)

15



2.1.2 Sheaves with support conditions

We can extend the sheaves to the Borel-Serre compactification. We have the
inclusion

e oG

i:Sg ; Sy ;
and we can extend the sheaf by the direct image functor i, (M) It follows easily
from the description of the neighborhood of a point in the boundary (see 16)
that R%i,(M) = 0 for ¢ = 0 and hence we get that the restriction map

H*(SF, ix(M)) = H*(SE,, M)

is an isomorphism.
We may also extend the sheaf by zero (See [Vol I], 4.7.1), this yields the

sheaf i;(M) whose stalk at x € Sﬁf is equal to M, and whose stalk ist zero in
points x € 88;%. Then we have by definition

H2(SE,, M) = H*(SF,,2(M))
this is the cohomology with compact supports.

We are interested in the integral cohomology modules H®(S% o Mz), H? (ng ,M3).

We introduced the boundary 88}6'( of the Borel-Serre compactification then we
have a first general theorem, which is due to Raghunathan.

Theorem 2.1. (i) The cohomology groups Hi(S§f7MZ)7Hi(8S§f,/\;lZ) and
Hé(SIC(;f,/\;lZ) are finitely generated.

(i1) We have the well known fundamental long exact sequence in co-
homology

— Hi_l(GngaMZ) — Hé(sgfvf\;lz) — Hi(ngaMZ) — Hi(asgf’MZ) -

We introduce the notation H7(SIG(f,./\;lZ) meaning that for 7 = blank we
take the cohomology without support, for 7 = ¢ we take the cohomology with
compact support and for ? = J we take cohomology of the boundary of the
Borel-Serre compactification. Later on we will also allow ? =! this denotes the
inner cohomology. The above proposition holds for all choices of 7.

Let ¥ = {Py,..., Ps} be a finite set of parabolic subgroups, we assume that
none of them is a subgroup of another parabolic subgroup in this set. The union
of the closures of the strata

U U 0e(s%,) = 0s(5%,)

i QCP;
is closed .
Jx 51% - SIC(:," \5‘2(51G(f),j2 : 5}% \32(51%) - 51%'

The inclusion 1 : S[G{f — SIGQ is the composition i = j* o jx we define the
intermediate extension

izt (M) = 5" © g (M). (19)
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For these sheaves with intermediate support conditions we can also formulate
assertion like in the above theorem. Later we will discuss an increasing filtration

WoH®(SE,, M) = H?(S§,, M) C Wi H*(SF , M) C ... (20)

on the cohomology, the bottom of this filtration will be the inner cohomology,

2.1.3 Functorial properties

The groups have some functorial properties if we vary the level subgroup Kjy.
If we pass to a smaller open subgroup K } C Ky then we get a surjective map

. QG G
T‘—Kf,K} : SK} — SKf?
whose fibers are finite. This induces maps between cohomology groups

WK}J(f; : H?(ng7./\;lz) — H’(S[C(:}aMZ)a

for 7 = ¢ we exploit the fact that the fibers are finite.

We construct homomorphisms in the opposite direction. We exploit the
finiteness a second time and find that the direct image functor (ﬂ'K}, i)+ 18
exact and hence

H3 (S, Mz) = H7 (SE ., (7.1, )«(Mz)).
We define a trace homomorphism (WK}ﬁKf)*(Mz) — Mz A section s €
(WK}ny)*(/\;lZ)(V) is amap §: II71(V) = M, ® Z such that
(1 (20er g ) = (K) " 5(( ) for all K, € K,

This is a section of My, if and only if the corresponding section s takes values
in M. Then we define

tr(§)(xoo,gf) = Z §;1§(x°°’gf)

éfEKf/K}

and this now satisfies
tr(§)(’y(xoo,gfﬁf)) = k;1§((xoo,gf)) for all ky € K.

and since the corresponding section tr(s) takes values in M we see that tr(8) €
Mz (V).

Remark: It may happen that this trace map is not the optimal choice, it can
be the integral multiple of another homomorphism between these two sheaves.
This happens the intersection C'(Q) N K is non trivial.

Then the homomorphism between the sheaves induces

TK! K

HY (SR, Mz) = H (SR, (i, i)« (Mz)) " HI (SR, (M),

Later on our maps between the spaces will be denoted 7, m,... and the
notation simplifies accordingly.
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2.2 The rational cohomology groups and the Hecke-algebra

In this section we assume that our coefficient systems are obtained from rational
representations of a reductive group scheme G/Q hence they are Q vector spaces.
We discuss some further properties of the rational cohomology groups

Hi(SF,, Mq), H'(SE,, Mq) ...

These cohomology groups are finite dimensional Q-vector spaces and we have
the same exact fundamental sequence. We can also pass to the direct limit

HY(SY M) =lim H(S$,, M).
Kj f

Proposition 2.2. On these limits we have an action of the group mo(G(R)) x
G(Ay). We recover the cohomology with fized level Ky by taking the invariants
under this action, i.e. we have

H‘.Z;(SG7M)Kf = H%(ngvM)

To define this action we represent an element in 7o(G(R)) by an element
ks in the in the normalizer of K, in G(R). An element z = (koo,gf) €
G(R)xG(Ay)) defines by multiplication from the right an isomorphism of spaces

my s GQ\X x G(Af)/Kf — GQ\X x G(Ag)/a} Ky

It is clear from the definition that m, yields a bijection between the fibers
719),5 € G(Q\X x G(Ay)/K; and 7~ '(m,)(g) and since the sheaf is de-
scribed in terms of the left action by G(Q) we get m, (M) = M. Passing to
the limit gives us the action. The second assertion is obvious, but here we need
that our coefficients are QQ vector spaces, we need to take averages.

We introduce the Hecke algebra, it acts on the cohomology with a fixed level.
It consists of the compactly supported Q—valued functions h : G(A;) — Q
which are biinvariant under the action of Ky and is denoted by H = Hk, =
C.(G(Ay)//Ky,Q). An element h € H is simply a finite linear combination of
characteristic functions h = > Ca;XKra,k; With rational coefficients ¢q . The
algebra structure is given by convolution with respect to the Haar measure on
G(Ay) which gives volume 1 to K. This convolution is given by

f

With this choice of the measure it is clear that the characteristic function of Ky
is the identity element of this algebra.

The action of the group G(Ay) induces an action of Hx, on the cohomology
with fixed level H};(ng,/\;l), Hi(ng,/\;l), .- : For an element v € Hi(S%, M)
we define

Th(v) = /G(A )h@f)ifvdlfa
s

where the measure is still the one that gives volume 1 to Ky. Clearly we have
Thyshy = ThyTh,-
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(Actually the integral is a finite sum: We find an open subgroup K} C Ky
such that v is fixed by K } and then it is clear that

1) = [ hepepdey =K KY YYD axin, €80
G(Ay) a, §f€G(Af)/K}

This makes it clear why we need rational coefficients .)

Tt is clear that Ty (v) € H%(ng , M) and hence T}, gives us an endomorphism
of H%(Slc(f,/\;l) We will show later that we also get endomorphisms on the co-
homology of the boundary and therefore H also acts on the long exact sequence
(Seq) .

If our function h is the characteristic function of a double coset Kz fK ¥
then we change notation and write 7}, = ch(z;). We give another definition
of the Hecke operator ch(z;) in terms of sheaf cohomology. We imitate the

construction of the Hecke operators in Chap.Il 2.2. We put K](%f) = K;nN

x fK fglil and consider the diagram

My

S¢ —4 S,

(zg) 2371
Ky Kfﬁf
N\ T W T2
el

Hopl

where my . is induced by the multiplication by z; from the right. This yields
in cohomology

L]
L

T HY (S M) HY(SC sy, (M) (Hop2).
f Kf7

H*(SE, . M)

Since we described the sheaf by the action of G(Q) and the map m,, by mul-

tiplication from the right we have mgfy*(./\;l) = M, this yields an isomorphism
ig . Since my is finite we have the trace homomorphism
. e/ QG ~ o G
Toe: H*(SY , 1, M) = H*(Sg,, M)
K& f

and the composition is our Hecke operator

xom =ch(z;): H'(SIG(f,./\;l) — H'(SIG(f,./\;l).

T2 e OZQ ;

om
f €T

This is simpler than the construction Chap.IT 2.2. because we do not need
the intermediate homomorphism wu,. But we we do not get Hecke operators on
the integral cohomology.

2.3 The integral cohomology as a module under the Hecke
algebra

We resume the discussion of the integral Hecke algebra acting on Hg(S¢ N MZ)
from Chapter II. Inside the Hecke algebra we may also look at the sub algebra
of Z -valued functions. This is in principle the algebra which is generated by the
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characteristic functions ch(z ;) of double cosets Kz ;K. These characteristic
functions act by convolution on the cohomology H*®(S% f7./\/l) but this does
not induce an action on the integral cohomology. Our next aim is to define
a fractional ideal n(z;) C Q or more generally n(z;) C F' such that for any
a € n(z;) we can define an endomorphism

a-ch(zy): H*(SE,, My) — H*(SE, My )

and if we send this to the rational cohomology then on H '(ng,./\/l) this will

be the convolution endomorphism induced by ch(z f) multiplied by a.
This ideal will depend on z; and on A and further down we compute it in
special cases.

(i) These endomorphisms a-ch(z;) generate an algebra /Hg‘) acting on the
integral cohomology and the arrows in our sequence above commute with this
action.

v) Moreover, we have an action of mo(G(R)) on the above sequence and this
action also commutes with the action of the Hecke algebra. Hence we know that

our above sequence is long exact sequence of mo(G(R)) x H(Z)‘)'

We come to the definition of the ideal.

If we are in the special case that our group has strong approximation then
we have

N\X = GQ\X x G(Ay)/Ky

(See (10)). We pick an element @ € G(Q). In Chap. II , 2.2 we defined the
Hecke operator T'(a, uy) where u,, : M@ — M is the canonical choice. Let us
denote the image of o in G(Ay) by a,. We just attached a Hecke operator to
the double coset Kray.Ky. We have the diagram of spaces

D(a)\X ———————G(Q\G(R)/Kx x G(Af)/K}' (21)
I(a™h) r(ay)

P(a™N\X ————— GQ\G(R)/Kn x GlAg)/K

Here the horizontal arrows are the isomorphisms provided by strong approxi-
mation, the arrow I(a™!) is the isomorphism induced by left multiplication by
a~!and r(a f) by right multiplication by a . These two maps enter in the def-
inition of the Hecke operators T'(a™!, uq-1) and ch(a;) and a straightforward
inspection of the sheaves yields

ch(a;) = T(a ™ ug—1).

Hence we can conclude that under this assumption our newly defined Hecke
operators coincide with the Hecke operators defined in Chap. II. This also
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tells us what we have to do if we want to define Hecke operators on integral
cohomology.

To define the action of the Hecke algebra on the integral cohomology without
the assumption of simple connectedness we have/tgganslate their definition into
the right module description. Then our sheaf M ® A is described by the action
of Ky on M ® Ay and this allows us to define the sub sheaf Mz ® 7. We look

at the same diagram. But now the sheaf m£1,7*(/\/l/ggf) is the sheaf described
-1

by the the K%f) module (M & A)®). This module is M ® A; as abelian
T —1
group, but 9, S Kj(ff) acts by my gfgg;lmf. The map my — Tymy

-1
induces an isomorphism [z ;] between the two K (z,) modules (M ® A f)@f)
and (M ®A ). We now consider the diagram Hopl. and replace in the sequence
of maps the homomorphism igf by the map [g}] induced by the isomorphism
[z f] between the sheaves. Then we can proceed as before and get an operator

Prx o [zf]® omy .0 p; = ch(zy).
It is straightforward to check that this operator is an extension a4 © iz, ©
my . omt to H*(SF,, M@ Ag).
Our right module sheaf contains the submodule sheaf M\ ® Z, we can write

the same diagram but now it can happen that [z f] does not map My ® Z into
itself. This forces us to make the following definition

n(z;) ={a € Q| [az,]: Mg ®ZLC Mz @7}

Then we can again go back to our above diagram and it becomes clear that
we can define Hecke operators

a-ch(zy): H'(ng,/\;lz) — H'(ng,/\;lz) for all a € n(zy).

2.3.1 The case of a split group

We want to discuss this in the special case that G/Spec(Z) is split reductive,
we assume that the derived group G(Y) /Spec(Z) is simply connected, we assume
that the center C/Spec(Z) is a (split)-torus and that C N G™) is equal to the
center Z() of GV, This center is a finite multiplicative group scheme (See 1.1).

Accordingly we get decompositions up to isogeny of the character and cochar-
acter modules of the torus

XHT) = X" (TH) @ X*(C) X (TW) & X, (C) — X.(T) (22)

they become isomorphisms after taking the tensor product by Q. We numerate
the simple positive roots I = {1,2,...,r} = {a1,a2,...,a,.} C X*(T) and we
define dominant, fundamental weights ; € X*(7)g which restricted to 7() are
the usual fundamental dominant weights and restricted to C are trivial. Then
a dominant weight can be written as

A=Y ami+6=2Y+3, (23)
el
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where § € X*(C) and we must have the congruence condition

D £ 8)zW =1 (24)

We can construct a highest weight module My z. We pick a prime p, we
assume that is unramified (with respect to Ky), this means that K, = G(Z,).
Any element ¢, € T(Q,) defines a double coset Kpt,K,. Of course only the
image of ¢, in T(Q,)/T (Z,) matters and

T(Qp)/T(Zp) = X(T)

we find x € X, (T) such that x(p) = t,. We take a x in the positive chamber,
i.e. we assume < x,a >> 0 for all a. We can produce the element

X, = (1...,1,...,x(p),1...,1,...) € T(Ay)
and the Hecke operator
ch(y): H*(S§, M ® Q) = H*(S{, . M2 Q)

We have to look at the ideal of those integers a for which

ach(x J(Mxz ®Zp) C (Mxz ®Zp).

This is easy: We have the decomposition into weight spaces

MX,Z = @MMA7Z(M)

and on a weight space the torus element ch(xp) acts by

Ch(Xp)xu = p Xy,

We get the smallest exponent if we choose for u, the lowest weight vector.
We denote by wg the longest element in the Weyl group, which sends all the
positive roots into negative roots. The the element —wg induces an involution
1 — 4’ on the set of simple roots. Then

p=wo(\) == ai+3. (25)

We say that our weight is (essentially) self dual if we have a; = a;r. If our weight
is self dual then p = —AM) +§
Hence we see that our ideal is the principal ideal is given by

(p_<X’“’0)‘(1>>_<X’5>) or if A\ self dual (p<X’>‘(1)>_<X’5>) (26)
and therefore, we have the Hecke operator

_ (W5 _ ~ ~
T;f);hk =p <X,We AN >—<x,0> Ch(xp) : H.(S[CéfaMA,Z) N H.(S[%VPM)\,Z)
(27)
The number — < y,woA(!) > is the relevant contribution in the exponent
(let us call this the semi-simple term), the second term — < x,d > is a correction

term ( the abelian contribution) and it takes care of the central character. We
come back to this in section 3.1.4.
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2.4 Excursion: Finite dimensional H—modules and repre-
sentations.

We fix a level Ky = [], Kj and drop it in the notations. It follows from the
theorem 2.1 that we have a finite Jordan-Holder series on our cohomology groups
such that the subquotients are irreducible Hecke-modules. If we take the tensor
product with a suitable finite extension F/Q then we can refine the Jordan-
Holder series such that the quotients become absolutely irreducible modules for
the Hecke algebra, we say a few words concerning the absolutely irreducible
Hecke-modules.
We have a decomposition

H=Q Hy = Q) CCQ)//Ky).

As the notation indicates we take the tensor product over all finite primes. This
tensor product has to be taken in a restricted sense: for an element of the
form hy = ®h, the local factor h, is equal to the identity element for almost
all primes p (this is the characteristic function of k). All other elements are
finite linear combinations of elements of the form above. We have the obvious
embedding H, — H we simply send hy — 1 ®---®@h, ® 1.... The subalgebras
‘H, commute with each other.

We are interested in categories of modules for the Hecke algebra, which
will be finite dimensional Q— vector spaces V together with a homomorphism
H — Endg(V). If Let us call this category Mody. For any extension L/Q we
may consider the extension H; = H ® L and the resulting category Mody,, .
If we have an extension L — K the tensor product yields a functor Mody,, —
MOdHK .

We briefly recall the theory of modules over a finite dimensional Q-algebra A
more precisely for any extension L/Q we consider the category Mod 4, of finite
dimensional L-vector spaces V together with a homomorphism Ay, — Endy (V).

We say that a finite dimensional Ay module V irreducible, if V' does not
contain a non trivial Ay submodule. We say that V is absolutely irreducible if
V ® L is irreducible. We say that V is indecomposable if it can not be written
as the direct sum of two non zero submodules.

We call such an algebra A semi-simple if it does not contain a non trivial
two sided ideal A consisting of nilpotent elements. It is well known that this
is equivalent to the semi simplicity of the category Mod 4, this means that for
any A-module V (finite dimensional over Q) and any submodule W C V' we
can find a A submodule W’ such that V. = W & W’. It is also well known
that A is semi simple if it has a faithful semi-simple (finite dimensional) module
V € Ob(Mod 4), where faithful means that A — Endg (V) is injective and semi
simple means of course that any .A-submodule W C V' admits a complement.

It follows from a simple Galois-theoretic argument, that A is semi simple if
and only if A ®q L is semi simple for any extension L/Q.

If we have two modules Vi, V2 in Mod 4, and these modules become iso-
morphic after some extension L — K, then they are already isomorphic over
L. The isomorphism classes of irreducible modules for Aj, form a set which is
called Spec(Apr). It is a standard fact from the theory of semi simple algebras
that this spectrum can be identified to the set of two sided maximal ideals.
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We also know that we can write the identity element as a sum of commuting
idempotents

1= Z ed);ei:e(b;%ew:Ofor(ﬁ#w.
peSpec(AyL)

Then Arey is simple, i.e. has no non trivial two sided ideal. The maximal ideal
corresponding to ¢ is @y.yeAey. We have the decomposition

Ap = Z Areg (28)
$peSpec(Ar)

Our algebra Ay has a center 37, which is a commutative algebra over L
and since it does not have nilpotent elements it is a direct sum of fields. The
idempotents e € 31, and clearly

3L = 6aqﬁeSpec(AL)Be‘i’

where 3rey is a field. Hence we get an identification Spec(Ar) = Spec(3r).
We conclude that a semi-simple algebra Ap whose center 3 is a field is
actually simple and then the structure theorem of Wedderburn implies

AL — M, (D)

where the right hand side is a matrix algebra of a central division algebra D/3 .
This algebra has only one irreducible non zero module: It acts by multiplication
from the left on itself, any non zero minimal left ideal yields an irreducible
module. These modules (minimal left ideals) are isomorphic to the ideal given
by ¢; where ¢; consists of those matrices which have zero entries outside the i-th
column. In this case Spec(Ar) = (0) is the zero ideal. The unique irreducible
module is not absolutely irreducible if D # 3, We may choose an extension
K/L which splits the division algebra, then Ap = M,,4(K) where [D: L] = d°.
If this is the case we call the algebra A absolutely simple. The spectrum does
not change.

This tells us that in general the set of isomorphism classes of irreducible
Ay, is canonically isomorphic to Spec(Ar) for any irreducible Az module Yy we
have exactly one ¢ such that e,Y =Y, and for all ¥ # ¢ ey Y = 0. One the
other hand our construction above yields exactly one module irreducible module
Y, for a given ¢. For any Ay -module X we get the isotypical decomposition

X= > eX,
peSpec(A)
The isotypical component where the isotypical component es X = Y"L(X’d)), and
where m(X, ¢) is the multiplicity of this component. If we extend our ground
field further Y, ® K may become reducible, but if our extension L/Q is large
enough then Yy will be absolutely irreducible.

Let us start from a semi simple algebra A/Q. Then its center 3 is a direct
sum of fields, 3 = ®3;. We say that a finite extension F/Q is a splitting field for
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A if it is normal and if any summand 3; can be embedded into F. Then we get

.AF:.A@QF: @ A®37LF

«cHom(3,F)

Clearly the center A ®3, F' = F and hence we see that this decomposition is
the same as the above decomposition (28), we get

Proposition 2.3. If F/Q is a splitting field of A/Q the we get an action of
the Galois group on Spec(Ag). The orbits of this actions are in one to one
correspondence with the elements in Spec(A) in this is the set of summands of
the decomposition of 3q into a direct sum of fields.

A summand Ae,F has only one non zero irreducible module (up to iso-
morphism). This module Y, is not necessarily absolutely irreducible because
Aey — M, (D) where D/F may be non trivial (we have a non trivial Schur
multiplier).

We say that A/Q has trivial Schur multiplier if for all ¢ € Spec(A) the
division algebra D is trivial, i.e. equal to the center.

We apply these general principles to our Hecke -algebra and its action on
the cohomology H (SIGQ,MX). We define the ideal I!Kf to be the kernel of this

action, then H/ I!Kf = A is a finite dimensional algebra. It is known- and will

be proved later - that H? (ng,/\;l) is a semi simple module and hence we see
that A is semi simple. Then we define the scheme

Coh(H;? (ng ,M,)) = Spec(A).

We will denote the set of geometric points of this scheme, or more simple minded
the set of isomorphism classes occurring in this cohomology, by Cohi(G, K¢, A).

More generally we may consider the set of isomorphism classes of absolutely
irreducible Hecke modules occurring in the Jordan-Hlder filtration of any of
our cohomology modules H;(ng ,M,)) and denote this set by Cohs (G, K¢, \).
Since we have a fixed level K¢ they are all defined over a suitable finite extension

F/Q.

2.4.1 A central subalgebra

We still consider the action of H/I}(f = A on H!'(ng,./\;l) = @qH!q(ng,/\;l).
For all p outside the finite set X we have K, = G(Z,). In this case the algebra H,
is finitely generated, integral and commutative. We say that H, is unramified
if K, = G(Zp). For an unramified Hecke-algebra %, its maximal spectrum
Homgig (M, C),- ie. the set of isomorphism classes of absolutely irreducible
modules over C-,is described by a theorem of Satake which we will recall in the
next section.
The subalgebra

H =R H,

)

is commutative and its image in H/I}  lies in the center and hence also in the
center of A. Hence we can conclude that for a splitting field F' for A and any
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irreducible module Y, for Ag the restriction of the action to H®) is given by a
homomorphism
¢ U1 S F

Hence the module Yy is determined by the action of Hy, = [[ v H, in Ap.
If we assume that Yy is absolutely irreducible, then it follows from a standard
argument that Yy = ®pexYy, where Yy is an absolutely irreducible H,-
module. For p ¢ ¥ let Vi be the one dimensional F' vector space F' with
canonical basis element 1 € F' and an H, action given by the homomorphism
¢p : Hp — F. Then we get an isomorphism

/
Yy =5 Q) Ve, (F1)
P
where we take the restricted tensor product in the usual sense, i.e. at almost
all primes the factor in a tensor is equal to 1. Under our assumptions the ho-
momorphism
Hp — Endpg (Y¢p)

is surjective.

We get a map from the isomorphism classes of irreducible modules [Yy] for
Ar to ¢° € Hom(H ™), F). We say that H>) acts distinctively on H? (ng , M@
F) if this map is injective, i.e. the isomorphism type [Y;] is determined by its
restriction to H(*).

On the cohomology H; (ng , M) we still have the action of the group mo(G(R)),

this action commutes with the action of the Hecke algebra. (See (2.5.4) This
is an elementary abelian 2- group and we may decompose further according to
characters € : mo(G(R)) — {£1}.

We say that the H module HI‘(S%,M) has strong multiplicity one (with
respect to X) if H®) acts distinctivly and for any splitting field F' and any
> : H*) — F we can find a degree ¢ and an e such that

H!q(ng>M)(€) Qp ) g F

is an absolutely irreducible #— module.
If this is so then the homomorphism

My — Endp(H(SE,, M)(€) @y g0 F)

is surjective and the Hecke module H,® (ng , M) has trivial Schur multiplier.

2.4.2 Representations and Hecke modules

For p € ¥ the category of finite dimensional modules is complicated, since the
Hecke algebra will not be commutative in general.

Let F' be a field of characteristic zero, let V be an F-vector space. An
admissible representation of the group G(Q,) is an action of G(Q,) on V which
has the following two properties

i) For any open compact subgroup K, C G(Q,) the space VEr of K
p p p
invariant vectors is finite dimensional.

26



(ii) For any vector v € V we can find an open compact subgroup K, so that
v € VE» in other words V = limg, VE»,

Then is is clear that the vector spaces V7 are modules for the Hecke algebra
Hr,. An admissible G(Q,) -module V' is irreducible if it does not contain an
invariant proper submodule. Given such an irreducible module V' # (0), we
can find a K, such that VX» £ (0). We claim that then VE» is an irreducible
Hk,-module. To see this we take the identity element ex, in our Hecke algebra,
it induces a projector on V and a decomposition

V=V aV =ekVo(l-ek,)V.

Let assume we have a proper H g -invariant submodule W C VEr Now we con-

vince ourselves that the G(Q))-invariant subspace 1474 generated by the elements
gw is a proper subspace. We compute the integral

J,

The first integral gives us the projection to VX7, the second integral is the
Hecke operator, hence the result is in W. We conclude that e KPW C W and tis
shows that (0) # W # V.

Now it is not hard to see, that the assignment

kgwdk = / k’lgk'dekgdkl.
Ky x K,

P

V- Ve

from irreducible admissble G(Q,)-modules with VE» =£ (0) to finite dimen-
sional irreducible H k ,-modules induces an bijection between the isomorphism
classes of the respective types of modules. If we start from V%7 we can recon-
struct V' by an appropriate form of induction.

2.4.3 The dual module

Let us assume that V' is a finite dimensional F-vector space with an action of
the Hecke algebra H (we fix the level). We have an involution on the Hecke
algebra which is defined by

*h(zy) = h(z}t)
a simple calculation shows that *hy * thy =t (hy * hq).
This allows us to introduce a Hecke-module structure on VY = Homp(V, F)

we for ¢ € VVwe simply put

Tn(¢)(v) = ¢(Ten(v))

forallv e V.
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2.4.4 Unitary and essentially unitary representations

Here it seems to be a good moment to recall the notion of unitary Hecke mod-
ules and unitary representations. In this book we make the convention that a
character is a continuous homomorphism from a topological group H — C*, we
do not require that its values have absolute value one. If this is the case we call
the character unitary. Our ground field will now be F' = C, let V be a C vector
space. We pick a prime p. We call a representation p : G(Q,) — GL(V') unitary
if there is given a positive definite hermitian scalar product <, >V xV — C
which is invariant under the action of G(Q,).

If our representation is irreducible then it has a central character ¢, : C(Q,) —
C*. In this case the scalar product is unique up to a scalar. A necessary con-
dition for the existence of such a scalar product is that |(,| = 1, in other words
(p is unitary.

If this is not the case then our representation may still be essentially uni-
tary: We have a unique homomorphism [(¥] : C'(Q,) — RZ, whose restriction
to C(Qp) under d¢ (see 1.1) is equal to |(,|. Then we may form the twisted
representation p* = p® \C;|_1. Then the central character of p* is unitary. We
say that o is called essentially unitary if p* is unitary.

If our representation is not irreducible we still can define the notion of being
essential unitary. This means that there exists a homomorphism [(}] : C'(Q,) —
RZ,, such that the twisted representation p* = p ® |C;\*1 is unitary.

The same notions apply to modules for the Hecke algebra. A (finite dimen-
sional) C vector space V with an action 7, : H, — End(V) is called unitary, if
there is given a positive definite scalar product <, >: V x V — C such that

< Th(),w >=< v, (Tt (w)). (29)

Recall that we always assume that our functions h € H, take values in Q, hence
we do not need a complex conjugation bar in the expression on the right.

The restriction of 7, to C'(Q,) in induces a homomorphism (r, : C(Q,) —
C*. We call 7, isobaric if this action of the center is semi simple - and therefore
a direct sum of characters (r, = > (7 - and if all these characters have the
same absolute values |(} | = |r, |- This means that we can find |7 | as above.
Then we call 7, essentially unitary if the Hecke module 77 = m, ® |<;p|—1 is
unitary.

These boring considerations will be needed later, we will see that for an
irreducible coefficient system M the H?(SE . M) ®C is essentially unitary (see
4.2.1).

2.4.5 Satake’s theorem

In the formulation of this theorem I will use the language of group schemes,
the reader not so familiar with this language may think of Gl,, or the group of
symplectic similitudes GSp,,. Since we assumed that for p & ¥ the integral struc-
ture G/Spec(Z,) is reductive it is also quasisplit. We can find a Borel subgroup
B/Spec(Z,) C G/Spec(Z,) and a maximal torus 7T /Spec(Z,) C B/Spec(Z,).
Then our torus 7 /Spec(Z,) splits over an unramified extension E,/Q, and
the Galois group Gal(E,/Q,) acts on the character module X*(7 x E,) =
Hom(T x E,,Gy,). Let {a1,a2,...,a,} C X*(T x E,) be the set of positive
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simple roots, it is invariant under the action of the Galois group. Let W(Z,) be
the centralizer of the Galois action in the absolute Weyl group W. We introduce
the module of unramified characters on the torus this is

Homunram(T(Qp)v (CX) = Hom(T(Qp)/T(Zp)’ (CX) = A(T)

We also view w, € A(T) as a character w, : B(Q,) = C*, A+ A(b) = b*». The
group of characters Hom(7,G,,) = X*(T)Gal(EP/QP) is a subgroup of A(T) :
An element y € X*(T)G2lE: /@) defines a homomorphism T(Qp) — Q) and
this gives us the following element x — |y(z)|, € A(7) which we denote by
|7]. We can even do this for elements v ® 1 € X*(T) ® Q, then y ® X (z) =

|v(z) 117/" € RZ,. Our open compact subgroup K, = G(Z,). Since we have the
Iwasawa decomposition G(Q,) = B(Q,)G(Z,) = B(Q,)K, we can attach to
any w, € A(T) a spherical function

Pu, (9) = Pu, (bpkp) = (wp + [plp) (bp) (30)

here p € A(T) ® Q is the half sum of positive roots. This spherical function is
of course an eigenfunction for H, under convolution, i.e. for h, € H,

/ b, (92) hp () = () b, (9) (31)
G(Qp)

and s(w,) : hy — hy(wp) is an algebra homomorphism from #, to C. Of course
the measure dx gives volume 1 to G(Z,) = K,,.
The theorem of Satake asserts:

Theorem 2.2. The group W(Z,) acts on A(T), we have s(ww,)) = s(wp) and
A(T)/W(Qp) = Homaig(H,, C)

is an isomophism.

We will write irreducible modules in this case as 7, = m,(wp) and w, €
A(T)/W(Qp) is the so called Satake parameter of .

The Hecke algebra is generated by the characteristic functions of double
cosets K,t, K, where t, € T(Q,) and where for all simple roots a € m we have
la(ty)]p <1, ie. tp, € T4(Qp). Then the evaluation in (31) comes down to the
computation the integrals

/ b, (92) = () b, (9) (32)
Kptp K,

We discuss this evaluation in (3.1.3)
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2.4.6 Spherical representations

Now we assume that Let F’ C C be a finite extension of Q and let V/F be
a vector space. We choose K, = G(Z,), i.e. p is unramified. An admissible
representation

7p 1 G(Qp) = GI(V)

is called spherical if VE» £ 0, and this space is a module for the Hecke alge-
bra. If the representation is absolutely irreducible, then it is well known that
dimp VE» = 1, this is a one dimensional module for Hk,,i-e. a homomorphism
mp : Hi, — F'. Let w, € A(T) the corresponding Satake parameter, it is well
defined modulo the action of the group W(Q,). We consider the field F’ which
is generated by the values #,(w,). Then the one dimensional F” vector space

Hy = F'o,, (33)

will be our standard model for the isomorphism type .
The representation 7, can be realized as a submodule J, of the induced
representation

Hz, = Ind§\&") F'y,, = {f : G(Qy) — F'|f(bg) = wp(b)|ol,() f(9)}

where f satisfies the (obvious) condition that there exists a finite index subgroup
K, C K, such that f is invariant under right translations by elements k" € K.
In general this module Hz, will be irreducible and then J, = Hz,.

If 7?1\)/ is the spherical representation attached to the Satake parameter w,,
then we have a pairing

1

Hﬁ-p X Hﬁ-; —C
(34)
fox fam [i fi(ky) fa(ky)dky

This tells us that the dual module to H,, = H. 7.1; ? has the Satake parameter

w, L. The representations Hz, are called the representations of the unramified
principal series.

We may consider the case that w, is a unitary character, this means that
wp : T(Qp)/T(Zy) — S'. Then we have w, ! (t) = W,(t) and our above pairing
defines a positive definite hermitian scalar product

<, > Hf-‘(p X Hﬁ-p —C (35)

which is given by
< o= /K £1 ) Fa (k) (36)

If we allow for f € Hj, all the functions whose restriction to K, lies in L*(K),)
then Hz becomes a Hilbert space and the representation of G(Q,) on Hz, is a
unitary representation.

These representations are called the unitary principal series representations.
It is not the case that these representations are the only unramified principal
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series representations which carry an invariant positive definite scalar product.

(See [Sat]).

In the following section we discuss the classical case.

2.4.7 The case Gl,.

In the case of Gly the maximal torus is given by

re)={( % o)}

It is contained in the two Borel subgroups B/Q of upper and B_/Q of lower
triangular matrices. Let U/Q be the unipotent radical of B.

If we represent an element w, € A(T)/W by w, : T(Q,)/T(Z,) — C* then
we get two numbers

0
wl( § 1 D=2
1 0 '
wp( O P ):/81/)

The local algebra is generated by two operators T, T'(p, p) for which

s(@p)(Ty) = p'? (e}, + ) = o + B
E(QP)(T(pvp)) = pa;ﬁ; = apﬂp

These two Hecke operators are -up to a normalizing factor - defined as the
characteristic functions of the double cosets

Glo(Z,) ( po )Glz(zp) and Gly(Z,) ( v 2 )Glz(zp).

The to numbers oy, + B, apfp determine wy,. They are also called the Satake
parameters.

It is not difficult to prove Satakes theorem for Gly/Q,. We write Glz(Z,) =
K. It is the theorem for elementary divisors that all the double cosets K,\G(Q,)/ K,

are of the form
p* 0 .
K, (O pb) K, with a > b.

If we want to understand the function h — iL()\) it clearly suffices to compute
its value on the characteristic function ¢,m of the double coset

p™ 0
(0 )

To do this we have to evaluate the integral

[ sty @do = tm (.
G(Qp)
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m

We abbreviate y, = (p 0 (1)) and write our double coset as a union of right

K, cosets, i.e.

KpypKyp = U Eyp Ky
EGKP/Kpﬁyprygl

The volume of such a coset is one hence we get
[ ot @do = 3 éntenn)
G(Qp) 3

The group

a b m
K, Ny, Kypy, —{( d)erbEO mod p™},

this is the group of points B_(Z/p™) of lower triangular matrices. Hence the
coset space

Glo(Z/p™)/B_(Z/p™) = Kp/Kp NypKpy, " =PH(Z/p™).

The points in P1(Z/p™) are arrays (Z) ,a,b € Z/p™,aorbe (L/pmZL)*
modulo (Z/p™)*. Then K, acts by multiplication from the left on this coset

1

B(Z/p™) from the left on P!(Z/p™) and the orbits under this action from the
left can be represented by

<0> and (1y> forv=1,...m
1 p

On these orbits the function £ — ¢ (£y,) is constant. We can take the repre-

sentatives
1 0 0 1
e= (o 1) ma (5 )

PAlyp) =p™" ?

0 1 Y Q™Y BV Y M
¢)\((_pm pu)):¢A ( P’ kp /8 .

The length of these orbits is p"™, {p™ ¥ (1 %)},, 1,..m—1, 1, and we get

space and K, N ypry;1 is the stablizer of (O> We still have an action of

and get the values

m—1
tym(A) = all' + B + s

%M—‘

1/:1

This formula clearly proves the theorem of Satake in this special case.

2.4.8 A very specific case

We consider the case
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2.5 Back to cohomology
2.5.1 The case of a torus and the central character

We consider the case that our group G/Q is a torus 7'/Q. This case is already
discussed in [Ha-Gl2]. Our torus splits over a finite extension F/Q and our
absolutely irreducible representation is simply a character v : T xq F' = Gy, it
defines a one dimensional T' xg F— module F[y]. Here F'[v] is simply the one
dimensional vector space F' over F' with T' xg F' acting by the character .

We recall the notion of an algebraic Hecke character of type . We choose
an embedding ¢ : F < Q then « induces a homomorphisms 7'(C) — C*. The
restriction of this homomorphism to T'(R) is called v : T(R) — C*.

A continuos homomorphism

¢ = ¢oo X Hp¢p = ¢oo X ¢f : T(A)/T(Q) - C

is called an algebraic Hecke character of type ~y if the restrictions to the connected
component of the identity satisfy

Pool 7@ (R) = Voo ITO) ()

The finite part ¢y : T(Ay) — QX is trivial on some open compact subgroup
Kf C T(Ay). We also say that a homomorphism ¢; : T(Af)/KfT — QX is an
algebraic Hecke-character, if it is the finite part of an algebraic Hecke character,
which is then uniquely defined.

In [Ha-Gl12], 2.5.5 we explain that the cohomology vanishes ( for any choice
of K]? ) if 7 is not the type of an algebraic Hecke character. In this case we
give the complete description of the cohomology in [Ha-Gl2], 2.6: If we choose
7' = Z (see 1.1) then

H(S%e, Fl1 ©r, ©Q) = &b Qor.  (37)
¢5:C(As)/KE)—Qx:type(os)=v

The property of v to be the type of an algebraic Hecke character does not
depend on the choice of ¢. If we fix the level then it is easy to see that the values
of the characters ¢y lie in a finite extension F; of «(F') so we may replace in our
formula above the algebraic closure Q by Fj.

If we return to our group G/Q and if we start from an absolutely irreducible
representation G xg F — GI(M) then its restriction to the center C/Q is a
character (oq. Our remark above implies that this character must be the type
of an algebraic Hecke character if we want the cohomology H7 (ng,./\;l) to be
non trivial. (Look at a suitable spectral sequence).

In any case we can consider the sub algebra C, C H ¢, generated by central
double cosets KyzKy = Kyzp. with 25 € C(Ay) This provides an action
of the group C(Af)/KJ? on the cohomology H;(SIGQ,./\;!) Then the following
proposition is obvious

Proposition 2.4. Let Hy, be an absolutely irreducible subquotient in the Jordan
Hélder series in any of our cohomology groups. Then C(Af)/KJ? acts by a
character (. on Hy, and (x, is an algebraic Hecke character of type (-

Note that (u is the restriction of the abelian component § in A = AV 4§
to the center.
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2.5.2 The cohomology in degree zero

Let us start from an absolutely irreducible representation r : G x F' — Gl(M),

we want to understand H 0(S}Céf,./\/l): To do this we have to understand the
connected components of the space and the spaces of invariants in M under the
discrete subgroups I'?s in 1.2.1. We assume that the groups I'ysr N G (Q) are
Zariski dense in G(M). Then it is clear that we can have non trivial cohomology
in degree zero if M is one dimensional and G") acts trivially. Hence M is given
by a character § : C' x F' = G,,, x F.

To simplify the situation we assume that the assumptions in (1.3 ) are ful-
filled and we have a bijection

mo(SE,) < T0(SSer ) (38)

where K " and K C, are the imageb of the chosen compact subgroups respec-

tively. With these data we define S¢ o and we can view M as a sheaf on SKC"
Ky

in our previous notation it is the sheaf F[4].
Then we get for an absolutely irreducible G x F' module M -and under the
assumption that the T'2r N G()(Q) are Zariski dense in G- that (See 2.5.1)

0 if dim(M) > 1

: 39)
Dy, typeo=s 10 if M = FId] |

H(SE,, M F) = {

The density assumption is fulfilled if G() /Q is quasisplit. We also observe
that we have the isogeny d¢ : C — C’ (See (1.1). Then it is clear that the
composition d¢ o d is the character (i in section 2.5.1.

2.5.3 The Manin-Drinfeld principle

For a moment we assume that our coefficient systems are rational vector spaces.
This means that we start from a rational (preferably absolutely irreducible)
representation p : G xg Fy — Gl(M) where M is a finite dimensional Fy vector
spaces. We have an action of Hp, on our cohomology groups and we defined
the spectra Coh(H;(Sﬁf,M)) which now will be a finite scheme over Fy. We
will show show that the modules H!i(ng,./\;l ) are semi simple and if we pass
to a splitting field F//Fy we can decompose

H{(SE,, M)(I1y) @ F = @H, (SR, M)(r) = P en, HI(SE,, M) (40)

f

Here we changed our notation slightly, we replaced the ¢ by ;. The isomor-
phism types m¢ are not necessarily absolutely irreducible, but if we extend our
field further then they decompose in a direct sum of modules of exactly one iso-
morphism type. We call the above decomposition the isotypical decomposition
and under our assumption on F' the summands are absolutely isotypical.

We say that for a cohomology group H*® (ng , M) (resp. HC'(S% , M) sat-
isfies the Manin-Drinfeld principle, if Coh(H} (ng , Mp)ﬂCoh(Hi(a(ng), Mp) =
0 (resp Coh(Hf(ng7/\/~lp) N Coh(Hi_l(a(SIG(f),/\;lp) =0.
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We have defined Coh(X)(= Spec(H/I(X))) for any Hecke-module X and if
X is a submodule of another Hecke module Y then we say that X satisfies the
Manin-Drinfeld principle with respect to Y if Coh(X) N Coh(Y/X) = 0.

If the Manin-Drinfeld principle is valid we get canonical decompositions

Hi(ng,/\;lF) = Im(Hi(ng,,/\;lF) — Hi(a(sgf)vMF)) ® H?(SgﬁMF),
(41)

H(SE, Mrp) = Im(H'"(0S§,, Mp) — H(SE,, Mr)) ® H{ (S, Mr),

which is invariant under the action of the Hecke algebra and no irreducible rep-
resentation o, X 7y which occurs in H, i (ng ,MF) can occur as a sub quotient
in Im(H'=H(SE,, Mp) = HI(SE,, Mr)).

In the second case we will call the above image of the boundary cohomology
the Eisenstein subspace or compactly supported Eisenstein cohomology and
denote it by

Im<HZ_1(881G(f7MF) — Hé(ng,M>) = Hé,EiS(S[Céf’M>‘

In the first case we can consider the module H}éis(Sﬁf ,Mp) C Im(Hi(S}G(f ,Mp) —
Hi(a(sgf), Mp)) as a submodule in H? (ng , M) and this submodule is called

the Eisenstein cohomology. Under the assumption of the Manin-Drinfeld prin-
ciple we have a canonical section s : Hi, (ng,./\/lp) — HiSIC(;f,MF).

If we know the Manin-Drinfeld principle we can ask new questions. We re-
turn to the the integral cohomology H’,(SIGQ ,Mop,.) and map it into the rational

cohomology then the image is called H;(SIG(f,./\;l) int C H;(SIG(f,/\;lF) this is
also the module which we get if we divide H?’(Sﬁf,/\;loF))) by the torsion.

(This may be not true for ? =!) 3
Our decompositions above do not induce decomposition on the groups Hy (Slcéf , M) int.

Whenever we have a decomposition H; (Sﬁf,./\;l r) =X ®Y we can take the
intersections Xint N Hy (ng , M) int and the same for Y and get a decomposition
up to isogeny

Xint @ Knt C H:(Slgf,-/\;l) int

where up to isogeny means that the left hand side is of finite index in the right
hand side.

For instance the Manin-Drinfeld decomposition above yields ( if it exists ) a
decomposition up to isogeny

é,Eis(ng7M) int D H}(ngv-/\;l) int C Hé(ng,./\;l) int

it is canonical but the direct sum is only of finite index in the right hand side
module. The primes dividing the order of the index are called Fisenstein primes.

These Eisenstein primes have been studied in the case G = Gly/Q but they
also seem to play a role in more general situation. The general philosophy is
that they are related to the arithmetic of special values of L-functions. (See
[Ha-Cong])
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The same applies to the decomposition of H{ (ng , M) int 10 isotypical sum-
mands. We put

H{(SE,, M) () N H{(SE,, Mo,) i = H{(SF,, Moy.) ().
Then we get an decomposition up to isogeny

D Hi(SE,. Moy ) im(ms) € H{(SF,. Mo,.) inr (42)

f

It is a very interesting question to learn something about the the structure
of the quotient of the right hand side by the left hand side. The structure of
this quotient should be related to the arithmetic of special values of L-functions.

(See [Hi]).

2.5.4 The action of 7y (G(R))

We have seen that we can choose a maximal torus T/Q such that T(R)[2]
normalizes K. We know that T(R)[2] — 7o(G(R)) is surjective and that
T(R)[2] N GM(R) C K. This allows us to define an action of m(G(R)) on
the various cohomology groups and this action commutes with the action of
the Hecke-algebra. Therefore we can decompose any isotypical subspace in a
cohomology group into eigenspaces under this action

H3(Sg, M) (ny) = @ H? (S, M) (s X €x) (43)

€oo

and for the integral lattices we get a decomposition up to isogeny

@ H!i(SIGQvMOF) int (T X €c0) C H!i(SIG(faMOF) int (44)

7Tf><€oc

2.6 Some questions and and some simple facts

Of course we can be more modest and we may only ask for the dimension of
the cohomology groups H Z(SIG( f,M), this question will be discussed later in
Chapter V and can be answered in some simple cases.

If we are a little bit more modest we can ask for the Euler characteristic

N(H*(SE,, M) = S (1) dim(H'(SE,, M))
K3
This question can be answered in a certain sense. If the subgroup Ky is
neat (See 1.1.2.1) , then S is a disjoint union of locally symmetric spaces.
On these spaces exists a differential form of highest degree, which is obtained
from differential geometric data, this is the Gauss-Bonnet form w%?. Then the
Gauss-Bonnet theorem yields that

X(H*(SE,, M) = dim(M)) / wCE.

SG
Ky
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This will be discussed in more detail in Chap V. This implies of course, that for
a covering Sg} — ng, where K} C Ky and both groups are neat,we get

X(SFy, M) = X(H* (S, MK} : Ky],

a fact which also follows easily from topological considerations.
This leads us-following C.T.C. Wall- to introduce the orbifold Euler charac-
teristic for a not necessarily neat K by

1

Xorb(H.(ngaM)) = m

where K } C Ky is a neat subgroup of finite index. The orbifold Euler char-
acteristic may differ from the Euler characteristic x(H*® (ng,/\;l) by a sum of
contributions coming from the set of fixed points of the I'; on X (See 1.1.2.1).

This is perhaps the right moment, to discuss another minor technical point.
When we discuss the action of the Hecke algebra Hy, = C.(G(Ay)//Ky, Q)
on H‘(ng,./\;l) then we chose the same Ky for the space and for the Hecke
algebra. We also normalized the measure on the group so that it gave volume
1 to Ky. But we have of course an inclusion of Hecke algebras Hr, C Hy.

Therefore H e, also acts on H’(SIG;} , M). This contains H*® (SIG(f,/\;l) but then

the inclusion is not compatible with the action of the Hecke algebra. We there-
fore choose a measure independently of the level, if we are in a situation where
we vary the level. In such a case a measure provided by an invariant form wg
on G (See 2.1.3) is a good choice. If we now define the action of the Hecke op-
erators by means of this measure. With this choice of a measure the inclusion
Hi, CH K/ is compatible with the inclusion of the cohomology groups.

Then we see the the new Hecke operator T}EWG), and the old one are related
by the formula
_ 1 (wa)
VO]\wG‘ (Kf) h

The reader might raise the question, why we work with fixed levels and why
we do not pass to the limit. The reason is that for some questions we need
to work with the integral cohomology, and this does not behave so well under
change of level.

2.6.1 Homology

We may also define homology groups Hi(ng,7MA) and Hi(SIG(f,ang,M)\),
here M is a “cosheaf”. The “costalk” My . is obtained as follows: We consider

7 1(z) and
%) 9, Mn,
y=yxg K;/K;
and the action of G(Q) on this direct sum. Then M, , is the module of coin-
variants. If we pick a point y = y x Qfo/Kf, which maps to = € ng then we

get an isomorphism

Mo = (95 M) wp-
y
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We define the chain complex
Ci(SE, . M,)

and the above homology groups are given by the homology of this complex.

If we assume that Sﬁf is oriented (ref. to prop 1.3) then we know (Chap. II
2. 1. 5) that we have isomorphisms which are compatible with the fundamental
exact sequence

Hi—l(aggf,/\;l,\) — Hdi(a‘égf»/\/l/\)
Hé(Sﬁt,/\;l,\) — Hd—i(Si/G(faMA)
Hi(Sgt,/\;l,\) = Hai(S§, }GSICEWM)\)
Hi(ﬁSIth,/\;lA) — Hd—z‘—l(aS;G(vaA)
) 3

2.6.2 Poincaré duality

We assume that ng is connected. If we denote the dual representation by
MY = My, ( we choose a suitable lattice lattice Mthen we have the
canonical homomorphism My ® MY — Z and the standard pairing between
the homology and the cohomology groups yields pairings

HZ(SlgfaM)\) X HZ(ngaasiG{va}\/) — HO(SIC%Yf7M)\®MX) — HO(ng,Z)
\ T 1 \
HI(SE M) x Hi(SE , Myv)  — HUSE, MyaMY) — HSE .Z)

This pairing is of course compatible with the isomorphism between homology
and cohomology and then the pairing becomes the cup product. We get the
diagram

HI(SE,, M) x HTH(SE  MY)  — HUSE MyoMY) — HISE.Z)
1 T 1 \!
HY(SE,, My) x HIT(SE M) — HI(SE, , Mao M) — HI(SE,.Z)

We know that the manifold with corners ang ”smoothable” it can be ap-
proximated by a C— manifold and therefore we also have a pairing <, >4 on the
cohomology of the boundary. This pairing is consistent with the fundamental
long exact sequence (Thm. 2.1). We write this sequence twice but the second
time in the opposite direction and the pairing < , > in vertical direction:

—  HP(SE,. M) - HPOSE, M) D

X X
— Hél_p(ng,/\;[)\v) <i Hd_p_1<88gf,./\;l)\v) — (45)
b<, > 1<, >o

HY(SG,,2) &L HITW0SE,.7)
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then we have: For classes £ € HP(SI%,MA)W € Hd*p*1(38§f7./\;l>\v) we have
the equality

< &,0(n) >=da(<r(§),n>s) (46)

2.6.3 Non degeneration of the pairing

The spaces S]Cif and asgf are not connected in general. Let us assume that we
have a consistent orientation on ng. Then each connected component M of SIG(f

is an oriented manifold which is natural embedded into its compactification M.
It is obvious that the cohomology groups are the direct sums of the cohomology
groups of the connected components and that we may restrict the pairing to the
components

HP (M, My) x HI™P(M, Myv) — HI(M,Z) = 7. (47)

We recall the results which are explained in Vol. I 4.8.4. The fundamental
group 7 (M) is an arithmetic subgroup T'p; C G(Q) and My, M v are Ty
modules. For any commutative ring with identity Z — R the I'p; modules

M)y ® R, Mv ® R provide local systems M) ® R, va\é R, and we have the
extension of the cup product pairing

HP(M, My ® R) x HP(M, Myv @ R) — HY(M,R) = R

Proposition 2.5. If R =k is a field then the pairing is non degenerate. .
If R is a Dedekind ring then the pairing then the cohomology may contain
some torsion submodules and

HP(M, My ® R)/Tors x HYP(M, Myv @ R)/Tors — HY(M,R) = R
is non degenerate.

(See Vol. T 4.8.9)

We want to discuss the consequences of this result for the cohomology of
HS (SIGQ , My). Before we do this we want to recall some simple facts concerning
the representations of the algebraic group G/Q. We consider two highest weights
A, A1 € X*(T x F) which are dual modulo the center. By this we mean that we
have (See 22)

A=A 46 A = —we(AY) + 6, (48)
Then § + 4; is a character on X*(C’ x F') and yields a one dimensional module

Hi(SE,, My) x HU(SE ,MY) — HUSE,, My @ MY) — HLSE,,Z) for
G x F, of course the action of G on this module is trivial. Then we get a G
invariant non trivial pairing

M)\,F X MAl,F %NMM
which induces a pairing

HY(SF,, M) x H7HSE Mo, p) = HI(SE,, Naor,);
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this only a slight generalization of the previous pairing.
Now we recall that (under certain assumptions) we have the inclusion g (ng) —

C/
m0(Speer x K¢’

) and then we get
HSE, Noon) € B  Non) = @ FY
X':type(x)=ro

The character x’ has a restriction to C'(A) let us call this restriction x.

The group C(Ay) acts on the cohomology groups and this action has an
open kernel Kfc. Hence we can decompose the cohomology groups on the left
hand side according to characters

Hi(SE, Mar)= @B  HUSE, Mrr)(Ss) (49)
¢ritype(cy)=6
HYH(SE,, Mx, r) = <5 HYHSE Mo, r)(Grp)- (50)

C1,5:tyPe(C1,5)=01
With these notations we get another formulation of Poincaré duality.

Proposition 2.6. If we have three algebraic Hecke characters Cf,Cl,faX} of
the correct type and if we have the relation (s - C1,y = x5 then the cup product
induces a non degenerate pairing

HY(SE,, Mar)(Gp) x HTHSE,, Ma, #)(Cryp) = FX

This is an obvious consequence of our considerations above. Fixing the
central characters has the advantage that the target space of the pairing becomes
one dimensional over F, The field F' should contain the values of the characters.

We return to the diagram (45) and consider the images Im(r?)(¢y) =

T (HY(SE,, Mr)(f) = HI171(9SE, , MY, )((s) and Im(r¥=9=1). Then
the following proposition is an obvious consequence of the non degeneration of
the pairing and (46)

Proposition 2.7. The images Im(r?((y)) and Im(rV-4=P=1)((1,¢) are mutual
orthogonal complements of each other with respect to <, > .
The pairing in proposition 2.6 induces a non degenerate pairing

H{(SE,, Mxr)(Cp) x HITH(SE,, M, r)(Crp) = FX'.

Proof. Let n € H¥=P=1((; ;) Then we know from the exactness of the sequence
that n € Im(rV 4?71 (¢ ) < 6(n) =0 < < d(n), >=0forall ¢ €
HP(SIG(vaX)(Cf) — < 77,7’(5) >= (0 forall £ € HP(SIG(f7M>\)(Cf) — <
n, & >p=0 for all & € Im(r?)((y).
The second assertion is rather obvious. If we have £ € H!’)(ng ) M)\)(Cf)7 &1 €
!d*p(ng,./\;lAv)(Cf) then we can lift either of these classes - say &;- to a class

£ € Hf(ng,/\;lA)(Cf) and then < &,& >=< £,& > . It is clear that the
result does not depend on the choice of class which we lift. It is also obvious
that the pairing is non degenrate. O
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Of course we also have a version of proposition 2.7 for the integral cohomol-
ogy. Since we fixed the level we have only a finite number of possible central
characters (, (1, ¢ of the required type. The values of these characters evaluated
on C(Ay) lie in a finite extension F//Q and of of course they are integral. If we
now invert a few small primes and pass to a quotient ring R = Op[1/N] then we
get the decomposition (49 ) but with coefficient systems which are R-modules:

Hé(SIG(f“/\;l/\;R) = @ HZ(ngvMA7R)(Cf) (51)
¢ritype(¢s)=¢

Hd—i(ng,/\;lAl,R) — @ Hd—i(ng,/\;lAhR)((l’f) (52)
C1.5:tyDPe(¢1,£)=01

Then it becomes clear that we get an integral version of proposition 2.6 where
replace the F-vector space coefficient systems My p by R -module coefficient
systems. We get a non degenerate pairing

H{(SR, Mxr)((r)/Tors x HI (S My, r)(Crg)/Tors — R’ (53)

We can also get an integral version of proposition 2.7. To formulate it we need
a little bit of commutative algebra. Our ring R is a Dedekind ring and all our
cohomology groups are finitely generated R modules. If we divide any finitely
generated R-module by the subgroups of torsion elements then the result is a
projective R-module and it is locally free for Zariski topology.

An element £ € H, Z,(ng , Mx.r)(Cs)/Tors is called primitive if the submodule
R¢ is locally for the Zariski topology a direct summand or what amounts to the
same if Hé(ng,/\;lA,R)(Cf)/Tors/Rf is torsion free. The assertion that the
above pairing is non degenerate f means:

For any primitive element & € Hé(ng,/\;l,\,R)(Cf)/Tors we find an element

&1 € Hd’i(S]C(:W/\;IAI,R)(Cl’f)/TorS such the value of the pairing < £,& >=1

We can formulate an integral version of proposition 2.7 we have the same
notations as above but now our coefficient system is M g.

Proposition 2.8. Assume that H’(@ng,MA,R) and H’(@ng,MA,R) are tor-
sion free. Then the images Im(rP((y)) and Im(r¥4=P=1)((1,4) are mutual or-
thogonal complements of each other with respect to <, >g .

The pairing in proposition 2.6 induces a non degenerate pairing

H{ (SR, Mx.r)(¢r)/Tors x H ™' (S, My, )(Cr,p)/Tors — R,

2.6.4 Inner Congruences

We choose a highest weight A = A1) 4-dd and the dual weight A = —wq()\) —dd.
Let us also fix a central character {; whose type is equal to the restriction of dd
to the central torus C.

We look at the pairing in prop. 2.7 where we assume in addition that
Cr = C;l and we take the action of the Hecke algebra into account, i.e we look
at the decomposition into eigenspaces (see(40). Then we get a non degenerate
pairing between isotypical subspaces

H{(8F,, Mop)(mp) x HI (SR, Mav p) () = F
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where we assume that the central characters of the summands are (y, C;l.
If we try to extend this to the integral cohomology. In this case the above
decomposition yields decompositions up to isogeny

H{(S§,, Mx.g)/Tors > @, H{(SF,, My r)/Tors(y) (54)
H™' (8§, Mav.r)/Tors S @, H " (SF , Mxv g)/Tors(wy)
where we should fix the central characters as above. We choose a pair 7, 7T}/.
Then our non degenerate pairing from the above proposition induces a pairing

H{(8,, M r)/Tors(ns) x H(SE,, Myv g)/Tors(r}) — R (55)

and this pairing is non degenerate if and only if both modules are direct
summands in the above decomposition up to isogeny.

But it may happen that the values of the pairing generate a proper ideal
A(my) C R, and in this case the above submodules will not be direct summands
and this implies that we will have congruences between the Hecke-module 7y
and some other module in the decomposition up to isogeny. This yields the
inner congruences.

The ideal A(my) should be expressed in terms of L-values, in the classical
case this has been done by Hida [Hil.

3 The fundamental question

Let ¥ be a finite set. Of course any product V' = @H, of finite dimensional
absolutely irreducible modules for the #,,, for which #,, is spherical for all p ¢ ¥
gives us an absolutely irreducible module for the Hecke algebra.

We may ask: Can we formulate non tautological conditions for the irreducible
representation V' or for the collection {mp }p.prime, Which are necessary or (and)
sufficient for the occurrence of ®;,m, in the cohomology

This question can be formulated in the more general framework of the the-
ory automorphic forms, but in this book we only consider ”cohomological” (or
certain limits of those) automorphic forms. This restricted question is difficult
enough. A speculative answer is outlined in the following section

3.1 The Langlands philosophy

Let us start from a product V = @H,,,. For the primes outside the finite set X
the module H, is determined by its Satake parameter w,.

3.1.1 The dual group

There is another way of looking at these Satake parameters w,. We explain this
in the case that G/Z,, is a split reductive group. We choose a maximal split torus
T over Z and a Borel subgroup B/Z. For any commutative ring with identity
ring R we have a canonical isomorphism X, (7)® R* — T (R), which is given
by X ® a > (). Then T(Q,)/T(Zy) = X.(T) ® QX /25 = X.(T). We apply
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this to the maximal split torus 7/Z, C G/Z,. Then A(T) = Hom(X,(T),C) =
X*(T)®C* =TV(C) where TV is the torus over Q whose cocharacter module
is X*(T). This torus over Q is called the dual torus. There is a canonical
construction of a dual group “G/C, this is a reductive group with maximal torus
TV such that the Weyl group of TV in this dual group is equal to the Weyl group
of T C G (See also (3.1.7)). This dual torus sits in a Borel subgroup “B c G.
Recall that we have a canonical pairing

<> Xo(T)x XNT) = Z, yox(z) = x<X7~, (56)

The positive simple roots in X*(T") in the dual group “G/C are the cocharac-
ters ay € X, (TW) defined by

< Oéiv,’}/j >= (51"]'.

Hence we can interpret w, € A(T) = X*(T) ® C* = TV(C) as a semi
simple conjugacy class in “G(C). Remember that wyp is only determined by the
local component 7, up to an element in the Weyl group, hence we only get a
conjugacy class.

We assume that G/Z is a split reductive group scheme. Then the dual group
L@ is also split over Z and the absolutely irreducible highest weight modules M
for G/Z and the highest weight module attached to x are defined over Q. Let
7y € Cohy(G, Ky, \) be absolutely irreducible and defined over a finite extension
E/Q. Hence we see that our absolutely irreducible 7, provides a collection of
conjugacy classes {w(m,) = wp}pgs in the dual group LG(E).

A rather vague but also very bold formulation of the general Langlands
philosophy predicts:

- The isotypical components under the action of the Hecke algebra, namely the
Hf(SIG;f,M)(ﬁf), should correspond to a collection {M(ms,r\)}r, of motives
(with coefficients in E). The correspondence should be defined via the equality
of certain automorphic and motivic L-functions.

This formulation is definitely somewhat cryptic, we will try to make it a
little bit more precise in the following sections.

Such a motive could in principle be a "direct summand” the H*(X) of a
smooth projective scheme X/Q, which in a certain sense is cut out by a projec-
tor. In some cases, where the space SIG( ”is a Shimura variety”, these motives
have been constructed, we will discuss this issue in Chap. V.

3.1.2 The cyclotomic case

We consider the special case that G = G,,,/Q and our coefficient system Q(n)
is given by the character [n] : z +— 2. We fix a level Ky and we consider our
isotypical decomposition over Q

H(SE,,Q(n)) = P Q(2y).
[63]
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In this case Q(®y) is a field, and the action of the group is simply an irreducible
action of the group of finite ideles G(Af) = Ig,; on the Q-vector space Q(®y).
If we extend our field to Q we get a decomposition

HY(SE.Qm) = @  Q),

x:type(x)=[n]

and the collection of conjugate characters y are in one to one correspondence
with the ®;. We can attach two different kinds of L-functions to our isotypical
component ® namely an automorphic L-function and a motivic L-function.

Actually we get a collection of such L-functions which are labelled by the
embeddings ¢ : Q(®) — Q C C. Such an embedding yields an algebraic Hecke
character

X =10 GAf) = Ig s — Q*
and
X =10®:G(Q)\G(A) = Q*\Ig — C*

and to any of these Hecke characters we attach the (the automorphic L-function)
namely
L(xW,s) =[] - x“(pp~)~"

P

where x ) (p) =x W(1,1...,p,...) and it is zero of the character is ramified.

Now we can attach a motive M(®) to our isotypical component. To do this
we assume first that Q(®) = Q, then we have only one embedding. Then we
have x(z) = a™(z) = | = |* for some integer n. This is an algebraic Hecke
character of type [-n] :  + z~™. Then we attach the motive Z(—n) to this
Hecke character. At this moment we do not need to know what a motive is,
the only thing we need to know that it provides a compatible system of ¢ -adic
representations of the Galois group: For any prime ¢ we define a module To this
motive we attach a motivic L function using the compatible system of ¢-adic
representations. For a prime ¢ and a prime p # ¢ we have the local Euler factor

1 1
L,(Z(— = =
o(Z(=1),5) det(1 — Fy HZe(—n)p=s) 1—prp=’

where F), is the Frobenius at p. The ¢-adic representation is unramified outside
¢ and the Frobenius F}, corresponds to p under the reciprocity map r. Hence we
see that the Frobenius [}, acts by the multiplication by a™(p) = [ p [} = p™"
on Zy(—n). In the general case we start from the representation @y : Iy s —
Q(®y), it is unramified outside a finite set ¥ of primes. The reciprocity map
from class field theory provides a homomorphism r : Ig y — Gals(Q/Q)avetian;
this is the maximal abelian quotient of the Galois group which is unramified
outside ¥, the image of the reciprocity map is dense. If we fix a prime ¢ then
we get an f-adic representation

,0((1)) : GalE(@/Q)abelian - (Q((I)f) @ Qé)x7

which is determined by the rule p(®)(F},) = ®(p). If we now choose an embed-
ding ¢ : Q(®¢) — Q and an extension [ of ¢ to a place of Q and we get a one
dimensional [ adic representation

p(L o (I)) : Galz(@/@)abelian — ©[><7
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from which we get a motivic L-function (M(®) o, s), whose local factor at p is

1
T 1 pluo@)(F,) T

L, (M(2)"), s)

These are the collections of ¢-adic rpresentations of our motives M(®). Then
the relation between the automorphic and the ¢ -adic L functions is:

The collection of automorphic L-functions attached to ® is equal to the col-
lection of motivic L-functions attached to M(®~1).

We will sometimes modify the notation slightly. If y is an algebraic Hecke
character then this datum corresponds to a pair (®,:) and hence we can attach
to it a character x; : Gal(Q/Q) — Q and then we get the equality of local
L-factors

1 1
Ly(x,s) = = =
P 1- X(p)pis 1- X1 1(Fp)_1p_s
(Nochmal ein wenig besser schreiben!!!!!!IIT)

3.1.3 The L-functions

Let us choose a cocharacter x : G,, — T, we assume that it is in the positive
chamber, i.e. we have < x,a; >> 0 for all positive simple roots . It yields an
element x(p) € T(Qp). For w, € A(T) we put

Sx,wp = p<X’P> Z wp(w(X(p))
weW /Wy

then we get a formula

/ b, (20)dg = (S + 3 406X ) Sy )b (1) (57)
ch(x(p))

X' <x

where the x’ are in the positive chamber, x’ < x means that x—x' = > n;x:, n; >
0 and the coefficients a(x, x’) € Z. The expression on the right hand side is in-
variant under W and hence only depends on w, modulo W. ( Give reference!)

The number < x, p > is a half integer, hence p<X*> may not lie in a fixed
number field if p varies. But for those ¥’ which may occur in the summation we
have < x — ¥/, p >€ Z.

We consider an unramified prime. The theorem of Satake yields that we can
define a Hecke operator S, € H,, such that Sy x¢., = Sy v, ¢, and the formula
( 57 ) tells us that we get another recursion

Sy =ch(x)+ > b(x,x)ch(x) (58)

X' <x

where again b(x, x’) € Z.
Since we assume that our absolutely irreducible module V;,, 7y = ®'m, oc-
curs in Coh(G, Ky, A), the Hecke module is a vector space over a finite extension
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F/Q. We can conclude that the eigenvalue of the convolution operator ch(y) is
in F' and it follows that
Syw, EF

for any cocharacter .
Since we can replace x by nx for any integer n > 1 it follows that the
numbers w(x(p)) lie in a finite extension of F' and the polynomial

I[I &x-1d—p=>w(x(p)) € F[X].
weW /Wy

Our cocharacter x € X, (T) can also be interpreted as a character in X*(T"),
i.e it is a character on the dual torus. Since we assumed it to be in the positive
chamber we can view x as the highest weight of an irreducible representation
ry ¥ G — Gl(&y). (Since we assume that G is split the dual group is also split
over Q and hence r, is defined over Q.) The eigenvalues of the endomorphism
ry(wp) are of the form w,(w(x'(p)) where x’ < x and this implies that the
polynomial
det(X - Id — p=XP7ry (wp)|Ey) € F[X].

We attach a local Euler factor to the data mp,w, = w(m,), x:

1
det(Id — PPy (wp)p_s |gx)

L;at(wf, Ty, §) = (59)

which is a formal power series in the variable p™° with coefficients in F. We
define

1
L™ 7y, 7y, Ly(ms,mx, s)( ), (60)
FrTx pl;[z £ pl;[Edet(Id—p<><xﬂ>rx(wp)p*8\5x)

at the moment we do not say anything about the Euler factors at the bad primes.

At this moment L™ (7s,ry,s) is a a product of formal power series in in-
finitely many variables p~® which in some sense encodes the collection of eigen-
values of the different Hecke eigenvalues.

We want to relate this L -function to some other L— functions which are
defined in the theory of automorphic forms.

To define the automorphic L -function we start from an absolutely irreducible
Hecke -module V7, over C, its isomorphism type is still denoted by m¢. This 7f
will be the first argument (in our notation) in the automorphic L-function. It
has a central character (;, and we assume that this central character is the finite
component of a character ¢, : C(Q)\C'(A) — C*. (In the back of our mind of
m¢ to be the finite component of an automorphic form =, then this assumption
is automatically fulfilled. But for the definition of the L-functions we do not
need this.)

Then we define the unitary (automorphic) L-function: Here we require that
the central character (;, of 7y is unitary and put

Lumt L 1
(g o) = T] Lol s H det( Id—rX gy O
pEX
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If the central character is not unitary we define the automorphic L-function
essentially by the same formula:

wut
L*(mg,7x, 8 pEHEL TfTx0 8 Hdet 1d

. >zofs|6x>> (62

This L— function is related to an unitary L— function by a shift in the variable
s. The isogeny d¢ induces a homomorphism d' : C(Q)\C(A) — C'(Q)\C'(A)
and it is well known that this map has a compact kernel. We compose (.
with the the norm | | : C* — RZ,, this composition is trivial on the kernel of
d’. Therefore we find a homomorphism |(|* : C'(Af) — RZ, which satisfies
| |olr = |Cx|* od'. We look at the finite components of these characters and put
as in (2.4.4)

7T;§ :7Tf®(|<7r|*)_1' (63)

This module has a unitary central character. It is easy to see how the Satake
parameter changes under the twisting. We have the homomorphism T(A) —
C’(A) and therefore (|¢-|*) ™! induces also a homomorphism from T'(Af) to RZ,.
Then it is clear that we get for the Satake parameters the equality

w(mp @ (|G lp) ™) = w(mp) (16 ];) ™ (64)

Let us assume that 7 occurs as an isotypical subspace in some H '(Sg o My ®

C), where A = A 4 §. The element § is an element in X*(C') ® (@ To an
element 7 € X*(C') ® R we have attached an element || and since (;, is of
type d o dc we have

*\—1
(I¢G=[") " =1d].
We also have the cocharacter x : G,, — T then it is clear that the composition

(|¢xI*) 7t o x induces a homomorphism G,,,(Q)\G,,(A) — RZ, which is of the
form

(Gl " o) = |2 07 (65)

Then we have
L‘mit(w]’i,rx, s) = L™ (ms, 1y, s+ < X, 0 >) (66)

We now assume that 7} is the finite part of a cuspidal unitary representa-
tion (See 4.2), then the functions L“nit(ﬂ;@, Ty, s) are studied in the theory of
automorphic forms. The Euler factors are now meromorphic functions in the
variable s € C. Since 7} is unitary it follows that the Satake parameters satisfy
some bounds and this implies that the infinite product converges if %(s) >> 0. If
for all p ¢ ¥ the representation 7 is in the unitary principal series, i.e |(,u;k p| =1
then it follows from standard arguments that the infinite product over p & X
converges for R(s) > 1.

It is a conjecture (proved in some cases) that L""(ms 7y, s) has analytic
continuation into the entire complex plane and that there is a functional equa-
tion relating L' (7,7, s) and Lvnit (mf 1y, 1= 8).

But of course any theorem proved for the L-functions L““it(w;‘c, Ty, S) trans-
lates into a theorem for the automorphic L functions L (ms, 7y, s).
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Given a automorphic representation = which occurs in the cuspidal spectrum
then we may twist it by any character £ : C'(Q)\C'(A) — RZ, this group of
characters is equal to X*(C’) ® R. We get a principal homogenous space ( a
torsor) of automorphic representations {m ® &}eex.

For the Euler factors p ¢ ¥ we have

1 1
—e) = =)
det(Id — 7y ((wp) (mp ® &p))p5[Ex) det(Id — 7y ((wp)(mp ))p~<X4>75(Ey)
(67)
and hence we get for our automorphic L-function
L™ (mp @ &f, 1y, 8) = L™ (g, my, s+ < X, € >) (68)

The representation 7* is then the unique cuspidal (in the above sense) rep-
resentation in this principal homogeneous spaces {T®¢}ecz, i.e. it is the unique
representation which has a unitary central character. In other words 7% provides
a trivialization of the torsor. Then we define for any m ® &

L““it(Wf Q&Ef Ty, S) = Lu“it(w;, Ty, S) (69)
the unitary L-function is constant on the torsor, i.e. invariant under twisting.

We compare the automorphic L— function to the rational L— function. We
start from an absolutely irreducible module 7y which occurs in Coly(G, K, \)
and which is defined over some finite extension F/Q. As usual we write A =
AD) 15 (See(22)). We know that the central character Cr, is an algebraic
Hecke character of type 0. Our Hecke module 7; is an absolutely irreducible
module over F. If we want to compare its L functions to automorphic L-
functions we need to choose an embedding ¢ : F' — C and consider the module
Vi @k, C = Vior,. The we will see in section 4.2 that ¢ o 7y is the finite part
of an automorphic representation occurring in the discrete (or the cuspidal)
spectrum. Hence we have defined L*'*(; o 7s,7y,s)). We can also consider the
7extension” of the rational L-function

1
LOLrat(ﬂ'f,T ,8) = LoLrat(ﬂ'f’r ’3)
* ple_Iz g * pl;lg det(Id — t(p=x-r>ry (wy(mp)))p~*|Ey)
Then it is clear that
Lo L7y, my, 8) = L (Lo mp,my, 5— < X, p >). (70)

The central character of ¢ o my is of type 4, it follows from (22) that some non
zero multiple 6 € X*(T'). Then we put < x,d >= % < x,7rd >, this is a rational
number. Then we get

LOLrat(ﬂ-faTXas) :Laut(Loﬂ—fﬂdXvS* <X55>) (71)

We still have another L function which is attached to a Hecke module 7
which occurs in the cohomology, this is the cohomological L function. Let us
decompose the representation &£, into weight spaces
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& = @gx,v = @ @ gxyw(V)

veX, +(T)weW/W,

then we get with m(v, x) = dim(&,,,(,)). Such a weight vector space is zero
unless we have v < .

det(Id — rx(wp)p—8|gx) _ H H (1 . wp(w(y))p—s)m(u,x)

veX, 4+ (T) weW/W,

For a given v we expand the inner product

[I G-ww@)p™)=1-( > wlww))p™....

weW/W, weEW/W,
Now we recall that

p<X’/\(1)>7<X’5>Ch(X) _ S)(()\)

is an operator on the integral cohomology (See (27)). Then our recursion formula
( 58) implies that
W
p<x,/\ >—<x,0> SX’

is an operator on the integral cohomology, we simply have to observe that <
AL > > < A1) > From this it follows directly that for v € X, (T)
which occurs as a weight in 7, we have

p<x,,\(1)+p>*<x,6> Z wp(w(z/)) € Op
weW /W,

because < , A > > < v, A() > _ Then the right hand side in the above
formula can be written

1— p<x,>\(1)+p>7<x,5>( Z wp(w(l/)))p757<x’)‘(1)+p>+<x’5> o
weW /W,

We introduce the new variable s’ = s+ < x, A1) 4 p > — < x, 6 > and put

(6 A) =<, AW +p>— < x,6> (72)

H (1- pc(x”\)wp(w(l/))p_s,) =1- pC(X,/\)( Z wp(w(lf)))p—s/ o
wEW/We weW /W,
(73)

Hence we define the cohomological local Euler factor at p

1
 det(Id — peOcNry (wy)p~*)”

L;Oh(ﬂ'f, Ty, S) (74)

(It seems to be reasonable and very adequate to define for any highest weight
A the modified weight A = A + p.)
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We look at this local Euler factor from a slightly different point of view.
Our 7y is an absolutely irreducible module which occurs in the cohomology
H? (ng , MA®F), where F/Q is an abstract (normal) finite extension of Q. For
an unramified prime p the local factor is simply a homomorphism 7, : H, — E.
The previous computations show that the denominator is equal to a polynomial
in the "variable” p~° and with coefficients in Op, i.e.

det(Id — pC(X’/\)rx(Wp)p_s) =1-Ai(p, A, X)(Wp)p_s + Az(p, A, X)(Wp)p_% -~ € Oplp7]
(75)

where the A;(p, A, x) are certain explicitly computable elements in H(Z’\). (We
showed this only for A4;(p, A, x) but the same kind of reasoning gives it for the
other A;(p, A, x).) In the expression of the right hand side the Satake parameter
does not enter.

The cohomological L function is defined as

1
(P A, X) (mp)p~* 4+ Az (p, A, x) (mp)p~25 ...
(76)

LCOh(ﬂ-fvTXvS) = H L;(;Oh(ﬂparxas) H 1-A
pES PED !

Again we do not discuss the factors at the primes in X.

In the definition of the automorphic L function the Satake parameter is an
element in “G(C) or in other words wy () € C* and La™(7f, 7y, s) is an honest
analytic function in the complex variable s for R(s) >> 0.

If we want to compare the cohomological L-function to the automorphic L
-function we have to pick an element ¢ € I(F,C), then ¢ o 7wy is an absolutely
irreducible Hecke module over C. To ¢ o 7, belongs a Satake parameter w, and
then

det(fd—ry ()™ *0N) = 1Ay (5. A X)) (m)Ip ™+ Ax(p, A X)) ()
and this tells us that we have

LCOh([’Oﬂ-f7rX7S) :LaUt(l’oﬂ-fvr)(vs_c(Xa/\)) (77)

3.1.4 Invariance under twisting

We remember that we introduced the quotient ¢’ = 7 /7 and the isogeny
do : C = C'. (See 1.1). The map d¢ in 1.1 induces a map from our locally
symmetric space
G der oc
SKf4~>SKng?
We assume that K., is connected and then K€ is also connected.
We can modify our system of coefficients if we replace A by A + &1 with

91 € X*(C’). Then 61 provides a local coefficient system Z[d1] on Sg&: <K’ and
since K< is connected we get a canonical class

es, € HO(SIC;&{ <K' Z[61])
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which generates the rank one submodule of type |J f|*1 in the decomposition
(37). We pull this back by d; and we get a class in

es, € HO(S%,,Z[51]) (78)

(see section (2.5.2)). We have the isomorphism M, z ® Z[§1] — M4, z and
then the cup product with es, yields an isomorphism

H? (SR, Myz) Ues, — HY (SE,, Mxys, 2) (79)

This isomorphism is compatible with the action of the integral Hecke algebra
provided we choose the right identification

MY — PV

which is given by a - ch(z;) — peh(z,) 01> ch(z;).
If we extend the coefficients to F' then this cup product yields an isomorphism

H*(SF,, M rp)(mp) = H*(SE,, Mxys, w)(mr @ (61471 (80)
Then our cohomological L-function has the property
LMy @ |61, 4|7 rys 8) = L% (g, 7y, 8) (81)

This invariance under twists is of course also a consequence of the definition
in terms of the automorphic L-function.

We may interpret this differently. Our A is a sum of a semi-simple component
AW plus an abelian part § We can use the isomorphisms in (80) to define a vector
space

H*(SE,, My, p){mst, (82)

this vector space has a distinguished isomorphism to any of the H*® (SIG;f  Moss, 7)(TF®
|61,7]71), we could say that it the direct limit of all these spaces. By {o} we
understand the array

{O'f} = { TR |517f|_17 }51€X*(C’)~
Using (81) we have now defined L({m;},7y,s)

For any pair x € X.(T),\ € X*(T), where y is in the positive chamber and
A a dominant weight we define the weight

Wi A) =< x, AP +p>. (83)

Here we observe that x provides a highest weight representation r = r, of LG
and A a highest weight representation of G so we could also write

w(x,A) = w(ry, My) = w(r,M). (84)

This means that we may consider the weight as a number attached to a pair of
irreducible rational representations of “G and G. It also depends only on the
semi simple part of \.

o1



3.1.5 A different look

We could look at the previous discussion from another point of view. Given our
coefficient system My where A = A() 4§ and an absolutely irreducible module
mp € Cohy(G, A, Ky). As explained above we get X*(C”) torsor (A+6', my @[0%])
of such objects. If we choose a ¢ : F' — C then we can think of ¢t o 7y as the
finite part of an automorphic representation 7w. Then we get a second torsor
for the above group Z = X*(C’) ® R. The inclusion X*(C’') — = yields an
interpolation of the first torsor into the second one. To any element ™ ® & we
defined the automorphic L function L*" (o ®Ef, 7y, s). Now the unitary and
the cohomological L-function are defined as the automorphic L function of a
specific point in the torsor, i.e. a specific trivialization.

To define the unitary L function we choose the specific point for which the
central character is unitary, for the cohomological L -function we choose the
”optimal” point my @ [0%| for which we have

L;Oh(ﬂ'f ® |(5'f|,rX, s)_l € Orlp™°]. (85)

If we are investigating analytic questions concerning automorphic forms the
unitary L is the right object, but if we want to capture the integral structure of
the cohomology we prefer to work with the cohomological L function.

3.1.6 The motives

We consider an isotypical submodule Hf(SIG(f,./\;l aF)(my) in the inner coho-
mology. The Langlands philosophy predicts the existence of a collection of pure
motives over Q with coefficients in F.

{M(T"fv TX)}T‘X

which has certain properties. We will not be absolutely precise in the follow-
ing but we list certain properties this motive should have. We should assume
that 7 is not some kind of exceptional Hecke module (for instance it should
not be endoscopic), and I can not give a precise definition what that means. We
will make it more precise later when we discuss the case that our group is Gl,,.
This motive should be invariant under twists, i.e. we want that

M(mp @ [67],7x) = (7, 7y)

First of all this motive has a Betti-realization M(7, ) g, which is simply an
F vector space of dimension dim(r ). Such a motive has a de-Rham realization
M(7 ¢, 7y )arn, this is another F-vector space of the same dimension. It has a
descending filtration

M(“’fa'rx)dRh = FO(M(TI'f,TX)de,Rh) D) Fl(M(Trf,TX)de,Rh) D...

oD FY(FO (Mg, 7y )arn) D F¥THFO(M(ms, 7y )arn) = 0.

The number w = w(7y, x) is the weight of the motive it is equal to w(x, A).
Furthermore we have a comparison isomorphism

Ig_a4rn : M(ﬂ'f, TX)B ® C AN M(ﬂ—fyrx)dRh ® C,
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this yields periods and these periods should be related to 7, this is rather
mysterious.

For any prime ¢ and any prime [|¢ in F' we get a Galois representation

p(r,x) : Gal(Q/Q) — GL(M(rms, 7y )5 ® Fy)
which is unramified outside ¥ U {I} and for any such prime we have
det(Id — p(my, x)(@;l)p_s7M(7Tf7rX)B ®F) = L;Oh(’ﬂ'f, T s)_l,

or in other words we expect that the semi-simple conjugacy classes

P ) (@) ~ p O (wy) (86)

and hence we want
LM (mp, 1y, 8) = L(M(rs, 7y), )

The existence of these hypothetical motives has a lot of consequences. Once
we have established such a relation

LCOh(ﬂ—fv xs 8) = L(M(va TX)a S)

then we can exploit this in both directions. We have a certain chance to prove the
conjectural analytic properties and the conjectural functional equation for the L-
function of the motive M(7¢, 7y ), provided we can prove this for L (7 s, 7y, s).
On the automorphic side we know many cases in which we can prove these
properties of the L-function using the theory of automorphic forms.

In the other direction we have Deligne’s theorem concerning the absolute
values of the Frobenius. This implies Ramanujan (more details later)

We seem to be very far away from proving these conjectures, but there are
many instances where some parts of this program have been established and
there are also some very interesting cases where this correspondence has been
verified experimentally.

3.1.7 The case G = Gl,
3.1.8 Notations for the dual group “G

We want to verify formula (57) in the special case G = Gl,,/Z. In this case t we

have the cocharacters x; which send ¢ to the diagonal matrix ¢t — diag(¢,...,t,1...

where ¢ is placed to the first 4 dots. They satisfy < x;,0; >=6;; for 1 <1 <
n,1 < j <n — 1. They are uniquely determined by this condition modulo the
cocharacter x, which identifies G,, with the center. For 1 < v < n — 1 the
cocharacter x; determines a maximal parabolic subgroup P; D T whose roots
Ap, = {a| < xs;a >> 0}. The parabolic subgroup P, will be the opposite
parabolic subgroup.

Let n; : G,,, — T be the cocharacter which sends ¢ to ¢ on the i— th spot on
the diagonal and to 1 at all others. If we identify the module of cocharacters
with the character group of the dual torus TV C¥ G = Gl,, then the differences
n; — n; will be the roots, the simple roots are 7; — 7,41 and the fundamental

dominant weights are the semi simple components (Y ;_; 7).
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3.1.9 Formulas for the Hecke operators

We consider the homomorphism r : K, = Gl,,(Z,) — Gl,(F,) then we check

easily that the intersection K, Ny;(p)Kpxi(p)~' = KI(,X"’ () i5 the inverse image
of the parabolic subgroup P; (F,) under 7.
We want to evaluate the integral

/ bu, (x)dx
Kpxi(p)Kp

We write choose representatives ¢ for the cosets of K, /K™ and write K, =

UgﬁKI(,Xi(p)). We observe that ¢, is constant on the cosets SK,()Xi(p)). Hence we
see that

/KpXi(p)Kp ¢wp (SC)d:L' = zﬁ: d)wp (fxl(p))) (87)

The Bruhat decomposition gives us a nice system of representatives for K,/ K ,(,Xi(p ) =
Gl (F,)/ P (F,). Let W)y, be the Weyl group of the standard Levi subgroup

M; = P;,N P and we choose a system of representatives WP for W /Wy, Then

we get a disjoint decomposition

Gln(IFp) = U UB(Fp)w-P; (Fp)a
weWPFi

here Up is the unipotent radical of the standard Borel subgroup. The function
¢w, is constant on the double cosets. If we write a representative in the form
& = uw then the factor w is determined by £ but the factor u is not. This factor

is only unique up to multiplication from the right by a factor u € U ](gw’_) (Fp) =
Ugp(F,) NwP,w™!(F,). Hence we may choose our u in the subgroup

Ug D (F,) = I1 Ua(F,) (88)

aeAt|<xi,w—la>>0

and our sum in (87) becomes

YooY e wwxi®) = D P, (wxipw)  (89)

weWFi eyl (F,) weW Pi
where [(w) is the cardinality of the set {a € AT| < x;,w™ta >> 0}. We recall
the definition of the spherical function and get for our integral
w — - w)—<xi,w L
> P uy(wxipw )l (wxp)w ) = Y p T (wxa) ()
’LUEW/WMi ’UJEW/W}VIi
(90)

Now one checks easily that p!(®)—<xiw™'r> — p<Xi:r> and hence we get the
desired formula

/prz'(p)Kp Do (@) = P Z wp((wxi)(p)) (91)

wEW/WMLv
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This is the formula (57) for the group Gl,, and the special choice of the cochar-
acters x = x;. The only cocharacter x' < x; is the trivial cocharacter, in our
situation its contribution to (57) is zero.

Let us have a brief look at an arbitrary reductive (split or may be only
quasisplit) group G/Q, let us assume that the center is a connected torus C/Q.
We choose a maximal torus 7'/Q which is contained in a Borel subgroup B/Q.
We have the homomorphism to the adjoint group G — G,q it maps T to Toq =
T/C. Again we may also define the fundamental cocharacters x; : G,, — T
which satisfy < x;,a; >= d; ;. They are only well defined modulo cocharacters
X : G,, = C but this does not matter so much. Our above method to compute
the eigenvalue of ch(y;) still works if the cocharacter y; is ”minuscule” which
means that < x;,o; >€ {—1,0,1}. In this case the formula (91) is still valid,
again there is no contribution from the trivial character.

We return to G = Gl,, and to our speculations about motives. We choose
a weight module My where A = >, a;v; + dd, where the v; are the funda-
mental weights and § is the determinant. The a; are integers and we have the
consistency condition Y ia; = nd mod n. Let us pick an isotypical submodule
H* (ng , My ® F)(ns). In section 2.3 we define the Hecke operators

T;Oh7>\ : H; (SIC(;f ) M)\) — H;(S[Céf ’ Mk)
and these endomorphisms induce endomorphisms
TyM  HY (K, Mo @ F)(mp) = HS 100(SE,, My @ F) ()

Let 7 = ®m, be an irreducible Hecke module and at an unramified place p
let w, be the Satake parameter. Our Satake parameter is determined by the
n-tuple of numbers
wp(ni(p)) =w;p fori=1,...,n
The cocharacter x, : G,, — T identifies G,, with the center of Gl,. Our
Hecke-module 7y has a central character and this provides a Hecke character

T o Xn : Gm(Af) = Ig; — F*

The restriction of My to G,, is the character wy : t — t"® and the type of
T 0 Xn is of course wy.

Our cocharacters y; define representations of the dual group which is again
Gl, and in fact x; yields the tautological representation ry : Gl,, — GI(V/).
Then y; yields the representation r; = A’(ry) : Gl, — GI(A*(V)). For any
subset I C {1,2,...,n} we define

Wi,p = H Wi,p

icl

and then our formula (91) in combination with the formula (27 ) in section 2.3
and the observation that < x;,d >= i yields

T;(jh’)\(ﬁp) :p<x7;,)\(1>+p>fid Z wIp (92)
L#tI=i
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and by the same token we get for the cohomological L-function

coh coh 1
L (:15 uas) L (21,71',5) ( )
P . (1) —q —
HS HS :H ; (] p<X,,7)\ 1 +/)> id 17 p s)

(93)

Here we see in a very transparent way the independence of the twist: If we
modify A to A+ rd then we have to modify 7y to 7y ® |d¢|~". This means that
the wr,, get multiplied by p’" and the modifications cancel out.

We assume that mf € Coh(H,’(S%f,MA)), then we will see in section 4.2

that 7/ is essentially unitary. The central character of My is z + 2™ and
hence we get that 7} = 7y ® |67|¢ is unitary. Then the Satake parameter of Ly
is given by

W;p = wi,pp’d fori=1,...,n (94)

where the factor p~@ = |p|g and we observe that these numbers are also invariant

under twists by a power of |d¢].

Since the operators T;?h*/\ operate on the integral cohomology it follows that
the numbers T ;(jh’A(ﬂ' 1) are algebraic integers. We easily check that for all i <n

i(< x1, AP 4+ p > —d) >< x5, NV + p > —id

and this implies that the numbers

<x1,A Y 4p>—d
DR [ s

I#I=ivel

are algebraic integers and hence we can conclude
The numbers

Bip = p<x1,)\(1>+p>fdwi7p _ p<X1’)‘(1)+p>w;p (95)
are algebraic integers

Observe that these numbers are invariant under twists by a power of |d|.

We want t make few remarks about the relationship between the automor-
phic and the cohomological L-functions, especially we comment the shift in the
variable s.

For the automorphic L -function we assume that we are over C, we have
chosen an embedding ¢ : F' — C. If our isotypical Hecke module 7 is cuspidal
(see Thm. 4.2) then the considerations around this theorem show that my is
essentially unitary. The center C' = G,,, the quotient C’ = G,,, and the isogeny
do :x+— z™.

We come back to the Langlands philosophy. It predicts that for our a
"cuspidal” 7y and the cocharacter x; we should be able to attach a motive
M(7s,71) = M(m¢, x1) with coefficients in F. This motive provides a compati-
ble system of [- adic Galois representations

p[(ﬂ'f7 Xl) : Gal(@/@) — Gln(F[) = Gl(M(Wf7 Xl)ét,[) (96)
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which are unramified outside {I} U S and for p ¢ S U {l} we should have

— —s A - —s
det(Id — pi(rp, x1)(®, )p~*) = [J(1 —p= X +07 7w, p=) - (97)

and this means that up to the local factors at the bad primes we should have
L™ (M(7yp,x1), 8) = L (17, X1 5) (98)

The existence of the compatible system of Galois representation has been
shown by Harris - Kai-Wen Lan -Taylor and Thorne and by P. Scholze.

Once we have the motive for the cocharacter y; we easily get it the other x;
we simply have to look at the exterior powers A*(M(my, x1)).

Now we see that that numbers @, , can be interpreted as the eigenvalues of
the Frobenius on Mg ((7r, x1). Under the assumption that 7 is ”cuspidal” we
expect that the motive M(my, x1) is pure of weight w(x1, ) we get
- w(x1,A)

vl =p

and this is the Ramanujan conjecture. We will explain in the section on

analytic aspects, that for cuspidal 7 the Ramanujan conjecture says that for
any embedding ¢ : F' — C we have

Lowl,l =1

This suggests that we call the array @, = {@1,p, . ..,@n p the motivic Satake
parameter (with respect to the tautological representation r1 .) Of course it can
always be defined, independently of the existence of the motive.

We will see in the next section that the inner cohomology is trivial unless our
highest weight is essentially self dual, this means that A(1) = —wo()\(l)). Let us
assume that this is the case. If 7} is the dual of the tautological representation
then the eigenvalues of 7 (w),) are by

1 —
ry (wp) = {wl)p, . ,wn;, .

The highest weight of r) is the cocharacter —n, = Z?;ll 7; — det (This has to
be read in X*(T")) Then

(=1, N) =< x1, —wo (A1) > +d
and under our assumption that X is essentially self dual we know

A
< x1,—wp(AW) >=< x1, A0 >= %

This implies that the motivic Satake parameters with respect to the dual
representation ) are the numbers

<x1AM>4ds, 1 <x1,AM>4ds, —1
{p X wl,p?"'ap X wn,p (99)
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In the following section on Poincaré duality we will see that for any isotypical
module H} (ng ; M F)(7s) the dual module 7} appears in H!dﬂ(SIGQ ,Mov p).
Then we get an equality of local Euler factors

LCOh(ﬂ'l)vTi/vs) = LCOh(ﬂ';)/vThS) (100)

The concept of motives allows us to define the the dual motive. If our motive
has weight w(M) then Poincaré duality suggests that we define the motive

MY = Hom(M, Z(—w(M)) (101)
The [ adic realization as Galoismodule gives us
M, = Hom(Met, i, Zi(—w(M))

If {ou, ..., am} are the eigenvalues of ®, ' on Mgy, then {a7tpV D o g (M)}
are the eigenvalues of ®,! on M, |-

Therefore we can say: If we find a motive M(ns, x1) for 7y the we also find
the motive for 7y and we have

M(7}, x1) = M(7s, x1)"

4 Analytic methods

4.1 The representation theoretic de-Rham complex
4.1.1 Rational representations

We start from a reductive group G/Q for simplicity we assume that the semi
simple component G /Q is quasisplit. There is a unique finite normal extension
F/Q, F C C such that G x@ F becomes split, if T(l)/Q is a maximal torus
which is contained in a Borel subgroup B/Q then the Galois group Gal(Q/Q)
acts on X*(T() Xg F') and by permutations on the set of positive roots 7¢ C
X*(T™M xg F) corresponding to B/Q. This action factors over the quotient
Gal(F/Q). Then it also acts on the set of highest weights. Since our group is
quasi split we find for any highest weight an absolutely irreducible G xg F-
module M.
r:G X@K—) Gl(./\/l,\)

whose highest weight is A. Since we assumed that Q ¢ F ¢ Q € C we get the
extension

rc (G X@K) XKC%GI(MA ®F(C)

Given such an absolutely irreducible rational representation, we can construct
two new representations. At first we can form the dual M)\/,c = Hom¢ (M, C)
and the complex conjugate Mc of our module M. On the dual module we
have the contragredient representation rV, which is defined by ¢(rc(g)(v)) =
r¥(g~)(9)(v). )

To get the rational representation on the conjugate module M ®@p C, we
recall its definition: As abelian groups we have M ®p C = M ®p C but the
action of the scalars is conjugated, we write this as z - m = Zm. Then the
identity gives us an identification
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Ende(M ®@F C) = Ende(M)y ®@F C).
Now we define an action 7 on My ®p C: For g € G(C) we put

re(g)m = re(g) -« m.

This defines an action of the abstract group G(C), but this is in fact obtained
from a rational representation. Therefore M and Mg both are given by a
highest weight.

The highest weight of MY is —wg (). Herewy is the unique element wy € W,
which sends the system of positive roots AT into the system A~ = —A™T.

The highest weight of M @ C is ¢(\) where ¢ € Gal(C/R) C Gal(F/Q) is
the complex conjugation acting on X*(T xg F). So we may say: Mo = Mj.

We will call the module M- conjugate-autodual or simply c-autodual if

e(\) = —wo(\) (102)

In the following few sections (until 4.3.5 we will always assume that our local
system (resp. the corresponding representation) are local systems in C-vector
spaces (resp. C-vector spaces M ). Therefore we will suppress the factor ®C.

4.1.2 Harish-Chandra modules and (g, K, )-cohomology.

Now we consider the group of real points G(R), it has the Lie algebra g, inside
this Lie algebra we have the Lie algebra £ of the group K,,. We have the notion
of a (g, K») module: This is a C-vector space V together with an action of g
and an action of the group K,,. We have certain assumptions of consistency:

i) The action of K, is differentiable, this means it induces an action of €,
the derivative of the group action.

ii) The action of g restricted to ¢ is the derivative of the action of K .
iii) For k € Ko, X € g and v € V we have

(Ad(k)X)v = k(X (k™).

Inside V' we have have the subspace of K, finite vectors, a vector v is called
K finite if the C- subspace generated by all translates kv is finite dimensional,
i.e. v lies in a finite dimensional K, invariant subspace. The K, finite vectors
form a subspace V¥~) and it is obvious that V5=) is invariant under the
action of g, hence it is a (g, K ) sub module of V. We call a (g, K~ ) module a
Harish-Chandra module if V = V(K<)

For such a (g, K )-module we can write down a complex

Hompg_ (A®(g/t),V) = {0 = V — Homg_ (A'(g/t),V) — Homg_(A%(g/€),V) — ...

where the differential is given by

dw(Xo, X1,..., Xp) = > (-1)'Xiw(Xo,..., Xi,..., Xp)+
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S (D)X, X5) Xoy - Xy, X X).

0<i<j<p

A few comments are in order. We have inclusions
Hompg_ (A*(g/t),V) C Hom(A*(g/t), V) C Hom(A*(g), V).

The above differential defines the structure of a complex for the rightmost
term, we have to verify that the leftmost term is a subcomplex, this is not so
difficult.

We define the (g, Ko) cohomology as the cohomology of this complex, i.e.

H*(g, Koo, V) = H* (Hompg_ (A*(g/€), V).
It is clear that the map

H*(g, Koo, VE=)) - H*(g, Ko, V)

is an isomorphism.

If we have two (g, K ) modules V;, V5 and form the algebraic tensor product
W = V1 ® Va the we have a natural structure of a (g, K ) -module on W : The
group K, acts via the diagonal and U € g acts by the Leibniz-rule U(v; ®v2) =
Uvy ® vg + v1 ® Uvy. If both modules are Harish-Chandra modules, then the
tensor product is also a Harish-Chandra module.

Of course any finite dimensional rational representation of the algebraic
group also yields a Harish-Chandra module.

For us the (g, K ) module Coo (G(Q)\G(A)/K),- this is the space of func-
tions which are Co, in the variable g.o- is one of the most important (g, K)
-modules. We may also consider the limit over smaller and smaller levels Ky
we get the space Coo (G(Q)\G(A)), which consists of those functions on G(A),
which are left invariant under G(Q), right invariant under a suitably small open
subgroup K; C G(Ay) and which are C, in the variable go.. On these functions
the group G(A) acts by translations from the right, since our functions are Cy,
we also get an action of the Lie algebra g. Hence this is also a (g, Koo) X G(Ay)-
module.

If we fix the level see that Coo(G(Q)\G(A)/Ky)) is a (g9, Koo) X Hi, , the
Hecke algebra acts by convolution. We choose a highest weight module M and
apply the previous considerations to the Harish-Chandra module

V = Coa(GQ\G(A) /K1) ® M.

Notice that we can evaluate an element f € Coo(G(Q)\G(A)/Kf) ® M, in a
point g = (goo,gf) and the result f(g) € My. The Hecke algebra acts via
convolution on the first factor.

Let us assume that our compact subgroup Ky C G(Ay) is neat, ie. for
any g = (goo,9,) € G(A) we have g ' (Ks x Kf)gNG(Q) = {e}. In this
case we know that M is a local system and we can form the de-Rham complex
Q'(SIGQ,M 2)-

We have an action of the Hecke algebra on this complex and we have the
following fundamental fact:
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Proposition 4.1. We have a canonical isomorphism of complexes
Homp (A*(9/8), Coo(G(Q\G(A)/Ky) ® My) = Q°(SE,, M),
this isomorphism is compatible with the action of the Hecke algebra on both sides

This is rather clear. We have the projection map
¢:GR) x G(Af) > G(R)/Koo x G(Ay)/Ky =X x G(Ay) /Ky

let 29 € X x G(Ay)/Ky be the image of the identity e € G(R). The differential
D,(e) maps the Lie algebra g = tangent space of G(R) at e to the tangent
space T'x », at xo X ey. This provides the identification T’x 4, = g/t

An element w € Hompg__ (AP(g/€),Coo (G(Q\G(A)/Kf) ®M)) can be evalu-
ated on a p-tuple (Xo, X1,...,Xp_1) and the result

w(Xo, X1,..., Xp_1) € Cao(GQ\G(A)/Kf) @ M.
We want to produce an element @ in the de-Rham complex Q*(S¢ f,/\;l A)-
Pick a point x x 9, € X x G(Ay)/Ky, we find an element (goo,gf) € G(R) x

G(Ay) such that goozo = x. Our still to be defined form @ can be evaluated at
a p-tuple (Yp,...,Y,_1) of tangent vectors in x x 9, and the result has to be

an element in M(c,m- We find a p-tuple (Xo, X1,...,X,_1) of tangent vectors
at xo which are mapped to (Yp,...,Y,—1) under the differential D, of the left
translation by g. We put

@(Yo,...,Yp—1)(z X gf) = ggolw(XO, .. ,Xp_l)(goo,gf).

At this point I leave it as an exercise to the reader that this gives the iso-
morphism we want. We recall that the de-Rham complex (Reference Book Vol.
!) computes the cohomology and therefore we can rewrite the de-Rham isomor-

phism
H* (S, My) = H* (Homy(A*(9/¢), Coo(G(Q\G(A) /K ) @ M»)  (103)

From now on the complex Hompg_ (A®(g/%),Coo(G(Q)\G(A)/K ) @ My) will
also be called the de-Rham complex.
By the same token we can compute the cohomology with compact supports

H2 (S, My) = H* (Homi (A*(9/8). Cene (G(Q)\G(A)/K ) © M) (104)

where C; oo (G(Q)\G(A)/K) are the Co function with compact support. These
isomorphisms are also valid if we drop the assumption that K is neat.

The Poincaré duality on the cohomology is induced by the pairing on the
de-Rham complexes:

Proposition 4.2. If w; € Homg_ (A*(g/8),Coo (G(Q\G(A)/K;) @ M) is a
closed form and wy € Homp _ (A*(g/8), Coo.o(G(Q\G(A)/K) @ MY) a closed

form with compact support in complementary degree then the value of the cup
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product pairing of the classes [wi] € H”(ng,./\;l,\), [wo] € Hg_p(ng,/\;l,\v) is
given by ‘

< [wl] U [CUQ] >:/ < wi Nwy >
S

G
Ky
(Reference Book Vol. !)

4.1.3 Input from representation theory of real reductive groups.

Let us consider an arbitrary irreducible (g, K )- module V. We also assume that
for any ¥ € K, the multiplicity of ¢ in V is finite (we say that V' is admissible).
Then we can extend the action of the Lie-algebra g to an action of the universal
enveloping algebra $4(g) on V and we can restrict this action to an action of
the centre 3(g). The structure of this centre is well known by a theorem of
Harish-Chandra, it is a polynomial algebra in r = rank(G) variables, here the
rank is the absolute rank, i.e. the dimension of a maximal torus in G/Q. (See
Chap. 4 sect. 4)

Clearly this centre respects the decomposition into K, types, since these
K types come with finite multiplicity we can apply the standard argument,
which proves the Lemma of Schur. Hence 3(g) has to act on V' by scalars, we
get a homomorphism yy : 3(g) — C, which is defined by

zv = xv (2)v.

This homomorphism is called the central character of V.

A fundamental theorem of Harish-Chandra asserts that for a given central
character there exist only finitely many isomorphism classes of irreducible, ad-
missible (g, Ko )-modules with this central character.

Of course for any rational finite dimensional representation r : G/Q —
GI(M)) we can consider M) ® C as (g, K )-module. If M, is absolutely
irreducible with highest weight A (See chap. IV) then it also has a central
character x /1 = X.

Wigner’s lemma: Let V' be an irreducible, admissible (g, K )-module, let

M = My, a finite dimensional, absolutely irreducible rational representation.
Then H*(g, Koo, V ® Mc) = 0 unless we have

xv(2) = xmv (2) = xm,v (2) for all z € 3(g)

Since we also know that the number of isomorphism classes of irreducible,
admissible (g, K )-modules with a given central character is finite, we can con-
clude that for a given absolutely irreducible rational module M), the num-
ber of isomorphism classes of irreducible, admissible (g, K )-modules V' with
H*(g, K,V ® Mc¢) # 0 is finite.

The proof of Wigner’s lemma is very elegant. We have M@V = MY ®V and
hence we have H(g, Ko, M ® V) = Hom(M", V)(®K=) = Homg rr_ (MY, V).
In [B-W] , Chap.I 2.4 it is shown, that the category of g, K, -modules has
enough injective and projective elements (See [B-W], I. 2.5) . If I is an injective
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g, Koo-module then M ® [ is also injective because for any g, K,,-module A we
have Hom(A, M @ I) = Hom(M?V,I). Hence an injective resolution 0 — V —
I° — I' ... yields an injective resolution 0 -+ M —- M ®I° -+ M ®I'... and
from this we get

H(g, Koo, M® V) = Ext{ . (MY, V).

Any z € 3(g) induces an endomorphism of M, and V. Since Ext® is func-
torial in both variables, we see that z induces endomorphisms z; (via the ac-
tion on M) and z; (via the action on V) on Ext{ , (MY, V). We show that
21 = 2. This is clear by definition for Ext&Koc (MY, V) = Homg . (MY, V) :
For z € 3(g) and ¢ € Homy g (MY, V), m € My we have z1¢(m) = ¢(2m) =
zo(¢(m)). To prove it for an arbitrary ¢ we use devissage and induction. We
embed V into an injective g, Ko, module I and get an exact sequence

0=V —>1-1/V-=0

and from this and Ext] ;. (M, I) for ¢ > 0 we get

Ext? (g, Koo, M, I/V) = Ext?(g, Koo, My, V) for ¢ > 0.

Now by induction we know z; = 29 on the left hand side, so it also holds on
the right hand side.

If now xv # xmv then we can find a z € 3(g) such that xyv(z) =
0, xv(z) = 1. This implies that z; = 0 and zo = 1 on all Ext?(g, Koo (M, V).
Since we know that z; = 2o we see that the identity on Ext?(g, Koo (M, V) is
equal to zero and this implies the assertion.

On the universal enveloping algebra ${(g) we have an antiautomorphism v, +*
u which is induced by the antiautomorphism X +— —X on the Lie algebra g. If
V is an admissible (g, K )-module, then we can form the dual module V'V and
if we denote the pairing between V, V" by <, >y then

<Uv,¢ >y=<v,'U¢p >y forall U € U(g),v e V,p € V.
If V is irreducible, then it has a central character and we get

xvv(z) = Xv(tz)-

This applies to finite dimensional and infinite dimensional (g, K )-modules.

4.1.4 Representation theoretic Hodge-theory.

We consider irreducible unitary representations G(R) — U(H). We know from
the work of Harish-Chandra:

1) If we fix an isomorphism class ¥ irreducible representations of K., then
the isotypical subspace dim¢ H () < dim(99)?, i.e. ¥ occurs at most with mul-
tiplicity dim(¥).

2) The direct sum >y H(J) = H) ¢ H is dense in H and it is an
admissible irreducible Harish-Chandra -module.

We call an irreducible (g, K )-module unitary, if it is isomorphic to such an
HK),
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For a given G /R and any rational irreducible module M Vogan and Zucker-
man give a finite list of certain irreducible, admissible (g, K~ )— modules A4 (),
for which H®(g, Ko, Aq(A) ® M) # 0 they compute these cohomology group.
This list contains all unitary, irreducible (g, Ko )—modules, which have non
trivial cohomology with coefficients in M.

For the following we refer to [B-W] Chap. I , §1-2 . We want to apply the
methods of Hodge-theory to compute the cohomology groups H®(g, Koo,V ®
M.,) for an unitary (g, Ko )-module V. This means have a positive definite scalar
product <, >y on V, for which the action of K, is unitary and for U € g and
v1,02 € V we have < Uvy,v9 >y + < vy, Uvy >y=0.

In the next step we introduce for all p a hermitian form on Homg__ (AP(g/¢),V®
M). To do this we construct a hermitian form on M.

(The following considerations are only true modulo the centre). We consider
the Lie algebra and its complexification gc = g ® C. On this complex vector
space we have the complex conjugation ~ : U — U. We rediscover g as the
set of fixed points under —. We also have the Cartan involution © which is
the involution which has € as its fixed point set. Then we get the Cartan
decomposition

g = € P p where p is the -1 eigenspace of O.

The Killing form is negative definite on ¥ and positive definite on p, we
have for the Lie bracket [p,p] C €. We consider the invariants under ~ o O,
this is the Lie algebra g. = £ @ v/—1 ® p. On this real Lie algebra the Killing
form is negative definite and g. is the Lie algebra of an algebraic group G./R
whose base extension G, ®g C — G ®g C and whose group G.(R) of real
points is compact (this is the so called compact form of G). We still have
the representation G./R — GIl(M}) which is irreducible and hence we find a
hermitian form < , >, on My, which is invariant under G.(R) and which is
unique up to a scalar.

This form satisfies the equations

<Umq,mo >p + < mq1,Ums >x=0 for all mq,mo € M,,U €t
this is the invariance under K., and
< Umqy,mo >pm=< my1,Umso >, for all my,mo € M,,U € p

this is the invariance under v/—1 ® p.

Now we define a hermitian metric on V ® M, we simply take the tensor
product < , >y ® <, >\=< , >yg) . Finally we define the (hermitian)
scalar product on Hompg__ (A®(g/t), V@M, ). We choose and orthonormal (with
respect to the Killing form) basis Ey, Es, ..., E; on p, we identify g/t — p.
Then a form w € Hompg__ (AP(g/¢),V ® M) is given by its values w(Er) € V ®
My, where I = {iq,i2,...,4,} runs through the ordered subsets of {1,2,...,d}
with p elements. For wi,ws € Homg__ (AP(g/¢),V @ M) we put

< Wwi,wy >= Z < wl(E[),o.)g(Ej) >V (105)
I,‘I‘:p
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Now we can define an adjoint operator
5 : Homp_ (AP(g/€),V @ My) — Homg__ (AP~ (g/€),V @ M,), (106)

which can be defined by a straightforward calculation. We simply write a for-
mula for 0: For an element E; we define Ef(v @ m) = —Ejv @ m + v @ E;m.
Then we can define § by the following formula:

We have to evaluate §(w) on Ej = (E;,,...,E;, ) where J = {iy,...,ip_1}.
We put

S(w)(Ey) = Z(—l)p(i’JU{i})Ewau{i},
igJ

where p(i, J U {i}) denotes the position of ¢ in the ordered set J U {i}. With
this definition we get for a pair of forms w; € Homg_ (AP~1(g/€), V @ M, ) and
we € Hompg__(AP(g/t),V ® M) (See [B-W], II, prop. 2.3)

< dwi,wy >=< whéwz > (107)
We define the Laplacian A = §d + dd. Then we have ([B-W] , IT ,Thm.2.5)
< Aw,w >> 0 and we have equality if and only if dw = 0,dw =0 (108)

Inside 3(g) we have the the Casimir operator C' (See Chap. 4). An element
z € 3(g) acts on V @ My by z®Id via the action on the first factor and by the
scalar x(z) via the action on the second factor. Then we have

Kuga’s lemma : The action of the Casimir operator and the Laplace op-
erator on Hompg__(AP(g/t),V ® M) are related by the identity

A=C®Id-x\(C).

If the g, Ko, module is irreducible, then A acts by multiplication by the scalar
xv(C) = xa(C)

This has the following consequence
If V is an irreducible unitary g, Koo- module and if My is an irreducible
representation with highest weight \ then

. o if xv(C) = xa(C) #0
H*(g, Koo,V ® Mc) = {HomKN(A‘(g/E),V(@M)\) if xv(C) =xa(C) =0"

This only applies for unitary g, K,-modules, but for these it is much stronger:
It says that under the assumption xy (C) = xx(C) we have xy = xa ( we only
have to test the Casimir operator) and it says that all the differentials in the
complex are zero.

4.2 Input from the theory of automorphic forms

We apply this to the spaces of square integrable functions on G(Q)\G(A)/ K.
Because of the presence of a non trivial center, we have to consider functions
which transform in a certain way under the action of the center. We may assume
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that coefficient system M has a central character and this central character
defines a character () on the maximal Q-split torus S C C. This character can
be evaluated on the connected component of the identity of the real valued
points and induces a (continuous) homomorphism (s : S°(R) — RZ,,. Then we
define

Coo(G(Q\G(A) /Ky, ¢ (109)

to be the subspace of those C functions which satisfy f(zecg) = CHzeo) f(9)

for all 2o, € S°(R), €G(A). The isogeny d¢ : C — C’ (see 1.1) induces an isomor-
phism S°(R) — S"9(R), where S’ is the maximal Q split torus in C’. Therefore
we get a character ¢/ : S"°(R) — RZ, and this is also a character ¢ : G(R) —
RZ, and its restriction to S°(R) is (. If now f € Coo(G(Q)\G(A)/Ky, ()
then

F(9)¢h(9) € Coc(G(Q)S*(R)\G(A)/K ) (110)
We say that f € Coo (G(Q)\G(A)/Ky, (L) is square integrable if
/ 7(9)Ck0)Pdg < o (1)
(GQS°(RN\G(A)/Ky)

and this allows us to define the Hilbert space L?(G(Q)\G(A)/K¢,(L!). Since
the space (G(Q)SY(R)\G(A)/K ) has finite volume we know that

Cho € LX(G(Q\G(A)/ Ky, ¢,

The group G(R) acts on Coo (G(Q)\G(A)/K ¢, (L") by right translations and
hence we get by differentiating an action of the universal enveloping algebra
$(g) on it. We define by Cg)(G(Q)\G(A)/Kf, ¢%!) the subspace of functions f
for which U f is square integrable for all U € $(g).

This allows us to define a sub complex of the de-Rham complex

Homp, (A%(g/8), C2 (G(Q\G(A) /Ky, () © M), (112)

We will not work with this complex because its cohomology may show some bad
behavior. (See remark below).

We do~something less sophisticated, we simply define H ('2)(SIG( f,M A) C
H’(SIG(f,./\/l,\) to be the image of the cohomology of the complex (112) in the

cohomology. Hence H ('2)(81%,./\;1 A) is the space of cohomology classes which
can be represented by square integrable forms.

Remark: Some authors also define L? de-Rham complexes, using the above
complex (112) and then they take suitable completions to get complexes of
Hilbert spaces. These complexes also give cohomology groups which run under
the name of L?-cohomology. These L2-cohomology groups are related but not
necessarily equal to our H, ('2)(SIG< f,M »). They can be infinite dimensional.

The Hilbert space L?(G(Q)\G(A)/Ky,(5}) is a module for G(R) x H, the
group G(R) acts by unitary transformations and the algebra Hp, is selfadjoint.
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Let us assume that H = H;__ xr, is an irreducible unitary module for G(R) x
H= ®;7—[p and assume that we have an inclusion of this G(R) x H-module

jiH < L*(GQ\G(A)/Kr, ¢

It follows from the finiteness results in 4.1.4 that induces an inclusion into the
space of square integrable C., functions

HE=) o c@(GQ)\G(A)/ Ky, (2 E=),

We cousider the (g, K )— cohomology of this module with coefficients in our
irreducible module My, we assume xy (C) = xx(C). We have H*(g, Koo, H ®
My) = Hompg__ (g, Koo, HE=) @ M,) and get

H* (g, Koo, HE=) 0 Mc) 255 H* (g, Koo, Coo(GQN\G(A) /K 1, () K= M),

This suggests that we try to ”decompose” Coo(G(Q)\G(A)/ K, (Lt Ko
into irreducibles and then investigate the contributions of the irreducible sum-
mands to the cohomology. Essentially we follow the strategy of [Bo-Ga] and
[Bo-Ca] but instead of working with complexes of Hilbert spaces we work with
complexes of Co, forms and modify the arguments accordingly.

It has been shown by Langlands, that we have a decomposition into a discrete
and a continous spectrum

L*(G(Q\G(A)/Kf) = Liiso (GQ\G(Af) /K ) ® Leon(GQ\G(Af)/Ky),

where L2, (G(Q)\G(Af)/Kjy) is the closure of the sum of all irreducible closed
subspaces occuring in L?(G(Q)\G(A)/Ky) and where L2 (G(Q)\G(As)/Ky)

is the complement.

The discrete spectrum L3, . (G(Q)\G(Af)/Ky) contains as a subspace the

disc

cuspidal spectrum L2, (G(Q\G(Ay)/Ky) :

A function f € L*(G(Q)\G(A)/Ky) is called a cusp form if for all proper
parabolic subgroups P/Q C G/Q, with unipotent radical Up/Q the integral

FP(f)(g) = / F(ug)du =0,

Up(Q\Up(A)
this means that the integral is defined for almost all g and zero for almost all
g. The function F¥(f)(g), which is an almost everywhere defined function on

P(Q)\G(A)/K; is called the constant Fourier coefficient of f along P/Q. The
cuspidal spectrum the the intersection of all the kernels of the F¥.

If our group is anisotropic, then it does not have any proper parabolic sub-
group and in this case we have L2 . (G(Q)\G(Af)/Kys) = L3 (G(Q)\G(Af)/Ky) =

cusp
L*(G(Q\G(Af)/Ky).
For any unitary G(R) x H- module H, = H,_ ® Hy, we put Wr cusp =

Home(r)x# (Hr, L2, (GIQ\G(Af)/Ky)). We can ignore the H-module struc-
ture and define

Wi cusp = Homg ) (Hr ) @ Hr, Ly (GQ\G(Af)/Kyp)).
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It has been shown by Gelfand-Graev and Langlands that
mcuap 7700 Z dlm 71' cusp < 00.

We get a decomposition into 1sotyp1cal subspaces

L (GQ\G(A))/Ep) = @ (L2 (GQ\G(Af)/K ) (oo x 75),

Too@Tf

where (L2, (G(Q\G(Af)/Kf)(mo x my) is the image of Wi cusp @ Hy in
Lzusp( ( )\G(Af)/Kf)

The cuspidal spectrum has a complement in the discrete spectrum, this is
the residual spectrum L2, ,((G(Q)\G(Af)/Ky). It is called residual spectrum,
because the irreducible subspaces contained in it are obtained by residues of
Eisenstein classes.

Again we define Wy res = Homep)xp (Hr, L2,o(G(Q)\G(Ay)/Ky)), (resp.
Wi res = Homgw) (Hr . , LEHSP(G(Q)\G(Af)/Kf)) and it is a deep theorem of
Langlands that myes(Too) = dim(Wr__ 1es) < 00. Hence we get a decomposition

Li(GQ\G(A)/Ep) = D (LE(CQ\G(Af)/Ky)(moo X 7).

Too @ f

If our group G/Q is isotropic, then the one dimensional space of constants
is in the residual (discrete) spectrum but not in the cuspidal spectrum.

Langlands has given a description of the continuos spectrum using the theory

of Eisenstein series, we have a decomposition | decomp-cont

Lot (GQN\G(Ay)/K) :@ (113)

P

we briefly explain this decomposition following [Bo-Ga]. The ¥ are so called
cuspidal data, this are pairs (P, 7x) where P is a proper parabolic subgroup
and 7y is a representation of M(A) = P(A)/U(A) occurring in the discrete
spectrum Lcusp( (Q\M(A)).

Let M /Q be the semi simple part of M and recall that C'/Q was the center
of G/Q. We consider the character module Y*(P) = Hom(C' - M) G,,). The
elements Y*(P)®C provide homomorphisms y®z : M(A)/C(A)M®(A) — C*.
(See (14)). The module Y*(P) ® Q comes with a canonical basis which is given
by the dominant fundamental weights «y,, which are trivial on M (1), We define

A =Y*(P)®iR ={) 7, ®itult, € R}
o
this is a group of unitary characters. For o € Ay we define the unitarily induced
representation
Indgging ®(c+pp)=I8Ts @0
(114)
{F:G(A) = LI (M(Q\M(A))(7)| f(pg) = (0 + [prD(0)m=(p) f(9)}
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where of course p € P(A),g € G(A) and pp € Y*(P) ® Q is the half sum of
the roots in the unipotent radical of P. This gives us a unitary representation
of G(A). Let dx, be the Lebesgue measure on Ay then we can form the direct
integral unitary representations

Hp(’l'rg) :/ Ig’l'rg ® o dno (115)
Asx

The theory of Eisenstein series gives us a homomorphism of G(R) x H -modules
Bisp(ms) : Hp(ms) = Lion (G(Q\G(Ay)/Ky). (116)

Let us put

A-iz_ = {Z Yu @ itu“u > 0}
nw

then the restriction

EiSp(ng) : H;(ﬁg) :/

N Ifrs ® 0 dso — Loy (GQ\G(Af)/Kp).  (117)

P

is an isometric embedding. The image will be denoted by IST; (my) these spaces
are the elementary subspaces in [B-G]. Two such elementary subspaces Hp (7x), H P (7ms,)
are either orthogonal to each other or they are equal. We get the above decom-
position if we sum over a suitable set of representatives of cuspidal data.
Now we are ready to discuss the contribution of the continuous spectrum to
the cohomology. If we have a closed square integrable form

w € Homp (AP(g/), C3(G(Q\G(A)/Kf) @ My),
then we can decompose it
W = Wres + Weont

both summands are C2, and closed.

Proposition 4.3. The cohomology class [weont] 18 trivial.

Proof. This now the standard argument in Hodge theory, but this time we apply

it to a continuous spectrum instead of a discrete one. We follow Borel-Casselman

and prove their Lemma 5.5 (see [B-C]) in our context”

We may assume that ws lies in one of the summands, i.e. wWeont = Eis(fAE wY(0)dso)

where w" (o) € Homp__ (AP(g/t), ISTs®0®@M,)) is the Fourier transform of w.,

in the L2., (theorem of Plancherel). As it stands the expression fAz wY(o)dso)

does not make sense because the integrand is in L? and not necessarily in L'.

If we choose a symmetric positive definite quadratic form h(o) =3, by utut,

and a positive real number 7 then the function

he(o) = (1+7h(o)™) ™ € L?(Asx)

and then w"(0)h, (o) is in L' and by definition

Thﬂ% N wY(o)h,(0)dso) = /AZ wY(o)dso (118)
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where the convergence is in the L? sense. Since w., € Homg__ (AP(g/t), [S7s ®
o ® M) we get get that wV (o) has the following property
For any polynomial P(c) = >_a,t* in the variables ¢, and with real coeffi-

cients the section
wY(0)P(0) is square integrable (119)

this follows from the well known rules that differentiating a function provides
multiplication by the variables for the Fourier transform.

The Lemma of Kuga implies
AwY(0)) = (xo(C) = xa(C))w" (o)

and if o = " v, ® it_u the eigenvalue is
XO'(C) - X)\(C) = Z al/,ututu + Z butp + Cﬂ-): — C). (120)

where cy,, is the eigenvalue of the Casimir operator of M) on 7y, If the t,eR
then this expression is always < 0 especially we see that the quadratic form
on the right hand side is negative definite. This implies that for o € Ap the
expression x,(C)—x(C) assumes a finite number of maximal values all of them
< 0 and hence

Ve = {olxo(C) = xa(C) = 0} (121)

is a finite set of point. This set has measure zero, since we assumed that P was
a proper parabolic subgroup. The of o for which H*(g, Ko, Hay (0) @ Mc) # 0
is finite. We choose a Cs function hs (o) which is positive, which takes value
1 in a small neighborhood of Vy, which takes values < 1 in a slightly larger
neighborhood and which is zero outside this second neighborhood. Then we
write

wao = Bis( /A (o) (0)izo) + Fis /A (1~ h(0))w” (0)dso)

p

We have dw" (o) = 0 and hence we get

A((1 = s (0))w” () = d( (X0 (C) = XAC)(1 = hsy))dw (o))

and this implies that

Eis( /A (1-hs(0))w" (0)dsa) = dEis( /A (k@) (0o (€)xa (€)Y (0) o)
It is clear that the integrand in the second term- fA;(l — hx(0))(x.(C) —

XA (0)) 10wV (o) still satisfies (119) and then our well known rules above imply

that ¢ = Eis([,+(1 — hx(0))(xe(C) — xa(C)) " 10w" (0)dso) is CZ . Therefore
]

the second term in our above formula is a boundary.
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Weont = hs(o)w(o)dso + dip.
As

This is true for any choice of hy. Hence the scalar product < w—dy, w—dy >
can be made arbitrarily small. Then we claim that the cohomology class [w] €
H*(Hompg_ (AP(g/t),Co0 (G(Q)\G(A)/Kf) ® My) must be zero. This needs a
tiny final step.

We invoke Poincaré duality: A cohomology class in [w] € HP (ng,/\;l ) s

zero if and only the value of the pairing with any class [ws] € Hg_p(ng , /\;IAV)
is zero. But the (absolute) value [w] U [w2] of the cup product can be given
by an integral (See Prop.4.2). Therefore it can be estimated by the norm <
w — dip,w — dip > (Cauchy-Schwarz inequality) and hence must be zero. O

As usual we denote by G(R) the unitary spectrum, for us it is simply the
set of unitary irreducible representations of G(R). Given M, we define

Coh()) = {7ae € G(R)| H*(g, Koo, Hr_ ® M) # 0}.

The theorem of Harish-Chandra says that this set is finite.
Let

Hoony = P Lic(GQ\G(Ag)/Kf)(moe x p),

oo €Coh(N)

the theorem of Gelfand-Graev and Langlands assert that this is a finite sum of

irreducible modules. This space decomposes again into Hg;;p( N ®HES o

Then we get

Theorem (Borel, Garland, Matsushima-Murakami )

a)The map
H*(g, Koo, HE=) @ My) = Homg_ (A*(g/8), HE=) @ My) — HY (SE , M)

g, o, Coh()\) A) = Koo g/%), Coh()\) A (2)\CK > VI
surjective. Especially the image contains H? (S[G;f,./\;l,\).

b) (Borel) The homomorphism

. cusp,Koo . ~
H* (8, Koo, HERG ™ @ My) = HO(SE, M)

18 1njective. ~

[Bo-Ga | Prop.5.6, they do not consider the above space Hf, (ng,/\/b\) we
added an € > 0 to this proposition by claiming that this space is the image.

In general the homomorphism

H* (8, Koo, S0y Koo) @ My) = HY(SE,, M)

is not injective. We come to this issue in the next section.
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If we denote by H¢,q, (8¢ K, , M) the image of the homomorphism in b), then
we get a filtration of the cohomology by four subspaces

H3,p(SE, M) C HP (S, My) C Hiy) (SR, My) € H(SE . My). (122)

We want to point out that our space H ('2) (ng , M ) is not the space denoted
by the same symbol in the paper [Bo-Ca]. They define L? cohomology as the
complex of square integrable forms, i.e. w and dw have to be square integrable.
But then a closed form w which is in L? gives the trivial class in their cohomology
if we can write w = di where ¥ must also be square integrable. In our definition
we do not have that restriction on .

4.2.1 A formula for the Poincaré duality pairing

We assume that —wg(A) = c¢(A). We have the positive definite hermitian scalar
product on Hompg__(A®(g/t), Hggﬁ?z\ ® M) (See(105)). On the other hand we

have the Poincaré duality pairing
H{(SE,, Ma)(wy) x H 7 (SF, Mav)(wig) = C (123)

where wy-wy,y = 1. To relate these two products we recall the Hodge *-operator.
(See for instance Vol. 1. 4.11) This operator yields an isomorphism

« : Hompg _ (AP(g/8), Coo (GQ\G(A)/K) @ M) —

Homye (A7(5/8), Coo (GIQ\G(A)/ K1) © M) (124)

We can use the * operator to define the adjoint § = (—1)?®+D+1 % dx and hence
the Laplacian A (See (106). Especially the % operator yields an identification
between the Co-functions and the C, differential forms in top degree.

We consider two differential forms

wi,wy € Homp (A (g/8), C3(G(Q\G(A)/Ky) @ M)

which are square integrable, then we defined the scalar product (See(105) <
w1, ws > of these two forms. By definition this scalar product is an integral over
a function

< wip,wy >= / {w1,wa}.
ng

If we have two closed forms w; € Homg__ (AP(g/t),C2 (G(Q)\G(A)/Kf) ®
M,), w2 € Homp (A?7P(g/t),C2 (G(Q)\G(A)/Kf) @ Myv) and if one of these
forms has compact support -say wp-then they define cohomology classes [w1] €
HP(SK M), [we] € HI- p(SK , M) and the cup product [w; U[ws] is defined
and given by an integral (See proposmon 4.2) over a form in top degree. Now

we check easily - and this is the way how the x operator is designed that for
wi,ws € Homg__ (AP(g/t),C% (G(Q)\G(A)/K) ® M)) the integrand

{wl,wg} =< wi A *wg > .

Now we can formulate the
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Proposition 4.4. If wij,wy; € Hompg (Ap(g/é),HgO(ﬁ‘E/)\) ® May) and if both
classes [w1], [*w2] are inner classes, i.e. can be represented by compactly sup-
ported forms then

< wy,ws >= [wy] U [*ws]

Proof. Postponed We exploit the fact that we can construct a real valued h :
SIG(vf — R>0 D

This proposition is of course a consequences of Hodge theory if the quotient
S& is compact, but if this is not the case, then the assertion is delicate. In fact
we have the standard example which shows that we need the assumption that
both classes [wy], [*ws] are inner. If take w; = ws to be the form in degree zero
given by the constant function 1. Then the left hand side is non zero but the
class x1 is the volume form which is trivial if ng is not compact, and therefore
the right hand side is not zero.

The proposition has the following nice corollary
Corollary 4.1. Ifw € Hompg__ (AP(g/t), ngﬁ‘zz\) ® M) is non zero and if the
restrictions of w and * w to the boundary are zero then [w] # 0

Now we remember that in the previous sections we made the convention
(See end of (4.1.1)) that our coefficient systems M, are C vector spaces. We
now revoke this convention and recall that the coefficient systems M should
be replaced by M ®p C. Then in the above list (122) of four subspaces in
the cohomology the second and the fourth subspace have a natural structure of
F-vector spaces and they have a combinatorial definition, whereas the first and
third subspace need some input from analysis in their definition. In other words
if we replace M in (122) by My ®; C then the second and the fourth space
can be written as

H? (S, , My) @r C C H*(S§,, My) @r C

We believe that also the third space has a combinatorial definition, for this
we need the weighted cohomology groups: Weighted cohomology ; G. Harder;
R. MacPherson; M. Goresky Inventiones mathematicae (1994).

4.3 Consequences.
4.3.1 Vanishing theorems

If V is unitary and irreducible, then we have that V — VY and this implies
for the central character

xv(z) = xvv(z) for allz € 3(g).

Combining this with Wigner’s lemma we can conclude

If V is an irreducible unitary (g, Koo )-module, My is an irreducible rational
representation, and if
H*(g, Koo, VRO My) #0

then XMX(Z) = XM (t'z) = XM, <Z)
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In other words: For an unitary irreducible (g, K )-module V' the cohomology
with coefficients in an irreducible rational representation M vanishes, unless we
have MY = My, or in terms of highest weights unless —wo(\) = c(A). (See
3.1.1)

If we combine this with the considerations following Wigner’s lemma we get

Corollary If M is an absolutely irreducible rational representation and if
MY is not isomorphic to My then

HYy (SE,, M) = 0.

Hence also R
HI'(S}C(;f,M,\) =0.

We will discuss examples for this in section 4.3.2

4.3.2 The group G/Q = Sl,/Q

Let us consider the group G/Q = Slo/Q. We have tautological representation
Sly — G1(Q?) = G1(V) and we get all irreducible representations of we take the
symmetric powers M,, = Sym" (V') of V. (See 2, these are the M,,[m] restricted
to Sly, then the m drops out.)

In this case the Vogan-Zuckerman list is very short. It is discussed in [Slzwei]
for the groups Sla(R) and Slo(C), where both groups are considered as real Lie-
groups.

In the case Slz(R) we have the trivial module C and for any integer & > 2
we have two irreducible unitarizable (g, K, )-modules Dki (the discrete series
representations) (See [Slzwei], 4.1.5 ). These are the only (g, K )-modules
which have non trivial cohomology with coefficients in a rational representation.
If we now pick one of our rational representation M,,, then the non vanishing
cohomology groups are

Hq(g7K007Mn®(C) :(CfOI'l:O,q:O’?
HY(g, Koo, Df @ M,, @C) =Cforl =k —2,g=1

The trivial (g, K~ )-module C occurs with multiplicity one in L*(G(Q)\G(A)/Ky)
hence we get for the trivial coefficient system a contribution

H* (g, Koo, COM,&C) = HO(g, Koo, C)H(g, Koo, C) = C&C — HYy (SE,, C).

This map is injective in degree 0 and zero in degree 2.

For the modules D;f we have to determine the multiplicities m™® (k) of these
modules in the discrete spectrum of L?(G(Q)\G(A)/Ky). A simple argument
using complex conjugation tells us m* (k) = m™ (k) Now we have the fundamen-
tal observation made by Gelfand and Graev, which links representation theory
to automorphic forms:

We have an isomorphism

Homg rc. Dy, Liiee (GQ\G(A)/Ky) — Sk(G(Q\H x G(Ay)/Ky) =

disc
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space of holomorphic cusp forms of weight k and level Ky

This is also explained in [Slzwei] on the pages following 23. We explain how
we get starting from a holomorphic cusp form f of weight £ an inclusion

Os Dy = Lo (GQ\G(A)/EKy)

and that this map f — ®; establishes the above isomorphim. This gives us the
famous Eichler-Shimura isomorphism

Sk(G(Q\H x G(Af)/Ky) ® Sk(GQN\H x G(As)/Ky) — HN(SE,, Mi—2).

4.3.3 The group G/Q = Rpo(Sl2/F).

For any finite extension F/Q we may consider the base restriction G/Q =
Rpq(Slz/F). (See Chap-II. 1.1.1). Here we want to consider the special case
the F//Q is imaginary quadratic. In this case we have G ® C = Sly x Sly/C the
factors correspond to the two embeddings of F' into C. The rational irreducible
representations are tensor products of irreducible representations of the two
factors My = My, ® My, where again M;, = Symk (C?). These representations
are defined over F.

In this case we discuss the Vogan-Zuckerman list in [Slzwei], here we want
to discuss a particular aspect. We observe that

MX = My, ® ./\/lkw./\;l)\ = My, ® My,
and hence our corollary above yields for any choice of Ky

HY (8%, M) =0if ky # k.

In Chapter II we discuss the special examples in low dimensions. We take
F = Q[i] and ' = SI3[Z]i]] this amounts to taking the standard maximal com-
pact subgroup Ky = Slo[Op]. If now for instance k; > 0 and k2 = 0, then we get
H!’(ng,MA) = 0. Hence we have by definition H!'(S[Céf,/\/l) = HéiS(SICéf,/\;l)
and we have complete control over the Eisenstein- cohomology in this case.
Hence we know the cohomology in this case if we apply the analytic methods.

On the other hand in Chapter II we have written an explicit complex of finite
dimensional vector spaces, which computes the cohomology. It is not clear to
me how we can read off this complex the structure of the cohomology groups.

We get another example where this phenomenon happens, if we consider
the group Sl,/Q if n > 2. In Chap. IV 1.2 we described the simple roots
a1, 09,...,0,_1, accordingly we have the fundamental highest weights w1, ..., wp—1.
The element wq (See 4.1.1) has the effect of reversing the order of the weights.
Hence we see that for A = 3 n,w; we have

H!.(SIC({]MMA) = O

unless we have —wg(A\) = A and this means n; = n,_1_;.
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4.3.4 The algebraic K-theory of number fields

I briefly recall the definition of the K-groups of an algebraic number field F/Q.

We consider the group Gl,,(Or), it has a classifying space BG,,. We can pass to

the limit lim Gl,(Op) = G1(Op) = G and let BG its classifying space. Quillen
n—oo

invented a procedure to modify this space to another space BG', whose funda-

mental group is now abelian, but which has the same homology and cohomology
as BG. Then he defines the algebraic K-groups as

Kl(OF) = 7T1(BG+)

The space is an H-space, this means that we have a multiplication m :
BGT x BGT™ — BG™ which has a two sided identity element. Then we get a
homomorphism m® : H*(BG1,Z) — H*(BG* x BG™,Z) and if we tensorize by
Q and apply the Kiinneth-formula then we get the structure of a Hopf algebra
on the Cohomology

m®: H*(BGT,Q) — H*(BG",Q) ® H*(BG™,Q)
Then a theorem of Milnor asserts that the rational homotopy groups
m(BGT) ® Q = prim(H (BG,Q),

where prim are the primitive elements, i.e. those elements z € H(BG, Q) for
which

I sketch a second application. We discuss the group G = Rp/q(Gl,/F),
where F/Q is an algebraic number field. the coefficient system My = C is
trivial. In this case Borel, Garland and Hsiang have shown hat in low degrees
g<n/4

HY(SE,,C) = (Q)SKf ,C).

On the other hand it follows from the Vogan-Zuckerman classification, that
the only irreducible unitary (g, Ko, ) modules V', for which H%(g, Ko,V) #
0 and ¢ < n/4 are one dimensional.

Hence we see that in low degrees

H(g, Ko, C) — HY(SE, ,C)

is an isomorphism (Injectivity requires some additional reasoning.)

On the other hand we have H(g, Ko, C) = Homg__(A®(g/¢),C) and ob-
viously this last complex is isomorphic to the complex Q®(X)“®) of G(R)-
invariant forms on the symmetric space G(R)/K . Our field has different em-
beddings 7 : F' — C, the real embeddings factor through R, they form the set
Sreal and the pairs of may conjugate embeddings into C form the set SSo™P

Then
X= J] S(R)/SOMm)x [] Sl(C)/SU(n).
,Uesreal COTHD

Now the complex Q°(X)¢®) of invariant differential forms (all differentials are
zero) does not change if we replace the group

H31n xHSl

vE Sreal ComP
)
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by its compact form G.(R) and then we get the complex of invariant forms on
the compact twin of our symmetric space

Xe= [[ SU.®R)/SO(m)x [] (SU(n) x SU(n))/SU(n),

2al comp
vESrea S0

but then
QX)) = H*(X,, ).

The cohomology of the topological spaces like the one on the right hand side
has been computed by Borel in the early days of his career.

If we let n tend to infinity, we can consider the limit of these cohomology
groups, then the limit becomes a Hopf algebra and we can consider the primitive
elements

4.3.5 The semi-simplicity of the inner cohomology

Now we assume again that our representation M is defined over some number
field I’ we consider it as a subfield of C. In other word we have a representation
r:Gx F — Gl(M,). We have defined H? (S[G(f , M), this is a finite dimensional
F-vector space and Theorem 2 in Chapter II asserts that this is a semi simple
module under the Hecke algebra. This is now an easy consequence of our results
above.

The module H; C L3 (G(Q)\G(Af)/K) can also be decomposed into a

disc
finite direct sum of irreducible G(R) x H g, modules

Hl = @ (Hﬂm ®Hﬂf)ml(7rOOX7Tf)7
7'roo®7rf€f{1

this module is clearly semi-simple. Of course it is not a (g, K )-module, but
we can restrict to the K -finite vectors and get

H’(Q;Km,Hl(Km)®MA®C) = @ (HomK‘X’(A.(g/E)’H7T°°®MC)®H7rf)ml(ﬂ—°OXﬂf)
7'roo®7rf€I:11

This is a decomposition of the left hand side into irreducible H g ; modules. Now
we have the surjective map

H*(g, Koo, H{™) @ My © €) — HY)(SE,, My ® C)

hence it follows that H(‘Q)(Sﬁf,/\;h ® C)) is a semi simple Hf, module and
hence also H, (Slcéf,/\;h) is a semi simple H ¢, module.
At this point we encounter an interesting problem. We have the three sub-

spaces (See end of 3.2)

H$,op (8K, MA®C) C HP (SR, My)®&C C HYy(SE,, MARC) C H*(SF,, M»)&C,
note the positions of the tensor symbol ®. The first and the third space are only

defined after we tensorize the coefficient system by C, whereas the second and
the fourth cohomology groups by definition F' vector spaces tensorized by C.
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Now the question is whether the first and the third space also have a natural
F -vector space structure. Of course we get a positive answer, if the Manin-
Drinfeld principle holds. All the vector spaces are of course modules under the
Hecke algebra and we and we can look at their spectra

Z(Hc.usp(sgfv/\?l/\ ® C)) = Zeusp E(H!.(Sfcgfv/\;}A ®C)) =%
B(HE)(SE, - My®C)) =%u)  D(H*(SF, My2C)) =%

If now for instance Yeusp N (X1 \ Xeusp = @ then we can define Heuop (SI% , /\;IA) -
H? (SIG(f , M) as the subspace which is the sum of the isotypical components in

cusp-
If this is the case we say that the cuspidal cohomology is intrinsically defin-
able and we get a canonical decomposition
H’.(SIG(f ’ 'A;b\) = Hc.usp(SIG(f ’ 'A;l)\) D HI.,noncusp(SIG(f ’ MA)

The classical Manin-Drinfeld principle refers to the two spectra ¥y C X, if it
is true in this case we get a decomposition

H*(SE,. Mx) = Hf (S§ . Mx) & Hi; (S, M))

the canonical complement is called the Eisenstein cohomology. (See Chap. II
2.2.3 and Chap III 5.)

4.4 Franke’s Theorem

5 Modular symbols

5.1 The general pattern

We start from the following data. Let H/Q be a (reductive) subgroup of our
group G/Q. Let K g’(l) be the connected component of the identity of a maximal
compact subgroup of H(R) we put X7 = H(R)/Kg’(l). We have the spaces

SR, = GOQ\X x G(A7)/Ky,Sily = HQ\X" x H(Ap)/K;.

From the inclusion ¢ : H — G we get maps between these locally symmetric
spaces

. H G

J(i'f,gf) 151(;1 — S,

which depend on the choice of ”pin points” (z,g f) € X x G(Ay). These pin
points have to be chosen with some care: '

a) The point € X can be viewed as a Cartan involution 0, on G(R) and
O, should fix H(R). Hence it is also a Cartan involution on H and we require

that it is the identity on our chosen K(g’(l). Let us denote this subset of X
by XHEZM) Let N be the subgroup of the normalizer of H/Q which also
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normalizes K22, Then N(R) acts on XWHEZY) T think that this action is
transitive and the orbits under the group N (R)™) are the connected components.

b)The element g P has to satisfy a similar condition:

Ki'g Kp=g,Ky

(Recall that we always have make careful choices of the level if we deal with
integral cohomology.)
Choosing (a:,gf) we get a map

jlz,g,)  HQN\HR)/KZ x H(Ag)/Kf — SE,
which is defined by

Now we assume that we have coefficient systems Mo, O,, coming from rep-
resentations of p : G/Z — Gl(Mp) resp. a one dimensional representation
w:HMH/Z — G,,. We assume that we also have a homomorphism from the re-
striction of p to H/Z to p, i.e

Tau Mo =0,
which invariant under the action of . This induces a homomorphism of sheaves
M d@g,) (Mo) = Oy (125)
Then these data provide a homomorphism for the cohomology groups

jla,g,)" HY(SE, M) = H*(Sgn,Op)

We are interested in this homomorphism in degree dy = dim SII;’;{.

In this degree we know the compactly supported cohomology of S I}{I u
7

H7 (St 0,) = B (Sl 1(0),) = @) H (52y.5:(0), )l
X

where we sum over characters x ¢ of type . on mo(H(R)) x H(Ay) (See (2.5.2))
The eigenspaces are projective O- modules of rank one let us assume that they
are free and that we have chosen generators c,,. We will call such generators
modular symbols.

We see that the homomorphism j(m,g})' is not yet good enough it has the

wrong target, if we want to evaluate cohomology classes on the fundamental

cycles of H4 (SH, i1(0),). We need to modify the source.
s

We study the extension of j(z,g f) to the compactification

j(x,gf) : S]Igf — ng
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We recall the construction of sheaves with intermediate support conditions
(2.1.2.Let us assume that we can find a ¥ such that the image of (S1 ;) factors
I

through Ox, (ng). Then our homomorphism 7 yields a homomorphism between
sheaves (see ( 19))

P 3 g,) i (M) = 2(O). (126)

and hence we get a homomorphism in cohomology

J(@,g,)rag)™ s HU (SR iz (M) — H™ (8}3;1 ,i1(On)) (127)

If we change z inside a connected component of XHEZD) then 3((m, gf), )

does not change, and hence we can view x as a discrete variable.
We still have the variable g 5 This has to satisfy the above condition b), it

has to respect the level and we have to fix the level because we want to get
integral cohomology groups. If we tensorize our coefficient systems with F' ( the
quotient field of O ) then we can consider the limit

lim H* (8¢, Mp) = H*(S%, Mp),
K; f

and this limit is now a m(G(R)) x G(Af) module. Doing this also with SE;
f

we can forget the constraint on g ; and we get an intertwining operator

3@, g,),ra) ™ s H(SC is ) (M))g) = H (S7,1(Q,)) = P Qliy]
! (128)

where the direct sum on the right hand side is now infinite, we sum over all
characters of type p.

Assume that we have chosen a basis element ¢, € H% (S ,i,(Q,))[x] (a
modular symbol) for all . For a class £ € HH (SG,’L'E,*)I(M))@) we get

H((,9, )™ (©) = 3 Fil6a g e (120)
The cohomology H?# (SG,’L.E’*J(M))Q) is a mo(G(R)) x G(Af)-module.

Lemma 5.1. We get get an intertwining operator between mo(G(R)) x G(Ay)-
modules

. ~ 7o (G(R))XG(Ay) ~—
Teg )+ (S im0 (M0)) = I EE ) 57

The question arises to compute this operator. Of course it is not so clear
what this means. First of all we have the problem that we do not know the left
hand side. Recall that the left hand side still sits in an exact sequence

0— HdH_l(aﬂ(SG),/\;l@) — HH (SG,Z'Z,*,I(M))Q) — H!dH (SG,M)Q) — 0.
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We try to produce absolutely irreducible submodules
HY (8% i (M) ) (m5) € H¥ (8 iy (M)

and restrict the intertwining operator to this submodule. Then we may be lucky
and the space of mo(G(R)) x G(Ay) homomorphisms of this submodule into
In dﬂo(G(R))XG(Af) ~—1
7o (H(R)) x H(A )X f
generator . In this case the intertwining operator is essentially given by a number

is one dimensional and contains some kind of canonical

1) We may, of course, consider first the boundary map
HdH_l(aSI(?fa MO) — H((:iH (SIG(f’MO)v

and restrict the map J., to its image.
If we want to understand this restriction — perhaps we should simply denote
it by dJ., — then we have to look at the image of ¢, under the boundary map

0 : Huy(S{ly 08l Mo) — Ha, 198}l Mo)

lj(x,gf)
Hy, -1 (08, Mo).

I think this restriction is not so interesting, since we are basically dealing with
a smaller group.
In certain cases it happens that

J(.g,)(@ey) = 0 (01)
If this condition is satisfied, then we know that J. factorizes over

G(Ay) ~71

Je g X7

(SK 7MO) — Ind

X °

If this is the case we are somewhat better off, because cohomology classes in
H!dH (SIG;f ,M¢) can be constructed and described using automorphic forms (©-
series or Fourier expansions (See 2.2.2).) Moreover we know that after tensoriza-
tion with the quotient field F' of O the inner cohomology becomes semi simple
and we can restrict J. to isotypical submodules. (See next section)

Of course we are always in this special case it the group H/Q is anisotropic,
because in this case j(z, gf) € Hi—dn (S]Céf7Mp) Hy, (SKf7Mo)

In this case we may even pair ](x,gf) with elements in H%# (SIG(f,./\;lo)

2) Another condition that may be satisfied is the Manin-Drinfeld principle,
i.e. we have an isotypical decomposition

HE(SE,, Mp) ® H" (SF, Mp). (M)

Then we may restrict J., to the second summand. We get

Joow t H"(SE,, Mp) — Ind (( ))x .
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5.1.1 Model spaces

I want to introduce some abstract concept of the production of cohomology
classes and the evaluation of these intertwining operators on these classes. To
do this we introduce model spaces.

We assume that we have a family of local smooth and admissible represen-
tations {X,, } where v runs over all places. For almost all finite places p the
representation { X } should be an unramified irreducible principal series repre-
sentation. We assume that X, _ is an irreducible Harish-Chandra module with
non trivial cohomology H*(g, Koo, Xy, ® Mc) # 0. Furthermore we assume
that we have an intertwining operator of (g, K) X G(Ay)-modules

O Xr, © Q) X, — Coo(G(Q\G(A)).

P

This induces of course an intertwining operator
@.
H*(g, Koo, X, @ M) @ Q, X, — H*(9, Koo, Coo(GIQ\G(A)) ® M)

= H*(S% Mc)

We introduce a subspace of Coo (G(Q)\G(A)). We consider the subspace of func-
tions of moderate growth and inside this space we consider the space of functions
which are cuspidal along the strata 9p(S¢) for the parabolic subgroups P € ¥,
i.e. which satisfy

/ f(ug)du =0
Up(Q\Up(A) B

for these parabolic subgroups. Let us call this subspace C& )(G(Q)\G(A)). We
assume that our intertwining operator factors through the subspace of ¥ cusp-
idal functions

®: X, @ Q) X, — CT(G(Q\G(A)) (130)

p

and we assume in addition that we have multiplicity one, this means that ® is
unique up to scalar.

We have an action of mo(G(R)) on H*(g, Koo, Xy, @ Mc) let € : m(G(R)) —
{#£1} be a character and let w, be a differential form representing an eigenclass
[we]. In [Ha-Gl12] we explain how a Hecke character x s extends to a character X :
mo(H(R))H(Ay) — {£1}. We have the homomorphism mo(H (R)) — mo(G(R))
and we require that xoo = €5

We get a diagram

H* (ga KC>07 XTroo by MC)(Eoo) ® ®pX7Tp
L i

H (g, Koo, (2 (GQ\GA) @ Me) ™25 HIn(SE,, My) @ C
t il e C
)

o (G (R GAf) ~— Jex ) v
Indﬂng((R))))iH((Aff))xf '®cC = HU(S%ip. (M) ®C
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Proposition 5.1. The image of ®% is contained in the image of Z%H ®C
Proof. Careful analysis using reduction theory O

We now make the further assumption that the Manin-Drinfeld principle is
valid for the image Hgﬁ (8§ ;M) of i47 | this means that we have unique
G(Af)-invariant section

st HE (SO, M) — H (S, i (M) (131)

Then we get an arrow

d = mo(GR))XG(Af) ~—1
H% (g, Koo, CO)(G(Q\G(A)) ® Mc) — In dﬂE(H(R))XH(Aff) Xy ®©C
which should be placed into the middle of the above diagram. The cohomol-
ogy on the left hand side can by computed by the de-Rham complex.

Theorem 5.1. This arrow is given by the integral

I (@)@ g ) () = [ raui* (o))

HH
Ky

We can take the composition

ol H (g, Koo, oo ®Mc) (600) ) X, — H (S, M) Toxy IndG((‘zf)) ;!

p

Let us pick a form in the e-eigenspace
we € Homp_ (A% (g/€), Too @ Mc)

and let us assume that the restriction of € to mo(H (R)) is the infinity component
of x. Then we get a new intertwining operator

J

CXV

G(Ay)
(we) ®X — Indj; ") x X'
P

which is defined by

e (@e) (g) = ey, 0 B (1w @ ty)].

Again we have the problem to compute this operator. The situation has changed.
The source and the target of J._, o @ are restricted tensor products of local
representations. A necessary condition for J. , o ®H £ () is that for all primes
p the vector space

G P
HomG(Qp)( Trp7Ind (% ) P ) 7& 0. (Ip)
Therefore we assume that this condition is fulfilled. There are cases where the

above condition is not always true, see for instance the Hilbert modular surfaces
[H-L-R].
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If the local condition (I,,) is satisfied for all primes p, then we have interesting
special cases where

dim Homg(qg,)( W,IndH(Q Xp h=1 (Ipp)

Let us assume that the representations X are somehow given to us as very
concrete representations and (Ipp) is true for all primes p. Then it may be
possible to select at each prime p a natural generator

loc G(Qp)
I>¢ € Homg(g,) (X mpo Ind g o) Xp b.

(This will be discussed in our examples.) We can define

loc loc -1
e = ®I € Homg s ) ®an,1ndH(A )
P p

and now we can formulate the following question:

The operator J.,_,(we) is a multiple of the product of local operators, the
problem arises to compute the proportionality factor in

ch,z(we) = ‘C(Trf7X) . I;(Ofc'

The general idea is that this proportionaly factor is related to a special value
of an L-function attached to &), ..

5.2 Rationality and integrality results

We assume that we have fixed a finite level. We assume that the Manin-Drinfeld
principle (131 ) is valid we get a decomposition up to isogeny
HY = O(SE,), M) @ HE (ST, M) € HY(SE s« 1(M))). (132)

An absolutely irreducible isotypical submodule Hg’]' (8¢ ” M)p(nf) C th,' (8¢ . M)p
can also be viewed as a submodule in H?# (ng,ig,*g(/\;l)p)).
We intersect Hgf{ (ng , M) (7 ¢) with the integral cohomology H®# (S[G{f ,Mo,)

and get the submodule Hgf{(S;G(f,Mop) int (75) C Hgf{(SIG(f,./\;l)oF) int- The
same procedure gives us a submodule

HY" (S iz (Moy)) m(my) € H (SE iz ci(Moy)) int (133)

The map

e HU(SE s wn(M))oy) mi(my) = HEt (SR, Moy) wmi(my)  (134)

becomes an isomorphism if we tensorize it by F' and hence the image of this
map is a submodule of finite index. We define
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A(Trf) = [Hg{{ (SIG(f7M0F) int(ﬂ'f) : TEJ(HdH (SIG(fviX*,!(M)OF) int(ﬂ-f))]
(135)

We return to our model space and assume that we have multiplicity one
(130). Our isotypical subspace in (133) is defined over the field F. We now
assume that all the local components X, 6 are defined over F, i.e. the local
representations are defined over F. Then we get for any embedding o : F' — C
an isomorphism

O (we) + (Q) Xr,) @6 C) = H (S i ) (MF)) (75 X €x0) @5 C  (136)

these are isomorphisms over C between absolutely irreducible G(Af) modules
which are defined over F'. Hence we can find numbers (the periods) Q(7s x€,0) €
C* such that

@f(we) . ~ dy (G y
W : @Xﬂ-p — H (S 7227*7!(MF))(7Tf X 600) (137)

is an isomorphism over F. We can choose these periods consistent with the
action of the Galois group and then it becomes clear that these period arrays
are unique up to an element in F'*.

We may also assume that after fixing a level we have an integral structure
on our model space, i.e we have lattices X T{i "or which are modules under the
Hecke algebra. If we invert some primes and pass to O F[%] then we can arrange
our periods in such a way that

1

+)

P (we) K, Loy o~ prducG ~
Qrs x €,0) : (@pr,(?p ® OF[N]) — HY(SE 5,5/ (Mog)) int(Tf X €x0) @ OF|

(138)
This pins down the periods up to an element in Op[+]*.

We get a formula

[We]

Q(ﬂ-ﬁwe)

,C(’IT ® X?:u’) loc

(@, g,),rau) (@ X py)) = Qs w0) LEWi)gpex  (139)

By definition of the expression ®? ( 5 (7[:’5] x 1) )the left hand side is rational
Fowe)
if ¢y € ®p Xz, r and we get a rationality statement for the value of the L-

function provided we know that I;Ofc(wf)(g f) is non zero and in F.

We have to choose ¢y € @, X(Io(;:[i]
N

g fK 7)) The first choice provides an integral cohomology class in H?# (S§ o Mop (2)(my).

, and we choose 9, such that K‘fngf =

But this class is not necessarily the image of an integral class under rx this
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will be the case if we multiply it with A(ny). Once we have done this we get
that

[we]

j((x7gf)’T)\’H)((DdH(Q(ﬂ—f7we) MI]OC

x A(my)y)) = A(my) Qrpion)

(65)(g,)ex
(140)

is a number in Op[+].
Then we have to optimize the choice of g . this means that we have to keep
the numerator of I;Ofc(wf)(g f) small. Then we get an integrality result for the

L-value.
We discuss this in the next example.

5.3 The special case Gl

We consider the special case G = Gla/Q. In this case we have very nice model
spaces, namely the Whittaker model, our map ® is given by the Fourier expan-
sion and the theory of the Kirillow-model gives us a canonical choice for the local
intertwining operators. Let M,, be the Q-vector space of homogeneous polyno-

mials P(X,Y") of degree n and with coefficients in Q. An element v = (Ccl Z)

acts by (yP)(X,Y) = P(aX + ¢Y,bX + dY). Sometimes we twist this action
by a power of the determinant det(+)", then the module is denoted by M,,[r].
From now on M will be one of the modules M,[r], i.e. our highest weight
will be the pair A = (n,r). The subgroup which provides the modular symbols
will be our standard maximal torus 7" and the ry , will be the projections to
XnTrY

We assume that a K7 is been chosen. Let us assume that we selected a
K stable lattice My, and we consider the exact sequence of modules under the
Hecke algebra

s HOOSG, M2)  HA(SE, Ma) — HY(SE, Mz) — H(05E, M),

We can tensorize our sequence by Q, and then in this case the Manin-Drinfeld
principle is valid

Hcl(SICéfﬂM) = H]}lls(SIG(pM)) D H!I(Slcéfu/\;t)'
The first summand can be described in terms of induced representations
~ K
0/9cCG 1) ol G\
HY (08K, , M) ® Q= @ (IndB(A)X)
x: typeto=Ax

where A is the highest weight of our module, where x runs over the Hecke
characters with some restriction conditions dictated by K, and where x is the
character on mo(T'(R)) x T'(Ay) attached to it (see [GLo], ...... ).

The module H} (S[G(f,/\;l) is semisimple, if we tensorize by Q, then we get
an isotypical decomposition

H{(SE,, Mg) = D H' (SF,. Mg)(w)
w5
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where 77 is an isomorphism class of a (finite dimensional) Q-vector space with
an irreducible action of H on it. Since we fixed the level we have only finitely
many of them. The Galois action on Q induces a permutation of the m, if
o € Gal(Q/Q), then we can define the isomorphism class 7. It is clear that we
have a finite extension Q(rs) C Q such that nf =myloraloe Gal(Q/Q(my)).
The field Q(7¢) is the field of definition of the representation .

For almost all primes p we have K, = Gl3(Z,) and the local Hecke algebra
H(G(Qp)//Kp) = Q[Ty, Zy, Z, '] and ), is simply determined by the eigenvalues
wp,wp of T, and T}, ,. on the one dimensional vector space of K, invariant
vectors. Then Q(m,) = Qwp, wp).

5.3.1 Input from the theory of automorphic forms 2
The theory of automorphic forms for Gl provides the following extra informa-
tions:

(i) The multiplicity of H'(S%,, Mg)(rs) is two. (Multiplicity one.)

(ii) If we know the numbers wy(7s), w,(7y) for almost all unramified prime,
then 7y is uniquely determined. (Strong multiplicity one.)

(iii) On Hl(SICg'f,M@) (m¢) we have an action of my(Gs). This group is the
quotient of

T(R) N Koo 5 mo(Toe) — {(j;l f1> } ,

by the subgroup generated by (Ol _01
Under the action of mp(G«) an eigenspace decomposes into two pieces
H!(SE,, Mg)(my) = ) H!(SE,, Mg)(e,7p).

eumo(Goo)—>{£1}
Both pieces have multiplicity equal to one.
Of course we can find a finite extension F/Q such that we have this decom-

position already over F. If we also invoke the Manin-Drinfeld decomposition,
we find

HY(SE,, Mr) = Hi (SR, Mp) © @@ H! (S, Mr)(e, 7).

Tf,E

Now we consider the ring O C F. For any cohomology group we define the
image ~ ~ ~
Im(H';(?v MOF) — H’;(?a MF)) = H‘;(?a MOF)iIlt

it is also simply this cohomology divided by the torsion. Then we get a decom-
position up to finite quotient isogeny

H]}Zis(SIG(f ’ MOF )int S PI!1 (SIG(a MOF )int
Then the submodules
Hll,s(ng ) MO)(T(—f)int
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are the isotypical summands in the cohomology H!(S$ f,MO)int-

We may also define isotypical quotients. They are obtained if we divide
H} (S[G(f,./\/lo)im by the complementary summand to H} (ng , M0 )int, and we
denote these quotients by

I_I!1 (SIG('f ) MO) [57 7Tf]int-
We have a natural inclusion
HY (S, Mo)(e.mp)ime — HY(SE,, Mo)le, i,

and the quotient is a finite module.

5.3.2 The Whittaker model

We assume that 7y is a representation which occurs in the decomposition of
H} (SIG(f , Mp). Let T4 be the discrete series representation which has nontrivial
cohomology with coefficients in M¢. Now we choose an additive character
7: Ag/Q — S'. It may be the best to choose the standard character which is

2mix

trivial on Z C A ¢ and at infinity is x — e
Our representation mo, ® 7y (which is known as a module of C-vector spaces)
has a unique Whittaker model

W(Too @ Tf, T)C-

This is the unique subspace in

wire={r: 6 -l (o 4)a) =},

which is invariant unter GLy(R) x H and isomorphic to 7o, @ my. The Fourier
expansion provides an inclusion

Wi @17, 7) 25 Ap(G(Q)\G(A))

= 1((o 1))

teQx

where Ay means the space of cusp forms. This gives us an isomorphism

Hl(gvKomW(ﬂ—ooaT) ®MC) ® W(Wfa'r) — H!I(Slcéva(C)(ﬂ—f)'

We have
H'(9, Koo, W(moo, 7) ® Mc) = Homp (A (g/),W(7e0, 7) © Mc)
= Cw,+Cuw_,
I -1 0
where I will pin down these two generators later. We assume that ( 0 1) Wy, =
wW_p. Then
W+ = %(wn +w_n)
wo = F(wp —w_p)
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form generators of the spaces
Homp (A" (g/8), W(7oo, ) @ M)+

Now our general procedure outlined in 2.1.1 provides intertwining operators

Flwe) : QW(mp,7) = H'(SE,, Mc):(e, ) (141)

5.3.3 The integral model for W(m,, 7).

Our representation 7, has a field of definition Q(m,) which is a finite extension
of Q. To get this field of definition we look at the space of Q-valued functions

wen ={r:6@) -1 ((5 7)o ) =l s}

On this space I defined an action of the Galois group ([Ha-Mod]) as follows.

ro=((5 99)"

and Q(m,) is the number field for which Gal(Q/Q(m,)) is the stabilizer of
W(mp, 7).

The space W@(ﬂp, 7)is finite dimensional over Q, and the space of functions
which are invariant under Gal(Q/Q(w,)) is a Q(m,) vector space W(m,,T) on

which #(G(Qp)//K,) acts absolutely irreducible. We have W(m,, 7) @q(r,)Q =
We(mp, 7).

Of course Q(m,) C Q(ns), and we define a subring O(w¢) C Q(my). This
is the ring of integers in Q(7¢) but we invert the primes which occur in the
conductor of 7, i.e. all the primes where m, is ramified. Let us denote the
product of these primes by N.

We have the action of H" (See 1.2.1.(ii)) on the cohomolgy and hence
we get an action of the algebra H(G(Qp)//Kp)z on W(mp,, 7) and this gives
us a finitely generated O(m,)- module of endomorphisms. Hence we can find
invariant lattices W(m,, T)o(r,)- If we invert a few more primes then we can
achieve that two such choices just differ by an element a € O(m,). We assume
that such a choice of lattices has been made at all primes p. If we are in
the unramified case then we will make a very particular choice later. We put
Wo(n ) (5, 7) = @, Wor,) (Tp, T) ( See 2.2.7).

If we take an element o € Gal(Q/Q) then it conjugates the representation
mp into 77 and we get a map

W(mp, T) o, W(’]T;, T)

f = fo

This map is a semilinear isomorphism.
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5.3.4 The periods

Now we have constructed the intertwining operator

F (we) : R Woriny) (mp, ) © C — HY(SC, Mo)(e,mf) © C,
p

and we can define a complex number Q.(7y) such that

Qe(mp) ™t F (we) : R Woa (m.7) > HY(SE Mo)(e,mp)  (142)
p

provided O(7y) has class number one. Then this number is called a period and
it is unique up to an element in O(ny)*. We may also look at the conjugates of
...m§... of my. We can choose these periods consistently (see [Ha-Mod]) and
hence we even get a period vector

Qa(Hf)_l = ( - Qe(ﬂ-;‘”)_l - ')UZQ(TFf)A)C'

5.3.5 The modular symbols for Gl

We start from GL2/Q and a coefficient system M, [r]. Now we consider the
modular symbols arising from the subgroup

mer={(52))

n
Our module M, [r]z = @ZX YY" ™" decomposes into eigenspaces ZX"Y" V.
v=0

H()(S[T(fT,./\;lo) = @ @ Ocy,

v=0  x:type(x)=vv

Hence we get

and since the Manin-Drinfeld principle is valid we get a canonical decomposition
H(SY, Mq) = Hi(SE,, Mq) & H{' (8, M),
and this means that we have a canonical section
H} (8% Mg) — H} (8%, My),
and hence we can define the intertwining operator

G(Ay) | -1

J. H(hg) Xf

Cx,!

t H (S, MY) — Ind

Let us assume that we have an isotopical component H} (8¢, /\;l(\é(m))(wf), then
we can consider the composition ‘

Glhy) ——1

Tews 0 Qu(mp) Y (@e) £ Q) Womy) (mp, 7) —Indg) X

p
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5.3.6 The local intertwining operators

We need to investigate the space of intertwining operators

G(Qp) . —
HOIHG(QP)(W(TFP,TP) , IndT((Q:))Xpl).
Of course we need to assume that the central character w(m,) is equal to the
character x;, restricted to the centre. We introduce the subtorus

nor-{(5 1))

of T(Q,) and we restrict x, to this subgroup and call this restriction X](Ql). For
t € Q, we denote by h(t) the matrix h(t) = ( é (; ) .
Now it is easy to write down an intertwining operator, namely

L()(g) = /T o, SO BN

where of course d*t is an invariant measure on 77(Q,). Of course we have to
discuss the convergence of this integral.

Before doing that we convince ourselves that this is the only intertwing
operator operator up to a scalar factor, the condition (1,,) is valid. If we apply
Frobenius reciprocity we see that

G(Qp) - _
Homg g,y W(7p, 7p) Indngpixpl) = Homyq,) W(mp,7p) 5 X5 ")

The restriction of the functions in W(m,,7,) to T1(Q,) is injective (See [Go])
and the image of the restriction map is called theKirillov model K(m,,7,). On
this Kirillov model the torus T1(Q,) acts by translation. It is known that the
Kirillov model contains the space C.(Q,) of Schwartz functions, this are the
locally constant functions with compact support on Q7. This space of Schwartz
functions has at most codimension 2 and it is of course invariant under 77 (Q,).
Hence it is clear that the restriction of our intertwning operator to the space
of Schwartz functions is ( up to a scalar factor ) given by the integral. If our
representation is supercuspidal then K(m,, 7,) = C.(Q,) and we we get existence
and uniqueness up to a scalar of the intertwining operator very easily. In the
general case we have to show that it extends and for this we have to invoke the
theory of local L-functions. If we introduce a parameter s € C, then the integral

[ w0 ey i
T1(Qp)

is convergent for R(s) >> 0 and can be analytically continued to a meromorphic
function in the entire plane with at most two poles (see [J-L], [Go]). In [J-L] the
authors attach a local L-function L(m, ® xz(,l), s) to m, ® Xl(,l) which has exactly

poles for those values of s where the integral does not converge and then

G )0 = Ly x| 09 o) e
T1(Qp)
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provides an intertwining operator

! -1 .. G(@Qp), —1) 11—
I OC(’iTp,Xp ,8) : W(mp, Tp)c — IndT(@:)Xp | |77°
which is everywhere holomorphic and non zero. If we evaluate at s = 1 we get
a generator

oc - G —
I (mp, xp )t Wy, 7p)e — IndT%i;Xp L

The arithmetic properties of this operator will be discussed in the next section.

In defining the local L-function we have to be a little bit careful, we will give
a precise formula further expression for the unramified case further down. Our
local L-factor will differ by a shift by 1/2 in the variable s from the L-factor in
[J-L] etc. Will will come back to this point later.

5.3.7 The unramified case

To see what is going on we consider the special case that 7, = m,(),) is an
unramified principal series representation. This means that

t *
)\p : ( 6 tg ) — )\p71(t1) . )\p72(t2)

is an unramified character and m,(w,) is the representation obtained by unitary
induction from wy, i.e. we consider the space of functions
3
‘).

where the functions are locally constant. In this case it is not difficult to compute
the intertwining operator to the Whittaker model

* tl

Indyn(Ap) = {f :G(Qp) = C|f (( tol ; > g) = Ap,1(t1)Ap2(t2) - o

R, : Indyn(Ap) — W(mp(Ap), Tp),

it is given by

R,(f)(g) = /U o, e,

where w = < (i) _01 ) . Again we have a problem of convergence. To solve this

we simply compute the integral. Let us also assume that the additive character

Tp is trivial on
1 u
Zp:U(Zp):{<O 1) ‘uezp},

and nontrivial on %Zp‘ We know that f(wug) becomes constant in the variable
u if u € p™Z with m large. Hence we have to compute

> g (wdu
v=1 pmYE MLy \pTr T,

and for convergence we have to discuss what happens if v — oo. We write
u=p "e withn >> 0 and ¢ € Z). Then wu = wuw lw and

(10N _ (et 0 1
“\—pme 1) 0 p~"e -1 pre~t )¢
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Then

s = (75 ) (O i ) )

Ap1 ()" Ap2(p)"p 7" f (( (1) pn_gl—l >wg>,

and f (( (1) pn_gl_l ) wg) = f(g) if n >> 0, especially it will not depend on

€. This means that for n >> 0

/ f(wug)r(u)du = const/ 7(u) =0,
p—nzp\pl—nzp p—nzp\erl—nZP

and hence our integral is actually a finite sum.

Let us consider the special case where f = f\ € Iun()) is the spherical
function which takes the value 1 at the identity. This means that for g =b- k
with k € Gla(Z,)

f, (( tol N )k) — A (F)Apa(t2) - 2

and we keep our assumption on 7,. Then our computation yields

Rp(fx)e) = Juo ) I, (wu) =

)

Lt [z, o ()7 (w)du = 1 - i;gggpﬂ,

because all the terms with v > 2 vanish since 7, | 3Z, # 1.
The same kind of computation gives us also the value

min (7 0).

It is zero for k < 0 and for & > 0 we get

p-5 (Ap,z(p)k n (1 . %) Ap2 (D) A1 (p) ... + (1 - %) Mpa(p)F — 2@ 1) =

P Q2 @) + Xp2(0) X (0) + o X (0)F) (1= 322 (o))
We put .
1— ;i; (p)p 1 Rp(f/\p) =W,

(If %(p)p‘1 = 1 then the induced representation is not irreducible.) This
means that W) is the spherical Whittaker function which has value 1 at the
identity element.
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Now we can discuss the integral Whittaker model at an unramified place p.
In this case we assume that K}, = Gla(Z,,) and we put W(mp)o(x,) = O(7p)¥»,,,
the module is of rank one.

We return to our intertwining operator from the Whittaker model to the in-

duced representation Ind ((Q )) xp We assume that Xz(jl) is also unramified, we

normalize d*#(Z,) = 1. We want to compute the value of the local intertwining
operator on ¥y . Then

t 0 .
Joy ¥, (( 0 1 )) X (Ot 1t =

> ko _
Sy, (( po . )> X (p)fpF =) =

(1 — A2 (P)xs” (p)p‘s) (1 — p%Ap,l(p)Xél)(p)p‘s)

Now we work with the module M,,, i.e. we do not make a twist by the de-
terminant. If we look at the definition of the Hecke operators on the integral
cohomology ( See [Heck]) then we notice that in this case we do not need a mod-
ification of the operators T}, T}, to get them acting on the integral cohomology.
We conclude that the numbers

p1/2)\p,1(p) = O‘p7p1/2>\p,2(p) = Bp

are algebraic integers. Since the central character is of type z — 2™ we conclude
ap B, has absolute value p"*! and of course the Weil conjectures imply |a,| =
1Bp| = p("t1/2 " The numbers ap + Bp, ap By generate the field Q(m,) and the
number L(m @ xV,1) € Q(mp,, x")). From this we conclude that the local
intertwining operator 1'°¢(,, X, ') is defined over Q(my, X)) we get

[l(’c(ﬂ'p, X;l) : W(ﬂ'p, TP)Q(Wp,X(l)) (Ind ((QpSX;I) Qmp,x ™)

In fact it transforms the spherical function ¥y  into the spherical function in
the induced module which also takes value one at the identity element.

A similar consideration shows that also at the finitely many remaining places
we can define a local intertwining operator I'°¢(,, lel) over Q(mp, xM). Here
we have to look up the table for the local L factors in [Go]. We define the so
called local intertwing operator as restricted tensor product

Iloc 7Tf Xf ®Iloc 7T;D7Xp

These local operators are almost compatlble with the action of the Galois
action. We observe for o € Gal(Q/Q) we have the transformation rule L(m, ®
XI(,I), 1)7 = L(ng ® (X,(,l))", 1)?. But the integral is not quite compatible with
the action of the Galois group. We have the following commutative diagram:

For o € Gal(Q/Q)

1'o°(mp, X7 1) W(ng, 1) —> IndG((Agf)) X5
} o l o
oc g GA g\—
oo (rp 7 () 0 WG r) — Indg(y) ()7
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We discuss the local case where 7, is unramified and Xél) is ramified and

its conductor is f, > 0 Let T1(Z,)(p’?) C Ti(Z,) be the subgroup of units
=1 mod p’r, then character XI(,l) is trivial on the on this subgroup but not on
T1(Zy)(p?»~1) We normalize d*t, to give Ty(Z,)(p/?) the volume one. Again

an intertwining operator is given by the integral

[ ) f(h(tp)g)X(l)(h(tp)) A%ty = Ipr(e)

We have to optimize our choices (See 5.2). For our function f we have to take
the spherical Whittaker function ¥, . For g, we choose an element

We want T3 (Z,)(p’?)g, K, = g,K, a simple calculation says that this is the

case if and only if
1 —L 1 L
p’!L p’!L

1 (tp — 1)—1,,
P
<1 1 € K,.

and this says

Since t, =1 mod p/» we see that this is the case if and only if n < f,. Let
us choose such an n, i.e. a gy.

To compute the intertwining operator we have to evaluate at e (Frobenius
reciprocity) and we observe

(3 D=1} ) we

By definition this operator is given

()= [ (] e a)-a,

Since ¥, is in the Whittaker model the last integral becomes

t
| nCu, b)) - a7,
Tl(@p) p
The value W, (h(t,)) depends only on ordy(t,) = v, and hence our integral
becomes

S w0 v vpn
S (% e [ meragare
TO(2,)

vp=0

The integral is a Gauss sum, it vanishes unless v, —n < —f,,, since we have
n < f, and v, > 0, the only non zero term is v, = 0,n = f,,.

Hence we see that the local contribution at a prime p where 7, is unramified
and x1) is ramified is given by the Gauss sum G(X(l),Tp). Hence we get for a
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m¢ which is globally unramified and a character x and for the above choice of
9, and U, =@V,

(o, )Pl 2 w0 ) = S T GG m e, (143

5.3.8 Fixing the period

The actual of computation the period may be a highly non trivial. Actually
this may even not be so important. But it is indeed of interest to compute the
factorization of the L-values, this means we have to compute the numbers

Limy @ x,1)

ordy (== (144)

for as many p C Op as possible.

Of course we have problems to fix the period if the class number of Op is
not one, but this does not matter for the above question, we have to fix a prime
p and then we have to choose a good period locally at p. This means we solve
the problem alluded to in (138) only locally at p.

We discuss this problem in a very special case where our group G = Glg, the
maximal compact subgroup Ky = Hp Gl2(Z,) and our coefficient system M is
the module of homogenous polynomials P(X,Y") of degree n and coefficients in
Z. Hence the Hecke algebra Hy, = ®;’H Fk, is unramified at all primes p it is
commutative. Our isotypical component 7y defines an ideal Z(Ily) C Hg, and
the quotient Hg, /Z(Ilf) is an order in the field Q(Z(Ily)) = Mg, /Z(1l;) ® Q,
which is finite extension of Q. (I replaced 7y by II§ because the ideal does not
change if we conjugate 7y the ideal Z(Ily) is associated to the Galois orbit of
ms. I prefer to view Q(II¢) as an abstract extension of Q.) This ideal Z(IIy) de-
fines a submodule H}! (ng , M) int(Z(T;)) = Ann(Z(I1;)), this is the submodule
annihilated by Z(II¢).

We can think of 7 as simply being a modular cusp form f of weight k& = n+-2.
To get our isotypical module H, ,1(81%,/\;1(%) int we have to find a homomor-

phism o : Hg, /Z(Ily) — O and then
H{ (8%, Moy) int(ms) = H(SE , M) int(Z(I15)) @3y, .0 OF (145)

We have the action of complex conjugation, i.e. of mo(G(R)), on the coho-
mology H/! (S]Céf,/\/l) int(Z(IIy)) we get the decomposition (up to an isogeny of
degree 2™)

HA(SE, M) i (T(I7)) S B (SE,. M) s (Z(L)) @ HE (ST, M) 10s (Z(1L))
(146)

and after taking the tensor product by @Q both summands become one dimen-
sional vector spaces over Q(Z(Ily)). But it is by no means clear that the integral
modules are isomorphic.

This becomes a little bit better if tensor by O then then we have again
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H} (SE, Moy) ns(mf) D Hy (S% s Moy) im(my) ® Hy _Sg, Moy) ins ()
(147)

and now the two summands are are O modules of rank one and get their struc-
ture as Hecke-modules from the homomorphism o. ( In a sense 7y = (Il¢,0))
But still they are not necessarily isomorphic. If we want to define the periods
we need class number one. But instead of defining a period we define a local
periods. If we tensor the semilocal ring O, = O ®Z(p) then the class number
problem disappears we can choose a period such that we get an isomorphism

QP ()™ F (@) : Q@ Wor g (1. 7) = HlL(SE,. Mo, )(mp) (148)
p

Recall that we viewed 7; as a modular form f of weight £ we change the

notation for the periods slightly and denote them by Q(ip )( f). Our character x
will now be unramified which implies that it is uniquely determined by its type
u. We put v = p+ 1 then we get for v =1,2,...,k — 1 the following integrality
statement

€O0p, (149)

But we can still do a little bit better. Recall that we have to evaluate our
integral cohomology class on a modular symbol ¢,. This modular symbol is a
relative cycle from 0 to i0o (just along the imaginary axis) loaded by an element
e, = XFY" H, we denote it by [0,i00] X e,. The index p runs from zero to n.
This is a relative cylce and defines a class in Hl(SIC?f , 8(81%), M). We have the
boundary operator

0 : Hi(S§,,0(S%,), M) = Ho(9(SE,), M). (150)

We represent the boundary by the circle at ¢0o then it is clear that

d(e,) = e, —wey, (151)

and we see that 0(e,,) is a torsion class if 11 # 0,n. Not only that it is a torsion
class it is annihilated by a power of the Hecke-operator T}'. This implies that
T ([0, i00] xe,,) can be lifted to a homology class in E, € H, (SIG(f , M). But then
it is clear that the evaluation of our generator {4 in H!lyi(ng,MoF.’p)(ﬁf) on
this lifted cycle gives an integral value. Since £ is an eigenvalue for the Hecke
operator we get for y=1,..,n—landv=p+1

<€, B, >=7p(T)" < e >= 7rf(Tp)“M € Op, (152)

Qe(z/) (f)

This means that we do not need the factor A(f) in front.
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We choose a prime p in O lying above p. Let us now assume that 7 (T},)
is a unit, i.e. f is ordinary at p then we can conclude that

L(f.v)
o (f)

€ Ory

and consequently

L(f,v)

rd
i)

y>0forall2<v <k-—2 (153)

We also know what we should expect at the argument v = k — 1. In this case
d(ey) is not a torsion element, but we know that for all primes ¢ the element
(0*=1+1—7;(Ty))9(en) is annihilated by a power of T),. If by, (f) is the minimum
of the numbers ord,(¢*~1 + 1 — 74(7)) then we can conclude that

L(f,p)
o (f)

Hence we can say (still a little bit conjecturally and using Poincare’-duality
and the fact that the modular symbols ¢, generate the relative homology. (H.
Gebertz, Diploma Thesis Bonn .)

ordy (2 ) 4 () > 0 for =1,k — 1 (154)

If p is ordinary then the numbers Q(f) (f)are the right periods at p if and only
if one of the non negative numbers in the + or — part of the lists (153),(154)

L(f,v)
P (f)

L(f,k—1)
(1)

L(f,k—2)
P (f)

Ly ={ ordy( )+ bp(f), ordy( )y ey ordy( ).}

is zero.

This discussion is interesting in view of the conjectures on congruences in
[Ha-Cong]. In this note we make conjectures about some congruences between
Siegel and elliptic modular forms, these congruences are congruences modulo a
”large” prime and I do not really say what a large prime should be. Already in
[Ha-Cong]| I address the issue that we have to choose the right period, but there
the choice is rather ad hoc.

Now we have a better recipe. The heuristic argument for the existence of
the congruences only works if the prime is ordinary for the modular form f. But
in this case we have now a much more precise rule to compute the period. For
an ordinary prime p we should expect a congruence if for one of the members in
the above lists we find a strictly positive value. Here we should still be a little
bit more careful, my heuristic argument predicts congruences if p occurs in the
denominator of a ratio

L
ordp(ﬂ) <0,v=k—-2k—-3,...,k/2+1
so we should pay attention to possible cancellations.

Checking the list of the list of the modular forms of weight 12,16,18,20,22,26
we find that the only cases of ordinary primes for which we expect congruences
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are indeed the cases k = 22, = 41 and k = 26,¢ = 29,43,97 and they are
already in [Ha-Cong]. Here is no cancellation.

It will be very interesting to check the case of the two dimensional space of
cusp forms of weight 24. In this case the field F' = Q(1v/144169). Again we find
very few instances of ordinary candidates, these are the primes dividing 73, 179
and the congruences have been checked.

But apart from these two cases we have the two divisors of 13, they occur
rather frequently in our list £y, and it seems to be interesting to see what
happens.

The modular form f of weight 24 has an expansion with coefficients in Q(w)
where w? = 144169, we write the first few terms

f(q) = q+12(45 — w)q® + 36(4715 + 16 - w)q® + 32(395729 — 405 - w)q*+

1410(25911 + 128 - w)q® - - - + 658(3325311035 — 23131008 - w)g'® . ..
(155)

and this provides the two modular forms f(+) (resp. f(~)) with real coefficients
which we get if we send w to the positive root /144169 (resp. negative root).
We have the periods Q4 (f1), Q4 (7)) and we know that

L(f ) L), v)
Doy (FD) Qe (FO)) Q(v144169) (156)

Looking at the norms of these numbers we find some factors of 13. The prime
13 decomposes in Z[w] and we see that the two prime factors above thirteen are
given by the homomorphism ¢5 : w +— 5 mod 13. and ¢g : w — 8 mod 13 We
check that f(t) is ordinary at ¢g but not at ¢5. But if we look at the prime

iy L <+),u
factor decomposition of %

¢s does not. Hence we do not expect the existence of a Siegel modular form
and a congruence modulo ¢5 because ¢ is not ordinary for f(+). The prime ¢g
is ordinary for f(*) but this prime does not occur in the L-values.

then we see that ¢ occurs non trivially but

5.3.9 Anton’s Congruence

The issue to fix the period becomes even more delicate once we allow ramifi-
cation. Let us consider the case of the congruence subgroup I'g(p), this means
that our open compact subgroup will be Ko f(p) = [[,.,», Gl2(Zq) x Ko(p).
Again we can determine the periods locally at a prime ¢ by evaluating period
integrals against certain modular symbols. The point is that we have more mod-
ular symbols, because we allow ramification. To get control over these modular
symbols we consider the representation Indgéc b i.e. the induced from the
trivial representation of Ko r(p) to the maximal compact subgroup K. This
representation can be viewed as a representation of Gla(F)), it is of dimension
p+ 1 and it has the Steinberg-module St,, of dimension p. Then we can consider
the cohomology H 1(81%,/\;1” ® St,,), and new forms f for I'g(p) correspond to

eigenclasses in H} (ng , M, @ St,).

We can construct modular symbols with coefficients in M,, ® St,. The stan-
dard torus T'(FF,) acts on St, and under this action we get a decomposition into
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eigenspaces (we invert the divisors of p(p — 1) let R = Z[ﬁ])

St,®R= €D  Rey (157)

X:]F;f —lp—1

(The trivial character occurs two times)
Hence we can define modular symbols e, ® e, where e, is as above. Then
we get integrality for the values

L(f @ x; )
Qe(u,x)(f)

Since we inverted p the Gaussian sum does not play any role. We assume that the
modular symbols e, ® e, generate the relative homology H; (SIGQ , 8(81%), M, ®
St, ® R). Hence we can fix the periods locally at a prime ¢ which does not divide
p(p—1) and which is ordinary for f. We compute the L-values and then we must
have

G(x,T) (158)

L(f®x, 1)
Qe(u,x)(f)

and for both signs e(u, x) at least one of these numbers has to be zero. Here [
runs over the divisors of £ in Op[(p—_1].

We want to consider the special case of modular forms of weight 4 for Tg(p).
In this case we have only three critical values L(f ® x, ) for p=1,2,3.

We are interested in this case because we want to understand the conjectures
in [Ha-Cong] also in the case of a non regular coefficient system, especially we
want to look at the case of the trivial coefficient system, i.e. the case where the
representation is one dimensional. Then we find modular forms of weight four
in the boundary cohomology and this forces us to allow ramification. But we
want to keep ithe ramification as small as possible.

We start from the group G = GSp,/Z, we choose as level subgroup the
group K; = Kfp = 1,.4p G(Zg) x Ko(p), where Ko(p) is the group of Z,
valued points of the unique non special maximal parahoric subgroup scheme
P, . (Here 7, is the fundamental weight attached to the short root viewed as a
cocharacter, we have < v1, @1 >= 1, < 71, as >= 0. ). This choice Kfp defines
an arithmetic subgroup I') C GSp,(Q) which is called the paramodular group.

We consider the homomorphism

ord,( )>0 (159)

H*(S%,, R) — H*(0(SE,), R) (160)

The right hand side contains a contribution coming from the cuspidal co-
homology of the stratum of the Siegel parabolic subgroup, this is the contri-

bution H!l(S;‘(/[}VI,HQ(up,R)). The point is that now that KJ{W = Ko(p) =

[1,.4p Gl2(Zg) x Ko(p), which we introduced above. The M-module H?(up, R)
is the standard three dimensional representation. Hence this cohomology is de-
scribed by the space of modular forms of weight 4 for the group I'y(p).

Any modular (new) form f of weight 4 for T'g(p), yields a contribution

HY (S}, H up, )L
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of rank one over R ® Op. Let us consider the inverse image H3 (ng,R) [f] =
r~ 1 (HY(SM,,, H?(up, R)[f])). We consider the restriction

My
Kf

HYSE, R)f) = H (Sl HE (up, R[] (161)

We invoke results from Eisenstein cohomology. Schwermer has shown: This
restriction map is surjective if and only if we have L(f,2) = 0 otherwise we
encounter a pole of an Eisenstein class.

I also discuss an analogous situation in the appendix of [Ha-Eis]. There
I assume that we have no ramification, but I discuss non trivial non regular
coefficient systems. A rather speculative computation using the comparison
between the Lefschetz and the topological trace formula suggests that in this
case

r¢ has a non trivial kernel H? (ng,R) [f] if and only if the sign of the func-
tional equation for L(f,s) is minus one.

Let us believe that the same is true in this case (and if we do not believe
in the trace formula we could also try to explain this kernel as a Gritsenko lift)
and we get the exact sequence

0~ HY (S, R)If) = HYSE,, R)If) = H'(Sithe, H(up, B)If],  (162)

where H}? (SI% , R)[f] is the Scholl motive attached to f. This yields an extension
class of motives

X(f) € Ext' (R(-2), H}(SE,, R)[f])- (163)

Tony Scholl suggests to attach a number to such an extension. More precisely he
suggests to construct a suitable biextension, this can be done by the Anderson
construction introducing an auxiliary prime pg.) and then this number should
be essentially

L'(f,2)
Q4 (f
L(f,3
Q-_(f)

Under this assumption the denominator é(_f (;3 becomes interesting. Since we

fixed the period, we can ask whether ordinary primes [ dividing this number yield
denominators of Eisenstein classes and hence congruences. Such a congruence
has been detected by Anton Mellit in the case p = 61 and ¢ = 43. Checking the

tables of W. Stein we find that for p = 61 the cohomology H}' (Sy, H? (up, R))

is of rank 2 x 15 and decomposes into a 12-dimensional and a 18 dimensional
piece (over Q). The 6 dimensional piece corresponds to a modular cusp form f
of weight 4 for T'g(61) its coefficients lie in a field of degree 6 over Q. The sign in
the functional equation is —1 and we should look for the prime decomposition
of the number

N

(164)

=

(165)



over { = 43. We know that there is a Siegel modular form for I'g; which is
not a Gritsenko lift and satisfies the congruence (Poor-Yuen).The question is
whether a divisor [|¢ occurs in the value above. But then it becomes clear that
we to obey strict rules to fix the period.

We may also check some other primes p and compute the ratios in (165) and
look whether they are divisible by interesting primes and whether these primes
yield congruences for non Gritsenko lifts.

5.4 The L-functions

Again I have to say a few words concerning L-functions.

To get the automorphic L-functions at the unramified places we have to
introduce the dual group GV(C) ( this is Gl3(C) in this case ) and a finite di-
mensional representation r of this group. The definition of the dual group is
designed in such a way that the Satake parameter w, of an unramified represen-
tation at p can be interpreted as a semi simple conjugacy class in GY(C) (see
[La]). Therefore we can form the expression

L(mp,r,s) = det(Id — 7‘(0.)1;);0_5)_1

and then the global L function L(m,r, s) is defined as the product over all these
unramified L -factors times a product over suitable L-factors at the finite primes.
If we do this for our automorphic forms on Gl; and if r = r1 is the tautological
representation of Gla(C) then we get the local L-factors

1
(1= 2p2(P)p~2) (1 = Api(p)p™)

and we see that it differs by a shift by 1/2 from our previous definition. Our
earlier L -function was the motivic L-function, its definition does not require
the additional datum r. Our automorphic form 7 defines a motive M(r). This
motive has the disadvantage that it does not occur in the cohomology of a
variety, it occurs only after we apply a Tate twist to it. The central character
w(m) has type & — 2™ and defines a Tate motive. The automorphic form
7 @w(m)~! =7V occurs in the cohomology

L(mp,71,8) =

HY(SE,, M[=n]) > H'(SE,, M[-n])(r ® w(r) ™) = H'(SE,, M[-n])(r")

where M,,[—n] is obtained by twisting the original module by the —n-th power
of the determinant. (See [Ha-Eis], III). This motive occurs in the cohomology
of a quasiprojective scheme ( See also [Scholl] ) Now we adopt the point of view
that 7¢ is a pair (IIf,¢) (See 1.2.6) and then M(7) defines a system of [-adic
representations p(7); which are also labelled by the ¢ : Q(7) — Q. Then it is
Delignes theorem that for unramified primes

Ly, 1,5~ 5) = L(Mr), 5) = det(id — p(Fy); M) p)

for a suitable choice of £ # p.
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5.4.1 Weights and Hodge numbers

We may of course look at the motives M(7) which are attached to an eigenspace
in H! (Sﬁf,/\;l[—k])(ﬂ) in other words we twisted the natural module M,, by
the —k-th power of the determinant. Again we get an [-adic representation py
and the Weil conjectures imply that the eigenvalues of the inverse Frobenius
pi(F; 1) all have the same absolute value p™ 3. The number 2k —n + 1 is
usually called the weight w(p;) of the Galois representation or also the weight
w(M(7)) of the motive M(7).

The central character w(m) of w has a type and if we make the natural identi-
fication of G, with the centre then the type of w(n) is an integer type(w(rw)) € Z

and the formula for the weight is

w(M(m)) = —type(w(m)) + 1.

This weight plays a role if we want to get a first understanding of the analytic
properties of the motivic L-functions. Its abcizza of convergence is the line
R(s) = w(M(m)) + 1.

The special case k = n is special, because in this case our motive occurs in the
cohomolgy of a variety. The eigenvalues of the Frobenius are algebraic integers
and the non zero Hodge numbers are A" 19 and h%"+1, If k is arbitrary then the
centre acts on M,,[—k| by the character t(k) = n — 2k and the non zero Hodge

n—t(k) _ n+tt(k)
) 2

numbers will be pit— . We notice that for an isotypic component
H} (ng,M[—k‘])(ﬂ’) the number #(k) is the type of the central character w(m).

5.5 The special values of L-functions

We now observe that the local L factors L(M(r" @ (x))~1), s) which we intro-
duced in 2.2.6 are actually the local L-factrs of the motivic L-function, i.e.

LM(rY @ (x) 1), 8) = LM(r¥ @ (xM) ™), s)
Theorem 5.2. With these notations we can give a formula for the composition

LM(rY @ (x")™1),1)
Qe (my)

Jep, 0 Qe(mp) ™t - FM (we) =

Cx;!

. Iloc(ﬂ,f’Xle)

5.5.1 Applications

We evaluate this formula at elements 1y € W(ms,T)o(x s and an element

g, € G(Ay). We get Q.(mp)™? .fl(l)(ws)(wf) =1y € H,{E(SIG(f,/\;l)O(ﬂﬁX) and

LM(7Y @ (xM) ™), 1)
Qe (my)

We have seen that J.. (1) (gf)d(gf) (Lemma 2.2 ) is an integer and it is obvious

Jeo (05)(g,) = (g ) (W9)(g,)

that d(gf) = [I, d(gp)- If we choose for 1y an element which is also a product
Yy (gf) = Hp wp(gp) then we get

LM(m @ (x"M)™),1)
Qe (my)

TT 24, 3 ) (W) (9) ()

p

Jen (05)(g,) [T dlay) =
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The factors in the products over all primes are equal to one at almost all places.
Then we have to optimize the choices of v, and g,. First of all we can choose
these data such that all local factors are different from zero. Then we conclude
that we have an invariance under Galois for the L-values

LM(m @ (x™M)™),1)
Qe (my)

LM((r" ® (x™) ™17, 1)

)7 = X(l)(ia) Qe(ﬂ'[;)

(

We may observe that the characters x(!) can be written as product of a Dirichlet
character and a power of the Tate character, i.e. x(!) = ¢-a~” wherev =0,...n.
Now we can write

M(rY @ (V)™) =M(x" @ ¢~") @ Z(v)

and
LM(rY @ (xM) ™), 1) = LM(x" @ ¢71), 1+ v)

and the arguments 1+v are exactly the critical arguments for the motive M(7" ®
#~1) in the sense of Deligne.

Of course we are now able to prove also some integrality results, it is clear
that the left hand side is integral, more precisely it is an element in O(7y, x 7).
Now we have to work with local representations to find out under which condi-
tions we can force the product of local factors to be a unit or at least to bound
the primes dividing it. Hence we have a tool to show that

LM(rY @ (x)™1),1)
Q. (my)

€ O(ms,xy)
at least if we invert a few more primes.

5.5.2 The arithmetic interpretation

It is clear that we have some control of the primes that have to be inverted. I
call them small primes. The main reason why I am interested in the integrality
statement for these special values is, that I want to understand what it means
if a large prime divides these values.

I strongly believe that the large primes dividing these L-values are related
to the denominators of Eisenstein classes for the cohomology of the symplectic
group, what this means will be explained in 5.6 and we also refer to the notes
[kolloquium.pdf]. In the following section I want to give some idea how such a
relationship between the arithmetic properties of the L-values and the integral
structure of the cohomology as a Hecke-module should look like.

6 Eisenstein cohomology

Our starting point is a smooth group scheme G/Spec(Z) whose generic fiber
G = GxzQ is reductive and quasisplit. We assume the group scheme is reductive
over the largest possible open subset of Spec(Z) and at the remaining places it
is given by a maximal parahoric group scheme structure. If G is split, then we
assume that G is split. We define K; = G(Z) = [1,6(Z,) C G(Ay)
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We choose a Borel subgroup B/Q and a torus T'/Q C B/Q. We assume that
T(Ay)N Ky =T/Z) is maximal compact in T'(Ay). Let A € X*(T') be a highest
weight, let M, be a highest weight module attached to this weight. It is a
Z-module, the module M, ® Q is a highest weight module for the group G/Q.
We consider
6.1 The Borel-Serre compactification
We consider our space

Si, = GQ\G(A) /KKy
and its Borel-Serre compactification
iS¢ ; S¢ ;e

Our highest weight module M, provides a sheaf M, on these spaces.
We have an isomorphism

H* (8%, M) H* (5%, M»)

for any coefficient system M coming from a rational representation M of G (Q).
The boundary 0Sk is a manifold with corners. It is stratified by submanifolds

oSk = JorSg,,
P

where P runs over the G(Q) conjugacy classes of proper parabolic subgroups
defined over Q. We identify the set of conjugacy classes of parabolic subgroups
with the set of representatives given by the parabolic subgroups that contain
our standard Borel subgroup B/Q. Then we have

H*(0pSE,, My) = H (P(Q\G(A)/ Ko K, My)

We have a finite coset decomposition

G(Ay) = P(Ap)ErKy,
&r

for any £y put K}D(ff) =PA)N ngfffl' Then we have

PQ\X x G(Af)/K; = | JP@\X x P(As) /K[ (€0)¢5,
&s
If R, (P) C P is the unipotent radical, then
M = P/R,(P)

is a reductive group. For any open compact subgroup K; C G(Ay)(resp. for
Ko C G) we define K}”(ff) C M(Ay)(resp. KM C M.,) to be the image of
KF (&) in M(Ay) (resp. Ms). We put

S%(gf) = M(Q)\M(A)/KXKY (&)
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and get a fibration
mp: P(Q\X x P(Ag)/Kf (&) — M(Q)\M(A)/M(Q\KZ x Kf'(&y)

where the fibers are of the form I'y\ R, (P)(R) and where I'y C U(Z) is of finite
index and defined by some congruence condition dictated by K sz (&¢). The Lie-
algebra u of R, (P) is a free Z-module and it is clear that we have an integral
version of the van -Est theorem which says:

IfR= Z[%] where a suitable set of primes has been inverted then

H*(Ty\Ry(P)(R), Mp) = H*(u, Mg).

More precisely we know that the local coefficient system R'Wp*(M) is obtained
from the rational representation of M on H*(u, M).

Hence we get

—~—

H*(0pS, Mp) = UH-(s;gfwf),H-(um)R),
§r

and
H*(u,Mg) = €@ H'™(u, Mg)(w-N),

weWP

where W is the set of Kostant representatives of W/W™ and where w - A =
(A +p)* — p and p is the half sum of positive roots.

The primes which we have to be inverted should be those which are smaller
than the coefficients of the dominant weights in the highest weight of M. But
at this point we may have to enlarge the set of small primes.

We conclude

The cohomology of the boundary strata 8p81% with coefficients in M can be
computed in terms of the cohomology of the reductive quotient, where we have
coefficients in the cohomology of the Lie algebra of the unipotent radical with
coefficients in M

In the following considerations we sometimes suppress the subscripts K¢, K ?(/[M
¥

and so on. Then we mean that the considerations are valid for a fixed level or

that we have taken the limit over the Ky. (See the remarks below concerning

induction)

6.1.1 The two spectral sequences

The covering of the boundary by the strata 0pS provides a spectral sequence,
which converges to te cohomology of the boundary. We can introduce the
simplex A of types of parabolic subgroups, the vertices correspond to the
maximal ones and the full simplex corresponds to the minimal parabolic. To
any type of a parabolic P let d(P) its rank, we make the convention that
d(P) — 1 is equal to the dimension of the corresponding face in the simplex.
Let M = Mp = P/R,(P) be the reductive quotient (the Levi quotient). If
Z/Q is the connected component of the identity of the center of M/Q then
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d(P) is also the dimension of the maximal split subtorus of Zj;/Q minus the
dimension of the maximal split subtorus of Zs/Q. The covering yields a spec-
tral sequence whose E}’® term together with the differentials of our spectral
sequence is given by

0,q P,q
O—>E?’q: @ Hq(apg’M)d;)..._) @ Hq(aps,/\/l)d1—>
P,d(P)=1 P.d(P)=p+1
(166)

where the boundary map d}’? is obtained from the restriction maps (See [Gln]).
There is also a homological spectral sequence which converges to the cohomology
of the boundary. It can be written as a spectral sequence for the cohomology
with compact supports. Let d be the dimension of S then we have a complex

— P HITTNopS, M) P HITTTT(09pS, M) —
P,d(P)=p+1 P,d(P)=p
(167)

and therefore the E; , term is

Ey,= @ HI'PU0pS,M)

P,q
P,d(P)=p

the (higher) differential go from (p,q) to (p —r, ¢+ 1 —1r).

6.1.2 Induction

The description of the cohomology of a boundary stratum is a little bit clumsy,
since we are working with the coset decomposition. The reason is that we are
working on a fixed level, if we consider cohomology with integral coefficients. If
we have rational coefficients then we can pass to the limit. Then

H*(9pSE,, M) = 1}1{I§IH-(p(Q)\G(A)/KOOKf,M) =

To(GRIXG(AL) 1+ rat oM e A — g GER)XG(S) prar M prap ]
w3<M(R>xP<z§f>EJ§}H (Sgepe, H* (u, M) = Ind 000 gyy piaigy H (ST He (w, M),

Ind
where the induction is ordinary group theoretic induction. We should keep in
our mind that the mo(M (R)) x P(Ay) -modules are in fact mo(M (R)) x M(Ay)-
modules. We need some simplification in the notation and we will write for any
such mo(M(R)) x M(A;) module H

mo(G(R))xG(Ay)

Ind_ | (vr®y) < P(ay)

H=I$H
We will use the same notation for an induction from the torus T to M.

Under certain conditions we also have the notion of induction for Hecke
- modules and we can work with integral coefficient systems. This will be
discussed at another occasion.
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But I want to mention that in the case that Ky is a hyperspecial maxi-
mal compact subgroup ( in the cases where we are dealing with a split semi-
simple group scheme over Spec(Z) we can take K; = [[G(Z,) (see 1.1)) then
G(Q,) = P(Z,)K, = B(Z,)K, the group theoretic induction followed by taking
Ky invariants gives back the original module. In this case we do not have to
induce!

Of course we have to understand the coefficient systems H*(u, M), for this
we need the theorem of Kostant which will be discussed in the next section.

6.1.3 A review of Kostants theorem

At this point we can make the assumption that our group G/Q is quasisplit, we
also assume that G(l)/ Q is simply connected. Then we may assume that My
is irreducible and of highest weight A. Let B/Q be a Borel subgroup, we choose
a torus T/Q C B/Q. Let X*(T) = Hom(T xq Q,G,, xg Q be the character
module, it comes with an action of a finite Galois group Gal(F/Q), here F'
is the smallest sub field of Q over which G/Q splits. Let 7)) /Q C T/Q the
maximal torus in G(V)/Q, then X*(T()) contains the set A of roots, the subset
AT of positive roots (with respect to B.) The set of simple roots is identified
to a finite index set I = {1,2,...,r}, i.e we write the set of simple roots as
7 ={aq,..., ..., } C AT. We assume that the numeration is somehow
adapted the Dynkin diagram. The finite Galois group Gal(F/Q) acts on I
and m by permutations. Attached to the simple roots we have the dominant
fundamental weights {,...,7,...,7;,...} they are related to the simple roots
by the rule

o < i, Bi >
The dominant fundamental weights form a basis of X*(T™W).

Our maximal torus T/Q is up to isogeny the product of T (1) and the central
torus C/Q, i.e. T =TW . and the restriction of characters yields an injection

= 0ij.

j:X*T) = X*(TW) @ X*(0),

this becomes an isomorphism if we tensorize by the rationals
X5(T) = X*(T) ® Q = X3(TM) @ X5(0).

This isomorphism gives us canonical lifts of elements in X*(7(M)) or X*(C)
to elements in X§(7") which will be denoted by the same letter. Especially the
fundamental weights v1...,7i,... are elements in X¢(7).

Let A € X*(T') be a dominant weight, our decomposition allows us to write
it as

A=Y ami+6=A"+5
icl
we have a; € Z,a; > 0 and 6 € X*(C). To such a dominant weight A we
have an absolutely irreducible G x F' -module M.
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We consider maximal parabolic subgroups P/Q D B/Q. These parabolic
subgroups are given by the choice of a Gal(F/Q) orbit i =.J I Such an orbit
yields a character v; = ), ; vi The parabolic subgroup P/Q provided by this
datum is determined by its root system AP = {8 € A| < 8,7; >> 0}. The
choice of the maximal torus T C P also provides a Levi subgroup M C P but
actually it is better to consider M as the quotient P/Up.

The set of simple roots of M) is the subset 7y = {..., ,... Yicr,,, Where
of course Ip; = I'\ J. We also consider the group GUYNM = M. It is a reductive
group, it has T(!) as its maximal torus. We apply our previous considerations
to this group M;. It has a non trivial central torus C;/Q. This torus has a
simple description, we pick a root «;,¢ € J, we know that J is an orbit under
Gal(F/Q). We have the subfield F,,, C F such that Gal(F/Fy,,) is the stabilizer
of a;. Then it is clear that

Cl ; RFai/Q(Gm/Fai)a

up to isogeny it is a product of an anisotropic torus 01(1) /Q and a copy of Gy,.
The character module X¢(C1) is a direct sum

X5(Ch) = X5(C) @ Q. (168)

Here X@(C{l)) ={v € X3(C1) | <7,> c; >=0}. The half sum of positive
roots in the unipotent radical is

pu = s (169)

where 2fp > 0 is an integer.
We also have the semi simple part 7(M) ¢ MM and again we get the
orthogonal decomposition

X5(1M) = X5(T M@ Xg(C1) = D Qe Py = P QM e P Qv

i€ln e i€l =y

Here we have to observe that the ¥ ,i € Ij; are the dominant fundamental
weights for the group M (), they are the orthogonal projections of the ~; to the
first summand in the above decomposition. We have a relation

v ="+ cli i)y, for j € Iy
i€i
and we have ¢(j,4) > 0 for all 4 € J.
Let W be absolute Weylgroup and subgroup Wy, C W the Weyl group of
M. For the quotient Wy, \W we have a canonical system of representatives

WF ={weW|w(my) Cc AT}

To any w € W we define w- A = w(A+ p) — p where p us the half sum of positive
roots. If we do this with an element w € W¥ then y = w- X is a highest weight
for M) and w - A defines us a module for M. Then Kostants theorem says

H*(up, My) = €D H" ™ (up, M)(w- ),

weWr
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the summands on the right hand side are the irreducible modules attached to
w - A, they sit in degree

l(w)=#{ac ATlw lac A7} (170)
Each isomorphism class occurs only once.
We write
w- A= pBM 5y +0
—_——
(171)
€ XG(TUM) @ X5 (Cr) ®X*(C)
We decompose d; and define the numbers a(w, A) (see (168))
51 = 07 + alw, \)yy.
Then we get
wA+p) —p=pu"M +a(w, \)y, (172)

We also consider the extended Weyl group W, this is the group of automor-
phisms of the root system. Let wy € W be the element sending all positive roots
into negative ones. We have an automorphism ©_ € W inducing ¢ — t~! on
the torus. Let © = wgo©_. This element induces a permutation on the set 7 of
positive roots, which may be the identity and induces —1 on the determinant.

Then
OA=) aeri 3§
iel
is a dominant weight and the resulting highest weight module is dual module
to M. Therefore we get a non degenerate pairing

H*(up, M) x H*(up, Moy) — Hive (up, F) = F(—2py),

which respects the decomposition, i.e. we get a bijection w — w’ such that
l(w) + l(w'") = dy, and such

H' ™) (up, M) (w - A) x H @) (up, Mey)(w' - ON) — HWr (up, F)  (173)

is non degenerate. We conclude

a(w,\) + a(w’,ON) = =2fp. (174)
We say that w - A is in the positive chamber if
a(w,\) < —fp (175)

The element © conjugates the parabolic subgroup P into the parabolic subgroup
@, which may be equal to P or not. If P = @ resp. P # @ then we say that P
is (resp. not ) conjugate to its opposite parabolic. If ©_ is in the Weyl group
then all parabolic subgroups are conjugate to their opposite. In this case we
have © = 1.
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Conjugating by the element © provides an identification 0p ¢ : W — we.
We have two specific Kostant representatives, namely the identity e € W¥ and
the element wp € WP, this is the element which sends all the roots in Up to
negative roots (the longest element). Its length [(wp) is equal to the dimension
dp = dlm(Up)

Any element in w € W can be written as product of reflections

W= S, - Sa;, (176)

where v = [(w) and the first factor o;, € J. We always can complement this
product to a product giving the longest element

Sayy -+ San, Say, o Seu, = WSay, |, oSy, = WP, (177)

The inverse of the element s, ...S8q, I8
vl ‘dp
r_ we
W= Saj, - Say, €

This defines a second bijection ipg : WP = W@ which is defined by the
relation

w=wp - ipgw)=wp -w, (w)+I(w)=dp (178)
The composition 913’162 olpg: WP — WP is the bijection provided by duality.

The element wp conjugates the Levi subgroup M of P into the Levi subgroup
of @ = prwlzl. The element wp = Owp conjugates the parabolic subgroup
P into its opposite (which is conjugate to @) and induces an automorphism on
the subgroup M which is a common Levi-subgroup of P and its opposite.

If we choose w = e then

Zai%‘ +d= Z any’ "‘Z( Z a;c(i, j) +nj)v; + 0.

el i€lny jeJ i€ly

Since J is the orbit of an element ¢ € I we see that < v;,a; > is independent
of j and hence we get easily

S aselid) +mi) = 55 (LS aicliad) +mi))s + 8

jE€J i€l JEJ i€lnm

and hence

afe, ) = #(Z( S (i ) + ay))

jeJ i€l

If we choose ©p then as an M-module Mg,y is dual to Mex(—2f;v.s). We
write OA + p =), ae;yi — 0 and then

’LUP(Z a;vy; +90) = Z n@i’y,LM — Z( Z ae;c(01,07) +ae;)v; — 2fvs — 6.

el i€l JEJ Oic€ln
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and especially we find

a(wp, X) = ~(5= (XY aeic(65,05) + ae,)) +2£:)s

#J JEJT i€l

In general we have the inequalities

a(Op,\) < a(w,\) < ale, \).

We can write our relation (172) slightly differently. We can move the half
sum of positive roots to the right and split into p = p™ + fp~;. We put g =
pBM) 4 pMoand then we write

wA+p) = 1Y + (a(w,\) + fp)vs = 1Y + b(w, \)vs (179)
and of course now we have

b(w, \) + b(w', ON) = 0. (180)

6.1.4 The inverse problem

Later we will encounter the following problem. Our data are as above and we
start from a highest weight for M, we write

p=p"+0 +ay,+0=> ne +d +ays+4.
i€l

We ask whether we can find a A such that we can solve the equation (Kost).
More precisely: We give ourselves only the semi simple component (") of 1 and
we ask for the solutions

wA+p) =M+ ...

where w € W¥ and A dominant, i.e. we only care for the semi simple component.
Let us consider the case where J = {ig}, i.e. it is just one simple root. Then
the term 0, disappears and our equation becomes

wA + p) = i + by, + 6,

of course the § is irrelevant, but we want to know the range of the values
b = b(\,w) when (1) is fixed, but A\, w vary. Of course it may be empty. Let us
fix a w and let us assume we have solved w(A+ p) = (") +.... Then it is clear
that the other solutions are of the form A+ p+ v where wv € Qv;,. These v are
of the form v = cyy with ¢ € Z. We write vy = Ziel b;v; and it is easy to see
that there must be some b; > 0 and some b; < 0. This implies that A + cvy is
dominant if and only if ¢ € [M, N], an interval with integers as boundary point.
This of course implies that -still for a given w - the values b = b(\, w) also have
to lie in a fixed finite interval

b=>bw,\) € [bmin(w,,&(l)), amax(w,ﬂ(l)] = I(w,ﬁ(l)).

This will be of importance because these intervals will be related to intervals
of critical values of L-functions.
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6.2 The goal of Eisenstein cohomology

The goal of the Eisenstein cohomology is to provide an understanding of the re-
striction map 7 in theorem ( 2.1). More precisely we assume that we understand
(can describe) the cohomology H'(@ng , M) then we want to understand the
image Hﬁis(aSIG(f,./\;l A) in terms of this description. Under certain conditions
we will construct a section Eis : Hyy (0S%,, Myc) — HY(SE,, Mic). Tt is clear

from the previous considerations that understanding of H*® (85}% . M A) requires

understanding cohomology of H*(S% '/(_1:;7\/[)) and we have to compute the

KM>

differentials in the spectral sequence. These differentials will depend on the

Eisenstein cohomology of H* (S;\(/IM,H (u, M)). Under certain conditions the
¥

spectral sequence degenerates at E5 level and 1 do not know whether this is

true in general. In a certain sense it would be much more interesting if this is

not the case.

We consider certain submodules in the cohomology of the Borel-Serre com-
pactification for which we can construct a section as above. We start from a
maximal parabolic subgroup P/Q, let M/Q be its reductive quotient. We define

HP (0pSE, M) = @ H lw)(SMM H'™) (up, M)(w- X)) € H*(9pSE,, My)
weW P
(181)

We will abbreviate H ") (up, M)(w - ) = M(w - \) where always keep in mind
that the element w € WY knows what the actual parabolic subgroup is and
that M (w - \) sits in degree I(w).

By definition the inner cohomology is the image of the cohomology with
compact supports. This implies that the submodule

@ Hq aPSKfaMA @ HY( aPSKf,M)\) E?vq
P:d(P)= P:d(P)=1

is annihilated by all differentials d%'? and hence we get an inclusion
ip: ®pewrISH (SKM,M(w ‘\) = H* (08, . M) (182)

Taking the direct sum over the maximal parabolic subgroups yields a sub-
module

H?(0SF,, M) = H*(0SE,, M) (183)

The Hecke algebra acts on these two modules. Let us assume that this submod-
ule when tensorized by Q is isotypical in H (881%,./\/1,\ ® Q). Then we get a
decomposition '

HP (DS, My © Q) ® Hion (055, My © Q) = H* (95, My © Q). (184)

We formulated the goal of the Eisenstein cohomology, we described an isotypical
subspace and we know can ask: What is the intersection of Hg: (0S% > MA®Q)

with this subspace, or what amounts to the same, what is H ;Eis(asfg‘ . Mr2Q).
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The element © induces an involution on the set of parabolic subgroups con-
taining B (= set of G(Q) conjugacy classes of parabolic subgroups) two parabolic
subgroups P, Q) O B are called associate if © P = ). We can decompose the coho-
mology H? (BSIG(f , M, ®Q) into summands attached to the classes of associated
parabolic subgroups

HY(0SE, Ma@Q) = P H(9pSE,, My) & € H'(0pSE,, My) @ HF (0g8%,, M»)
P:P=OP [P,Q]
(185)

where in the second sum @ = OP. Each summand is a sum over the elements
of WP and then we can decompose under the action of the Hecke algebra. We
choose a sufficiently large extension F/Q and in the case P = OP we get

H (0pSE, Myo F)= @ @) (Sity M(w- ) ® F)(oy)  (186)

weW?br oy

In the case P # ©P = ) we group the contributions from the two parabolic
subgroups together. To any w € W we have the element ip g(w) = w' € we.
We also group the terms corresponding to w and w’ together. To any o which
occurs in H,'_l(w)(Sé‘(/IM,Hl(w)(up,/\;l)(w “A) @ F) we find a oy = afp\'ygj\f )

: ¥
which occurs in the second summand.
The decomposition into isotypical pieces becomes

@(H'—’(“’>(5KM,M(w N @ F)(os) @ H 710 (M)

af

M\ @ F)()))

KM
(187)

We can define the second step in the filtration ( 20) as the inverse image of
Hy (3ng,./\/l>\) under the restriction r.

6.2.1 Induction and the local intertwining operator at finite places

Our modules o are modules for the Hecke algebras H 2/ Ky = = @,HM,,. Therefore
P

we can write them as tensor product oy = ®,0,. We conslder a prime p where
oy is unramified then we get can give a standard model for this isomorphism
class. The module H,, is the rank one Op -module Op, i.e. it comes with a
distinguished generator 1. The Hecke algebra acts by a homomorphism (See 2.3)

hoy) : Higar'y = Or (188)

and gives us the Hecke-module structure on H,,. We can induce H,, to a
Hgg module. This is actually the same Op module but now with an action
P

(G:N)

of the algebra HEN  We simply observe that we have an inclusion H ¢, <
g

KG|Z
Mw'-A . . . ..
’Hg( ML’UZ ) and induction simply means restriction.

p
It follows easily from the description of the description of the spherical (un-

ramified) Hecke modules via their Satake—parameters that the induced modules

A)

KG 7 -modules and hence we get that after

H,, and H, , are isomorphic as #H'C
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induction the two summands in (187) become isomorphic. We choose a local
intertwining operator

loc .
T H,, — Hyy (189)

simply the identity.
We postpone the discussion of a local intertwining operator at ramified
places.

6.3 The Eisenstein intertwining operator

We start from an irreducible unitary module H,_, x H,, = H, and assume that
we have an inclusion ® : H, — L2, (M(Q)\M(A)). We assume that oy occurs

cusp
M(w - N)¢) and we assume that w - A is in the

in the cohomology H&,., (S,
5
positive chamber. We consider ® as an element of W (o) and for the moment
we identify H, to its image under ®. We stick to our assumption that o occurs
with multiplicity one in the cuspidal spectrum.
Then we we can consider the induced module, recall that this is the space

of functions

{f:G(A) = Ho|f(pg) = Df(9)} (Ind)

where p is the image of p in M (A). We can define the subspace a) consisting
of those f which satisfy some suitable smoothness conditions and then we can
define a submodule Indggi;Hc(,oo) where the f(g) € H and the f themselves
also satisfy some smoothness conditions.

We embed this space into the space A(P(Q)\G(A)) by sending

f=Ag = f(g)(em)},

here A denotes some space of automorphic forms. This an embedding of G(A)-
modules or an embedding of Hecke modules if we fix a level.

We have the character yp : M — G,,, for any complex number z this yields
a homomorphism |yp|? : M(A) — R* which is given by |yp| : m — |vp(m)|?.
As usual we denote by C(|yp|?) the one dimensional C vector space on which
M(A) acts by the character |yp|?*. Then we may twist the representation H,
by this character and put H, ® |vp|* = HQC(|yp|?). An element g € G(A) can
be written as g = pk,p € P(A),k € K? where K? D Ky is a suitable maximal
compact subgroup and now we define h(g) = |vp|(p)-

Eisenstein summation yields embeddings a

Bis : Ind () H™) @ |yp|* = A(G(Q\G(A)), (190)

where
Eis(f)(g)= > f(vg)(em)h(vg),
YEP(Q\G(Q)
it is well known that this is locally uniformly convergent provided R(z) >> 0
and it has meromorphic continuation into the entire z plane (See [Ha-Ch]).
We assumed that H, is in the cuspidal spectrum. We get important infor-
mation concerning these Eisenstein series, if we compute their constant Fourier
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coefficient with respect to parabolic subgroups: For any parabolic subgroup
P1/Q C G/Q with unipotent radical U; C P; we define (See [Ha-Ch], 4)

FhEs()(0) = [ Eis(/)(ug)(ear)
U (@\U1 (&)

This essentially only depends on the G(Q)-conjugacy class of P;/Q. It it
also in [Ha-Ch] , 4 that this constant term is zero unless P; is maximal and the
conjugacy class of Pj is equal to the conjugacy class of P/Q or the conjugacy
class of Q/Q. (which may or may not be equal to the conjugacy class of P/Q.)

These constant Fourier coefficients have been computed by Langlands, we
have to distinguish the two cases:

a) The parabolic subgroup P/Q is conjugate to an opposite parabolic Q/Q.

In this case we have a Kostant representative w” € W which conjugates
Q/Q into P/Q and it induces an automorphism of M/Q. We get a twisted
representation w’ (o) of M(A). In the computation of the the constant term we
have to exploit that ¢ is cuspidal and we get two terms:

FFP oEis: IndggﬁgHg o S

G(A . G(A . (191)
Ind30) Ho ® [yp|* @ Indg) Hyr () © ol?7 =% C A(P(Q)\G(A)).

We can describe the image. It is well known, that we can define a holomorphic
family

G(A)

T (2) : Tndipy) Hy @ |yp|* = Ind5 0 e @ Jyg[2/7

P(4)

which is defined in a neighborhood of z = 0 and which is nowhere zero. This
local intertwining operator is unique up to a nowhere vanishing holomorphic
function h(z). It is the tensor product over all places T'°¢(z) = ®,T°¢(z).
For the unramified finite places the local operator is constant, i.e. does not
depend on z and is equal to To°° in section (6.2.1) and T%°¢(0) = ®,T,°° . At
the remaining factors there is a certain arbitrariness for the choice of the local
operator and some fine tuning is appropriate.

We also assume that we have chosen nice model spaces H,

0oor Hor_, and an
intertwining operator

TN Hy, — Hyr_ (192)

which is normalized by the requirement that it induces the ”identity” on a
certain fixed KM type.

Then we get the classical formula of Langlands for the constant term: For
G(A p
fe IndPEA;HG ® |yp|* we get

FPoEis(f) = f + C(o, 2)T°(2)(f), (193)

where C(o, A, 2) is a product of local factors C(oy, z) and where C(o,,2) is a
function in z which is holomorphic for R(z) > 0 (here we need that w - A is in
the positive chamber.) This function compares our local intertwining operator
to an intertwining operator which is defined by the integral.
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The computation of this factor is carried out in H. Kims paper in [C-K-
M], chap. 6. He expresses the factor in terms of the automorphic L function
attached to oy. To formulate the result of this computation we have to recall the
notion of the dual group (3.1). Inside the dual group “G we have the dual group
LM which acts by conjugation on the Lie algebra u},. The set of roots A+v isa

set of cocharacters of T/Q, a coroot a¥ € AZP defines a one—dimensional root,
subgroup up, ,v. The LM -module uY, decomposes into submodules. We recall
that the maximal parabolic subgroup P/Q was obtained from the choice of a
Galois-orbit i C I (6.1.3) and any

a’ e AUV, =a(a",i)x; + ng,jxj. (194)
¢

Here the coefficients are integers > 0 and a(a,7) > 0. For a given integer a > 0
we define

upld = @B whav (195)

aVia(aV,i)=a

it is rather obvious that u}[a] is an invariant submodule under the action of M
and actually it is even irreducible. Let us denote the reprebentatlon of M/Q on

uy[a] by raP In the following 7, will be the highest weight of r4”.
With these notations we get the following formula for the local factor at p
(See[Kim])

Oyl 2) = [ O e 0CIE) ey (1o

asi LAt (o, raf a(z — fp)+1) 1

We do not discuss the ramified finite places, from now on we assume that
o¢ is unramified. Then we get

r

Laut Z; _
C(0.2) = C(050, 2 Hc 0p,2) = Clowe2) [| (o7, ra", alz = /p))
i1 L (og,rat a(z — fp) +1)

The local factor at infinity depends on the choice of T19¢ in 1.2.4 we gave
some rules how to fix it, if it is not zero on cohomology.

b) The opposite group Q/Q is not conjugate to P/Q, then we have to com-
pute two Fourier coefficients namely F© and F€ in this case we get
2 F @J—'Q

G(A
F i Indg ) Hy @ [ypl

i Ho® yp[* @ Indg () Hy @ o7 ~% C A(P(Q)\G(A)) ® A(Q(Q)\G(A)).

and again we get

Ind

FoEis(f) = f+Clow,2) [ | Lopraals = fo))

- Tloc . (197
o a2 1) (2)(f), (197)
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where now T'°¢(2) is a product of local intertwining operators

T Ind 38" o, ® [yp|* = Indg 3" H,r @ (2fp = 2).

It is also due to Langlands that the Eisenstein intertwining operator is holo-
morphic at z = 0 if the factor in front of the second term is holomorphic at z = 0.
Up to here o can be any representation occurring in the cuspidal spectrum of
M.

Now we assume that we have a coefficient system M = M, and a w €
WP such that our oy occurs in H, l(w)(SKM,M(w -A) ® F). Then we find a

(m, KM)— module H,_ such that H®(m, KM yHy o @ M(w - X)) # 0. We also
find an embedding

®,:Hy ® Hy; ®p, C— L2, (M(Q)\M(A)) (198)

cusp

Let us assume that w - A or equivalently o; are in the positive chamber. In
case a) we have holomorphicity at z = 0 if the weight A is regular (See [Schw]
) and in case b) the Eisenstein series is always holomorphic at z = 0. In this
section that we assume that the Eisenstein series is holomorphic at z = 0 and
hence we can evaluate at z = 0 in (344) and get an intertwining operator

Eis o ®, : Indf(y) H, — A(G(Q)\G(A)). (199)

We get a homomorphism on the de-Rham complexes

Homy._ (A*(g/t), Ind5 ;) H, @5, C @ My) — Homp (A*(9/8), A(G(Q)\G(A)) ® M)
(200)

We introduce the abbreviation Hyooy = Ho; QF, C and decompose H,,, =
H,, ® H,o,;. We compose (200) with the constant term and get

F oEis® : Homg_ (A*(g/t), Ind3ig) Ho,. ® M) ® Hiog, —

Homp. (A*(g/t), Ind5 () Hy. © M) ® Hiog,) @ Hompe (A®(g/%), Indg ) Hor @ My) ® Hion)

(201)

where P = (@ in case a).

We choose an w € Hompg__ (A®(g/t), IndG(R) ® M) and consider classes
w®1¢ and map them by the Eisenstein mtertwmlng operator to the cohomology
(or the de-Rham complex) on ng. Then the restriction of of the Eisenstein
cohomology to the boundary is given by the classes

P (w@yy+ C(050, \)C (07, VTR (w) ® TP () (202)

1
Qo)
Here the factor C(of,A) can be expressed in terms of the cohomological L-
function. Translating the formula (196) yields (see 179)

v
LCOh(O—faT(LIlpy < 77(17/1(1) > _b(w7)\) < NayYP >)

Clop, M) =]] (203)

o LM (og, 7", < e, i) > —b(w, A) < 10,7 > +1)
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We may complete the cohomological L-function by the correct factor at infinity
and replace the ratio of L-values by the corresponding ratio of values for the
completed L— function. By definition we have < 7,,vp >= a and then our
formula for the second term in (202 ) becomes

L] Ah(op, riP | <y i) > —ab(w, \))

v C* (000, VTR (W) @ TP (¢))
o) 75 Aeob (o4, 07, < g, i) > —ab(w, A) + 1) !

(204)

This formula needs some comments. The factor C* (0, )T is a representa-
tion theoretic contribution it is not easy to understand. Experience shows that
becomes very simple at the end. In SecOps.pdf we discuss the special case of
the symplectic group.

The number (o) is a period, it will be discussed later.

We see that the constant term is the sum of two terms. The first term repro-
duces the original class from which we started. We assumed that w or w- X it is
in the positive chamber (see(175)). The second term is some kind of scattering
term which is the image of the first term under an intertwining operator. In
case a) the restriction of the second term gives a class in the same stratum, in
case b) the restriction of the second term gives a class in a second stratum.

At this point I formulate a general principle

Under certain circumstances the second term is of fundamental
arithmetic interest, it contains relevant arithmetic information.

To exploit this information we have to understand several aspects of the
behavior of this second term in the constant term. We have to recall that is
obtained as the evaluation of a meromorphic function C(of, A, 2) at z = 0,
i.e. we have to know whether it has pole at z = 0 or not. We also have
to understand the contribution C(0w., \)T¢ | and we have to understand the
arithmetic nature of this term, it is a product and some of the factors yield
an algebraic number and the rest will have a motivic interpretation. This is
explained further down and in [Mix-Mot-2013.pdf].

We give some more detailed indications how such arithmetic applications
may look like. We assume that w- A is in the positive chamber and I(w) > I(w').
Let us also assume that the Eisenstein intertwining operator is holomorphic at
z = 0. Then we have to look at
T Homg ., (A*(g/€), Ind i) Ho.. ® M) — Homp (A*(g/8), Ind) Hyr o @ M)y
(205)

The two complexes can be described by the Delorme isomorphism
Homyc. (A*(9/8), Ind 53 Ho @ My) =5 @D Hompea (A1) (m /eM)), H, @ M(w - \)

weWwr
(206)
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Our intertwining operator respects this decomposition and we get

Ti%* (w) - Homeys (A~ (mf) /€1)), Ho @ M(w - X)) =
Homyr (A~ () /611)), Hyy @ M(w' - X))

Now we know that for regular representations M the cohomology HY (m, KX H,
M(w - \)) is non zero only for v in a very narrow interval around the middle
degree (See [Vo-Zu], Thm. 5.5). If the difference |[(w) — l(w’)| is greater than
the length of this interval, then the following condition is fulfilled

In any degree T'°%*(w) induces zero on the cohomology. (Tzero)

In this cases (and under the assumption that the Eisenstein series is holo-
morphic at z = 0) the Eisenstein intertwining operator gives us a section for the
Hecke-modules

Eisc : Hq‘l(“}))(Sﬁ;w ,M(w-\) @ C)(oy) - HY(SF,, My & C) (207)

6.4 The special case Gl,

Our group is Gl,/Q and we choose a parabolic subgroup P containing the
standard Borel subgroup and with reductive quotient M = Gl,,, x Gl,, X -+ - x
Gl,,,. We want to construct Eisenstein cohomology classes in H*® (ng,MA,@)

starting from cuspidal classes in H‘(apSIG(f,./\;lA7«;). For an element w € W7
we write

U}()\ + p) = ﬁ(l) - bl (’LU7 )\)/ynl - bg(u}, )\)'Yn1+n2 +o = br(wa >‘)Pyn1+---+nr71 + do.
(208)

It is the sum of the semi simple part (with respect to M)
H(l) — (blfyi\/[ + -4 b7L1—177JZ—1) + (b"1+17711\{+1 ... bn1+7l2_1’)/7]:{+n2_1) =+ ...
(209)
=4
(210)

and the abelian part z2P.

We assume that b;(w, ) > 0 i.e. w(A+ p) is in the negative chamber and

we also assume that the MZ(-I) are self dual, this is a condition on A, w. We

decompose the strongly inner cohomology
H:usp(apsgf,/\;h) = @ @Indchng)(S%}mMw-k)(gf) (211)
weW?r a;

The Kiinneth-theorem implies that gp = 01, Qo3 ® - ® 0y f. At an
unramified place p then this module has a Satake parameter

wp(gf) = {WLP’ <oy Wnypy Wna+1,ps -+ Wna4ng,py - - }
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where the first n; entries are the Satake parameters of o1 5 and so on.
We choose an + : 2 — C. We take an irreducible submodule H, then we

find an irreducible (g, K)!)-module H, and an embedding
®:H, ® Hzf ®pg, C=Hy = Cousp(M(Q)\M(A)) (212)
For z = (z1,292,...,2—1),2; € C we define the character

|'7P|£ = |7n1 ‘Zl |’7n1+’ﬂ2 |Z2 cee |’7n1+n2+"'+ﬂr71 |2T71 : M(A) — C*
By the usual summation process we get an Eisenstein intertwining operator
Eis(a,z) : [EHy @ [yp|* = A(G(Q)\G(A)) (213)

the series is locally uniformly converging in a region where all £(z;) >> 0 and
hence the Eisenstein intertwining operator is holomorphic in this region. We
know that it admits a meromorphic extension into the entire C" 1.

We want to evaluate at z = 0 this is possible if Eis(o, z) is holomorphic at
z = 0, we have to find out what happens at z = we have to consider the constant
term (constant Fourier coefficient) of Eis(g,z) along parabolic subgroups P;.
(See [H-C] ) These constant Fourier coefficients a given by integrals

Fh. f(g) — f(ug)du.
Up, (Q\Up, (A)

(214)

It suffices to compute these constant terms only for parabolic subgroups con-
taining our given maximal torus. It is shown in [H-C] that the constant term
evaluated at Eis(c, z)(f) is zero unless P and P; are associate, this means that
the Levi subgroups M and M; are isomorphic. (For this we need the cuspi-
dality condition (See [H-C], )( But then we can find an element in the Weyl
group which conjugates M into M; and hence we may assume that P and P;
both contain our given Levi subgroup M. Of course now P; may not contain
the standard Borel subgroup.)

We may also assume that ny =no = --- =ny, < nj 11 =+ =nj,44, <

© < N4 g4l = 0 = Nj4.qj. = Ny, Then it is easy to see that the

number of conjugacy classes of parabolic subgroups which contain M is equal
to r!/41l4al.. 45l

We compute F1 o Eis(g, 2)(f) following [H-C], . By definition (adelic vari-
ables in U(A), P(A), ...are underlined)

F o Bis(a, 2)(f)(g) = f=(aug)du (215)

/UPI (Q\Up, (&) a€P(Q\G(Q) -

Let Wy be the Weyl group of M, the Bruhat decomposition yields G(Q) =

Uwew P(Q\wP(Q), put Pl(w)((@) = w P(Q)w N P;(Q) then our expression
becomes (we pull the summation over W to the front)

FPoBis(e,2)(f)g) = >

m/]w1 \WIW,Ml /WM

fg(wb@)dﬂ

/UP1 (Q\UP, (A) bePl(w) (Q\P1(Q)

(216)
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where Wy, is the Weyl group of M. If now for a given w the intersection of
algebraic groups w™U;wN M = V has dimension > 0, then this intersection is
the unipotent radical of a proper parabolic subgroup of M. Since ¢ is cuspidal
the integral over V(Q)\V (A) is zero, therefore this w contributes by zero. Hence
we can restrict our summation over those w € W which satisfy wMw ™! = M;.
let us call this set W1 But then

P (Q)\P,(Q) = w™'Up(Q)w N Up, (Q)\Up, (Q)

and the above expression becomes

FioEis(a, 2)((9) = Lwiwrn jwy Jup @\ve, () 2overt @\Up, (@ Sz (Wrng)du =

Do WA\ WM MM f(w—lUpmepl\Upl)(A) f2(wug)du
(217)

Our parabolic subgroup P contains the standard Borel subgroup, let U, be the
unipotent radical of the opposite group. In the argument of f, we conjugate by
w, then Up NwUp,w™! \wUp,w™! = wlUp,w™ OUP —UPP1

FPt o Eis(a, 2)(f)(g) = > f2(uwg)du (218)

W}ul\WNI’NIl/WJ\l ppl (A)

We pick a w, the group M acts by the adjoint action on w‘lU;’;,”w and hence

by a character 55:, p, on the highest exterior power of the Lie-algebra of this
group. Then this operator sends

FP o Bis(a,2) : I§Hy @ el = I8 Hyues © (1p[9)" 1057, (219)

ow

The integral is a product of local integrals over all places, we may assume that
f2 = fooz [lpprime fp.z- and then

/ fg(@wg)du:/ foo,z(UooWGoo H/ Jp.z(upwgy)
Upi (A) Up (R) (@)
(220)

and here the local integrals yield intertwining operators

TP (0y,2)  I§Hy, © [ypl2 > 1§ Hypr @ yplt” 2@ 6570 |0 (221)

g

Proposition 6.1. We can find local intertwining operators
TPPrwloc ISH, IS H 2|5 222
v (0v,2): Ip ,® ‘7P|v — 1p ow! ® |7P|v £®| P.Pl‘v ( )

which have the following properties

a) They are holomorphic and nowhere zero in Rz; > 0 (we are still assuming
that p is in the negative chamber.)

b) They have a certain rationality property ( For the case of finite places see
[Ha-Ra] 7.3.2.1, for the infinite places [Ha-HC ] )
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c) At the unramified primes v = p they map the spherical vector to the
spherical vector.

and finally we have

!
]:Pl’w o Els(ga é) = C(w7 P7 P17Q7 g) TOP;’Pl,w’lOC(O-OC’é) ® ® Tf’PLwJOC(O-p,g)

p:primes

(223)

where C(w, P, Py,0,z) is a meromorphic function in the variable z. Therefore
these functions C(w, P, P1,0,2) decide whether Eis(c, z) is holomorphic at z =
0, the poles of Eis(g, z) at z are the poles of the C(w, P, P, 0, z).

We compute these factors C(w, P, P1,0,z). By definition the group U;”ﬁi
is a subgroup of U, and as such it it easy to describe. Recall that our our
group M is Gl,, x --- x Gl,, and this corresponds to a decomposition of Q" =
X1 Xo®---@ X, into subspaces and for any two indices 1 <17 < j < r we define
Gi,; to be the subgroup GI(X; & X;) acting trivially on all other summands.
For all pairs ¢,j we define the cocharacters x; ; : G, — T where x; ;(t) is the
diagonal matrix having ¢ as entry at place 7, and ¢! at place j and 1 everywhere
else. We define w; | :=< x; j, p!) > .

The intersection G ; N U;,’;Ul is either trivial or it is the full left lower block
unipotent group Uy ; 4y

This tells us that the above integral can be written as iterated integral over
subgroups of the form U, ,(A). To be more precise: If U;)’;E‘i # 1 then we find
an index ¢ such that U;;y; is not trivial. In a first step we compute the local

integral fU'i,i+1(Qp) f,ﬁ?z) (upwgy)duy, at finite places where our representation g,
unramified. We are basically in the situation, that our parabolic subgroup is
maximal. The group P’ = P N G, 41 contains the standard Borel subgroup,

P] = P; N Gjj,i+1 is the opposite and w = e. Then

LM (07 X 01y 5 4 by (w0, N < Xiiv1,2 > —1)
LCOh(O'm, X Uzy+1,p’ wig+l + bi(w, )+ < Xiit+1s 2 >)
(224)

Cyle,P',P{,0,z2) =

A standard argument (See Langlands, Kim, Shahidi ) tells us that we can
reduce the computation of the iterated integral to situations like the one above
and then we get at unramified places

LMo x oY Tl 4+ b, (w, \)+ < xi,5,2 > —1)

2,pP’
Ld bm(w, /\)—|— < XijrZ2 >

Cp(w,P, Plagvé) = | I LCOh(O" X O-V w
%P j
(225)

,J

7p? 2

Here the indices 7, j run over those indices for which U; ; C U , and b; j(w, A) =<
Xijs 20 > .

Now we define C,(w, P, P1,0,z) for all places v by the above expression,
where we express the the cohomological L factor by the automorphic Rankin-
Selberg L factor with the shift in the variable s. We go back to equation (223 )

123



and define

C(w, P, Py,0,2) = [[ Co(w, P, P1, 0, 2). (226)

We from the above proposition (6.1) that the factors C(w, P, Py,0,z) de-
termine the analytic behavior of Eis(c,z) at z = 0. We have to exploit the
analytic properties of the Rankin-Selberg L-functions. Here we have to use
Shahidi’s theorem which yields -(always remember that p is in the negative
chamber-) B

Wi
LCOh(O'i,p X U;fp, # + b@j(ﬂ), )\)-l- < Xi,js 2> —1) (227)

is holomorphic at z = 0 unless we are in the following special case:

a) In the product in formula ( 225) we have factors (i,i + 1) where n; =
1 1
ni+1,ul(» ) = M§+)1 and b;(w,\) = 1.
b) The pair o; X 0,41 is a segment, this means that o; ® det; = 041

If these two conditions are fulfilled then C(w, P, P1, g, z) has first order pole
along z; = 0.

The denominator is always holomorphic and never zero at z = 0. (This is a
deep theorem: it is the prime number theorem for Rankin-Selberg L-functions.)

6.4.1 Resume and questions

We see that we get an abundant supply of cohomology classes: Starting from
any parabolic P and an isotypical subspace IndgHg,;i)(w)(S%M,Mw.,\)(gf) we
7

get the Eisenstein intertwining operator (See equation (213)). We analyze what
happens at z = 0. If it is holomorphic we get a Hecke invariant homomorphism

Eis*(0) : H*(g, Koo, IndF00e ® M) ® IndBH,, — H*(SE,, Mc)  (228)

We can restrict these cohomology classes to the boundary and even to bound-
ary strata 3Q(S§ f,M) where ) runs over the parabolic subgroups associate
to P, or more generally those parabolic subgroups which contain an associate
to P. This means that the class ”spreads out” over different boundary strata
These restrictions to these other strata are given by certain linear maps which
are product of ”local intertwining operators” times certain special values of L
functions.

In certain cases this ”spreading out” is highly non trivial. We have to clarify
some local issues. First of all we have to find out whether the local intertwining
operators are non zero and have certain rationality properties. Especially we
have to show that these local operators at the infinite places induce non zero
maps between the cohomology groups of certain induced Harish-Chandra mod-
ules. And we have to show that these maps on the level of cohomology have
rationality properties. ([Ha-HC] , [Ha-Ra], 7.3, )

If these local issues are settled then we can argue: The image of the co-
homology H ‘(ng,/\;l) in the cohomology of the boundary is defined over Q

(or some number field depending on our data). Since the L— values enter in
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the description of this image we get rationality statements for special values of
L-functions.

This has been exploited in some cases ([Ha-Gl2], [Ha-Gln], [Ha-Mum]) and
the so far most general result in this direction is in [Ha-Ra] (See previous sec-
tion).

But in case we have a pole we may also produce cohomology classes by taking
residues, again starting from one boundary stratum. The restriction of these
classes to the boundary will spread out over other strata in the boundary and
we may play the same game. In this case the non vanishing issue of intertwining
operators on cohomological level comes up again and will be discussed in the
following section. (See Thm. 6.1)

We also will encounter situation where a pole along a plane z; = 0 (or
may be even several such planes ) ”fights” with a zero along some other planes
containing zero. Then this influences the structure of the cohomology. But
how? This question has been discussed in [Ha-Gln]. Is the order of vanishing
along this zero visible in the structure of the cohomology? Or is it visible in the
structure of the cohomology of the boundary, or in the spectral sequence?

6.5 Residual classes

We have seen that our Eisenstein classes may be singular at z = 0. In this section
we look at the extremal case that Eis(o,z) has simple poles along the lines
2; =< Xnyni+1,2 >= 0, In this case we call these Eisenstein classes residual.

It follows from the work of Moeglin-Waldspurger [M-W] that this can only
happen under some very special conditions.

We start from a factorization n = uv we look the parabolic subgroup P, ,
which contains the standard Borel subgroup and has reductive quotient Gl, x
Gl, x -+ x Gl,. The standard maximal torus is a product T' = [[:Z] 7; and
accordingly we have X*(T') = @;_] X*(T;). We have an obvious identification
T, =G,

We choose a highest weight A = Y a;v; + dd, we assume that it is self dual,
i.e. a; = an—;. We have a restriction on the character p = w-A = w(A+pn)—pn,
we must have B

wA+pn) = pn = by + by’ + -+ buavnl — (At Dy
erﬂ%_u + bz’Y%_u 4+ 4 bu—l’Y%—l —(u+ D)yay + ...
Vs H b2 by dree (229)
where 7y, = § = det. The highest weight is a sum p = j1; where
i = pt — didet; and d; — d;yq = —1. (230)
where the semi simple component p(!) = b1y + boy M + -+ by YM =

byy{vfru + bg'y%ru + oo+ by ... is "always the same”. We notice that
of course we have the self duality condition b; = b,_;. Furthermore we have

S d; = —d.
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We define

D, =)Dy, (231)
i=1
and start from our isotypical Hg,,(S %M , D, ®@My.)(0¢). The Kiinneth formula

yields that we can write oy = 01,f X 02,F X -+ X 0y ¢ where all the o; ¢ occur
in the cuspidal cohomology of Gl,, hence they may be compared. The relation
(230) allows us to require that 0,41 5 = o 5 ® |0]. If this is satisfied we say that
oy is a segment. We assume v # 1 and hence P # G.

We know that under the assumption that o is a segment (and only under
this assumption) the factor C(o, wp, z) has a simple poles along the lines z; = 0,
and this is the only term in (??) having these poles. The operator T'°¢(a, s) is
a product of local operators at all places

jvloc((_),7 Z) Tloc Uoo; X HTIOC Opr 2

and the local factors are holomorphic as long as R(z;) > 0. We take the residue
at z = 0 i.e. we evaluate

(JJ2)F" o Eis(o ® s)|.—0 = (][ 2:)C (0, wp, 2)| 201" (0, wp, 0)(f)  (232)

This tells us that the residue of the Eisenstein class gives us an intertwining
operator

Res;—oBis(0 @ 2) : “Ind i) Dy @ Vo, = L (GQNG(A) /K f,wif, sy
(233)

The image J,  ® Jy, is an irreducible module ( this is a Langlands quotient)

and via the constant Fourier coefficient it injects into aInd A)) Dy ®@V,,. At
the infinite place we get a diagram

(loc)
md§Em, = g,
(234)
Ind {35 Dy,

It is a - not completely trivial - exercise to write down the solutions for the
system of equations (229). We start from a highest weight of a special form

A= a1y + azyeu + o+ a1y (w—1yu + d6 (235)

which in addition is essentially self dual, i.e. a; = a,,_; the number d is uninter-
esting and only serves to satisfy the parity condition.

We choose a specific Kostant representative wy, , € WP whose 7- it is the
permutation in the letters 1,2,...,n given by the following rule: write v =
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i+ (j — v with 1 <4 < u then w;, ,(v) = j + (i — 1)v. Then we compute
wy, ,(A+pn) — py € X*(T x E) and we get

(w;w()\ +pN) —pN) =
(a1 +v—DYM + (ag +v — D + (a1 +v—1)yM,
(a1 +v— 1)711\iu + (a2 +v— 1)'y%ru + (ay—1+v— 1)%]2{1+u

(a1 +v— 1)7%-(1)—1)11 + (a2 +v — 1)7%-(1)—1% +ot(au1 v - 1)P)/1]LV£1+(7’—1)“)Jr
—(u =) (v +12u+ -+ Vo-1)u) +d6
(236)

The length of this Kostant representative is
l(w!), ) =n(u—1)(v—1)/4.

u,v

Let wp be the longest Kostant representative which sends all the roots in Up
to negative roots. Then we define the (reflected) Kostant representative w,, , =
wpwy, . We get

wuwA+p) —p=p=(a1+v -1 + 11+ F M)t
(a2 +v =11+t + + Vo))t

(@u-1+v =D 70+ 1 )t
—(u+1)(Ya +Y2u+ F Yootyu) HdO. (237)

Hence we see that we the semi simple component stays the same and the abelian
parts differ by 2(vu4+v2u=+ - 4+Y(w-1)u)) We see that we can solve ( 229) provided
bz‘ >v— 1.

6.5.1 The identification J,  — A4()\))
Of course we expect
H*(9, Koo, Jo. ® M) # 0. (238)

In the paper [Vo-Zu] the authors give a list of irreducible (g, K ) modules
Aq(A) which have non trivial cohomology H®(g, Koo, Aq(A) @ M) # 0. This list
contains all unitary modules having this property. On the other hand we know
that any such unitary Aq(\) can be written as a Langlands quotient. In the
paper of Vogan and Zuckerman it is explained how we can get a given unitary
Aq(M) as Langlands quotient, basically this means we construct a diagram of
the form (234) but where now we have A4()) in the upper right corner instead
of Jy. . In the following section we describe a specific A4(\) and write it as
a Langlands quotient (i.e. we find its Langlands parameters) this means we
determine the upper left and lower right entries and then check that these entries
are the ones in diagram (234). From this we will derive the following

The map

H*(9, Koo, Jo.. @ My) @ Jo, — H*(SF,, M) (239)
is non zero in degree l(w), ) = n(u —1)(v —1)/4.

See Theorem (6.1)
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6.6 Detour: (g, K, )— modules with cohomology for G =
Gl,

I want to fix some notations and conventions.
Let 7/Q be the maximal torus in Gl,, /Q, let T = SI,,NT. We put r = n—1.
We have the standard basis for the character-module X*(T):

e;: T — Gm,tl—>ti.
The positive (resp. simple roots) roots are a;; = e; — e;,4 < j, (resp.
o; = e; — e;41.) We have the determinant § = > |"e;.
The fundamental weights are elements in X*(T) ® Q, they are defined by

Vi = E €y — 75)
n
v=1

these «; are the fundamental weights if we restrict to Sl,,, the image of ~;
under the restriction map lies in X*(7(1).
From now on my natural basis for X*(7T') ® Q will be

{71?"‘7’7’”"'77”"5}'

This basis respects the decomposition of T into 7™ - G,,, the first factor is
its component in SI,, and the second one is the central torus.
We also have the cocharacters x; € X, (T™)) which are given by

1 0 0 .0
0o -

o0 o 0

Xi - 0 ... 0 ¢t 0

jen}
(@)
S
(an)
—

and the central cocharacter

C:t—

o O O o+
[an)

We have the standard pairing (x,y) —< X,7 > between cocharacters and char-
acters which is defined by v o x = {t — t<X7>}. We have the relations

< Xj>Yi >= 67,]7 < Xi, 0y >= 2
the character ¢ is trivial on the y; and 6 o ¢ = {t — ¢"}. It is clear that an

element v = ). a;v; +dé € X*(T) if and only if the a;, nd € Z and we have the
congruence

Ziai =nd mod n.
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We identify the center of Gl,, with G,,, via the cocharacter (, the character
module of G, is Z. Hence the central character w) is an integer and we find

wy = nd.

Actually this central character should be considered as an element in Z mod n
because we can replace d by r + d and then the central character changes by a
multiply of n. If A € X +(T(1)) is a dominant weight then we write it as

A= av

then we have a; > 0.

6.6.1 The tempered representation at infinity

We consider the group Gl,, /R, we choose a essentially selfdual highest weight
A= ET_I a;v; +dé( i.e. a; = an—;) . The a; are integers and d is a half integer
which satisfies the parity condition

deZifnisodd,ga% =nd mod n if n is even

We want to recall the construction of a specific (g, K ) -module Dy such that
H*(g, Koo, Dy ® My) # 0

and we will also determine the structure of this cohomology. This module is
the only tempered Harish-Chandra module which has non trivial cohomology
with coefficients in M. The center G,, of Gl,, acts on the module M by the
character wy : * — z"¢. Since we want no zero cohomology the center S(R)
of Gl,(R) acts by the central character (wy)gz' on Dy. The module Dy will be
essentially unitary with respect to that character.

We construct our representation D) by inducing from discrete series repre-
sentations. We consider the parabolic subgroup °P whose simple root system
is described by the diagram

0—X—0—X—+-—0(=X) (240)

i.e. the set of simple roots I j; of the semi simple part of the Levi quotient ° M
is consists of those which have an odd index. Let m be the largest odd integer
less or equal to n — 1 then «,, is the last root in the system of simple roots in
Lops. Of course m =n — 1 if nis even and m = n — 2 else.

The reductive quotient is equal to Gl x Glg X ... Gly(xG,, ), where the last
factor occurs if n is odd. This product decomposition of °M induces a product
decomposition of the standard maximal torus T' = [, ;. 4q 75 (XG,,) and for the
character module we get

XH(T)= @ X*(T;)(@X"(Gn)) (241)
i:50dd
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The semi simple reductive quotient °M ™) (R) is A; x A; x - - - x Ay, the number
of factors is
if n is even

o — (m+1)/2 = {%_

Tl if n is odd
We also introduce the number
if
e(n) = 0 1 n even (242)
1 ifnodd

We have a very specific Kostant representative wy, € W' . The inverse of
this permutation it is given by
wol={1—1,2n3—24—n—-1....}

The length of this element is equal to 1/2 the number of roots in the unipotent
radical of °P, i.e.

N

zn(n—2) if nis even
l(wyn) = (243)
(n—1)% ifn is odd

=

We compute

waA+p)—p= Y b M vas= Y b% +do = gV db. (244)
i odd iw odd

(The subscript y, refers to unitary, it refers also to the length being half the
dimension of the unipotent radical. Here we have to observe that w - A is an
element in X*(7T") but the individual summands may only lie in X*(T) ® Q =
X4(T). Any element v € X*(T') also defines a quasicharacter g : T(R) — R*
(by definition). But an element v € Xg(T') only defines a quasicharacter |y|g :
T(R) — RX, which is defined by |y[r(z) = [m~y(z)[*/™.)

To compute the coefficients b; we use the pairing (See56) and observe that
< Xi)Vj >= 51’73‘- Then

bj =< Xj, Wan(A + p) — p >=< Wl xj, A+ p > — < xj,p > - (245)

Now the choice of wy, becomes clear. It is designed in such a way that

t 0 0 0 1 0 0
0 0 t
_ 0 0 1 0 0 _ 0 0 1 0
wunlxl(t) = 0 0 1 0 7wuan3( ) = 0 0 1
0 0 0o ... 0 ¢t 0 0 0

and for the general odd index j we have wglx;(t) = h(ji1)/2 where for all
1 < v < n/2 we denote by h,(t) the diagonal matrix which has a 1 at all entries
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different from v,n+ 1 — v and which has entry ¢t at v and ¢t ! at n+1 —v. Then
h, = {t — h,(t)} is a cocharacter. It is clear that

t fv<i<n-—v

1 else

Yi(hy (1)) = {
This yields for j =1,...,°r

bgj_1:Z(ay+1)<hj,’yy>*<Xj,p>:( Z (au+1))*1.

v Jj<v<n—j

We should keep in mind that we assume a, = a,_,. Then we can rewrite the
expressions for the b, :

2a; +2a;41+---+2an_1+an +n—25 if niseven
bm»_l:{J ah 2T g (246)

2aj+2aj+1+~-~+2anT_1+n—2j if n is odd
The by;41 will be called the cuspidal parameters and we summarize

The by;_1 have the same parity, this parity is odd if n is odd. If n is even
then byj—1 has parity of az. We have by > bz > -+ > by, > 0. They only depend

on the semi simple part X(V).

By Kostants theorem
wun'A:wun()\""_p) -p

is the highest weight of an irreducible representation of °M. This irreducible
representation occurs with multiplicity one in H l(“’"")(uo pyMy).
The highest weight of this representation is

o 3
Wan A= Wan(A+p) —p= D by M 0= (292 + 29+ 2m1 + S Ymr1)
i odd
(247)

Digression: Discrete series representations of Gla(R), some conventions

We consider the group Gly/Spec(Z), the standard torus T' and the standard
Borel subgroup B. We have X*(T) = {y = ay1 + dd|la € Z,d € %Z;a +2d=0
mod 2} where

t1 0, _ ,g+d,—%+d _ t1.a d
(s )=t e = an)

(Note that the exponents in the expression in the middle term are integers)

A dominant weight A = ay; +dJ is a character where a > 0. These dominant
weights parameterize the finite dimensional representations of Gl /Q. The dual
representation is given by AV = avy; —dé. But these highest weights also parame-
terize the discrete series representations of Gly(R), (or better the discrete series
Harish-Chandra modules). The highest weight A defines a line bundle £_ 445
on B\G and

My = H°(B\G, L_4r+45)
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Then we get an embedding and a resulting exact sequence
0— My = I§((—avy1 +dd)r) = Dyv — 0

and D,v is the discrete series representation attached to AV. ( Note the subscript
g can not be pulled inside the bracket!).
A basic argument in representation theory yields a pairing

I ((—am — dé)z) x I (((a+2)m +do)r) — R

(here observe that 2y, = 2p € X*(T)).
From this we get another exact sequence which gives the more familiar def-
inition of the discrete series representation

0= Dx = I§(((a + 2)71 + do)r) — My — 0. (248)

The module Dy is also a module for the group K., = SO(2) and it is well
known that it decomposes into K, types

Dy=--& C¢V . -C¢—a—4 SB) (Cw—a—Q D Cw+a+2 S2) C¢a+4 cee (249)

(End of digression)
We return to our formula (247). The group

°M= ] Mix(Gp)
i:todd
where M; = Gly. If T; is the maximal torus in the i-th factor, then the highest
weight is 7: M® and let d; be the determinant on that factor. The indices 4

run over the odd numbers 1,3,...,m. If n is odd then let §,, : T — G,, be the
character given by the last entry. Then we have for the determinant

0
5251+(53+"'+(5m+{5 (250)

We want to write the character 2vo + 2v4 + -+ 4+ 2v;n—1 + %’ymH in terms
of the d;. We recall that

Yo =01 — %5
Y4 = 51 + 53 - %5
: (251)
Ym—1 :61+63"'+6m72_ m’rjlé
and if n is odd
Ymt1 =01 + 03+ + Gy — 2ELGS
Then the summation over the d-terms on the right hand side yields
1 0 n—1
—M@4+8+--+2m—-1)— =— 252
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and if we take our formula (250) into account and also count the number of
times a §; occurs in the summation we get

3
2’)/2 + 274 + -+ 2'7m—1 + §7m+1 =

(5 —1)01+(5—3)03+--+ (=5 +1)0p—2 n=0 mod 2
no26) 4 S0t — nols, else
(253)

Let us denote the coefficient of §; in the expressions on the right hand side by
¢(i,m.) We recall that we still have the summand dé in our formula (??. Then

dé

(=5* +d)o (254)

p=wa A= > by MY 4 (e(iin) + d)s; + {
i-i odd

We claim that the individual summands are in the character modules X*(T;)
(resp. X*(Gyn)). This means that

n—1

b, MY 4 (c(i,n) + d)d; € X*(T}), — tdeZ (255)

We have to verify the parity conditions. If n is odd the the parity condition
for A says that d € Z. On the other hand we know that in this case the b; are
odd and since the c¢(i,n) are also odd the parity condition is satisfied for the
individual summands.

If n is even then the parity condition for for A says that Saz =nd mod n.
We know that the b; all have the same parity: b; = az mod 2. Hence need that
az =2d mod 2, but this is the parity condition for A.

For any of the characters p; we have the induced representations I;?/[" (i +
2p;) the discrete series representation D,,, and the exact sequence

0= Dy, — I (s +2pi) = M., — 0. (256)
The tensor product
D= QD ="l g (257)
l i:todd " 2

is a module for °M.
Here we have to work with K;OM = K N° M. This compact group is not
necessarily connected, its connected component of the identity is

KM MO(R) = SO(2) x SO(2) x --- x SO(2) = K. MM,

An easy computation shows

KM —

oo

{5(0(2) X 0(2) x -+ x O(2)) ifniseven (258)

0(2) x O(2) x --- x O(2) if n is odd
since Ko, C Sl,(R) we have the determinant condition in the even case, in the

odd case we have the {£1} in the last factor and this relaxes the determinant
condition.
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Under the action of K;M’(l) we get a decomposition

D, =P ®(@ (s +2+2ul)> (259)

e i=1 v;=0

occur with multiplicity one. Here ¢ = (...,¢;,...) is an array of signs +1.
The induced representation (algebraic induction)

G(R
IndSp i Dy = Dy (260)

is an irreducible essentially unitary (g, Ko) -module, this is the module we
wanted to construct. (To be more precise: We first construct the induced rep-
resentation of G(R) where G(R) is acting on vectors space V, consisting of a
suitable class of functions from G(R) with values in D,, and then we take the

K finite vectors in V,,.) The restriction of this module to Kéi) s given by

K( ) KO
Ind, 50 P =D ®<@ Ind, 2 0) Coe, o +2+2ul)) (261)

e 1=1 v;=

(The last induced module is defined in terms of the theory of algebraic groups.

We consider Kéé) as the group of real points of an algebraic group, namely the
connected group of the identity of the fixed points under the Cartan involution

©. Then K ;M s the group of real points of a maximal torus. Then

K
Ind %%, 0) Ce; v r21200) =
: YT o (e (bit2420 oM@
{f|f regular function f(tk) =[], e;(t)° ) f(k), for all t € K/ ,éf € f(oo}
262

We compute the cohomology of this module
Hompg_ (A*(g/t), Dx® M) = H*(g, Koo, Dy @ M),

i.e. the differentials in the complex on the left hand side are all zero. (Reference
to 4.1.4)
We apply Delorme to compute this cohomology. We can decompose °m =°
m® @ a then °¢ c® m™) and
Hompg (A'(g/?)7 Dy\® M,\) = HOIHK;M (A'(Om/"{%), Dy ® Mo, A) =

Hom o (A®(*mM) /%8), Dy @ Muy,,.2) ® A®(a). (263)

If we replace K, ;oM on the right hand side by its connected component of the
identity then we have an obvious decomposition

HoszoM,(l) (A‘(Olﬂ,(l)/of)7 Dlt (29 Mwlm)\) = ® HOmK;',COI\/I,(l) (Ao(om(i,l)/oei)’ Db,y ® sz)
i:1 odd
(264)
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the factors on the right hand side are of rank two: We have Ki M@ SO(2)
and under the adjoint action of Ky M) the module m(i’l)/"{%i ® C decomposes

m(Y) /°¢ ® C=CPY, & CPY_

(See [Sltwo.pdf]) Then the two summands are generated by the tensors

Wi 4 = PZ-\’/JF @ Yy, 42 @M_p,, Wi — = Pi\’/, R Y_p_2 @ My, (265)

where m4 ) is a highest (resp.) lowest weight vector for K&OM acting on
My..-x- On the tensor product on the right we have an action of the maximal
compact subgroup O(2) x O(2) x - - - x O(2) and under this action it decomposes
into eigenspaces of dimension one. These eigenspaces are given by the product
of sign characters € = (e, €9,...).

Then it becomes clear that Hom o (A®(°m™) /°€), D, @ M,,,..») is of rank
one if n is odd and for n even it decofﬁcposes into two eigenspaces for the action
of the group O(2) x O(2) x -+ x 0(2)/S(0(2) x O(2) x --- x O(2)) = {£1}

HOHIK;JOM (A. (Om(l)/OE), Dﬁ ® Mwun.)\) =

Hommyeopr (A* () /%8), D,y © Mo,,.))+ ® Hom eons (A*(°mD) /°8), D,y @ M,..0)) -

We have to recall that My = H"%w) (4o p, M) is a cohomology group in
degree I(wyy). The classes in the factors of the last tensor product lie in degree
1, hence the multiply up to classes in degree °r. This means that

Hi(g, Koo, Dy @ M) # 0 exactly for ¢ € [[(wun) +° 7, l(wun) +n]  (266)

in the minimal degree °r it is of rank 2 or 1 depending on the parity of n.

6.6.2 The lowest K, type in D)

The maximal compact subgroup K, is the fixed group of the standard Cartan-
involution © : g — tgfl. The subgroup °M is fixed under © and the subgroup
SO(2) x SO(2) x - - - x S0(2) = K2 = T¢ is a maximal torus in K. It is the
stabilizer of a direct sum decompositions of R™ into two dimensional oriented
planes V; plus a line Rz if n is odd, we write

R" = Vi @ (Rz) (267)

The Cartan involution is the identity on our torus 77 /R. This torus can
be supplemented to a ©®— stable maximal torus by multiplying it by the torus
T gpiit Which is the product of the diagonal tori acting on the V; in (267) times
another copy of G, acting on Rz (if necessary). So we get a maximal torus
Ty = T - T gpiit. Obviously T4 is the centralizer of T and the centralizer of
T spiit is the group °M.

If we base change to C then T7 splits. We identify

SO(2) = (_ab 2) (268)
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and then the character group X* (T x C) = @Ze, where on the v-th component

a b

ey : a) — a+bt = a+by/—1. Then this choice provides a Borel subgroup

-b
B, D T7 x C, for which the simple roots af,as,...,as, are
€] —€2,69 —€3,...,E0pn_1 — €op, Eopn_1 + €0, fOr m even
€1 — €2,63 — €3,...,€Cop if n is odd

(See [Bou] ). For n even we get the fundamental dominant weights

ert+e+--+ey, ifv<°r—1
o= 3(er+tes+ - te,q—e) ifv="r-—1 (269)
ilert+ert+ - Feoptes) ifv="r

and for n odd we get

. {61+62+"'+€V, ifv<®r (270)

v sler+ e+ +eop) last weight

An easy calculation shows

B (91— g2 f (92 —g3)75 + -+ (gor—1 — gor)¥E,_1 + (gor—1 + gor)7E,  n even
> o
1“1 T
(g
=1

1= 9271 + (92 = 93)75 + - + (ger—1 — gor)Vor—1 + 295175, n odd
(271)
The character Z:Ll gie; is dominant (with respect to B, ) if
g1 > 92> ... gop_1 > £Ggor if n is even (272)
g1 292>+ 2 gor—1 = gor 20

Under the action of K< the (g, Kc%))— module D) decomposes into a direct
sum

Dy = @D B(©,) (273)

where p° € X*(T° x C) is a highest weight, O, is the resulting irreducible
K -module and Dy (O, ) is the isotypical component.
We introduce the highest weight (see (246))

ug(A) = (b1 + 2)61 + (b3 + 2)62 + -+ (bgor,l + 2)60,« (274)

and and in terms of our dominant weight A this is

(3 = {2((11 F DA+ 4 2aop—1 4 1)E_y + 2(aer—1 + aop +3)75,  if n is even

2(a1 + D5+ - - 4 2(ae, + 3)75, if n is odd
(275)
For A = 0 we get an expression (not depending on the parity of n)
15(0) = 29 + - -+ + 295,y + 675, (276)
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In the case that n is even the group K, contains the element # which maps
e; — e; for i <° r — 1 and eo,, — —eo,. or what amounts to the same exchanges
~¢,_;1 and 7§, and fixes the other fundamental dominant weights. Then

fo(A) :=9(ug(N)) = 295 + -+ + 675, _1 + 275, +9(\°) (277)

Proposition 6.2. If n is odd then the Kéé)— type O e(n) occurs in Dy with

multiplicity one. All other occurring Kc(,i,) types are larger”, i.e. their highest
weight satisfies p¢ = p§(A) + > n;af with n; > 0. We have

H*(g, Koo, Dy ® M) = Homp_ (A*(9/€),0,c(0) @ M2)

If n is even then the (g,Ké};)) module Dy decomposes into two irreducible
sub modules
D, = DI ®Dj.
The Ké};) types O e(n) resp. Ope(n) occur with multiplicity one (resp. zero ) in
]D)j( resp. Dy ). They are the lowest Ké};) types respectively. We have

H*(g, K&, Dy @ My) = H(g, K&, D} @ My) & H* (g, K&, Dy @ My) =
HomKéé) (A'(g/’é)7@u3@) QM) ® Hong) (A*(g/®), ®ﬁ8(>‘) ® M,y)

Proof. For two fundamental weights we write p¢ > p§ if p© is ”larger” than
p§ in the above sense. We start from ( 261 ) and consider a single summand

)
Indi‘” Cte, (b;+2+20,)- This induced module decomposes into isotypical mod-

op(1)
ules
I KO KL
nd 20 C¥e, v r2420) = DI 2 00 Cey (5,4 24200) (O (278)

©w

where p¢ runs over the set of dominant weights, where ©, is the irreducible
M
module of highest weight u¢ and where Indg‘;"M(l)ngi(biJerrgyi)(@Hc) is the

isotypical component. If we pick any dominant weight u¢ then Frobenius reci-
procity yields that

)
O, occurs in Indig"Mm Cte, (b, +2+20,) With multiplicity k <=

o (279)
t= 11, e;(t)%:6iT242v4) occurs in ©,c with multiplicity

and if k > 0 this implies p© > ¢ = [, e;(t)5® 2722 (£). Tt it casy to see that
we get minimal Kéé) types only if all v; = 0. But

(1,1,...,1,£1) if n even
(1,1,...,1,1) if n odd

o o
I

t— H ei ()5 ®+2) is dominant <= {
J
(280)

and in the n even case these two characters are exactly p§(A) and g§(A\) and in
the n odd case this character is u§(\).
O
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6.6.3 The unitary modules with cohomology, cohomological induc-
tion.

We start from an essentially self dual highest weight A and the attached highest
weight module M. In their paper [Vo-Zu| Vogan and Zuckerman construct
a finite family of (g, Ko) modules denoted by Aq(A) which have non trivial
cohomology with coefficients in M., i.e.

H*(g, Koo, Ag(\) @ M) #0

They also show that all unitary irreducible (g, K ) -modules with non trivial
cohomology in with coefficients in M. are of this form. We briefly recall their
construction and translate it into our language and our way of thinking about
these issues.

We introduce the torus S' /R whose group of real points is the unit circle in
C* and we chose once for all an isomorphism

io : S' xg C = G,,/C (281)
We consider the free Z module
Hompg (S, Tf) = Homg(S*, 1) = X.(Tf xg C)

where of course the last identification depends on the choice of ig. We have the
standard pairing < , >: X,(Th xg C) x X*(T} xg C) — Z.

The first ingredient in the construction of an A4 () is the choice of a cochar-
acter x : St — T, (defined over R). From this cocharacter we get the centralizer
Z, , this is a reductive subgroup whose set of roots is

Ay ={ae AcC X" (Th xgC)| <x,a>=0}.

We can also define
AT ={a| < x,a>> 0},

this set depends on the choice of ig (see (281)). This provides a parabolic
subgroup Py C G xg C whose system of roots is A, UAY. Clearly ©(Py) = Py
hence P, is the ©-stable parabolic subgroup attached to the datum yx. This
parabolic subgroup is only defined over C, if we intersect it with its conjugate
P, then we get the centralizer Z, of y. We relate this to the notations in [Vo-
Zu]: the q in Aq4()) is the Lie-algebra of P,, the group Z, is the L. Let u,
be the Lie algebra of U,. The datum x determines the q in Aq(\). We could
introduce the notation Aq4(A\) = A, (A\). Since T} is the centralizer of T, we can
find a generic cocharacter xgen such that P, = B. our chosen Borel subgroup
in °M.

gen

To a highest weight A which is trivial on the semi-simple part Zil) Vogan-
Zuckerman attach an irreducible unitary (g, Koo) module Aq(A) such that

H*(g, Koo, Aq(\) @ M) # 0.

Vogan and Zuckerman show (based on results of many others ) that all the
unitary irreducible (g, Ko ) modules with non trivial cohomology in M) are
isomorphic to an A4(A).
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Furthermore they give a description of the K types occurring in Aq(A)
especially they show that A,(\) contains a lowest K, type. This lowest K-
type is given by a dominant weight which obtained by the following rule:

We consider the action of the group K., on the unipotent radical U, and
on the Lie algebra u, and the restriction of this action to 77. The torus T} also
acts on u, and under this action we get a decomposition into one dimensional
eigenspaces

= @

aEA;

let us choose generators X, in these eigenspaces. We observe that the roots
a,Oa € AT induce the same root o, on Tf. The vector V,, = X, — 0X, € u,
is a non zero eigenvector for 7} and

uNpeC = € C,
(a,0a)cAY

the sum runs over the unordered pairs. Then

MC(X> )‘) = Z e+ Ac (282)
(a,0a)eA}

is a highest weight of a representation ©,, () of K () and this is the lowest
Kéé) type in Aq(A). We get

(283)

The module is determined by these properties:
1) It has non trivial cohomology with coefficients in My

2) It has p.(x, A) as highest weight of a minimal K, type. (See Thm. 5. 3
in [Vo-Zu].)

Recall that our aim at this moment is to identify the module J,_ to an
A4(X), and to achieve this goal we exhibit a list of very specific Aq(\)’s.

6.6.4 Comparison of two tori

We need to compute p.(x,A) and to achieve this goal the author of this book
modifies the Cartan involution in order to do the computation in a split group.
Our standard torus 7T is contained in the standard Borel subgroup B of upper
triangular matrices. Let wy be an element in the normalizer of T" which conju-
gates B into its opposite Borel subgroup. If we replace our Cartan involution
by ©1 = wgO then O, fixes T and the Borel subgroup B. This is not a Cartan
involution, but it is easily seen that it is conjugate to © over Gl,(C). and

ty 0 0 ... tb 0 0
0 to 0 4
©:fo 0o . o ...[=lo o . 0 .. (284)
0 tno1 0 ty!
0 tn 0 !

139



We can decompose T' up to isogeny into a torus 7, on which ©; acts by the
identity and a torus Tgp1ic Where it acts by = — x~ 1

4 0 0 .. tt 0 0
0 to ... ... 0 ts

T.={[o o . o .. |[tresp-Tsoie={]0 o -. o ..|}
0 ty! 0 ot
0 ! 0 t1

It is clear that a suitable permutation matrix conjugates T gpiix into Typiic-
This permutation matrix maps the centralizer of T} gp1t (which is °M) to the
centralizer ° M’ of Tip1it and the anisotropic torus 775 to an anisotropic torus Tf’
in °M’. Then we can find an element m € °M’(C) which conjugates T¢' x C
into 1.

The composition of these conjugations provides an identification of the char-
acter modules X* (T} x C) = X*(T) which respects the product decompositions
and hence we get

X*(T¢ x C) = X*(T,). (285)

We choose our conjugating element m such that the e; € X*(7TF xC) are mapped
to the element ¢ — ¢; (for i =1 to °r ).

Inside X*(T') we have the dominant fundamental weights v1,...,v,—1, let
7; be the restriction of v; to T then we have 74; = 7, _;. We can interpret the
7; also as elements in X*(T} x C) ® Q we require that the restriction of ¥; to
T split is trivial. Then we can write

st mes) ifi# G (256)
’ Y else
We can relate the dominant weights ~¢ and the #;: If n is even then
C e o C = 1 = C 1*
T ="MW for 1 <v<r— 1a Yor—1 = Yor—1 — 57"7’7 Yor = 5707" (287)
For n odd we get
1
o= for 1 <v<®r A5 = 5’707,

The Borel subgroup B is invariant under ©1, the root subgroup U; ;;1 <i <
I < nis conjugated into Uy 41—jnt1—¢- Inside the unipotent radical we have the
half diagonal of spots (°r,°r+ 14 2¢(n)),...(2,n—1),(1,n) The involution is a
reflection along this half diagonal and the spots on the left of the half diagonal
form a system of representatives for ~ ©1. Of course we have a corresponding
Borel subgroup B; D11 x C of G x C.

Proposition 6.3. Under the above identification the restrictions of the vy,
to T, are equal to the e; in X*(Tf x C).

We want to compute p.(x, A). By definition this is an element in X*(7;. x C)
using the identification in (6.6.4) we carry out this computation in X*(T¢). A
cocharacter x : G,, — T, is of the form
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0 M2
X:t—=1o09 0 0

0 I

0 t—m

since we want P, D By we require mi > mg > me, > 0. (If n is odd then there
is an mo,11 = 0). Let us start with the regular case, this means that all > signs
are actually strict, i.e. > signs. Then it an easy computation that

ne; + (n—2)es + -+ 2e0,. + A.  if n is even

. (288)
ney + (n—2)es + -+ 3eor, + A, if nis odd

,LLC(chga A) = {

The set A;eg is the set of roots of B modulo the conjugation ©;. Hence we
see that '

Mc(Xregv A) = /‘8()‘)‘
The interesting contribution is in fact fte(Xreg,,0) and this is the number p§

in (276) We can express pic(Xreg, 0) in terms of the fundamental weights ~; (or
the %;) we use the formulas (287). We get

2%, n=0 mod 2

He(Xregs 0) = 271 + 272 + - + 290,21 + { (289)

67, m=1 mod 2

If x is not regular then the relevant information extracted from y is the list
tX = (tlut27 cee 7ts§t0)

(the type of x) where the ¢; are the length of the intervals where the m; > 0
are constant, i.e. my = mgo = -+ =My, > My41 = -+ = My 44, > .... Lhe
number % is the length of the interval where m; = 0. The © stable parabolic P,
subgroup only depends on ¢,,. The types t, have to satisfy the (only) constraint

QZtl,—i—to =n (290)

The regular case corresponds to the list (1,1,...,1;0 or 1). In the general case
we get a decorated Dynkin diagram where the crossed out roots are those where
the m; jump.

—X—0—0—0—X—X—0—+++—0—X+++X—0—+++—0

This decorated diagram is symmetric under the reflection i — n — i. We look
at the connected component of o-s. These components come in pairs unless the
component is invariant under the reflection, i.e. it is central. The non central
pairs
X — o— PR pr— o — X — e X — o —_ e — o
I 291
o a; 3 Qn—j, ans, POV

v

are labelled by the indices v for which ¢, > 1, and are of length t,—1 = j,—i,+1.
(The meaning of the indices i,,j, is explained in the diagram). The central
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connected component is of length tg — 1, of course it may be empty. We write
it as

Tx0 = (292)

(&7

where of course ig = n— jo. Let m, be the union of these connected components.
Let A} be the set of positive roots which are sums of roots in .

To compute p.(x,0) we have to subtract from p.(Xreg,0) the sum of roots
in A} with j, <°r and the sum of roots in Al /{0}.
A simple calculation shows that for v > 0

i=jy
20" =" v+ nmi — (b — D(Vip—1 + Vi 1) (293)

=1,

where we put y_; = 7, = 0. This means that subtracting 2p) from the sum
which yields fi(Xreg,0) has the effect that the sum Zi:: Vit Ynoi = 2DV
cancels out and we have to add (¢, —1)(vi, —1+7i,+1)- Observe that i, 1, j. 11 &
7. We still have to subtract the contribution from the central component A
We have to sum the roots in AZ/{©;} this means that we take half the sum of
all roots and add half the sum of the symmetric roots. This yields

.. o 1
2p(0):5((.]0—104—1)041'0+~'-+(j0—10+1)04j0)+§(04i0+"'+'-'+Oé]'0):
((Go —io + 2)@iy + -+ (... ) Aoy,

—1

we see again that the sum Z?:io" 4; drops out and we have to add a term

to(Yio—1 + Vig+1)-
Hence we get: Let 7 be the union of the 7, and 7§. Then

pe(x;0) = D> (2+ei(x, 0)vf

igms
where
(- —1)+(t,+—1) ifr#0
¢i(x,0) = 294
i60) {(ty—1)+ty+ ity =0 (204)
and where ¢,- — 1 is the length of connected component directly to the left of

i, —1 and t,+ — 1 is the length of the component directly to the right of 7, — 1.

If we have chosen a highest weight A = > a;~; then we require a; = a,41-; >
0 and we must have a; = 0 for all ¢ € 7. Then

pe(6A) = D (24 €i(x, 0) + 2a:)75.
€Ty

For us a special case is of interest. We decompose n = uv and take X, ., = X
of type t, = (v,v,...,v). Hence the reductive quotient of the © stable parabolic
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subgroup is MV = Gl, x Gl, x - - - x Gl,,, the number of factors is 1. In this case
we get
o — 0 e o— X —0— O0—-+-— o— X —o0... (295)
g (0%) Qy—1 iy Ay41 Qoy—1 2y
so the indices outside 7, are the multiples of v. Let us denote by q the Lie-
algebra of P,

u,v

) = 3 (2420 = 1)+ e+ (296)
vo<

w\;‘

where e(r) = 0 except in the case that °r € [vv, (v 4+ 1)v] and then it is equal
to 1.

6.6.5 The A,, ()\) as Langlands quotients

Let n = wv and q = qu,,, as above. The parabolic is Py, , To realize A, ,()\) as
Langlands quotient we apply the procedure described in [Vo-Zu], p.82-83. We
have to find a parabolic subgroup P C Gl,,/R and a tempered representation
0so Of M = P/U such that

a) our A is a character on P,

b) the module aIndGE gooo has the right infinitesimal character,

¢) the module Ind PER)UOO restricted to Ko contains pic(Xu,v, Ac) as minimal
K type.

To get our parabolic subgroup we choose a cocharater 7, , : G, — T', this
cocharacter is defined as

tv 0 0
0 tv—l
0 0 0
trnue(t)=10 t! (297)

0 tv
0 tv—l
0

i.e. we have u copies of the diagonal matrix diag(t”,t*~1,...,¢) on the diagonal.

This cocharacter 7 = 7, (t) yields a parabolic subgroup P, which contains
the torus and has as roots A, = {a| < n,a >> 0}. Its reductive quotient is
Gl, x Gl x - - - x Gl,, where the number of factors is v. The embedding into Gl,,
is not the obvious one and P, does not contain the standard Borel subgroup of
upper triangular matrices.

To describe the relation between these two groups we denote by eq,¢a,..., ¢,
the standard orthonormal basis of our underlying vector space R™. Then we
group these basis elements

{{217 ceey ev}7 {{ev+17 ey 321)}7 ey {e(u—l)v—l—l? ey eu’u}}
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and this grouping yields a direct sum decomposition

R"” = (Rey @ -+ @ Rey,) @ (Rey1 @ - D Regy) @ -+ D (Regy—1)v41,- -+ Rewy) =

VieV,e--aV,
(298)

and then MY = GI(1}) x -+ x GL(V,,).
We get a second grouping of the basis elements

{{217 Cotlyees e(ufl)v%»l}a {22, Cyt2y vy e(ufl)v+2}7 e }a { .. eu’u}} (299)

which yields direct sum decomposition

R™ = (Rel DReyr1®--- D Re(ufl)qﬂrl) ® (RQ DReyi2® - @ Re(uq)vﬂ) ®...

WieWyd---d W,
(300)

and then M = GI(W7) x GI(Ws3) x --- x GI(W,) = Gl, x Gl x --- x Gl,. The
groups MY and M are mutual centralizers of each other.

The two groupings define two different Borel subgroups, the first one defines
the standard Borel B of upper triangular matrices and the second Borel B*
fixes the flag {e1}, {e1,¢,41} ... Let us denote by \*, p*,wy ,,... the dominant
weight with respect to B*, the half sum of positive roots and so on. Our highest
weight ) is trivial on the semi simple part of MV it must be of the form (235)
Now we consider the highest weight for the group M

wh o\ +p7) = p" = e = (ar + o= DT a0+ )

(az + 0= 1) (3™ +3550 + -+ )t

*, M *, M *, M
(au,1 +v— 1)(’7u—1 + 7u—1+u + 4+ ’yu—l-‘,-(v—l)u)—’—

—(u+1)(vs + 720+ F Vom1yu) + 0
(301)

We choose 0o = D+ (See (231))

We check the lowest K., type in Indg*D#*. To compute this lowest K
type we write M = [[ M, where of course each M, = Gl,. Accordingly we
write T = [[T,. The weight u* = " p* where the semi simple part is ”always
the same”. We apply the considerations in section 6.6.1 to the factors M,,. We
take v = 1 then

p=(a+v =1+ (a2 +v =17+ + (au-1 + v = 1)y, + d"dety,

Inside M7 we have the subgroup °M; which is the reductive Levi factor of ° Py
as in section 6.6.1 and we have the Kostant element wj u,. Then we consider
the character
~ % * * * * opmM ~%,ab
fif = wiun(py +p7) — p1 = Z bivi ' Ay (302)
i odd
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where again the b; are the cuspidal parameters and they are given by

20 +2aj41 + -+ 2a%_1 +ax if u is even
2aj+2aj+1+~-~+2a% if u is odd
(303)

bsjlzv(u—l—l—Qj)—l—i—{

The abelian part ﬁi’ab does not play any role in the following ( The A in section
(6.6.1) is now p} and the p in formula (254) is now /i7) We renumber our basis
(299)

Fisfos oo fumtsFus -} = {en, eogts ooy Cumtyot1, 2, -+ (304)

and decompose the space R™ into a direct sum of euclidian planes (plus a line
if n is odd)
R" = (Rf1 ® Rf2) & (Rfs © Rfs) @ - - - @ (Rfn).

and this provides a maximal anisotropic torus
Tr =S0(2) x SO(2) x --- x SO(2)
In analogy with section 6.6.2 we write
X" (I ®C)=aLf; (305)

where f; is defined in analogy with the e, in section 6.6.2.
We have

M = GIRfy ©Rf2 @ -~ © RFu) % -+ X GlRf(o—1)us1 B - ® Rfus)

and the intersection 7™ = T N M is a maximal anisotropic torus in M. It is
equal to T if u is even. If u is odd (and v > 1) then it is a proper sub torus,

if °r, = %=1 then

TxM =S0(2) x --- x SO(2) x{£1}x SO(2) x -+ x SO(2) x{£1}x

°r, factors spot v and u + 1 °r, factors
(306)

where the product of signs is one. To get the torus 77 we have to put another
SO(2) at the spots (u,u+1), (2u,2u+1),.... We apply the reasoning of section
(6.6.2) to the factors M,,.

The representation D, = Ind(I,\/IIDlVDﬂ; contains as lowest KMv type the rep-
resentation with highest weight

(0 + 2 f + (05 +2) 2+ + Bor, -1 +2) for,

where the b3, _; are taken from (303). This weight occurs in Dy Hence we see
that as a 77" module the representation ®Dj« contains the weight (depending
on u even or odd)

(07 +2)fi+ (05 +2)fot -+ (050, 1 + 2)fom)) + ((b; +2) for, 11+ .- ) +...

(b + 201+ (05 + 2o (o, 1+ D forim) )+ (B Dferipr +0 ) + o
(307)
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This weight is not dominant, to get a dominant weight we have to reorder the
f, according to the size of the coefficient in front. Then we get a dominant
weight

B+ 2+ 5+ D+ G5+ 2) (L + i+ )+ (308)

and then formula (288) and the formula for the b} give us the following dominant
weight expressed in terms of the fundamental dominant weights

Z (2v + e(v) + 2a,)7;, (309)

vivv< g
This is now the weight fic(Xu,0, A) in (288). Hence we see that ©,, (v, ..

occurs with multiplicity one in D) : Indggﬁgﬂ) and we get

Theorem 6.1. We have a nonzero intertwining operator : T1°%) (D nE IndP(%D —

IndgER) + and get a diagram

Gy 7D,
IdppD, — — " Ag(N) 10
!
G(®)
IndP(R)]D)

The horizontal arrow is surjective, and the vertical arrow is injective. The map
induced by the vertical arrow in cohomology

H(9, Koo; Aq(\) @ My) — H(g, Koo; *Ind 5 Dy © M)

is a bijection in the lowest degree of nonzero cohomology; this lowest degree is

; [uz] N n(u—1)(v — 1).

Proof. We have an inclusion between the two complexes
Homp (A*(9/8), Aq(X) ® My)) — Hompo (A*(g/t), Ind3ig) Dy @ My).

In the complex on the left all differentials are zero. It follows from the work of
Kostant that we have a splitting

Hom(A®(up), My)) = H*(up, M,) & AC*

where H®(up, M) is the space of harmonic forms (and this space is isomorphic
to the cohomology H®(up, My). ) and where AC*® is an acyclic complex.

We have Delorme’s formula

Hompo (A*(g/t), IndP(R)ID) rRM,) = HomKé\g(A'(m/EM),Du/ ® Hom(A®(up), My)) =

Hom e (A*(m/eM), D, @ H® (up, My)) @ Hompa (A*(m/eM), D,y @ AC*®)
(311)
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The (m/KM) has a lowest KM) type 9(u’), which can be computed easily from
3.1.4 and we have

Hom e (A®(m/€™), D, 8H* (up, My)) = Homgeys (A*(m/EM), D, (9(1)) SH® (up, M),

Using the formula in [Vo-Zu] for the highest weight of the lowest Ko-type
O(q, ) in Ag(N\) we see that O(q, ) is the lowest Ko type in Indﬁ";}. This

implies that the map

Homy _ (A*(g/€), Aq(N)(O(q, A) ® M) — Hompa (A*(m/EY), D,y @ H® (up, M)
(312)

is an isomorphism of vector spaces (but not of complexes). But since the complex
on the right is zero in degrees e < ¢ it follows that the classes in the image of
Hompg  (A9(g/t), Aq(N)(©(q, A)) ® M) survive in cohomology.

O
We got to the global context, we have a diagram
K _

Jaoc & Jffff — LgiSC(G(Q)\G(A)/Kfzw/\Alk|S(R)0)

1 LFP (313)
a1, 1G(A K
Ind (D, @ Vo' o AP(QU(A\G(A)/K )
This induces maps in cohomology

H(g, Koo, Jooy ® M) @ Joy/ —  H*(SE, My)

L FF (314)

H*(g, Koo, *Ind5 5Dy @ My) @ Vay! = H*(0pSE,, M)

The left vertical arrow is non zero for e = ¢, the horizontal arrow in the bottom

line is injective for all values of e (Borel see ) hence the horizontal arrow in the
top line is non zero in degree e = q.

Of course we also should investigate the horizontal arrow in the to line in
all degrees, this question becomes delicate. To answer it we should invoke the
results in Franke’s paper [ | or we could work with proposition (4.4) or its
corollary (4.1).

In the extremal case u = n,v = 1 the parabolic subgroup P is all of G
and Aq(A) = Djy. In this case, and only this case, the representation A4(A) is
tempered.

In the other extremal case that v = 1,v = n the representation J,__ is
one dimensional - (basically it is the space of constant functions twisted by a
character on the group of connected components ) - in this case the map in the
top row is understood in terms of the topological model (Franke + Diploma
students).
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6.6.6 Congruences

We formulate a condition (NUQuot ) (No unitarizable quotient) for the induced
module:

The induced module I1§(cf) as module under the Hecke- algebra does not
have a non trivial quotient which admits a unitary scalar product (here it may
be necessary to pass to the corresponding representation of G(Af)),

The negation of this condition (UQuot) says that for all primes p the induced
module I§0, has a unitarizable quotient.

This condition has been discussed in [Ha-Eis] Kap. II, 2.3.

If we have (NUQuot ) then
Homye (I§(of), HY (SE,, M@ C)) =0 (315)
Ky

this implies that the Manin-Drinfeld is valid and this implies that our above
section is defined over F', i.e. we get a unique section of Hecke-modules

Eis : Hq—“w))(s;gij ,M(w-N) @ F)(op) = HY(SE,, My @ F). (316)

Then is looks as if the second term is completely uninteresting, but in fact
it is not. In the lecture notes volume [Ha-Eis| we raise the question whether
it influences the structure of the integral cohomology H qint(ng,J\;l A®@F). In
some cases we have convincing experimental evidence that ”arithmetic” of the
ratio of special values

1 Acoh ’;% N ~(1) —ab A
H (O-f,r 7< 77 7/"‘ > a (U.), )) (317)

Qo) . ACOh(Uf,rZYD, < Mg, i > —ab(w, \) + 1)

has influence on the structure integral of the cohomology. Under certain condi-
tions the above expression is a product of an algebraic part and the value of a
motivic extension class. Primes dividing the denominator of the algebraic part
may occur in the denominator of the Eisenstein class and we will have congru-
ences (See (5.2),(135). This will be explained in the next section in the special
case of the group GSp,/Z.

6.6.7 Attaching motives to 0,777

The condition (NUQuot )) will be true if A is sufficiently regular but for non
regular weights it fails. If the weight is not regular then we may have a pole of
the Eisenstein series at z = 0. This possibility has to be discussed, it can only
happen if we have (UQuot). But even if we have (UQuot) we may not have a
pole.

Let us assume that we have (UQuot) and the Eisenstein operator is holomor-
phic at z = 0. Then we may have several copies of J(o¢) in HI'(SI%,./\;!)\ ® C).

This defines again an isotypical submodule H? (ng,/\;l A ® F)(cf). We get an
exact sequence

0— HY (SE,, Mx @ F)(cy) = X(of) = J(of) = 0 (318)
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This is a sequence of Hecke-modules over F, the section (207) provides a section
over C.

If our locally symmetric space ng the set of complex points of a Shimura
variety then we can interpret this sequence as a mixed motive. This motive has
an extension class in the category of mixed Hodge-structures

(X (0f)]B-arn € Extp_gpy,(J (o), H' (8§, My ® F)(d7)) (319)

and in some cases we can compute this class (we have to look at a suitable
bi-extension) and express it in terms of the second term in the constant term
(See [MixMot-2013.pdf]. )

We have seen that in many situations the space S/ e is not the set of complex
points of a Shimura variety and therefore we do ng)t know how to attach a
motive or an ¢ adic Galois representation to it. (Sometimes we know how to
attach a motive to it but it is simply a Tate motive). But if it happens that the
module J(of) produces a non trivial submodule H? (SIC(;J, , MA®F)(c)) then the

situation changes and we can attach a Galois-module H (S[G(f,./\;l A ® F)\)(o¥))

to it which contains a lot of information about o;. Again we refer to ( [MixMot-
2013.pdf].) We have seen in [Ha-Eis] (3.1.4.) that this can happen.

6.6.8 The motivic interpretation of Shahidis theorem

We go back to a general submodule oy = 0;1) XO’ = oy € Coh( Cusp(SKM,/\;lw.A),
)Mo, r)

we drop the assumptions above. We assume that we can attach motives M(o’§c ), 71

where 71 is the tautological representation. (Actually we do not need the mo-
tives it suffices to have the compatible systems of [-adic representations) Then
we can attach the Rankin-Selberg motive to this pair

Mgs (o7, Ad) = M(0"),r1) x M(1?,71)" = Hom(M (0, r1),M(0'", r1)) © Z(~

f o 1
(320)

Under the assumption of the theorem the we have M(a;l),rl) = M(a} ),rl)

and we see that the Galois module Hom(M(a; ), r1), M(O’}l), r1)) contains a copy
of Z(0) and therefore we get an exact sequence of Galois modules

0= Z(—w(u®, 7)) = Mrs(os, Ad)er.aa — MR (0, Ad)st.aa — 0
Hence the motivic L function is a product
L(Mgs(os, Ad)es aa, 5) = LIZ(=w(p®), s) LMY (o7, Ad)er, aa 5)

If we substitute for s the expression

w(r, 1Y) + wirs, pus”)
2

—blw,\)+s= (rg,u2 ) — b(w, A) +
then we find

L(MRgs(of, Ad)et,ad, 5) = ((=b(w, ) + S)L(ngs),("f, Ad)e,Aa, 9)
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Then the motivic interpretation of Shahidis theorem is, that L(Mg)s)(of, Ad)et, aa, W(re, ugl))—
b(w, A) + s) is holomorphic at s = 0 and non zero (this is in a sense the prime
number theorem for this L function) and therefore - if we have b(w,\) = —1-

the pole comes from the first order pole of the Riemann - function. If now

0}1) X 0}2) = oy occurs in the cuspidal cohomology then we have an inclusion

Dy % Hop — AM(Q)\M (A)/K}")

We form the Eisenstein intertwining operator and compose it with constant
Fourier coefficient, then we get

FP oEis(s) : £ f + Clo,s)T"%(s)(f) (321)

The operator T%°¢(s) = T1%(s) ® @ T3°°(s) is holomorphic at s = 0. Under
our assumptions the function C(o, s) has a first order pole at s = 0 and we get
a residual intertwining operator

Ress—o : Ind¥D, x H,, ® (0) - AP(G(Q)\G(A)/Ky) (322)

6.6.9 Rationality results

Finally we want to discuss the case that P # ©(P) = Q. If this happens then
ng is never a Shimura variety. We have isotypical pieces (see (187) )

H;*“w)(s;‘ng  M(w-\) @ F)(oy) @ H,'*“w’)(s;\gfﬂ;, ,M(w' - \) @ F) (o))
(323)

and we know that component of the Eisenstein cohomology consists of the classes

{5 ® L(of))TF ()} (324)

where L(o) is an element of F' and for all ¢ : FF — C we have

(L) = & L (o, NC(oas ) (325)

(cooy)
If the factor at infinity C'(0s0, A) # 0 then we get from this rationality results
for the ratios of L-values. (See [Ha-Mum], [Ha-Rag]) These rationality results
will be important when we discuss the arithmetic nature of the numbers in??
Combining the results of Borel-Garland [?] and Mceglin—-Waldspurger [?] we
get that the homomorphism

P P H0KeiAg(N) @ M) @ Jo, — HY(SE, My)  (326)

u|n o f:segment

is surjective. This gives us the decomposition into isotypical spaces of H ('2) (8§ . M,).
We separate the cuspidal part (v = 1) from the residual part and get

H(.2)(ngaM>\) = @ Hc.usp(slcéva/\KWf) & @ @ H.<g’KOO;Aq(A)®M>\)®J0'f7
7 y:cuspidal u|n o f:segment
u<n
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where the bar on top means we have gone to its image via the map in (326). It
follows from the theorem of Jacquet—Shalika [?] that there are no intertwining
operators between the summands.

In the extremal case u = n,v = 1 the parabolic subgroup P is all of G
and Aq(A) = Dy. In this case and only this case the representation Aq(\) is
tempered, and the lowest degree of nonvanishing cohomology is the number b% .
An easy computation shows that in the case v > 1 the number ¢ < bf. Then
our theorem above implies that in degree ¢

Hq(’yv Koo; Aq()‘) ® M)\) ® Jcrf - Hq(SICéva)\)
is injective. This has also been proved by Grobner [?]. The above result,
which we announced earlier (?7), can be sharpened as in the following theorem.

During the induction argument we use Thm. 77 for the reductive quotients M
of the parabolic subgroups.

7 The example G = Sp,/Z

7.1 Some notations and structural data

&1 Y1 Y2
(&)
The maximal torus is
t7 0 O 0
0 to O 0
hiZ=t={|, ;10 }
0 0 0 t*

the simple roots are
a(t) =t /ty, as(t) = t5
and the fundamental dominant weights are

Y1(t) = t1,72(t) = tits

and finally we have
291 =ty /ty
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We choose a highest weight A = n1y1 + naye let My be a resulting module
for G/Spec(Z). We get the following list of Kostant representatives for the Siegel
parabolic subgroup P and they provide the following list of weights.

1A = A= %(an +mn1)y2 + nn{wl
sa- A = L(=2+ni)y+ (2ns+n + 2)yMh
1 M
5251 A = 5(—4—n1)y2+ (2+2n2 +n1)y;

(=6 — 2ny —ny1)y2 + m’yfwl’

N

528189 - A =

We choose for Ko, C Spy(R) the standard maximal compact subgroup U (2),
it is the centralizer of the matrix

0 1 0 O
-1 0 0 O
0 0 0 1
0 0 -1 0

which defines a complex structure. With this choice we can define S}% =

GQ\GR)/Koo x G(Af)/Ky.

7.2 The cuspidal cohomology of the Siegel-stratum

We consider the cohomology groups H '(SIC(; . M ») and the resulting fundamen-

tal exact sequence. We have the boundary stratum dp (Sf?f) with respect to the
Siegel parabolic. Let us assume that we are in the unramified case, then we get

H*(0p(SR,), My) = @ H*" (S, H'™ (up, My)) (327)
weW?r

We look at the case w = s5s; in this case we know how to describe the cor-
responding summand in terms of automorphic forms on Gl,. We introduce the
usual abbreviation H' ™) (up, My) = My (w - \).

Our coeflicient modules are the modules attached to the highest weight

1
WA=y = (2+2n2+n1)’y{wl +§(*4*n1)72
Let us put £k = 4+4+2ns+n; and m = %nl. We give the usual concrete realization
for these modules as Mot oy, 4n, [N2 —3 — k] = My_a[ng — 3 — k]

Let us look at the space S?(JM. The group M /Spec(Z) is isomorphic to Glg,
7

it is the Levi-quotient of the Siegel parabolic. The group K is the image
of P(R) N K under the projection P(R) — M (R). This is the group O(2) it
contains the standard choice K2 (1) = SO(2) as a subgroup of index 2. Hence
we get a covering of degree 2

St = M@\MR)/KY (1) x M(Ap)/K} = Sl (329)
¥ .
We get an inclusion
i H' (S, Ma(w - X)) < H'(SM, My (w - N)). (329)
¥
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On the cohomology on the right we have the action of O(2)/SO(2) = Z/2Z
and the cohomology decomposes into a 4+ and a — eigenspace. The inclusion ¢
provides an isomorphism of the left hand side and the + eigenspace.

This inclusion is of course compatible with the action of the Hecke algebra.
If we pass to a suitable extension F//Q we get the decompositions into isotypic
subspaces if we tensor our coefficient system by F. An isomorphism type oy
occurs with multiplicity one on the left hand side and with multiplicity two
on the right hand side. Over the ring Op the modules HZ int(SlAéu,/\/lA(w

A r)(oyf) are of rank one, hence we can find locally in the base Spec(Op) an

isomorphism

To5th () - Hl( Mi(w-N)p))(o )—>H1(SI]¥[M,M)\(’LU'>\)F))(O'f)

(330)

KM7

The isomorphism given by the fundamental class (see(79) interchanges the +
and the — eigenspace, hence we can arrange our arithmetic intertwining operator
such that it satisfies

Tarith(a_f ® |6f|) _ Tarith(a_f ® |6f|)_1 (331)
We consider the transcendental description of the cohomology groups

HY(S KM7M>\(U’ Ae @Hl KM7M>\(7~U Ae )(Uf)@Hl( KMvM/\(w Ac)(oy)

(332)

We consider the standard Borel subgroup B C M the standard split torus
To C B it contains our torus Zy. We define the character

= (k;m+2): BR) = CX, x(t) = 21" ()" e[ "+2.

It yields the induced Harish-Chandra module Ig[(%) Xp @ We consider the
functions

[+ M(R) = C; f(bg) = x(b) f(9); f|T1 is of finite type .

This is in fact a (m, K2:%) -module, it contains the discrete representation Dy,
We have the decomposition

Dy, = @ Foyw

v=0(2),|v|>k

where

¢x,u(9) = ¢X,V(b <—C(S)ISI§?¢)5) Sclcl)lb(((zﬁ)>) _ X(b)ezﬂ”‘z’,
Of course Ko = Ti(R) = {fe(¢) = (szr(lg(b;) scl(r)ls((gbqﬁ)>} and we can write
€(¢) eQﬂwqﬁ

We have the well known formula for the ((m, K2:%) cohomology
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H' ((m, K1), Dy, @ Ma(w - A)) = Hom oo (A (m/eM), Dy, @ My(w- X)) =
(333)

CPY @ ¢y,—k @ Vhg—2 + CPY ® ¢y s @ V_jpt2 = Cwpm + Ciogm

(334)

Here v = (X +4iY)*72 resp. va_p = (X —iY)¥~2 are two carefully chosen
highest (resp. lowest) weight vectors with respect to the action of K0, The
elements P1 are the usual elements in m/¢. We choose a model space H,, for
oy i.e. a free rank one O -module on which the Hecke algebra acts by the
homomorphism oy : H%NI — Op. We also choose and embedding ¢ : F' — C

and an (m, K20) x KM X ’HKM invariant embedding

®,: Dy, ® H,, ®p, C— Li(M(Q)\M(A)) (335)

this is unique up to a scalar in C* because the representation is irreducible and
occurs with multiplicity one in the right hand side. This yields an isomorphism

fI)}:Hl((m,KOIZ[’O),DXM®MA(w~/\))®Haf®F7LC;Hl( KM,MA(U) A)c)(tooy)

-1 0

We observe that the element € = ( 0 1

) € KX has the following effect

Ad(Q)(Py) = P- ,e(di) = by and e(vp_z) = (~1)™ v (336)
Hence we see that
w,(;y)l = Wg,m + (—1)" Dk m resp. w](g;zl =wpm — (—1)"0km (337)

are generators of the + and the — eigenspace in H'(m, K20, D, @ M (w-\)).
Therefore our map ® and the choice of these generators provide isomorphisms

oM H,, ®p, C =5 H{(S KM,MA(w Ne)(toay), (338)
o) H,, ®p, C = H-( KM,MA(w Ne)(tooy) (339)

The choice of P, P_ and ¢y, is canonic, hence we see that the identifications
depend only on ®, , which is unique up to a scalar. This means that the
composition

Ttrans(,/ o O'f) — (I)E*) ° (q)g%*))fl
LHL(S KM’M’\(w Ne)(tooy) = HE S%M,MA(w “Ne)(tooy)
yields a second (canonical) identification between the + eigenspaces in the co-

homology. Our arithmetic intertwining operator (See (330) yields an array of
intertwining operators

T (o) ®p, C: HL(S KM,/\/I,\(w A p))(of) @p, C > H (SM

K]W?

(340)
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Hence get an array of periods which compare these two arrays of intertwining
operators

Qof, )T (Lo op) = T (o) @p, C (341)

Our formula (331) tells us that we can arrange the intertwining operators such
that

Qoy @ |0¢],0) = Qg )7 (342)
These periods are uniquely defined up to a unit in O%.

7.2.1 The Eisenstein intertwining

We pick a o which occurs in H!' (S}, Mx(w - A)r)), we choose a v : F — C
7

and we choose an embedding

®,: Dy, ® Hy, ®p, C— L2, (M(Q)\M(A)) (343)

cusp

and from this we get the Eisenstein intertwining

Eiso @, : Indggﬁg (Dy,.) ® Hy; ®p, C— A(G(Q)\G(A)) (344)

(Here we use that Ky = GSpy(Z).) Hence we get an intertwining operator

Eis® : Hompg_ (A®(g/€), I§(Dy,) ® My) ® Hy, ®p, C — Homp_ (A*(g/€), A(G(Q)\G(A)) @ M)
(345)

and this induces a homomorphism in cohomology
H3(g, Koo, I§ (Dy,) ® M) @ Hy, @p, C) = HY(SF, Mx ) (346)

and we want to compose it with the restriction to the cohomology of the
boundary. We have to compose it with the the constant Fourier coefficient
FP 1 AGQ)\G(A)) = A(P(Q)U(A)\G(A)). We know that F¥ maps into the
subspace

P
IEDy, ® Hyy @, C o I§Dy, ® Hop ®F, C@I}QDX“, ® HU}UP\'YP,fIZfP ®r. C
(347)

where p/ = wpw- A =s9- X = (24 2ny +n1)’yf\41 + %(—2+n1)*yg. More precisely
we know that for h € IIC):DX” ® H,, ®F, C

FFP(h) = h+ C(0,0)T'°¢(0)(h) (348)

where T%°¢(0) = T¢ ® ®,T)°°. The local intertwining operator at the finite
primes is normalized, it maps the standard spherical function into the standard
spherical function. The operator T'2¢ will be discussed below.
Our general formula for the constant term yields for an b = hoo X hy
Explain in more detail
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LY (f,ng +ng +2) ((ng + 1)

P . o loc
FP(h) =h+ C(000, )T (hoo)Lcoh(ﬂm +ns43)((n1 +2)

x TPC(0)(hy)
(349)

(For the following compare SecOps.pdf) We analyze the factor C(ou, \)T10¢
more precisely we study the effect of this operator on the cohomology. Let us
look at the map between complexes
T%* : Homg (A*(g/t), I Dy, © My) = Homg (A®*(g/), IF Dy, ® M))
(350)

The intertwining operator T2 : I§D,, — I}C;VDX“, has a kernel D, , this is a

discrete series representation. We know that
Hompg  (A®(g/t),Dy, ® M) = Homg (A3(g/{%),DX“ ®@M,) = (351)
H?(g, Koo, Dy, ® My) = CQaq & CQy 5 (352)

We have the surjective homomorphism

H3(g, Koo, Dy, @ My) — H3(A3(g/€), IEDy, @ My) = H' (m, KX D, ® H*(up, M) = Cw®
(353)

the differential form Qy 1 +¢(A\)Q; 5 maps to a non zero multiple A(\)w®). (The
factor () is a sign depending on \). We can write Q21 — €(A)§2; 2 = dip where

¢ € Hompg__ (A%(g/t),Dy, ® M) (354)

and w = T'9%2(¢)) € Hompg (A2(g/{%),’DXM, ® M) is a closed form, hence it
provides a cohomology class. Let us denote this cohomology class by KZ(UJ(?’)).

Choosing w®) as a basis element and applying the Eisenstein intertwining
operator (345) yields a homomorphism

Eis® 0 @, : H,l(S%I,MA(w Np))(ogou) = HYSE . My®C)  (355)

The local intertwining operator 7'2¢ maps w(®) to zero and hence it follows
that the composition r o Eis(3)~is the identity, the Eisenstein intertwining oper-
ator yields a section on H' (S¥, Ma(w - X)r))(oy). (Remember w = sy51). If
we define '

H(SE,, Mar)(oy) = T’l(Hzl(Sff}mMA(w -Mr)) (o)) (356)

(Induction does not play a role since the level is one) then we get the decompo-
sition

HP(SE,, Mip) ® Hi(SE,, Marp)(of) = H(SE,, Mar)(o5) (357)
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7.2.2 The denominator of the Eisenstein class

We restrict this decomposition to the integral cohomology (better the image of
the integral cohomology in the cohomology with rational coefficients)

H3 (SR, Map)(05) D HP 1o(SE,, Map) (o) & HY i (SR, Mar) (o)
(358)
The image of H3; g, (ng , My p)(oy) under 7 is a submodule of finite index in

H} 1 (SM, My (w - A)p))(os)) and the quotient is
’ f

H3 (SR, Map)(05)/(HE 1 (S, Map) (05) & Hiy mio(SE, Mar)(of)) =
H (S}, Ma(w - N ) (o)) /image(r).
(359)

The quotient on the right hand side is Op/A(o) where A(oy) is the denomi-
nator ideal. Tensoring the exact sequence

0 = HY 10y (SE,» Mar)(04) © Hip pis(SE,» Mar)(a5) — Hlinc(S?ffM,MA(w A)r))(of)) = Op/Aloy) =0
(360)

by Or/A(oy) yields an inclusion

Torp, (Or/A(oy), Or/A(os) = Or [A(0)) = HY 10 (SE,» Mar)(o7) © O /A(oy)
(361)

and this explains the congruences.

7.2.3 The secondary class

We choose generators w®) () ( resp. w(® (o}" |vp,|?/7)) for Hlint(S??M , M (w-
¥

Nr))(og)( resp. HY . (SKMM,M)\(SQ -A))(oy)) (Perhaps we can do this only lo-
s
cally on Spec(OFr).) We may arrange these generators such that 7% (o) (w® (o)) =
w®@ (o}" |vp,¢127). The isomorphism
B & (5, Koo, Dy, M) & Ha, 95, € =5 Hy (ST, Ma(w - N a0 )
(362)

maps
(Q21+eN)Q12)@ w(3)(L oof) = Qy(of,t)w(oy)

where Q4 (oy,¢) is a period depending on the choice of ®,. The element
Qo1 — e\ 2) @w®(Loos) =dp @w® (Looy).

where 1) € Homg_ (A%(g/€), 1§D, ® M,). The operator T'°°(0) in (348) pro-
vides a homomorphism (350)

T2 QT s Homye,, (A%(g/8), 1§Dy, M) ®Hion, — Homi (\2(/8), 1Dy, OMAOH o 11 7))
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Under this homomorphism the class 1) is mapped to a multiple of w(?) (a;ﬁ“" Ive,£1277)).
We can calculate this multiple, during this calculation we see a second period
Q_(oy,t) depending on ®, and the ratio of these periods will be our period
Q(tooy) in formula (341) .

This period is independent of ®,. To state the final result we denote by f
the modular cusp form attached to o, this is a modular form with coefficients
in F, then ¢ o f is a modular form with coefficients in C. By A(f,s) we denote
the usual completed L -function. We get

(o, )T (k(w® (10 o) =

( 1 A (uo finy +ng +2) 1 )C’(—”l)w(z)(
Qog,0))etEm) Acob (Lo fong +ng +3) (=1 —nyq) 7

The factor inside the large brackets is essentially rational ( it is in F and

T L))

behaves invariantly under the action of the Galois group) the factor @
should viewed as a generator of a group of extension classes of mixed motives.

For me the most difficult part in the calculation is the treatment of the
intertwining operator at oo, this is carried out in SecOps.pdf. At the end of
SecOps.pdf. I discuss the arithmetic applications and the conjectural relation-
ship between the primes dividing the denominator of the expression in the large
brackets and the denominators of the Eisenstein classes in (135)
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