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1 The spaces

1.1 The (generalized) symmetric spaces

Our basic datum is a connected reductive group G/Q. Let G(1)/Q be its derived
group and let C/Q its centre. Then G(1)/Q is semi simple and C/Q is a torus.
The multiplication provides a canonical map

m : C ×G(1) → G (1)

it is is an isogeny, this means that the kernel µC = C∩G(1) of this map is a finite
group scheme of multiplicative type. A finite group scheme of multiplicative
type is simply an abelian group together with an action of the Galois group
Gal(Q̄/Q) on it. If we have such an isogeny as in (1) we write G = C ·G(1).

Let S/Q be the maximal Q -split torus in C/Q. Up to isogeny we have
C = C1 · S where C1 is the maximal anisotropic subtorus of C/Q. We also
introduce the group G1 = G(1) · C1. We have an exact sequence

1→ G(1) → G
dC−→ C ′ → 1,
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the quotient C ′ is a torus and the restricted map dC : C → C ′ is an isogeny.

If G̃(1)/Q is the simply connected covering of G(1), then we get an isogeny

m1 : G̃ = G̃(1) × C1 × S → G (2)

Let g, g(1), c, c1, z be the Lie algebras of G/Q, G(1)/Q, C/Q, C1/Q, S/Q, then
the differential of m1 induces an isomorphism

Dm1 : g→ g(1) ⊕ c1 ⊕ z (3)

On g we have the Killing form B : g × g → Q be the Killing form, it is
defined by the rule

(T1, T2) 7→ trace(ad(T1) ◦ ad(T2)) (4)

(See [chap2] 1.2.2) The Killing form is actually a bilinear form on g(1) = g/(c1⊕z)
and the restriction B : g(1)× g(1) → Q is nondegenerate (see chap2 and chap4).

An automorphism Θ : G̃(1) ×Q R→ G̃(1) ×Q R is called a Cartan involution
if Θ2 = Id and if the bilinear form

BΘ(T1, T2) = B(T1,Θ(T2)) (5)

on g⊗ R is negative definite.
If Θ is a Cartan involution then it induces an automorphism -also called Θ-

on the Lie algebra gR = g⊗ R and decomposes it into a + and a − eigenspace

gR = k⊕ p (6)

and then clearly the + eigenspace k is a Lie subalgebra and [p, p] ⊂ k. The Killing
form is negative definite on k and positive definite on p. This explains the above
assertion on BΘ.

The topological group of real points G̃(1)(R) is connected (see ref?). Then
we have the classical theorem

Theorem 1.1. The fixed group K
(1)
∞ = G̃(1)(R)Θ is a maximal compact sub-

group and it is also connected. The Cartan involutions are conjugate under the
action of G̃(1)(R), and therefore the maximal compact subgroups of G̃(1)(R) are
conjugate.

We introduce the space X̃(1) of Cartan involutions on G̃(1) ×Q R, it is a
homogenous space under the action of G̃(1)(R) by conjugation and if we choose

a Θ or K
(1)
∞ then

X̃(1) = G̃(1)(R)/K(1)
∞ (7)

This is the symmetric space attached to G̃(1) ×Q R.

Proposition 1.1. The symmetric space X̃(1) = G̃(1)(R)/K
(1)
∞ is diffeomorphic

to Rd, where d = dim p, it carries a Riemannian metric which is G̃(1)(R) in-
variant.
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We have to be aware that it may happen that Θ is the identity. Then

G̃(1)(R) = K
(1)
∞ and our symmetric space is a point.

We extend Θ to an involution on G̃×R it will be simply the identity on the
other two factors. Then it also induces an involution, again called Θ on G×R.

We return to our reductive group G/Q. We compare it to G̃ via the ho-
momorphism m1 in (2). Let KC

∞ be the connected component of the identity
of the maximal compact subgroup in C1(R) and let Z ′(R)0 be the connected
component of the identity of the group of real points a subtorus Z ′ ⊂ S. Then
we put

K∞ = m1(K(1)
∞ ×KC

∞ × Z ′(R)0)

This group K∞ is connected and if we divide by Z ′(R)0 it is compact, more
precisely we can say that K∞/Z

′(R)0 is the connected component of a maximal
compact subgroup in G(R)/Z ′(R)0. The choice of the subtorus Z ′ is arbitrary
and in a certain sense irrelevant. We could choose Z ′ = Z then we call K∞
saturated , this choice is very convenient but it certain situations it is better to
make a different choice, for instance we may choose Z ′ = 1.

To such a pair (G,K∞) we attach the (generalized) symmetric space

X = G(R)/K∞.

Here are a few comments concerning the structure of this space. (see also
Chap II. 1.3) We observe that by construction K∞ is connected, hence we
have that K∞ ⊂ G(R)0. So if as usual π0(G(R)) denotes the set of connected
components, then we see that

π0(X) = π0(G(R)).

The connected component of the identity of G̃(R) maps under m1 to the
connected component of he identity of G(R), i.e.

G̃(R) = G̃(1)(R)× C1(R)0 × S(R)0 → G(R)0

and if we divide by K
(1)
∞ × KC

∞ × Z ′(R)0, resp. K∞ we get a diffeomorphism
with the connected component corresponding to the identity

G̃(1)(R)/K(1)
∞ × C1(R)0/KC

∞ × S(R)0/Z ′(R)
∼−→ X1 ⊂ X.

We want to describe the other connected components of X. It is well known that
we can find a maximal split torus S̃1 ⊂ G̃(1) × R which is invariant under our
given Cartan involution Θ. The homomorphism m1 maps G̃(1)(R) → G(1)(R).
The fixed group G(1)(R)Θ is a compact subgroup whose connected component

of the identity is the image of K
(1)
∞ under m1. Our torus S̃1 sits as the first

component in the maximal split torus

S̃2 = S̃1 × Csplit
1 × S

Then it is clear that Θ induces the involution t 7→ t−1 on S̃1. Let S2 be the
image of S̃2 under m1. We have the following proposition
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Proposition 1.2. a)The group of 2-division points S2[2] normalizes K∞.
b) We have an exact sequence

→ S̃2[2]→ S2[2]
r−→ π0(G(R))→ 0

c) If K0
∞ is the image of K

(1)
∞ ×KC

∞ then K0
∞ · S2[2] is a maximal compact

subgroup of G(R).

Proof. Rather obvious, the surjectivity of r requires an argument in Galois
cohomology. (Details later)

Now we can write down all the connected components. We choose a system
Ξ of representatives for S2[2]/S̃2[2] and for any ξ ∈ Ξ we get a diffeomorphism

G̃(1)(R)/K
(1)
∞ × C1(R)0/KC

∞ × S(R)0/Z ′(R)→ Xξ ⊂ X

g 7→ gξ

(8)

We may formulate this differently

Proposition 1.3. The multiplication from the left by S2[2] on G(R) induces
an action of S2[2]/S̃2[2] on X and this action is simple transitive on the set of
connected components.

Let x0 = K∞ ∈ X. For any other point x ∈ X we find an element g ∈ X
which translates x0 to x. Then the derivative of the translation provides an
isomorphism between the tangent spaces

Dg : Tx0 = p
∼−→ Tx.

This isomorphism depends of course on the choice of g. ( This will play a role
in section (4.1)). But we apply this to the highest exterior power and get an
isomorphism

Dg : Λd(p)
∼−→ Λd(Tx)

which does not depend on the choice of g because the connected group K∞ acts
trivially on Λd(p). Hence we can say that we can find a consistent orientation
on X : We chose a generator in Λd(p) the Dg yields a generator in Λd(Tx).

If our reductive group is an anisotropic torus T/Q, then we have for the
connected component of the identity

T (R)(0) ∼−→ (R×>0)a × (S1)b.

Then our maximal compact subgroup KT
∞ is simply the product of the circles

and
XT = T (R)/KT

∞

is nothing else than as disjoint union of copies of Ra. The situation is similar
for a split torus but then we have the freedom, to divide out the connected
component of a subtorus.

As a standard example we can take G/Q = Gl2/Q, then the connected
component of the real points of the centre is R×>0 and in this case we can take
K∞ = SO(2) · R×>0 ⊂ Gl2(R)). In this case the symmetric space is the union
of an upper and a lower half plane. It we choose for our split torus S1/R the
standard diagonal torus, then S1[2] is the group of diagonal matrices with entries
±1 and this normalizes K∞.
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1.2 The locally symmetric spaces

Let A be the ring of adeles, we decompose it into its finite and its infinite
part: A = R × Af . We have the group of adeles G(A) = G(R) × G(Af ). We
denote elements in the adele group by underlined letters g, h . . . and so on. If
we decompose an element g into its finite and its infinite part then we denote
this by g∞ × gf . Let Kf be a (variable) open compact subgroup of G(Af ). We

always assume that this group is a product of local groups Kf =
∏
pKp.

To get such subgroups we choose an integral structure (explain at some other
place) G/Spec(Z). Then we know that we have Kp = G(Zp) for almost all p.
Furthermore we know that G × Spec(Zp)/Spec(Zp) is a reductive group scheme
for almost all primes p.

If G/Spec(Z) and Kf are given, then we select a finite set Σ of finite primes
which contains the primes p where G/Zp is not reductive and those where Kp

is not equal to G(Zp). This set Σ will be called the set of ramified primes.
The general agreement will be that we use letters G, T ,U , . . . for group

schemes over the integers, or over Zp and then their general fiber will be
G,T, U, . . . .

Readers who are not so familiar with this language may think of the simple
example where G/Q = GSpn/Q is the group of symplectic similitudes on V =
Q2n = Qe1 ⊕ · · · ⊕ Qen ⊕ Qf1 ⊕ · · · ⊕ Qfn with the standard symplectic form
which is given by < ei, fi >= 1 for all i and where all other products zero.
The vector space contains the lattice L = Z2n = Ze1 ⊕ · · · ⊕ Zen ⊕ Zf1 ⊕ · · · ⊕
Zfn. This lattice defines a unique integral structure G/Z on G/Q for which
G(Zp) = {g ∈ G(Qp)|g(L ⊗ Zp) = (L ⊗ Zp)}. In this case the group scheme
is reductive over Spec(Z). This integral structure gives us a privileged choice
of an open maximal compact subgroup: Within the ring Af of finite adeles

we have the ring Ẑ = lim
←

Z/mZ of integral finite adeles and we can consider

K0
f = G(Ẑ) =

∏
p G(Zp). This is a very specific choice. In this case the set

Σ = ∅, we say that Kf = K0
f is unramified.

Starting from there we can define new subgroups Kf by imposing some
congruence conditions at a finite set Σ of primes. These congruence conditions
then define congruence subgroups Kp ⊂ K0

p . This set Σ of places where we
impose congruence condition will then be the set of ramified primes.(See the
example further down.) Then we define the level subgroup

Kf =
∏
p∈Σ

Kp ×
∏
p 6∈Σ

G(Zp). (9)

The space (G(R)/K∞)× (G(Af )/Kf ) can be seen as a product of the sym-
metric space and an infinite discrete set, on this space G(Q) acts properly dis-
continuously (see below) and the quotients

SGKf = G(Q) \ (G(R)/K∞ ×G(Af )/Kf )

are the locally symmetric spaces whose topological properties we want to study.
We denote by

π : G(R)/K∞ ×G(Af )/Kf → SGKf = G(Q) \ (G(R)/K∞ ×G(Af )/Kf ) ,

the projection map.
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To get an idea of how this space looks like we consider the action of G(Q)
on the discrete space G(Af )/Kf . It follows from classical finiteness results that

this quotient is finite, let us pick representatives {g(i)
f }i=1..m. We look at the

stabilizer of the coset g
(i)
f Kf/Kf in G(Q). This stabilizer is obviously equal to

Γ
g(i)

f = G(Q) ∩ g(i)
f Kf (g

(i)
f )−1 which is an arithmetic subgroup of G(Q). This

subgroup acts properly discontinuously on X (See Chap. II, 1.6).

Now we call the level subgroup Kf neat, if all the subgroups Γ
g(i)

f are torsion
free. It is not hard to see, that for any choice of Kf we can pass to a subgroup
of finite index K ′f , which is neat. Then we have

1.2.1 For any subgroup Kf the space SGKf is a finite union of quotient spaces

Γ
g(i)

f \ X where X = G(R)/K∞ and the Γi = Γ
g(i)

f are varying arithmetic
congruence subgroups. If Kf is neat, these spaces are locally symmetric spaces.
If Kf is not neat then we may pass to a neat subgroup K ′f which is even normal

in Kf : We get a covering SGK′f → S
G
Kf

which induces coverings Γ′j\X → Γi\X,

where the Γ′j are torsion free and normal in Γi. So we see that in general the

quotients are orbifold locally symmetric spaces. For any point y ∈ SGKf we can

find a neighborhood Vy such that π−1(Vy) is the disjoint union of connected
components Wx, x = (x∞, gf ) ∈ π−1(y), and Vy = Γx∞\Wg

f
, where Γx∞ is the

stabilizer of x∞ intersected with Γ
g
f .

We will consider the special case where G/Q is the generic fibre of a split
reductive scheme G/Z. In that case we can choose Kf =

∏
p G(Zp), this is then

a maximal compact subgroup in G(Af ). Then Kf is unramified we will also say
that the space SGKf is unramified. If in addition the derived group G(1)/Q is

simply connected, then it is not difficult to see, that G(Q) acts transitively on
G(Af )/Kf and hence we get

SGKf
∼−→ G(Z)\X.

The homomorphism G(Z) → π0(C ′(R)) is surjective we can conclude that
G(Z) acts transitively on π0(X) and if Γ0 is the stabilizer of a connected com-
ponent X0 of X then we find

SGKf
∼−→ Γ0\X0

especially we see that the quotient is connected. We discuss an example.
We start from the group G/Spec(Z) = Gln/Spec(Z) then we may choose

K∞ = SO(n) × R×>0 ⊂ Gln(R). and X = Gln(R)/K∞ is the disjoint union of
two copies of the space X of positive definite symmetric (n× n) matrices up to
homothetie by a positive scalar (or what amounts to the same with determinant
one). If we choose Kf as above then we find

SGKf = Sln(Z)\X.

We have another special case. Let us assume that G/Q is semi simple and
simply connected. The group G × R is a product of simple groups over R and
we assume in addition that no no simple factor is compact. Then we have the
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strong approximation theorem (Kneser and Platonov) which says that for any
choice of Kf the map from G(Q) to G(Af )/Kf is surjective, i.e. any g

f
∈ G(Af )

can be written as g
f

= akf , a ∈ G(Q), kf ∈ Kf . This clearly implies that then

SGKf = Γ\G(R)/K∞ (10)

where Γ = Kf ∩G(Q).

There is a contrasting case, this is the case when G/Q is still semi simple
and simply connected, but where G(R) is compact. In this case our symmetric
space X is simply a point ∗ and

SGKf = G(Q)\(∗ ×G(Af )/Kf ).

In this case the topological space is just a discrete set of points. So it looks
as if this is an entirely uninteresting and trivial case, but this is not so. To
determine the finite set and the stabilizers is a highly non trivial task. Later
we will construct sheaves and discuss the action of the Hecke algebra on the
cohomology of these sheaves. Then it turns out that this case is as difficult as
the case where Γ\X becomes an honest space.

In the choice of our group K∞ a subtorus Z ′ ⊂ S enters. The choice of
this subtorus has very little influence on the structure of our locally symmetric
space SGKf . Remember that the isogeny m in (1) induces an isogeny C → C ′ and

this isogeny yields an isogeny from S to the maximal split subtorus S′ ⊂ C ′.
This homomorphism induces an isomorphism S(R)0 → S′(R)0. If G1(R) is the
inverse image of the the group of 2-division points S′[2] then we get from this
isomorphism that G(R) = G1(R) × S(R)0. If we now consider the two spaces
SGKf and (SGKf )†, the first one defined with an arbitrary torus Z ′ the second one

with Z ′ = S then the arguments above imply that

SGKf = (SGKf )† × (S(R)0/Z ′(R)0) (11)

the second factor on the right hand side is isomorphic to Rb and since we are
interested in the cohomology group of this space, it is irrelevant.

In certain situations we encounter cases where it is natural to choose a
subgroup K∞ which is slightly larger and not connected. If this is the case we

denote the connected component K
(1)
∞ and we get two locally symmetric spaces

and a finite map

G(Q) \
(
G(R)/K(1)

∞ ×G(Af )/Kf

)
→ G(Q) \ (G(R)/K∞ ×G(Af )/Kf ) (12)

This map is a covering if Kf is neat and the space on the right is a quotient
of the space on the left by an action of the finite elementary abelian [2]-group

K∞/K
(1)
∞ .

In accordance with the terminology in number theory we call the space SGKf
narrow if K

(1)
∞ = K∞ and in general we call the space on the left the narrow

cover of G(R)/K∞ ×G(Af )/Kf .

9



1.3 The group of connected components, the structure of
π0(SG

Kf
).

If we keep our assumptions that G/Q is split and G(1)/Q simply connected.
Then it is straightforward to show that under our assumptions we have a bijec-
tion

π0(SGKf )
∼−→ π0(SC

′

KC′
∞ ×KC′

f

) (13)

We have seen in the previous section that we can choose a consistent orien-
tation on X = G(R)/K∞ provided K∞ is narrow. Then it clear this induces
also a consistent orientation on SGKf .

1.4 The Borel-Serre compactification

In general the space SGKf is not compact. Recall that in the definition of this

quotient the choice of a subtorus Z ′/Q of S/Q enters. This If Z ′ 6= S then the
quotient will never be compact. But this kind of non compactness is ”uninter-
esting”. In the following we assume that Z ′ = S.

In this case we have the criterion of Borel - Harish-Chandra which says

The quotient space SGKf is compact if and only if the group G/Q has no
proper parabolic subgroup over Q.

If we have a non trivial parabolic subgroup P/Q then we add a boundary
part ∂PSGKf to SGKf it will depend only the G(Q)-conjugacy class of P. We will
describe this boundary piece later. We define the Borel-Serre boundary

∂(SGKf ) =
⋃
P

∂PSGKf ,

where P runs over the set of G(Q) conjugacy classes of parabolic subgroups.
We will put a topology on this space and if Q ⊂ P then ∂QSGKf will be in the

closure of ∂PSGKf . Then
¯SGKf = SGKf ∪ ∂(SGKf )

will be a compact Hausdorff-space.
We describe the construction of this compactification in more detail. In

chap4.pdf 2.7.1 we studied the group Hom(P,Gm) and have seen that

Hom(P,Gm)⊗Q = Hom(SP ,Gm)⊗Q.

For any character γ ∈ Hom(P,Gm) we get a homomorphism γA : P (A) →
Gm(A) = IQ, the group of ideles. We have the idele norm | | : x 7→ |x| from the
idele group to R×>0 and then we get by composing

|γ| : P (A)→ R×>0.

It is obvious that we can extend this definition to characters γ ∈ Hom(P,Gm)⊗
Q, for such a γ we find a positive non zero integerm such thatmγ ∈ Hom(P,Gm)
and then we define

|γ| = (|mγ|) 1
m

10



Later we will even extend this to a homomorphism Hom(P,Gm)⊗C→ Hom(P (A),C×)

by the rule XtimesC

γ ⊗ z 7→ |γ|z (14)

If we have a parabolic subgroup P/Q and a point (x, g
f
) ∈ X ×G(Af )/Kf

then we attach to it a (strictly positive) number

p(P, (x, g
f
)) = voldxu(U(Q) ∩ g

f
Kfg

−1
f
\U(R)). (15)

This needs explanation. The group U(Q) ∩ g
f
Kfg

−1
f

= ΓU,g
f

is a cocompact

discrete lattice in U(R), we can describe it as the group of elements γ ∈ U(Q)
which fix g

f
Kf , so it can be viewed as a lattice of integral elements where

integrality is determined by g
f
. The point x defines a positive definite bilinear

form BΘx on the Lie algebra g ⊗ R, and this bilinear form can be restricted
to the Lie-algebra uP ⊗ R and this provides a volume form dxu on U(R) the
above number is the volume of the nilmanifold ΓU,g

f
\U(R) with respect to this

measure.

If we are in the special case that G = Sl2/Q and Kf = Sl2(Ẑ) then a
parabolic subgroup P is a point r = p

q ∈ P1(Q) (or ∞) and then p(P, (z, 1)) is
small if z lies in a small Farey circle, i.e. it is close to r.

These numbers have some obvious properties
a) They are invariant under conjugation by an element a ∈ G(Q), this means

we have
p(a−1Pa, (x, g

f
)) = p(P, a(x, g

f
))

b) If p ∈ P (A) then we have

p(P, p(x, g
f
)) = p(P, (x, g

f
))|ρP |2

The G(Q) conjugacy classes of parabolic are in one to one correspondence
with the subsets π′ of the set relative simple roots πG :The minimal parabolic
corresponds to the empty set, the non proper parabolic subgroup G/Q corre-
sponds to πG itself. In general π′ is the set of relative simple roots of the semi
simple part of the reductive quotient of the parabolic subgroup. For a parabolic
subgroup P ′ corresponding to π′ we put d(P ′) = #(πG \π′). For any i ∈ πG \π′
we have a fundamental character

γi : P → Gm.

We have the Borel-Serre compactification

i : SGKf → S̄
G
Kf

The compactification is a manifold with corners, the boundary is stratified

∂(S̄GKf ) =
⋃
P

∂P (S̄GKf )

11



where P runs over the G(Q) conjugacy classes of parabolic subgroups. If P ⊂ Q
then the stratum ∂Q(S̄GKf ) ⊂ ∂P (S̄GKf ).

Locally at a point x ∈ ∂P (S̄GKf ) we find neighborhoods of x in S̄GKf which
are of the form

Ux = Wx × {. . . , ui, . . . }i∈πG\π′; 0≤ui<ε (16)

where Wx is a neighborhood of x in the orbifold ∂P (S̄GKf ). The intersection
◦
Ux= Ux ∩ SGKf consists of those elements where all the ui > 0.

1.5 The easiest but very important example

If we take for instance G/Z = Gl2/Z and if we pick an integer N then we can

define the congruence subgroup Kf (N) =
∏
pKp(N) ⊂ G(Ẑ). It is defined by

the condition that at all primes p dividing N the subgroup

Kp(N) = {γ ∈ G(Ẑ)|γ ≡ Id mod pnp}

where of course pnp is the exact power of p dividing N . At the other primes we
take the full group of integral points. For the discussion of the example we put
Kf (N) = Kf .

If we consider the action of G(Q) on G(Af )/Kf then the determinant gives
us a map

Gl2(Q)\Gl2(Af )/Kf → Gm(Af )/Q∗UN
where UN is the group of unit ideles in IQ,f = Gm(Af ) which satisfy up ≡ 1
mod pnp . This map is a bijection as one can easily see from strong approxima-
tion in Sl2, and the right hand side is equal to (Z/NZ)∗/{±1}. At the infinite
place we have that our symmetric space has two connected components, we have

X = Gl2(R)/SO(2) = C \ R = H+ ∪H−
where H± are the upper and lower half plane, respectively. We have a complex
structure on X which is invariant under the action of Gl2(R). The connected
components of this quotient correspond (one to one)to the elements in

Gm(A)/Gm(Q)(Gm(R)0 × UN ) = IQ/Q∗R∗>0UN = (Z/NZ)∗.

We put Γ(N) = G(Q) ∩Kf and then the components are

Γ(N)\
(
t∞ 0
0 1

)
H+ ×

(
tf 0
0 1

)
Kf/Kf

where t runs through a set of representatives of IQ/Q∗R∗>0UN = (Z/NZ)∗.
These connected components are Riemann surfaces which are not compact.

They can be compactified by adding a finite number of points, the so called
cusps. These are in one to one correspondence with the orbits of Γ(N) on
P1(Q) (see reduction theory).

(Compare to Borel-Serre)
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2 The sheaves, their cohomology and the action
of the Hecke algebra

2.1 Basic data and simple properties

Let M be a finite dimensional Q-vector space, let

r : G/Q→ Gl(M)

a rational representation. This representation r provides a sheaf M̃ on SGKf
whose sections on an open subset V ⊂ SGKf are given by

M̃(V ) = {s : π−1(V )→M|s locally constant and s(γv) = r(γ)s(v), γ ∈ G(Q)}.

We call this the right module description of M̃.
We can describe the stalk of the sheaf in a point y ∈ SGKf , we choose a point

x = (x∞, gf ) in π−1(y) and we choose a neighborhood Vy as in 1.2.1. Then we

can evaluate an element s ∈ M̃(Vy) at x and this must be an element inMΓx∞ ,
this means we get an isomorphism

ex : M̃y
∼−→MΓx∞ .

By definition we have eγx = γex.

In our previous example such a representation r is of the following form: We
take the homogeneous polynomials P (X,Y ) of degree n in two variables and
with coefficients in Q. This is a Q-vector space of dimension n + 1, we choose
another integer m and now we define an action of Gl2/Q on this vector space(

a b
c d

)
P (X,Y ) = P (aX + cY, bX + dY ) det(

(
a b
c d

)
)m.

This Gl2 module will be calledMn[m] and it yields sheaves M̃n[m] on our space
SGKf .

It is sometimes reasonable to start from an absolutely irreducible represen-
tation and therefore we consider representations defined after a base change
r : G ×Q F → Gl(M) where M is a finite dimensional F vector space and the
action is absolutely irreducible. Since G(Q) acts on M we can define a sheaf
M̃ of F vector spaces.

If our group is a torus T/Q, then we can find a finite normal extension E/Q
such that T ×Q E is split and then we denote by

X∗(T ) = Hom(T × E,Gm) resp X∗(T ) = Hom(Gm, T ×Q E) (17)

the character (resp. ) cocharacter module of T/Q. Both modules come with
an action of the Galois group Gal(E/Q). In this case an absolutely irreducible
representation is simply a character γ ∈ X∗(T ) and we denote by E[γ] a one

dimensional E-vector space on which T/Q acts by γ. Then ˜E[γ] is a sheaf of
F -vector spaces on ST

KT
f
.
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2.1.1 Integral coefficient systems

We assume again that we have a rational representation of our group G/Q, the
following considerations easily generalize to the case of an arbitrary number field
as base field. We want to define a subsheaf M̃Z ⊂ M̃. To do this we embed the
field Q ↪→ Af and we consider the resulting sheaf of Af -modules M̃ ⊗ Af . We
consider the diagram

G(R)/K∞ × (G(Af )/Kf )

G(R)/K∞ ×G(Af ) SGKf

G(Q)\G(R)/K∞ ×G(Af )


Π

................................................................................................................................................... ..........
..

Π1

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

..........................
............

Π2

....................
.....................

....................
.....................

....................
....................

...........................
............

π′
.................................................................................................................................................................................................................................... ..........

..

π

(18)

this means that the division by the action by Kf on the right and by G(Q)
on the left (this gives Π) is divided into two steps: In the lower diagram the
projection Π1 is division by the action of G(Q) and then Π2 gives the division
by the action of Kf on the right.

The sheaf M̃ ⊗Q Af can be rewritten. For any open subset V ⊂ SGKf we

consider W = Π−1(V ) and by definition

M̃ ⊗Q Af (V ) = {s : Π−1(W )→M⊗Q Af |s(γ(x∞, gfkf )) = γ(s(x∞, gf )),

where these sections s are locally constant in the variable x∞. For any s ∈
M⊗ Af (V ) we define a map s̃ : W →M⊗ Af by the formula

s̃(x∞, gf ) = g−1
f
s(x∞, gfKf ),

this makes sense because M⊗ Af is a G(Af )− module. For γ ∈ G(Q) we
have s̃(γ(x∞, gf )) = s̃((x∞, gf )) hence we can view s̃ as a map

s̃ : G(Q)\G(R)/K∞ ×G(Af )→M⊗Q Af .

We consider the projection

Π2 : G(Q)\G(R)/K∞ ×G(Af )→ G(Q)\G(R)/K∞ ×G(Af )/Kf = SGKf

and then it becomes clear that M̃ ⊗ Af can be described as

M̃ ⊗ Af (V ) = {s̃ : (Π−1
1 (V )→M⊗Q Af |

s̃ locally constant in x∞ and s̃((x∞, gfkf )) = k−1
f s̃((x∞, gf ))}.

14



Hence we have identified the sheaf M̃⊗QAf which is defined in terms of the

action of G(Q) on M to the sheaf M̃ ⊗Q Af which is defined in terms of the
action of Kf on M⊗Q Af .

Now we assume that our group scheme G/Q is the generic fiber of a flat
group scheme G/Spec(Z) (See 1.2). We choose our maximal compact subgroup
Kf =

∏
pKp such that Kp ⊂ G(Zp) and with equality for all primes outside a

finite set Σ. We can extend the vector space M to a free Z module M̃Z of the
same rank which provides a representation G/Spec(Z)→ Gl(MZ).

As usual Ẑ will be the ring of integral adeles. Then it is clear thatMZ⊗ Ẑ ⊂
M⊗Q Af is invariant under Kf and hence we can define the sub sheaf

M̃Z ⊗ Ẑ ⊂ M̃ ⊗Q Af ,

this is the sheave where the sections s̃ have values in MZ ⊗ Ẑ. We put

M̃Z = M̃Z ⊗ Ẑ ∩ M̃,

of course it depends on our choice ofMZ ⊂M. We get two exact sequences
of sheaves

0 → M̃Z → M̃ → ˜M⊗ (Q/Z)→ 0
↓ ↓ ↓

0 → M̃⊗ Ẑ → M̃⊗Q Af → ˜M⊗ (Af/Ẑ)→ 0

The far most vertical arrow to the right is an isomorphism, the inclusions
Z ↪→ Ẑ and Q ↪→ Af are flat. Writing down the resulting long exact sequences
provides a diagram

→ H•(SGKf ,M̃Z)
jQ−→ H•(SGKf ,M̃) →

↓ iZ ↓ iQ
→ H•(SGKf ,M̃ ⊗ Ẑ)

jA−→ H•(SGKf ,M̃ ⊗Q Af ) →
.

The above remarks imply that the vertical arrows are injective, the horizontal
arrows in the middle have the same kernel and kokernel. This implies

Proposition 2.1. The integral cohomology

H•(SGKf ,M̃Z)

consists of those elements in H•(SGKf ,M̃ ⊗ Ẑ) which under jA go to an element
in the image under iQ or in brief

H•(SGKf ,M̃Z) = j−1
A (im(iQ))

This generalizes to the case where we have a representation r : G × F →
Gl(M) where M is a vector space over F. If our group scheme is an extension
of a flat group scheme G/Spec(OF ) then can find a latticeMOF which yields a
representation of G → Gl(MOF ). Then we can define the sheaf M̃OF and define
the cohomology groups

H•(SGKf ,M̃OF )

15



2.1.2 Sheaves with support conditions

We can extend the sheaves to the Borel-Serre compactification. We have the
inclusion

i : SGKf → S̄
G
Kf

and we can extend the sheaf by the direct image functor i∗(M̃). It follows easily
from the description of the neighborhood of a point in the boundary (see 16)
that Rqi∗(M) = 0 for q = 0 and hence we get that the restriction map

H•(S̄GKf , i∗(M̃))→ H•(SGKf ,M̃)

is an isomorphism.
We may also extend the sheaf by zero (See [Vol I], 4.7.1), this yields the

sheaf i!(M̃) whose stalk at x ∈ SGKf is equal to M̃x and whose stalk ist zero in

points x ∈ ∂SGKf . Then we have by definition

H•c (SGKf ,M̃) = H•(S̄GKf , i!(M̃))

this is the cohomology with compact supports.
We are interested in the integral cohomology modulesH•(SGKf ,M̃Z), H•c (SGKf ,M̃Z).

We introduced the boundary ∂SGKf of the Borel-Serre compactification then we
have a first general theorem, which is due to Raghunathan.

Theorem 2.1. (i) The cohomology groups Hi(SGKf ,M̃Z), Hi(∂SGKf ,M̃Z) and

Hi
c(SGKf ,M̃Z) are finitely generated.

(ii) We have the well known fundamental long exact sequence in co-
homology

−→ Hi−1(∂SGKf ,M̃Z) −→ Hi
c(SGKf ,M̃Z) −→ Hi(SGKf ,M̃Z)

r−→ Hi(∂SGKf ,M̃Z) −→ .

We introduce the notation H?(SGKf ,M̃Z) meaning that for ? = blank we
take the cohomology without support, for ? = c we take the cohomology with
compact support and for ? = ∂ we take cohomology of the boundary of the
Borel-Serre compactification. Later on we will also allow ? =! this denotes the
inner cohomology. The above proposition holds for all choices of ?.

Let Σ = {P1, . . . , Ps} be a finite set of parabolic subgroups, we assume that
none of them is a subgroup of another parabolic subgroup in this set. The union
of the closures of the strata⋃

i

⋃
Q⊂Pi

∂Q(SGKf ) = ∂Σ(SGKf )

is closed .

jΣ : SGKf → S̄
G
Kf
\ ∂Σ(S̄GKf ), jΣ : S̄GKf \ ∂Σ(S̄GKf )→ S̄GKf .

The inclusion i : SGKf → S̄
G
Kf

is the composition i = jΣ ◦ jΣ we define the
intermediate extension

iΣ,∗,!(M̃) = jΣ
! ◦ jΣ,∗(M̃). (19)
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For these sheaves with intermediate support conditions we can also formulate
assertion like in the above theorem. Later we will discuss an increasing filtration

W0H
•(SGKf ,M̃) = H•! (SGKf ,M̃) ⊂W1H

•(SGKf ,M̃) ⊂ . . . (20)

on the cohomology, the bottom of this filtration will be the inner cohomology,

2.1.3 Functorial properties

The groups have some functorial properties if we vary the level subgroup Kf .
If we pass to a smaller open subgroup K ′f ⊂ Kf then we get a surjective map

πKf ,K′f : SGK′f → S
G
Kf
,

whose fibers are finite. This induces maps between cohomology groups

πK′f ,Kf
•
?

: H•? (SGKf ,M̃Z)→ H•? (SGK′f ,M̃Z),

for ? = c we exploit the fact that the fibers are finite.
We construct homomorphisms in the opposite direction. We exploit the

finiteness a second time and find that the direct image functor (πK′f ,Kf )∗ is

exact and hence

H•? (SGK′f ,M̃Z) = H•? (SGKf , (πK′f ,Kf )∗(M̃Z)).

We define a trace homomorphism (πK′f ,Kf )∗(M̃Z) → M̃Z: A section s ∈
(πK′f ,Kf )∗(M̃Z)(V ) is a map s̃ : Π−1(V )→ M̃λ ⊗ Ẑ such that

s̃(γ(x∞, gfk
′
f )) = (k′f )−1s̃((x∞, gf )) for all k′f ∈ K ′f .

This is a section of M̃Z if and only if the corresponding section s takes values
in M. Then we define

tr(s̃)(x∞, gf ) =
∑

ξ
f
∈Kf/K′f

ξ−1

f
s̃(x∞, gf )

and this now satisfies

tr(s̃)(γ(x∞, gfkf )) = k−1
f s̃((x∞, gf )) for all kf ∈ Kf .

and since the corresponding section tr(s) takes values inM we see that tr(s̃) ∈
M̃Z(V ).

Remark: It may happen that this trace map is not the optimal choice, it can
be the integral multiple of another homomorphism between these two sheaves.
This happens the intersection C(Q) ∩Kf is non trivial.

Then the homomorphism between the sheaves induces

H•? (SGK′f ,M̃Z) = H•? (SGKf , (πK′f ,Kf )∗(M̃Z))
πK′

f
,Kf •−→ H•? (SGKf , (M̃Z)).

Later on our maps between the spaces will be denoted π, π1, . . . and the
notation simplifies accordingly.
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2.2 The rational cohomology groups and the Hecke-algebra

In this section we assume that our coefficient systems are obtained from rational
representations of a reductive group schemeG/Q hence they are Q vector spaces.
We discuss some further properties of the rational cohomology groups

Hi
c(SGKf ,M̃Q), Hi(SGKf ,M̃Q) . . . .

These cohomology groups are finite dimensional Q-vector spaces and we have
the same exact fundamental sequence. We can also pass to the direct limit

Hi
?(SG,M̃) = lim

Kf
Hi

?(SGKf ,M̃).

Proposition 2.2. On these limits we have an action of the group π0(G(R))×
G(Af ). We recover the cohomology with fixed level Kf by taking the invariants
under this action, i.e. we have

Hi
?(SG,M̃)Kf = Hi

?(SGKf ,M̃)

To define this action we represent an element in π0(G(R)) by an element
k∞ in the in the normalizer of K∞ in G(R). An element x = (k∞, xf ) ∈
G(R)×G(Af )) defines by multiplication from the right an isomorphism of spaces

mx : G(Q)\X ×G(Af )/Kf
∼−→ G(Q)\X ×G(Af )/x−1

f Kfxf .

It is clear from the definition that mx yields a bijection between the fibers
π−1(ḡ), ḡ ∈ G(Q)\X × G(Af )/Kf and π−1(mx)(ḡ) and since the sheaf is de-

scribed in terms of the left action by G(Q) we get mx,∗(M̃) = M̃. Passing to
the limit gives us the action. The second assertion is obvious, but here we need
that our coefficients are Q vector spaces, we need to take averages.

We introduce the Hecke algebra, it acts on the cohomology with a fixed level.
It consists of the compactly supported Q−valued functions h : G(Af ) → Q
which are biinvariant under the action of Kf and is denoted by H = HKf =
Cc(G(Af )//Kf ,Q). An element h ∈ H is simply a finite linear combination of
characteristic functions h =

∑
cafχKfafKf with rational coefficients caf . The

algebra structure is given by convolution with respect to the Haar measure on
G(Af ) which gives volume 1 to Kf . This convolution is given by

h1 ∗ h2(g
f
) =

∫
G(Af )

h1(xf )h2(xf
−1g

f
)dxf .

With this choice of the measure it is clear that the characteristic function of Kf

is the identity element of this algebra.
The action of the group G(Af ) induces an action of HKf on the cohomology

with fixed level Hi
c(SGKf ,M̃), Hi(SGKf ,M̃), · · · : For an element v ∈ Hi

?(SG,M̃)
we define

Th(v) =

∫
G(Af )

h(xf )xfvdxf ,

where the measure is still the one that gives volume 1 to Kf . Clearly we have
Th1∗h2

= Th1
Th2

.
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(Actually the integral is a finite sum: We find an open subgroup K ′f ⊂ Kf

such that v is fixed by K ′f and then it is clear that

Th(v) =

∫
G(Af )

h(xf )xfvdxf = 1[Kf : K ′f ]
∑
af

∑
ξ
f
∈G(Af )/K′f

cafχKfafKf )(ξf )ξ
f
v.

This makes it clear why we need rational coefficients .)
It is clear that Th(v) ∈ Hi

?(SGKf ,M̃) and hence Th gives us an endomorphism

of Hi
?(SGKf ,M̃). We will show later that we also get endomorphisms on the co-

homology of the boundary and therefore H also acts on the long exact sequence
(Seq) .

If our function h is the characteristic function of a double coset KfxfKf

then we change notation and write Th = ch(xf ). We give another definition
of the Hecke operator ch(xf ) in terms of sheaf cohomology. We imitate the

construction of the Hecke operators in Chap.II 2.2. We put K
(xf )

f = Kf ∩
xfKfx

−1
f and consider the diagram

SG
K

(xf )

f

mxf−→ SG

K
(x
−1
f

)

f

↘ π1 ↙ π2

SGKf

Hop1

where mxf
is induced by the multiplication by xf from the right. This yields

in cohomology

H•(SGKf ,M̃)
π•1−→ H•(SG

K
(xf )

f

,M̃)
mxf ,∗−→ H•(SG

K
(x
−1
f

)

f

,mxf ,∗(M̃)) (Hop2).

Since we described the sheaf by the action of G(Q) and the map mxf
by mul-

tiplication from the right we have mxf ,∗(M̃) = M̃, this yields an isomorphism
ixf . Since π2 is finite we have the trace homomorphism

π2,• : H•(SG
K

(xf )−1

f

,M̃)→ H•(SGKf ,M̃)

and the composition is our Hecke operator

π2,• ◦ ixf ◦mxf ,∗ ◦ π
•
1 = ch(xf ) : H•(SGKf ,M̃)→ H•(SGKf ,M̃).

This is simpler than the construction Chap.II 2.2. because we do not need
the intermediate homomorphism uα. But we we do not get Hecke operators on
the integral cohomology.

2.3 The integral cohomology as a module under the Hecke
algebra

We resume the discussion of the integral Hecke algebra acting on H•? (SGKf ,M̃Z)
from Chapter II. Inside the Hecke algebra we may also look at the sub algebra
of Z -valued functions. This is in principle the algebra which is generated by the

19



characteristic functions ch(xf ) of double cosets KfxfKf . These characteristic

functions act by convolution on the cohomology H•(SGKf ,M) but this does
not induce an action on the integral cohomology. Our next aim is to define
a fractional ideal n(xf ) ⊂ Q or more generally n(xf ) ⊂ F such that for any
a ∈ n(xf ) we can define an endomorphism

a · ch(xf ) : H•(SGKf ,M̃λ)→ H•(SGKf ,M̃λ )

and if we send this to the rational cohomology then on H•(SGKf ,M) this will

be the convolution endomorphism induced by ch(xf ) multiplied by a.
This ideal will depend on xf and on λ and further down we compute it in

special cases.

(iv) These endomorphisms a · ch(xf ) generate an algebra H(λ)
Z acting on the

integral cohomology and the arrows in our sequence above commute with this
action.

v) Moreover, we have an action of π0(G(R)) on the above sequence and this
action also commutes with the action of the Hecke algebra. Hence we know that

our above sequence is long exact sequence of π0(G(R))×H(λ).
Z

We come to the definition of the ideal.

If we are in the special case that our group has strong approximation then
we have

Γ\X ∼−→ G(Q)\X ×G(Af )/Kf

(See (10)). We pick an element α ∈ G(Q). In Chap. II , 2.2 we defined the
Hecke operator T (α, uα) where uα :M(α) →M is the canonical choice. Let us
denote the image of α in G(Af ) by αf . We just attached a Hecke operator to
the double coset Kfαf .Kf . We have the diagram of spaces

Γ(α)\X G(Q)\G(R)/K∞ ×G(Af )/K
αf
f

Γ(α−1)\X G(Q)\G(R)/K∞ ×G(Af )/K
α−1
f

f

....................................................................................................................................................................................... ............

......................................................................................................................
.....
.......
.....

l(α−1)

......................................................................................................................
.....
.......
.....

r(αf )

................................................................................................................................................................ ............

(21)

Here the horizontal arrows are the isomorphisms provided by strong approxi-
mation, the arrow l(α−1) is the isomorphism induced by left multiplication by
α−1 and r(αf ) by right multiplication by αf . These two maps enter in the def-

inition of the Hecke operators T (α−1, uα−1) and ch(αf ) and a straightforward
inspection of the sheaves yields

ch(αf ) = T (α−1, uα−1).

Hence we can conclude that under this assumption our newly defined Hecke
operators coincide with the Hecke operators defined in Chap. II. This also
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tells us what we have to do if we want to define Hecke operators on integral
cohomology.

To define the action of the Hecke algebra on the integral cohomology without
the assumption of simple connectedness we have to translate their definition into

the right module description. Then our sheaf M̃ ⊗ Af is described by the action

of Kf on M⊗ Af and this allows us to define the sub sheaf MZ ⊗ Ẑ. We look

at the same diagram. But now the sheaf mxf ,∗(M̃ ⊗ Af ) is the sheaf described

by the the K
(xf )−1

f module (M⊗ Af )(xf ). This module is M⊗ Af as abelian

group, but g
f
∈ K

(xf )−1

f acts by mf 7→ xfgx
−1
f mf . The map mf → xfmf

induces an isomorphism [xf ] between the two K
(xf )−1

f modules (M⊗ Af )(xf )

and (M⊗Af ). We now consider the diagram Hop1. and replace in the sequence
of maps the homomorphism ixf by the map [x•f ] induced by the isomorphism

[xf ] between the sheaves. Then we can proceed as before and get an operator

p1,∗ ◦ [xf ]• ◦mxf ,∗ ◦ p
∗
2 = ch(xf ).

It is straightforward to check that this operator is an extension π2,• ◦ ixf ◦
mxf ,∗ ◦ π

•
1 to H•(SGKf ,M̃ ⊗ Af ).

Our right module sheaf contains the submodule sheaf M̃λ⊗ Ẑ, we can write
the same diagram but now it can happen that [xf ] does not map MZ ⊗ Ẑ into
itself. This forces us to make the following definition

n(xf ) = {a ∈ Q| [axf ] :MZ ⊗ Ẑ ⊂MZ ⊗ Ẑ}

Then we can again go back to our above diagram and it becomes clear that
we can define Hecke operators

a · ch(xf ) : H•(SGKf ,M̃Z)→ H•(SGKf ,M̃Z) for all a ∈ n(xf ).

2.3.1 The case of a split group

We want to discuss this in the special case that G/Spec(Z) is split reductive,
we assume that the derived group G(1)/Spec(Z) is simply connected, we assume
that the center C/Spec(Z) is a (split)-torus and that C ∩ G(1) is equal to the
center Z(1) of G(1). This center is a finite multiplicative group scheme (See 1.1).

Accordingly we get decompositions up to isogeny of the character and cochar-
acter modules of the torus

X∗(T ) ↪→ X∗(T (1))⊕X∗(C) X∗(T (1))⊕X∗(C) ↪→ X∗(T ) (22)

they become isomorphisms after taking the tensor product by Q. We numerate
the simple positive roots I = {1, 2, . . . , r} = {α1, α2, . . . , αr} ⊂ X∗(T ) and we
define dominant fundamental weights γi ∈ X∗(T )Q which restricted to T (1) are
the usual fundamental dominant weights and restricted to C are trivial. Then
a dominant weight can be written as

λ =
∑
i∈I

aiγi + δ = λ(1) + δ, (23)
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where δ ∈ X∗(C) and we must have the congruence condition

(λ(1) + δ)|Z(1) = 1 (24)

We can construct a highest weight module Mλ,Z. We pick a prime p, we
assume that is unramified (with respect to Kf ), this means that Kp = G(Zp).
Any element tp ∈ T (Qp) defines a double coset KptpKp. Of course only the
image of tp in T (Qp)/T (Zp) matters and

T (Qp)/T (Zp) = X∗(T )

we find χ ∈ X∗(T ) such that χ(p) = tp. We take a χ in the positive chamber,
i.e. we assume < χ,α >≥ 0 for all α. We can produce the element

χ
p

= (1 . . . , 1, . . . , χ(p), 1 . . . , 1, . . . ) ∈ T (Af )

and the Hecke operator

ch(χ
p
) : H•(SGKf ,M̃ ⊗Q)→ H•(SGKf ,M̃ ⊗Q)

We have to look at the ideal of those integers a for which

a ch(χ
p
)(Mλ,Z ⊗ Zp) ⊂ (Mλ,Z ⊗ Zp).

This is easy: We have the decomposition into weight spaces

Mλ,Z = ⊕µMλ,Z(µ)

and on a weight space the torus element ch(χ
p
) acts by

ch(χ
p
)xµ = p<χ,µ>xµ.

We get the smallest exponent if we choose for µ, the lowest weight vector.
We denote by w0 the longest element in the Weyl group, which sends all the
positive roots into negative roots. The the element −w0 induces an involution
i→ i′ on the set of simple roots. Then

µ = w0(λ) = −
∑

ai′γi + δ. (25)

We say that our weight is (essentially) self dual if we have ai = ai′ . If our weight
is self dual then µ = −λ(1) + δ

Hence we see that our ideal is the principal ideal is given by

(p−<χ,w0λ
(1)>−<χ,δ>) or if λ self dual (p<χ,λ

(1)>−<χ,δ>) (26)

and therefore, we have the Hecke operator

T coh,λ
p,χ = p−<χ,w0λ

(1)>−<χ,δ> · ch(χ
p
) : H•(SGKf ,M̃λ,Z)→ H•(SGKf ,M̃λ,Z)

(27)

The number − < χ,w0λ
(1) > is the relevant contribution in the exponent

(let us call this the semi-simple term), the second term − < χ, δ > is a correction
term ( the abelian contribution) and it takes care of the central character. We
come back to this in section 3.1.4.
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2.4 Excursion: Finite dimensional H−modules and repre-
sentations.

We fix a level Kf =
∏
pKp and drop it in the notations. It follows from the

theorem 2.1 that we have a finite Jordan-Hölder series on our cohomology groups
such that the subquotients are irreducible Hecke-modules. If we take the tensor
product with a suitable finite extension F/Q then we can refine the Jordan-
Hölder series such that the quotients become absolutely irreducible modules for
the Hecke algebra, we say a few words concerning the absolutely irreducible
Hecke-modules.

We have a decomposition

H =
⊗′

p
Hp =

⊗′

p
Cc(G(Qp)//Kp).

As the notation indicates we take the tensor product over all finite primes. This
tensor product has to be taken in a restricted sense: for an element of the
form hf = ⊗hp the local factor hp is equal to the identity element for almost
all primes p (this is the characteristic function of Kp). All other elements are
finite linear combinations of elements of the form above. We have the obvious
embedding Hp ↪→ H we simply send hp 7→ 1⊗ · · · ⊗ hp⊗ 1 . . . . The subalgebras
Hp commute with each other.

We are interested in categories of modules for the Hecke algebra, which
will be finite dimensional Q− vector spaces V together with a homomorphism
H → EndQ(V ). If Let us call this category ModH. For any extension L/Q we
may consider the extension HL = H ⊗ L and the resulting category ModHL .
If we have an extension L ↪→ K the tensor product yields a functor ModHL →
ModHK .

We briefly recall the theory of modules over a finite dimensional Q-algebra A
more precisely for any extension L/Q we consider the category ModAL of finite
dimensional L-vector spaces V together with a homomorphism AL → EndL(V ).

We say that a finite dimensional AL module V irreducible, if V does not
contain a non trivial AL submodule. We say that V is absolutely irreducible if
V ⊗ L̄ is irreducible. We say that V is indecomposable if it can not be written
as the direct sum of two non zero submodules.

We call such an algebra A semi-simple if it does not contain a non trivial
two sided ideal N consisting of nilpotent elements. It is well known that this
is equivalent to the semi simplicity of the category ModA, this means that for
any A-module V (finite dimensional over Q) and any submodule W ⊂ V we
can find a A submodule W ′ such that V = W ⊕ W ′. It is also well known
that A is semi simple if it has a faithful semi-simple (finite dimensional) module
V ∈ Ob(ModA), where faithful means that A → EndQ(V ) is injective and semi
simple means of course that any A-submodule W ⊂ V admits a complement.

It follows from a simple Galois-theoretic argument, that A is semi simple if
and only if A⊗Q L is semi simple for any extension L/Q.

If we have two modules V1, V2 in ModAL and these modules become iso-
morphic after some extension L ↪→ K, then they are already isomorphic over
L. The isomorphism classes of irreducible modules for AL form a set which is
called Spec(AL). It is a standard fact from the theory of semi simple algebras
that this spectrum can be identified to the set of two sided maximal ideals.
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We also know that we can write the identity element as a sum of commuting
idempotents

1 =
∑

φ∈Spec(AL)

eφ; e2
φ = eφ; eφeψ = 0 for φ 6= ψ.

Then ALeψ is simple, i.e. has no non trivial two sided ideal. The maximal ideal
corresponding to φ is ⊕ψ:ψ 6=φAeψ. We have the decomposition

AL =
∑

φ∈Spec(AL)

ALeφ (28)

Our algebra AL has a center ZL, which is a commutative algebra over L
and since it does not have nilpotent elements it is a direct sum of fields. The
idempotents eφ ∈ ZL and clearly

ZL = ⊕φ∈Spec(AL)Zeφ

where ZLeφ is a field. Hence we get an identification Spec(AL) = Spec(ZL).
We conclude that a semi-simple algebra AL whose center ZL is a field is

actually simple and then the structure theorem of Wedderburn implies

AL
∼−→Mn(D)

where the right hand side is a matrix algebra of a central division algebra D/ZL.
This algebra has only one irreducible non zero module: It acts by multiplication
from the left on itself, any non zero minimal left ideal yields an irreducible
module. These modules (minimal left ideals) are isomorphic to the ideal given
by ci where ci consists of those matrices which have zero entries outside the i-th
column. In this case Spec(AL) = (0) is the zero ideal. The unique irreducible
module is not absolutely irreducible if D 6= ZL We may choose an extension
K/L which splits the division algebra, then AF = Mnd(K) where [D : L] = d2.
If this is the case we call the algebra AK absolutely simple. The spectrum does
not change.

This tells us that in general the set of isomorphism classes of irreducible
AL is canonically isomorphic to Spec(AL) for any irreducible AL module Yφ we
have exactly one φ such that eφY = Y, and for all ψ 6= φ eψY = 0. One the
other hand our construction above yields exactly one module irreducible module
Yφ for a given φ. For any AL -module X we get the isotypical decomposition

X =
∑

φ∈Spec(A)

eφX,

The isotypical component where the isotypical component eφX = Y
m(X,φ)
φ , and

where m(X,φ) is the multiplicity of this component. If we extend our ground
field further Yφ ⊗L K may become reducible, but if our extension L/Q is large
enough then Yφ will be absolutely irreducible.

Let us start from a semi simple algebra A/Q. Then its center Z is a direct
sum of fields, Z = ⊕Zi. We say that a finite extension F/Q is a splitting field for

24



A if it is normal and if any summand Zi can be embedded into F. Then we get

AF = A⊗Q F =
⊕

ι∈Hom(Z,F )

A⊗Z,ι F

Clearly the center A ⊗Z,ι F = F and hence we see that this decomposition is
the same as the above decomposition (28), we get

Proposition 2.3. If F/Q is a splitting field of A/Q the we get an action of
the Galois group on Spec(AF ). The orbits of this actions are in one to one
correspondence with the elements in Spec(A) in this is the set of summands of
the decomposition of ZQ into a direct sum of fields.

A summand AeφF has only one non zero irreducible module (up to iso-
morphism). This module Yφ is not necessarily absolutely irreducible because

Aeφ
∼−→ Mn(D) where D/F may be non trivial (we have a non trivial Schur

multiplier).
We say that A/Q has trivial Schur multiplier if for all φ ∈ Spec(A) the

division algebra D is trivial, i.e. equal to the center.

We apply these general principles to our Hecke -algebra and its action on
the cohomology H•! (SGKf ,M̃λ). We define the ideal I !

Kf
to be the kernel of this

action, then H/I !
Kf

= A is a finite dimensional algebra. It is known- and will

be proved later - that H•! (SGKf ,M̃) is a semi simple module and hence we see
that A is semi simple. Then we define the scheme

Coh(H•! (SGKf ,M̃λ)) = Spec(A).

We will denote the set of geometric points of this scheme, or more simple minded
the set of isomorphism classes occurring in this cohomology, by Coh!(G,Kf , λ).

More generally we may consider the set of isomorphism classes of absolutely
irreducible Hecke modules occurring in the Jordan-Hlder filtration of any of
our cohomology modules H•? (SGKf ,M̃λ)) and denote this set by Coh?(G,Kf , λ).
Since we have a fixed level Kf they are all defined over a suitable finite extension
F/Q.

2.4.1 A central subalgebra

We still consider the action of H/I !
Kf

= A on H•! (SGKf ,M̃) = ⊕qHq
! (SGKf ,M̃).

For all p outside the finite set Σ we have Kp = G(Zp). In this case the algebraHp
is finitely generated, integral and commutative. We say that Hp is unramified
if Kp = G(Zp). For an unramified Hecke-algebra Hp its maximal spectrum
Homalg(Hp,C),- i.e. the set of isomorphism classes of absolutely irreducible
modules over C-,is described by a theorem of Satake which we will recall in the
next section.

The subalgebra

H(Σ) =
⊗
p 6∈Σ

Hp

is commutative and its image in H/I !
Kf

lies in the center and hence also in the
center of A. Hence we can conclude that for a splitting field F for A and any
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irreducible module Yφ for AF the restriction of the action to H(Σ) is given by a
homomorphism

φ(Σ) : H(Σ) → F.

Hence the module Yφ is determined by the action of HΣ =
∏
p∈ΣHp in AF .

If we assume that Yφ is absolutely irreducible, then it follows from a standard

argument that Yφ
∼−→ ⊗p∈ΣYφp where Yφp is an absolutely irreducible Hp-

module. For p 6∈ Σ let Vφp be the one dimensional F vector space F with
canonical basis element 1 ∈ F and an Hp action given by the homomorphism
φp : Hp → F. Then we get an isomorphism

Yφ
∼−→

′⊗
p

Yφp , (Fl)

where we take the restricted tensor product in the usual sense, i.e. at almost
all primes the factor in a tensor is equal to 1. Under our assumptions the ho-
momorphism

Hp → EndF (Yφp)

is surjective.
We get a map from the isomorphism classes of irreducible modules [Yφ] for

AF to φσ ∈ Hom(H(Σ), F ). We say thatH(Σ) acts distinctively on H•! (SGKf ,M̃⊗
F ) if this map is injective, i.e. the isomorphism type [Yφ] is determined by its
restriction to H(Σ).

On the cohomologyH•! (SGKf ,M̃) we still have the action of the group π0(G(R)),

this action commutes with the action of the Hecke algebra. (See (2.5.4) This
is an elementary abelian 2- group and we may decompose further according to
characters ε : π0(G(R))→ {±1}.

We say that the H module H•! (SGKf ,M̃) has strong multiplicity one (with

respect to Σ) if H(Σ) acts distinctivly and for any splitting field F and any
φΣ : H(Σ) → F we can find a degree q and an ε such that

Hq
! (SGKf ,M̃)(ε)⊗H(Σ),φ(Σ) F

is an absolutely irreducible H− module.
If this is so then the homomorphism

HΣ → EndF (Hq
! (SGKf ,M̃)(ε)⊗H(Σ),φ(Σ) F )

is surjective and the Hecke module H•! (SGKf ,M̃) has trivial Schur multiplier.

2.4.2 Representations and Hecke modules

For p ∈ Σ the category of finite dimensional modules is complicated, since the
Hecke algebra will not be commutative in general.

Let F be a field of characteristic zero, let V be an F -vector space. An
admissible representation of the group G(Qp) is an action of G(Qp) on V which
has the following two properties

(i) For any open compact subgroup Kp ⊂ G(Qp) the space V Kp of Kp

invariant vectors is finite dimensional.
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(ii) For any vector v ∈ V we can find an open compact subgroup Kp so that
v ∈ V Kp in other words V = limKp V

Kp .

Then is is clear that the vector spaces V Kp are modules for the Hecke algebra
HKp . An admissible G(Qp) -module V is irreducible if it does not contain an
invariant proper submodule. Given such an irreducible module V 6= (0), we
can find a Kp such that V Kp 6= (0). We claim that then V Kp is an irreducible
HKp -module. To see this we take the identity element eKp in our Hecke algebra,
it induces a projector on V and a decomposition

V = V Kp ⊕ V ′ = eKpV ⊕ (1− eKp)V.

Let assume we have a proper HKp -invariant submodule W ⊂ V Kp Now we con-

vince ourselves that the G(Qp)-invariant subspace W̃ generated by the elements
gw is a proper subspace. We compute the integral∫

Kp

kgwdk =

∫
Kp×Kp

k1gk2wdk2dk1.

The first integral gives us the projection to V Kp , the second integral is the
Hecke operator, hence the result is in W . We conclude that eKpW̃ ⊂W and tis

shows that (0) 6= W̃ 6= V .
Now it is not hard to see, that the assignment

V → V Kp

from irreducible admissble G(Qp)-modules with V Kp 6= (0) to finite dimen-
sional irreducible HKp -modules induces an bijection between the isomorphism
classes of the respective types of modules. If we start from V Kp we can recon-
struct V by an appropriate form of induction.

2.4.3 The dual module

Let us assume that V is a finite dimensional F -vector space with an action of
the Hecke algebra H (we fix the level). We have an involution on the Hecke
algebra which is defined by

th(xf ) = h(x−1
f )

a simple calculation shows that th1 ∗ th2 =t (h2 ∗ h1).
This allows us to introduce a Hecke-module structure on V ∨ = HomF (V, F )

we for φ ∈ V ∨we simply put

Th(φ)(v) = φ(Tth(v))

for all v ∈ V.
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2.4.4 Unitary and essentially unitary representations

Here it seems to be a good moment to recall the notion of unitary Hecke mod-
ules and unitary representations. In this book we make the convention that a
character is a continuous homomorphism from a topological group H → C×, we
do not require that its values have absolute value one. If this is the case we call
the character unitary. Our ground field will now be F = C, let V be a C vector
space. We pick a prime p. We call a representation ρ : G(Qp)→ Gl(V ) unitary
if there is given a positive definite hermitian scalar product < , > V × V → C
which is invariant under the action of G(Qp).

If our representation is irreducible then it has a central character ζρ : C(Qp)→
C×. In this case the scalar product is unique up to a scalar. A necessary con-
dition for the existence of such a scalar product is that |ζρ| = 1, in other words
ζρ is unitary.

If this is not the case then our representation may still be essentially uni-
tary: We have a unique homomorphism |ζ∗ρ | : C ′(Qp) → R×>0 whose restriction
to C(Qp) under dC (see 1.1) is equal to |ζρ|. Then we may form the twisted
representation ρ∗ = ρ⊗ |ζ∗ρ |−1. Then the central character of ρ∗ is unitary. We
say that σ is called essentially unitary if ρ∗ is unitary.

If our representation is not irreducible we still can define the notion of being
essential unitary. This means that there exists a homomorphism |ζ∗ρ | : C ′(Qp)→
R×>0, such that the twisted representation ρ∗ = ρ⊗ |ζ∗ρ |−1 is unitary.

The same notions apply to modules for the Hecke algebra. A (finite dimen-
sional) C vector space V with an action πp : Hp → End(V ) is called unitary, if
there is given a positive definite scalar product < , >: V × V → C such that

< Th(v), w >=< v, (Tth(w)). (29)

Recall that we always assume that our functions h ∈ Hp take values in Q, hence
we do not need a complex conjugation bar in the expression on the right.

The restriction of πp to C(Qp) in induces a homomorphism ζπp : C(Qp) →
C×. We call πp isobaric if this action of the center is semi simple - and therefore
a direct sum of characters ζπp =

∑
ζνπp - and if all these characters have the

same absolute values |ζνπp | = |ζπp |. This means that we can find |ζ∗πp | as above.

Then we call πp essentially unitary if the Hecke module π∗p = πp ⊗ |ζ∗πp |
−1 is

unitary.
These boring considerations will be needed later, we will see that for an

irreducible coefficient systemM the H•! (SGKf ,M̃)⊗C is essentially unitary (see

4.2.1).

2.4.5 Satake’s theorem

In the formulation of this theorem I will use the language of group schemes,
the reader not so familiar with this language may think of Gln or the group of
symplectic similitudes GSpn. Since we assumed that for p 6∈ Σ the integral struc-
ture G/Spec(Zp) is reductive it is also quasisplit. We can find a Borel subgroup
B/Spec(Zp) ⊂ G/Spec(Zp) and a maximal torus T /Spec(Zp) ⊂ B/Spec(Zp).
Then our torus T /Spec(Zp) splits over an unramified extension Ep/Qp and
the Galois group Gal(Ep/Qp) acts on the character module X∗(T × Ep) =
Hom(T × Ep,Gm). Let {α1, α2, . . . , αr} ⊂ X∗(T × Ep) be the set of positive
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simple roots, it is invariant under the action of the Galois group. Let W (Zp) be
the centralizer of the Galois action in the absolute Weyl group W. We introduce
the module of unramified characters on the torus this is

Homunram(T (Qp),C×) = Hom(T (Qp)/T (Zp),C×) = Λ(T ).

We also view ωp ∈ Λ(T ) as a character ωp : B(Qp)→ C×, λ 7→ λ(b) = bωp . The

group of characters Hom(T ,Gm) = X∗(T )Gal(Ep/Qp) is a subgroup of Λ(T ) :

An element γ ∈ X∗(T )Gal(Ep/Qp) defines a homomorphism T (Qp) → Q×p and
this gives us the following element x 7→ |γ(x)|p ∈ Λ(T ) which we denote by
|γ|. We can even do this for elements γ ⊗ 1

n ∈ X∗(T ) ⊗ Q, then γ ⊗ 1
n (x) =

|γ(x)|1/np ∈ R×>0. Our open compact subgroup Kp = G(Zp). Since we have the
Iwasawa decomposition G(Qp) = B(Qp)G(Zp) = B(Qp)Kp we can attach to
any ωp ∈ Λ(T ) a spherical function

φωp(g) = φωp(bpkp) = (ωp + |ρ|p)(bp) (30)

here ρ ∈ Λ(T ) ⊗ Q is the half sum of positive roots. This spherical function is
of course an eigenfunction for Hp under convolution, i.e. for hp ∈ Hp∫

G(Qp)

φωp(gx)hp(x)dx = ĥp(ωp)φωp(g) (31)

and s(ωp) : hp 7→ ĥp(ωp) is an algebra homomorphism from Hp to C. Of course
the measure dx gives volume 1 to G(Zp) = Kp.

The theorem of Satake asserts:

Theorem 2.2. The group W (Zp) acts on Λ(T ), we have s(wωp)) = s(ωp) and

Λ(T )/W (Qp)
s−→ Homalg(Hp,C)

is an isomophism.

We will write irreducible modules in this case as πp = πp(ωp) and ωp ∈
Λ(T )/W (Qp) is the so called Satake parameter of πp.

The Hecke algebra is generated by the characteristic functions of double
cosets KptpKp where tp ∈ T (Qp) and where for all simple roots α ∈ π we have
|α(tp)|p ≤ 1, i.e. tp ∈ T+(Qp). Then the evaluation in (31) comes down to the
computation the integrals

∫
KptpKp

φωp(gx)dx = t̂p(ωp)φωp(g) (32)

We discuss this evaluation in (3.1.3)
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2.4.6 Spherical representations

Now we assume that Let F ′ ⊂ C be a finite extension of Q and let V/F be
a vector space. We choose Kp = G(Zp), i.e. p is unramified. An admissible
representation

π̃p : G(Qp)→ Gl(V )

is called spherical if V Kp 6= 0, and this space is a module for the Hecke alge-
bra. If the representation is absolutely irreducible, then it is well known that
dimF ′ V

Kp = 1, this is a one dimensional module for HKp , i.e. a homomorphism
πp : HKp → F ′. Let ωp ∈ Λ(T ) the corresponding Satake parameter, it is well
defined modulo the action of the group W (Qp). We consider the field F ′ which
is generated by the values t̂p(ωp). Then the one dimensional F ′ vector space

Hπp = F ′φωp (33)

will be our standard model for the isomorphism type πp.
The representation π̃p can be realized as a submodule Jπp of the induced

representation

Hπ̃p = Ind
G(Qp)

B(Qp)F
′φωp = {f : G(Qp)→ F ′|f(bg) = ωp(b)|ρ|p(b)f(g)}

where f satisfies the (obvious) condition that there exists a finite index subgroup
K ′p ⊂ Kp such that f is invariant under right translations by elements k′ ∈ K ′p.
In general this module Hπ̃p will be irreducible and then Jπp = Hπ̃p .

If π̃∨p is the spherical representation attached to the Satake parameter ω−1
p

then we have a pairing

Hπ̃p ×Hπ̃∨p
→ C

f1 × f2 7→
∫
Kp

f1(kp)f2(kp)dkp

(34)

This tells us that the dual module to Hπp = H
Kp
π̃p

has the Satake parameter

ω−1
p . The representations Hπ̃p are called the representations of the unramified

principal series.
We may consider the case that ωp is a unitary character, this means that

ωp : T (Qp)/T (Zp) → S1. Then we have ω−1
p (t) = ωp(t) and our above pairing

defines a positive definite hermitian scalar product

< , >: Hπ̃p ×Hπ̃p → C (35)

which is given by

< f1, f2 >=

∫
Kp

f1(kp)f2(kp)dkp (36)

If we allow for f ∈ Hπ̃p all the functions whose restriction to Kp lies in L2(Kp)
then Hπ̃p becomes a Hilbert space and the representation of G(Qp) on Hπ̃p is a
unitary representation.

These representations are called the unitary principal series representations.
It is not the case that these representations are the only unramified principal
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series representations which carry an invariant positive definite scalar product.
(See [Sat]).

In the following section we discuss the classical case.

2.4.7 The case Gl2.

In the case of Gl2 the maximal torus is given by

T (Qp) =

{(
t1 0
0 t2

)}
.

It is contained in the two Borel subgroups B/Q of upper and B−/Q of lower
triangular matrices. Let U/Q be the unipotent radical of B.

If we represent an element ω̄p ∈ Λ(T )/W by ωp : T (Qp)/T (Zp)→ C× then
we get two numbers

ωp(

(
p 0
0 1

)
) = α′p

ωp(

(
1 0
0 p

)
) = β′p

.

The local algebra is generated by two operators Tp, T (p, p) for which

s(ω̄p)(Tp) = p1/2(α′p + β′p) = αp + βp
s(ω̄p)(T (p, p)) = pα′pβ

′
p = αpβp

.

These two Hecke operators are -up to a normalizing factor - defined as the
characteristic functions of the double cosets

Gl2(Zp)
(
p 0
0 1

)
Gl2(Zp) and Gl2(Zp)

(
p 0
0 p

)
Gl2(Zp).

The to numbers αp + βp, αpβp determine ωp. They are also called the Satake
parameters.

It is not difficult to prove Satakes theorem for Gl2/Qp. We write Gl2(Zp) =
Kp. It is the theorem for elementary divisors that all the double cosetsKp\G(Qp)/Kp

are of the form

Kp

(
pa 0
0 pb

)
Kp with a ≥ b.

If we want to understand the function h 7→ ĥ(λ) it clearly suffices to compute
its value on the characteristic function tpm of the double coset

Kp

(
pm 0
0 1

)
Kp

To do this we have to evaluate the integral∫
G(Qp)

φλ(x)tpm(x)dx = ˆtpm(λ).

31



We abbreviate yp =

(
pm 0
0 1

)
and write our double coset as a union of right

Kp cosets, i.e.

KpypKp =
⋃

ξ∈Kp/Kp∩ypKpy−1
p

ξypKp.

The volume of such a coset is one hence we get∫
G(Qp)

φλ(x)tpm(x)dx =
∑
ξ

φλ(ξyp)

The group

Kp ∩ ypKpy
−1
p = {

(
a b
c d

)
∈ Kp|b ≡ 0 mod pm},

this is the group of points B−(Z/pm) of lower triangular matrices. Hence the
coset space

Gl2(Z/pm)/B−(Z/pm) = Kp/Kp ∩ ypKpy
−1
p = P1(Z/pm).

The points in P1(Z/pm) are arrays

(
a
b

)
, a, b ∈ Z/pm, a or b ∈ (Z/pmZ)×,

modulo (Z/pm)×. Then Kp acts by multiplication from the left on this coset

space and Kp ∩ ypKpy
−1
p is the stablizer of

(
0
1

)
. We still have an action of

B(Z/pm) from the left on P1(Z/pm) and the orbits under this action from the
left can be represented by(

0
1

)
and

(
1
pν

)
for ν = 1, . . .m

On these orbits the function ξ 7→ φλ(ξyp) is constant. We can take the repre-
sentatives

ξ =

(
1 0
0 1

)
and

(
0 1
−1 pν

)
and get the values

φλ(yp) = p−mαmp

φλ(

(
0 1
−pm pν

)
) = φλ(

(
pm−ν ∗

0 pν

)
kp) = αm−νp βνpp

ν−m.

The length of these orbits is pm, {pm−ν(1− 1
p )}ν=1,...,m−1, 1, and we get

ˆtpm(λ) = αmp + βmp + (1− 1

p
)

m−1∑
ν=1

αm−νp βνp .

This formula clearly proves the theorem of Satake in this special case.

2.4.8 A very specific case

We consider the case
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2.5 Back to cohomology

2.5.1 The case of a torus and the central character

We consider the case that our group G/Q is a torus T/Q. This case is already
discussed in [Ha-Gl2]. Our torus splits over a finite extension F/Q and our
absolutely irreducible representation is simply a character γ : T ×Q F → Gm, it
defines a one dimensional T ×Q F− module F [γ]. Here F [γ] is simply the one
dimensional vector space F over F with T ×Q F acting by the character γ.

We recall the notion of an algebraic Hecke character of type γ. We choose
an embedding ι : F ↪→ Q̄ then γ induces a homomorphisms T (C) → C×. The
restriction of this homomorphism to T (R) is called γ∞ : T (R)→ C×.

A continuos homomorphism

φ = φ∞ ×Πpφp = φ∞ × φf : T (A)/T (Q)→ C×

is called an algebraic Hecke character of type γ if the restrictions to the connected
component of the identity satisfy

φ∞|T (0)(R) = γ−1
∞ |T (0)(R).

The finite part φf : T (Af ) → Q̄× is trivial on some open compact subgroup
KT
f ⊂ T (Af ). We also say that a homomorphism φ1 : T (Af )/KT

f → Q̄× is an
algebraic Hecke-character, if it is the finite part of an algebraic Hecke character,
which is then uniquely defined.

In [Ha-Gl2], 2.5.5 we explain that the cohomology vanishes ( for any choice
of KC

f ) if γ is not the type of an algebraic Hecke character. In this case we
give the complete description of the cohomology in [Ha-Gl2], 2.6: If we choose
Z ′ = Z (see 1.1) then

H0(SCKC
f
, F [γ]⊗F,ι ⊗Q̄) =

⊕
φf :C(Af )/KC

f )→Q̄×:type(φf )=γ

Q̄φf . (37)

The property of γ to be the type of an algebraic Hecke character does not
depend on the choice of ι. If we fix the level then it is easy to see that the values
of the characters φf lie in a finite extension F1 of ι(F ) so we may replace in our
formula above the algebraic closure Q by F1.

If we return to our group G/Q and if we start from an absolutely irreducible
representation G ×Q F → Gl(M) then its restriction to the center C/Q is a
character ζM. Our remark above implies that this character must be the type
of an algebraic Hecke character if we want the cohomology H•? (SGKf ,M̃) to be

non trivial. (Look at a suitable spectral sequence).
In any case we can consider the sub algebra CKf ⊂ HKf generated by central

double cosets KfzfKf = Kfzf . with zf ∈ C(Af ) This provides an action

of the group C(Af )/KC
f on the cohomology H•? (SGKf ,M̃). Then the following

proposition is obvious

Proposition 2.4. Let Hπf be an absolutely irreducible subquotient in the Jordan
Hölder series in any of our cohomology groups. Then C(Af )/KC

f acts by a
character ζπf on Hπf and ζπf is an algebraic Hecke character of type ζM.

Note that ζM is the restriction of the abelian component δ in λ = λ(1) + δ
to the center.
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2.5.2 The cohomology in degree zero

Let us start from an absolutely irreducible representation r : G× F → Gl(M),
we want to understand H0(SGKf ,M̃): To do this we have to understand the

connected components of the space and the spaces of invariants in M̃ under the
discrete subgroups Γ

g
f in 1.2.1. We assume that the groups Γ

g
f ∩G(1)(Q) are

Zariski dense in G(1). Then it is clear that we can have non trivial cohomology
in degree zero ifM is one dimensional and G(1) acts trivially. HenceM is given
by a character δ : C ′ × F → Gm × F.

To simplify the situation we assume that the assumptions in (1.3 ) are ful-
filled and we have a bijection

π0(SGKf )
∼−→ π0(SC

′

KC′
∞ ×KC′

f

) (38)

where KC′

∞ and KC′

f are the images of the chosen compact subgroups respec-

tively. With these data we define SC′
KC′
f

and we can viewM as a sheaf on SC′
KC′
f

,

in our previous notation it is the sheaf F̃ [δ].
Then we get for an absolutely irreducible G× F module M -and under the

assumption that the Γ
g
f ∩G(1)(Q) are Zariski dense in G(1)- that (See 2.5.1)

H0(SGKf ,M⊗ F1) =

{
0 if dim(M) > 1⊕

φf :type(φf )=δ F1φ if M = F [δ]
(39)

The density assumption is fulfilled if G(1)/Q is quasisplit. We also observe
that we have the isogeny dC : C → C ′ (See (1.1). Then it is clear that the
composition dC ◦ δ is the character ζM in section 2.5.1.

2.5.3 The Manin-Drinfeld principle

For a moment we assume that our coefficient systems are rational vector spaces.
This means that we start from a rational (preferably absolutely irreducible)
representation ρ : G×Q F0 → Gl(M) whereM is a finite dimensional F0 vector
spaces. We have an action of HF0

on our cohomology groups and we defined
the spectra Coh(H•? (SGKf ,M)) which now will be a finite scheme over F0. We

will show show that the modules Hi
! (SGKf ,M̃L) are semi simple and if we pass

to a splitting field F/F0 we can decompose

Hi
! (SGKf ,M̃)(Πf )⊗ F =

⊕
πf

Hi
! (SGKf ,M̃)(πf ) =

⊕
πf

eπfH
i
! (SGKf ,M̃) (40)

Here we changed our notation slightly, we replaced the φ by πf . The isomor-
phism types πf are not necessarily absolutely irreducible, but if we extend our
field further then they decompose in a direct sum of modules of exactly one iso-
morphism type. We call the above decomposition the isotypical decomposition
and under our assumption on F the summands are absolutely isotypical.

We say that for a cohomology group Hi(SGKf ,M̃F ) (resp. H•c (SGKf ,M̃F ) sat-

isfies the Manin-Drinfeld principle, if Coh(Hi
! (SGKf ,M̃F )∩Coh(Hi(∂(SGKf ),M̃F ) =

∅ (resp Coh(Hi
! (SGKf ,M̃F ) ∩ Coh(Hi−1(∂(SGKf ),M̃F ) = ∅.
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We have defined Coh(X)(= Spec(H/I(X))) for any Hecke-module X and if
X is a submodule of another Hecke module Y then we say that X satisfies the
Manin-Drinfeld principle with respect to Y if Coh(X) ∩ Coh(Y/X) = ∅.

If the Manin-Drinfeld principle is valid we get canonical decompositions

Hi(SGKf ,M̃F ) = Im(Hi(SGKf ,M̃F ) −→ Hi(∂(SGKf ),M̃F ))⊕Hi
! (SGKf ,M̃F ),

(41)

Hi
c(SGKf ,M̃F ) = Im(Hi−1(∂SGKf ,M̃F ) −→ Hi

c(SGKf ,M̃F ))⊕Hi
! (SGKf ,M̃F ),

which is invariant under the action of the Hecke algebra and no irreducible rep-
resentation π∞× πf which occurs in Hi

! (SGKf ,MF ) can occur as a sub quotient

in Im(Hi−1(∂SGKf ,M̃F )→ Hi
c(SGKf ,M̃F )).

In the second case we will call the above image of the boundary cohomology
the Eisenstein subspace or compactly supported Eisenstein cohomology and
denote it by

Im(Hi−1(∂SGKf ,M̃F ) −→ Hi
c(SGKf ,M̃)) = Hi

c,Eis(SGKf ,M̃).

In the first case we can consider the moduleHi
Eis(SGKf ,M̃F ) ⊂ Im(Hi(SGKf ,M̃F ) −→

Hi(∂(SGKf ),M̃F )) as a submodule in Hi(SGKf ,M̃F ) and this submodule is called
the Eisenstein cohomology. Under the assumption of the Manin-Drinfeld prin-
ciple we have a canonical section s : Hi

Eis(SGKf ,M̃F )→ HiSGKf ,M̃F ).

If we know the Manin-Drinfeld principle we can ask new questions. We re-
turn to the the integral cohomology Hi

?(SGKf ,M̃OF ) and map it into the rational

cohomology then the image is called H•? (SGKf ,M̃) int ⊂ H•? (SGKf ,M̃F ) this is

also the module which we get if we divide H•? (SGKf ,M̃OF ))) by the torsion.

(This may be not true for ? =!)
Our decompositions above do not induce decomposition on the groupsH•? (SGKf ,M̃) int.

Whenever we have a decomposition H•? (SGKf ,M̃F ) = X ⊕ Y we can take the

intersections Xint∩H•? (SGKf ,M̃) int and the same for Y and get a decomposition
up to isogeny

Xint ⊕ Yint ⊂ H•? (SGKf ,M̃) int,

where up to isogeny means that the left hand side is of finite index in the right
hand side.

For instance the Manin-Drinfeld decomposition above yields ( if it exists ) a
decomposition up to isogeny

Hi
c,Eis(SGKf ,M̃) int ⊕Hi

! (SGKf ,M̃) int ⊂ Hi
c(SGKf ,M̃) int,

it is canonical but the direct sum is only of finite index in the right hand side
module. The primes dividing the order of the index are called Eisenstein primes.

These Eisenstein primes have been studied in the case G = Gl2/Q but they
also seem to play a role in more general situation. The general philosophy is
that they are related to the arithmetic of special values of L-functions. (See
[Ha-Cong])
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The same applies to the decomposition of Hi
! (SGKf ,M̃) int in isotypical sum-

mands. We put

Hi
! (SGKf ,M̃)(πf ) ∩Hi

! (SGKf ,M̃OF ) int = Hi
! (SGKf ,M̃OF ) int(πf ).

Then we get an decomposition up to isogeny⊕
πf

Hi
! (SGKf ,M̃OF ) int(πf ) ⊂ Hi

! (SGKf ,M̃OF ) int. (42)

It is a very interesting question to learn something about the the structure
of the quotient of the right hand side by the left hand side. The structure of
this quotient should be related to the arithmetic of special values of L-functions.
(See [Hi]).

2.5.4 The action of π0(G(R))

We have seen that we can choose a maximal torus T/Q such that T (R)[2]
normalizes K∞. We know that T (R)[2] → π0(G(R)) is surjective and that
T (R)[2] ∩ G(1)(R) ⊂ K∞. This allows us to define an action of π0(G(R)) on
the various cohomology groups and this action commutes with the action of
the Hecke-algebra. Therefore we can decompose any isotypical subspace in a
cohomology group into eigenspaces under this action

H•? (SGKf ,M̃F )(πf ) =
⊕
ε∞

H•? (SGKf ,M̃F )(πf × ε∞) (43)

and for the integral lattices we get a decomposition up to isogeny

⊕
πf×ε∞

Hi
! (SGKf ,M̃OF ) int(πf × ε∞) ⊂ Hi

! (SGKf ,M̃OF ) int (44)

2.6 Some questions and and some simple facts

Of course we can be more modest and we may only ask for the dimension of
the cohomology groups Hi(SGKf ,M̃), this question will be discussed later in
Chapter V and can be answered in some simple cases.

If we are a little bit more modest we can ask for the Euler characteristic

χ(H•(SGKf ,M̃) =
∑
i

(−1)i dim(Hi(SGKf ,M̃))

This question can be answered in a certain sense. If the subgroup Kf is
neat (See 1.1.2.1) , then SGKf is a disjoint union of locally symmetric spaces.
On these spaces exists a differential form of highest degree, which is obtained
from differential geometric data, this is the Gauss-Bonnet form ωGB . Then the
Gauss-Bonnet theorem yields that

χ(H•(SGKf ,M̃) = dim(M))

∫
SGKf

ωGB .
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This will be discussed in more detail in Chap V. This implies of course, that for
a covering SGK′f → S

G
Kf
, where K ′f ⊂ Kf and both groups are neat,we get

χ(SGK′f ,M̃) = χ(H•(SGKf ,M̃)[K ′f : Kf ],

a fact which also follows easily from topological considerations.
This leads us-following C.T.C. Wall- to introduce the orbifold Euler charac-

teristic for a not necessarily neat Kf by

χorb(H•(SGKf ,M̃)) =
1

[K ′f : Kf ]
χ(SGK′f ,M̃)

where K ′f ⊂ Kf is a neat subgroup of finite index. The orbifold Euler char-

acteristic may differ from the Euler characteristic χ(H•(SGKf ,M̃) by a sum of

contributions coming from the set of fixed points of the Γi on X (See 1.1.2.1).

This is perhaps the right moment, to discuss another minor technical point.
When we discuss the action of the Hecke algebra HKf = Cc(G(Af )//Kf ,Q)

on H•(SGKf ,M̃) then we chose the same Kf for the space and for the Hecke
algebra. We also normalized the measure on the group so that it gave volume
1 to Kf . But we have of course an inclusion of Hecke algebras HKf ⊂ HK′f .
Therefore HKf also acts on H•(SGK′f ,M̃). This contains H•(SGKf ,M̃) but then

the inclusion is not compatible with the action of the Hecke algebra. We there-
fore choose a measure independently of the level, if we are in a situation where
we vary the level. In such a case a measure provided by an invariant form ωG
on G (See 2.1.3) is a good choice. If we now define the action of the Hecke op-
erators by means of this measure. With this choice of a measure the inclusion
HKf ⊂ HK′f is compatible with the inclusion of the cohomology groups.

Then we see the the new Hecke operator T
(ωG)
h , and the old one are related

by the formula

Th =
1

vol|ωG|(Kf )
T

(ωG)
h

The reader might raise the question, why we work with fixed levels and why
we do not pass to the limit. The reason is that for some questions we need
to work with the integral cohomology, and this does not behave so well under
change of level.

2.6.1 Homology

We may also define homology groups Hi(SGKf ,Mλ) and Hi(SGKf , ∂S
G
Kf
,Mλ),

hereMλ is a “cosheaf”. The “costalk”MZ,x is obtained as follows: We consider

π−1(x) and ⊕
y=y×g

f
Kf/Kf

g
f
Mλ,

and the action of G(Q) on this direct sum. Then Mλ,x is the module of coin-

variants. If we pick a point y = y× g
f
Kf/Kf , which maps to x ∈ SGKf then we

get an isomorphism
Mλ,x ' (gfMλ)

Γ
(g
f

)

y

.
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We define the chain complex

Ci(SGKf ,Mλ)

and the above homology groups are given by the homology of this complex.
If we assume that SGKf is oriented (ref. to prop 1.3) then we know (Chap. II

2. 1. 5) that we have isomorphisms which are compatible with the fundamental
exact sequence

↓ ↓
Hi−1(∂SGKf ,M̃λ)

∼−→ Hd−i(∂SGKf ,Mλ)

↓ ↓
Hi
c(SGKf ,M̃λ)

∼−→ Hd−i(SGKf ,Mλ)

↓ ↓
Hi(SGKf ,M̃λ)

∼−→ Hd−i(SGKf , ∂S
G
Kf
,Mλ)

↓ ↓
Hi(∂SGKf ,M̃λ)

∼−→ Hd−i−1(∂SGKf ,Mλ)

↓ ↓

2.6.2 Poincaré duality

We assume that SGKf is connected. If we denote the dual representation by

M∨λ = Mw0(λ) ( we choose a suitable lattice lattice M∨Z then we have the
canonical homomorphism Mλ ⊗M∨λ → Z and the standard pairing between
the homology and the cohomology groups yields pairings

Hi
c(SGKf ,M̃λ)×Hi(SGKf , ∂S

G
Kf
,M̃∨λ) → H0(SGKf ,M̃λ ⊗ M̃∨λ) → H0(SGKf ,Z)

↓ ↑ ↓ ↓
Hi(SGKf ,M̃λ)×Hi(SGKf ,M̃λ∨) → H0(SGKf ,M̃λ ⊗ M̃∨λ) → H0(SGKf ,Z)

This pairing is of course compatible with the isomorphism between homology
and cohomology and then the pairing becomes the cup product. We get the
diagram

Hi
c(SGKf ,M̃λ)×Hd−i(SGKf ,M̃

∨
λ) → Hd

c (SGKf ,M̃λ ⊗ M̃∨λ) → Hd
c (SGKf ,Z)

↓ ↑ ↓ ↓
Hi(SGKf ,M̃λ)×Hd−i

c (SGKf ,M̃λ∨) → Hd
c (SGKf ,M̃λ ⊗ M̃∨λ) → Hd

c (SGKf ,Z)

We know that the manifold with corners ∂SGKf ”smoothable” it can be ap-
proximated by a C−manifold and therefore we also have a pairing < , >∂ on the
cohomology of the boundary. This pairing is consistent with the fundamental
long exact sequence (Thm. 2.1). We write this sequence twice but the second
time in the opposite direction and the pairing < , > in vertical direction:

→ Hp(SGKf ,M̃λ)
r−→ Hp(∂SGKf ,M̃λ)

δ−→
× ×

← Hd−p
c (SGKf ,M̃λ∨)

δ←− Hd−p−1(∂SGKf ,M̃λ∨) ←
↓ < , > ↓ < , >∂

Hd
c (SGKf ,Z)

δd←− Hd−1
c (∂SGKf ,Z)

(45)
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then we have: For classes ξ ∈ Hp(SGKf ,M̃λ), η ∈ Hd−p−1(∂SGKf ,M̃λ∨) we have
the equality

< ξ, δ(η) >= δd(< r(ξ), η >∂) (46)

2.6.3 Non degeneration of the pairing

The spaces SGKf and ∂SGKf are not connected in general. Let us assume that we

have a consistent orientation on SGKf . Then each connected component M of SGKf
is an oriented manifold which is natural embedded into its compactification M̄.
It is obvious that the cohomology groups are the direct sums of the cohomology
groups of the connected components and that we may restrict the pairing to the
components

Hp(M,M̃λ)×Hd−p
c (M,M̃λ∨)→ Hd

c (M,Z) = Z. (47)

We recall the results which are explained in Vol. I 4.8.4. The fundamental
group π1(M) is an arithmetic subgroup ΓM ⊂ G(Q) and Mλ,Mλ∨ are ΓM
modules. For any commutative ring with identity Z → R the ΓM modules

Mλ ⊗R,Mλ∨ ⊗R provide local systems M̃λ ⊗R,M̃λ∨ ⊗R, and we have the
extension of the cup product pairing

Hp(M,M̃λ ⊗R)×Hd−p
c (M,M̃λ∨ ⊗R)→ Hd

c (M,R) = R

Proposition 2.5. If R = k is a field then the pairing is non degenerate. .
If R is a Dedekind ring then the pairing then the cohomology may contain

some torsion submodules and

Hp(M,M̃λ ⊗R)/Tors×Hd−p
c (M,M̃λ∨ ⊗R)/Tors→ Hd

c (M,R) = R

is non degenerate.

(See Vol. I 4.8.9)
We want to discuss the consequences of this result for the cohomology of

H•? (SGKf ,M̃λ). Before we do this we want to recall some simple facts concerning

the representations of the algebraic group G/Q. We consider two highest weights
λ, λ1 ∈ X∗(T ×F ) which are dual modulo the center. By this we mean that we
have (See 22)

λ = λ(1) + δ, λ1 = −w0(λ(1)) + δ1 (48)

Then δ+ δ1 is a character on X∗(C ′ ×F ) and yields a one dimensional module

Hi
c(SGKf ,M̃λ) × Hd−i(SGKf ,M̃

∨
λ) → Hd

c (SGKf ,M̃λ ⊗ M̃∨λ) → Hd
c (SGKf ,Z) for

G × F, of course the action of G(1) on this module is trivial. Then we get a G
invariant non trivial pairing

Mλ,F ×Mλ1,F → Nλ◦λ1

which induces a pairing

Hi
c(SGKf ,M̃λ,F )×Hd−i(SGKf ,M̃λ1,F )→ Hd

c (SGKf ,Nλ◦λ1
),
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this only a slight generalization of the previous pairing.
Now we recall that (under certain assumptions) we have the inclusion π0(SGKf ) ↪→

π0(SC′
KC′
∞ ×KC′

f

) and then we get

Hd
c (SGKf ,Nλ◦λ1) ⊂ H0(SC

′

KC′
∞ ×KC′

f

,Nλ◦λ1) =
⊕

χ′:type(χ′)=λ◦λ1

Fχ′

The character χ′ has a restriction to C(A) let us call this restriction χ.
The group C(Af ) acts on the cohomology groups and this action has an

open kernel KC
f . Hence we can decompose the cohomology groups on the left

hand side according to characters

Hi
c(SGKf ,M̃λ,F ) =

⊕
ζf :type(ζf )=δ

Hi
c(SGKf ,M̃λ,F )(ζf ) (49)

Hd−i(SGKf ,M̃λ1,F ) =
⊕

ζ1,f :type(ζ1,f )=δ1

Hd−i(SGKf ,M̃λ1,F )(ζ1,f ). (50)

With these notations we get another formulation of Poincaré duality.

Proposition 2.6. If we have three algebraic Hecke characters ζf , ζ1,f , χ
′
f of

the correct type and if we have the relation ζf · ζ1,f = χf then the cup product
induces a non degenerate pairing

Hi
c(SGKf ,M̃λ,F )(ζf )×Hd−i(SGKf ,M̃λ1,F )(ζ1,f )→ Fχ′

This is an obvious consequence of our considerations above. Fixing the
central characters has the advantage that the target space of the pairing becomes
one dimensional over F , The field F should contain the values of the characters.

We return to the diagram (45) and consider the images Im(rq)(ζf ) =

Im(Hq
c (SGKf ,M̃λ,F )(ζf )→ Hd−q−1

c (∂SGKf ,M̃
∨
λ,F )(ζf ) and Im(r∨,d−q−1). Then

the following proposition is an obvious consequence of the non degeneration of
the pairing and (46)

Proposition 2.7. The images Im(rp(ζf )) and Im(r∨,d−p−1)(ζ1,f ) are mutual
orthogonal complements of each other with respect to < , >∂ .

The pairing in proposition 2.6 induces a non degenerate pairing

Hi
! (SGKf ,M̃λ,F )(ζf )×Hd−i

! (SGKf ,M̃λ1,F )(ζ1,f )→ Fχ′.

Proof. Let η ∈ Hd−p−1(ζ1,f ) Then we know from the exactness of the sequence
that η ∈ Im(r∨,d−p−1)(ζ1,f ) ⇐⇒ δ(η) = 0 ⇐⇒ < δ(η), ξ >= 0 for all ξ ∈
Hp(SGKf ,M̃λ)(ζf ) ⇐⇒ < η, r(ξ) >= 0 for all ξ ∈ Hp(SGKf ,M̃λ)(ζf ) ⇐⇒ <

η, ξ′ >∂= 0 for all ξ′ ∈ Im(rq)(ζf ).

The second assertion is rather obvious. If we have ξ ∈ Hp
! (SGKf ,M̃λ)(ζf ), ξ1 ∈

Hd−p
! (SGKf ,M̃λ∨)(ζf ) then we can lift either of these classes - say ξ1- to a class

ξ̃1 ∈ Hp
c (SGKf ,M̃λ)(ζf ) and then < ξ1, ξ2 >=< ξ̃1, ξ2 > . It is clear that the

result does not depend on the choice of class which we lift. It is also obvious
that the pairing is non degenrate.
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Of course we also have a version of proposition 2.7 for the integral cohomol-
ogy. Since we fixed the level we have only a finite number of possible central
characters ζf , ζ1,f of the required type. The values of these characters evaluated
on C(Af ) lie in a finite extension F/Q and of of course they are integral. If we
now invert a few small primes and pass to a quotient ring R = OF [1/N ] then we
get the decomposition (49 ) but with coefficient systems which are R-modules:

Hi
c(SGKf ,M̃λ,R) =

⊕
ζf :type(ζf )=δ

Hi
c(SGKf ,M̃λ,R)(ζf ) (51)

Hd−i(SGKf ,M̃λ1,R) =
⊕

ζ1,f :type(ζ1,f )=δ1

Hd−i(SGKf ,M̃λ1,R)(ζ1,f ) (52)

Then it becomes clear that we get an integral version of proposition 2.6 where
replace the F -vector space coefficient systems M̃λ,F by R -module coefficient
systems. We get a non degenerate pairing

Hi
c(SGKf ,M̃λ,R)(ζf )/Tors×Hd−i(SGKf ,M̃λ1,R)(ζ1,f )/Tors→ Rχ′ (53)

We can also get an integral version of proposition 2.7. To formulate it we need
a little bit of commutative algebra. Our ring R is a Dedekind ring and all our
cohomology groups are finitely generated R modules. If we divide any finitely
generated R-module by the subgroups of torsion elements then the result is a
projective R-module and it is locally free for Zariski topology.

An element ξ ∈ Hi
c(SGKf ,M̃λ,R)(ζf )/Tors is called primitive if the submodule

Rξ is locally for the Zariski topology a direct summand or what amounts to the
same if Hi

c(SGKf ,M̃λ,R)(ζf )/Tors/Rξ is torsion free. The assertion that the
above pairing is non degenerate f means:

For any primitive element ξ ∈ Hi
c(SGKf ,M̃λ,R)(ζf )/Tors we find an element

ξ1 ∈ Hd−i(SGKf ,M̃λ1,R)(ζ1,f )/Tors such the value of the pairing < ξ, ξ1 >= 1
We can formulate an integral version of proposition 2.7 we have the same

notations as above but now our coefficient system is M̃λ,R.

Proposition 2.8. Assume that H•(∂SGKf ,M̃λ,R) and H•(∂SGKf ,M̃λ,R) are tor-

sion free. Then the images Im(rp(ζf )) and Im(r∨,d−p−1)(ζ1,f ) are mutual or-
thogonal complements of each other with respect to < , >∂ .

The pairing in proposition 2.6 induces a non degenerate pairing

Hi
! (SGKf ,M̃λ,R)(ζf )/Tors×Hd−i

! (SGKf ,M̃λ1,R)(ζ1,f )/Tors→ Rχ′.

2.6.4 Inner Congruences

We choose a highest weight λ = λ(1) +dδ and the dual weight λ∨ = −w0(λ)−dδ.
Let us also fix a central character ζf whose type is equal to the restriction of dδ
to the central torus C.

We look at the pairing in prop. 2.7 where we assume in addition that
ζ1,f = ζ−1

f and we take the action of the Hecke algebra into account, i.e we look
at the decomposition into eigenspaces (see(40). Then we get a non degenerate
pairing between isotypical subspaces

Hi
! (SGKf ,M̃λ,F )(πf )×Hd−i

! (SGKf ,M̃λ∨,F )(π∨f )→ F
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where we assume that the central characters of the summands are ζf , ζ
−1
f .

If we try to extend this to the integral cohomology. In this case the above
decomposition yields decompositions up to isogeny

Hi
! (SGKf ,M̃λ,R)/Tors ⊃

⊕
πf
Hi

! (SGKf ,M̃λ,R)/Tors(πf )

Hd−i
! (SGKf ,M̃λ∨,R)/Tors ⊃

⊕
πf
Hd−i

! (SGKf ,M̃λ∨,R)/Tors(π∨f )
(54)

where we should fix the central characters as above. We choose a pair πf , π
∨
f .

Then our non degenerate pairing from the above proposition induces a pairing

Hi
! (SGKf ,M̃λ,R)/Tors(πf )×Hd−i

! (SGKf ,M̃λ∨,R)/Tors(π∨f )→ R (55)

and this pairing is non degenerate if and only if both modules are direct
summands in the above decomposition up to isogeny.

But it may happen that the values of the pairing generate a proper ideal
∆(πf ) ⊂ R, and in this case the above submodules will not be direct summands
and this implies that we will have congruences between the Hecke-module πf
and some other module in the decomposition up to isogeny. This yields the
inner congruences.

The ideal ∆(πf ) should be expressed in terms of L-values, in the classical
case this has been done by Hida [Hi].

3 The fundamental question

Let Σ be a finite set. Of course any product V = ⊗Hπp of finite dimensional
absolutely irreducible modules for the Hp, for which Hp is spherical for all p 6∈ Σ
gives us an absolutely irreducible module for the Hecke algebra.

We may ask: Can we formulate non tautological conditions for the irreducible
representation V or for the collection {πp}p:prime, which are necessary or (and)
sufficient for the occurrence of ⊗′pπp in the cohomology

This question can be formulated in the more general framework of the the-
ory automorphic forms, but in this book we only consider ”cohomological” (or
certain limits of those) automorphic forms. This restricted question is difficult
enough. A speculative answer is outlined in the following section

3.1 The Langlands philosophy

Let us start from a product V = ⊗Hπp . For the primes outside the finite set Σ
the module Hπp is determined by its Satake parameter ωp.

3.1.1 The dual group

There is another way of looking at these Satake parameters ωp. We explain this
in the case that G/Zp is a split reductive group. We choose a maximal split torus
T over Z and a Borel subgroup B/Z. For any commutative ring with identity
ring R we have a canonical isomorphism X∗(T )⊗R× ∼−→ T (R), which is given
by χ⊗ a 7→ χ(a). Then T (Qp)/T (Zp) = X∗(T )⊗Q×p /Z×p = X∗(T ). We apply
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this to the maximal split torus T /Zp ⊂ G/Zp. Then Λ(T ) = Hom(X∗(T ),C) =
X∗(T )⊗C× = T∨(C) where T∨ is the torus over Q whose cocharacter module
is X∗(T ). This torus over Q is called the dual torus. There is a canonical
construction of a dual group LG/C, this is a reductive group with maximal torus
T∨ such that the Weyl group of T∨ in this dual group is equal to the Weyl group
of T ⊂ G (See also (3.1.7)). This dual torus sits in a Borel subgroup LB ⊂L G.
Recall that we have a canonical pairing

<,>: X∗(T )×X∗(T )→ Z, γ ◦ χ(x) 7→ x<χ,γ>. (56)

The positive simple roots in X∗(T∨) in the dual group LG/C are the cocharac-
ters α∨i ∈ X∗(T (1)) defined by

< α∨i , γj >= δi,j .

Hence we can interpret ωp ∈ Λ(T ) = X∗(T ) ⊗ C× = T∨(C) as a semi
simple conjugacy class in LG(C). Remember that ωp is only determined by the
local component πp up to an element in the Weyl group, hence we only get a
conjugacy class.

We assume that G/Z is a split reductive group scheme. Then the dual group
LG is also split over Z and the absolutely irreducible highest weight modulesMλ

for G/Z and the highest weight module attached to χ are defined over Q. Let
πf ∈ Coh!(G,Kf , λ) be absolutely irreducible and defined over a finite extension
E/Q. Hence we see that our absolutely irreducible πf provides a collection of
conjugacy classes {ω(πp) = ωp}p 6∈Σ in the dual group LG(E).

A rather vague but also very bold formulation of the general Langlands
philosophy predicts:

The isotypical components under the action of the Hecke algebra, namely the
Hi

! (SGKf ,M̃)(πf ), should correspond to a collection {M(πf , rχ)}rχ of motives

(with coefficients in E). The correspondence should be defined via the equality
of certain automorphic and motivic L-functions.

This formulation is definitely somewhat cryptic, we will try to make it a
little bit more precise in the following sections.

Such a motive could in principle be a ”direct summand” the Hi(X) of a
smooth projective scheme X/Q, which in a certain sense is cut out by a projec-
tor. In some cases, where the space SGKf ”is a Shimura variety”, these motives
have been constructed, we will discuss this issue in Chap. V.

3.1.2 The cyclotomic case

We consider the special case that G = Gm/Q and our coefficient system Q(n)
is given by the character [n] : x 7→ xn. We fix a level Kf and we consider our
isotypical decomposition over Q

H0(SGKf ,Q(n)) =
⊕

Φ

Q(Φf ).
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In this case Q(Φf ) is a field, and the action of the group is simply an irreducible
action of the group of finite ideles G(Af ) = IQ,f on the Q-vector space Q(Φf ).
If we extend our field to Q̄ we get a decomposition

H0(SGKf , Q̄(n))) =
⊕

χ:type(χ)=[n]

Q̄(χ),

and the collection of conjugate characters χ are in one to one correspondence
with the Φf . We can attach two different kinds of L-functions to our isotypical
component Φf namely an automorphic L-function and a motivic L-function.

Actually we get a collection of such L-functions which are labelled by the
embeddings ι : Q(Φ) → Q̄ ⊂ C. Such an embedding yields an algebraic Hecke
character

χ
(ι)
f = ι ◦ Φf : G(Af ) = IQ,f → Q̄×

and
χ(ι) = ι ◦ Φ : G(Q)\G(A) = Q×\IQ → C×

and to any of these Hecke characters we attach the (the automorphic L-function)
namely

L(χ(ι), s) =
∏
p

(1− χ(ι)(p)p−s)−1

where χ (ι)(p) = χ (ι)(1, 1 . . . , p, . . . ) and it is zero of the character is ramified.

Now we can attach a motive M(Φ) to our isotypical component. To do this
we assume first that Q(Φ) = Q, then we have only one embedding. Then we
have χ(x) = αn(x) = | x |n for some integer n. This is an algebraic Hecke
character of type [−n] : x 7→ x−n. Then we attach the motive Z(−n) to this
Hecke character. At this moment we do not need to know what a motive is,
the only thing we need to know that it provides a compatible system of ` -adic
representations of the Galois group: For any prime ` we define a module To this
motive we attach a motivic L function using the compatible system of `-adic
representations. For a prime ` and a prime p 6= ` we have the local Euler factor

Lp(Z(−n), s) =
1

det(1− F−1
p |Z`(−n)p−s)

=
1

1− pnp−s
,

where Fp is the Frobenius at p. The `-adic representation is unramified outside
` and the Frobenius Fp corresponds to p under the reciprocity map r. Hence we
see that the Frobenius Fp acts by the multiplication by αn(p) = | p |np = p−n

on Z`(−n). In the general case we start from the representation Φf : IQ,f →
Q(Φf )×, it is unramified outside a finite set Σ of primes. The reciprocity map
from class field theory provides a homomorphism r : IQ,f → GalΣ(Q̄/Q)abelian,
this is the maximal abelian quotient of the Galois group which is unramified
outside Σ, the image of the reciprocity map is dense. If we fix a prime ` then
we get an `-adic representation

ρ(Φ) : GalΣ(Q̄/Q)abelian → (Q(Φf )⊗Q`)×,
which is determined by the rule ρ(Φ)(Fp) = Φf (p). If we now choose an embed-
ding ι : Q(Φf ) → Q̄ and an extension l of ` to a place of Q̄ and we get a one
dimensional l adic representation

ρ(ι ◦ Φ) : GalΣ(Q̄/Q)abelian → Q̄×l ,
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from which we get a motivic L-function (M(Φ) ◦ ι, s), whose local factor at p is

Lp(M(Φ)(ι), s) =
1

1− ρ(ι ◦ Φ)(Fp)−1p−s

These are the collections of `-adic rpresentations of our motives M(Φ). Then
the relation between the automorphic and the ` -adic L functions is:

The collection of automorphic L-functions attached to Φ is equal to the col-
lection of motivic L-functions attached to M(Φ−1).

We will sometimes modify the notation slightly. If χ is an algebraic Hecke
character then this datum corresponds to a pair (Φ, ι) and hence we can attach
to it a character χl : Gal(Q̄/Q) → Q̄l and then we get the equality of local
L-factors

Lp(χ, s) =
1

1− χ(p)p−s
=

1

1− χ−1
l (Fp)−1p−s

(Nochmal ein wenig besser schreiben!!!!!!!!!!!!!!)

3.1.3 The L-functions

Let us choose a cocharacter χ : Gm → T, we assume that it is in the positive
chamber, i.e. we have < χ,αi >≥ 0 for all positive simple roots . It yields an
element χ(p) ∈ T (Qp). For ωp ∈ Λ(T ) we put

Sχ,ωp = p<χ,ρ>
∑

w∈W/Wχ

ωp(w(χ(p))

then we get a formula∫
ch(χ(p))

φωp(xg)dg = (Sχ,ωp +
∑
χ′<χ

a(χ, χ′)Sχ′,ωp)φωp(x) (57)

where the χ′ are in the positive chamber, χ′ < χmeans that χ−χ′ =
∑
niχi, ni ≥

0 and the coefficients a(χ, χ′) ∈ Z. The expression on the right hand side is in-
variant under W and hence only depends on ωp modulo W. ( Give reference!)

The number < χ, ρ > is a half integer, hence p<χ,ρ> may not lie in a fixed
number field if p varies. But for those χ′ which may occur in the summation we
have < χ− χ′, ρ >∈ Z.

We consider an unramified prime. The theorem of Satake yields that we can
define a Hecke operator Sχ ∈ Hp such that Sχ ∗φωp = Sχ,ωpφωp and the formula
( 57 ) tells us that we get another recursion

Sχ = ch(χ) +
∑
χ′<χ

b(χ, χ′)ch(χ′) (58)

where again b(χ, χ′) ∈ Z.
Since we assume that our absolutely irreducible module Vπf , πf = ⊗′πp oc-

curs in Coh(G,Kf , λ), the Hecke module is a vector space over a finite extension
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F/Q. We can conclude that the eigenvalue of the convolution operator ch(χ) is
in F and it follows that

Sχ,ωp ∈ F

for any cocharacter χ.
Since we can replace χ by nχ for any integer n ≥ 1 it follows that the

numbers w(χ(p)) lie in a finite extension of F and the polynomial∏
w∈W/Wχ

(X · Id− p<χ,ρ>w(χ(p))) ∈ F [X].

Our cocharacter χ ∈ X∗(T ) can also be interpreted as a character in X∗(T∨),
i.e it is a character on the dual torus. Since we assumed it to be in the positive
chamber we can view χ as the highest weight of an irreducible representation
rχ :L G→ Gl(Eχ). (Since we assume that G is split the dual group is also split
over Q and hence rχ is defined over Q.) The eigenvalues of the endomorphism
rχ(ωp) are of the form ωp(w(χ′(p)) where χ′ ≤ χ and this implies that the
polynomial

det(X · Id− p<χ,ρ>rχ(ωp)|Eχ) ∈ F [X].

We attach a local Euler factor to the data πp, ωp = ω(πp), χ:

Lrat
p (πf , rχ, s) =

1

det(Id− p<χ,ρ>rχ(ωp)p−s|Eχ)
(59)

which is a formal power series in the variable p−s with coefficients in F. We
define

Lrat(πf , rχ, s) =
∏
p∈Σ

Lp(πf , rχ, s)(
∏
p 6∈Σ

1

det(Id− p<χ,ρ>rχ(ωp)p−s|Eχ)
), (60)

at the moment we do not say anything about the Euler factors at the bad primes.
At this moment Lrat(πf , rχ, s) is a a product of formal power series in in-

finitely many variables p−s which in some sense encodes the collection of eigen-
values of the different Hecke eigenvalues.

We want to relate this L -function to some other L− functions which are
defined in the theory of automorphic forms.

To define the automorphic L -function we start from an absolutely irreducible
Hecke -module Vπf over C, its isomorphism type is still denoted by πf . This πf
will be the first argument (in our notation) in the automorphic L-function. It
has a central character ζπf and we assume that this central character is the finite
component of a character ζπ : C(Q)\C(A) → C×. (In the back of our mind of
πf to be the finite component of an automorphic form π, then this assumption
is automatically fulfilled. But for the definition of the L-functions we do not
need this.)

Then we define the unitary (automorphic) L-function: Here we require that
the central character ζπf of πf is unitary and put

Lunit(πf , rχ, s) =
∏
p∈Σ

Lp(πf , rχ, s)(
∏
p 6∈Σ

1

det(Id− rχ(ωp)p−s|Eχ)
) (61)
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If the central character is not unitary we define the automorphic L-function
essentially by the same formula:

Laut(πf , rχ, s) =
∏
p∈Σ

Lp(πf , rχ, s)(
∏
p 6∈Σ

1

det(Id− rχ(ωp)p−s|Eχ)
) (62)

This L− function is related to an unitary L− function by a shift in the variable
s. The isogeny dC induces a homomorphism d′ : C(Q)\C(A) → C ′(Q)\C ′(A)
and it is well known that this map has a compact kernel. We compose ζπ
with the the norm | | : C× → R×>0, this composition is trivial on the kernel of
d′. Therefore we find a homomorphism |ζπ|∗ : C ′(Af ) → R×>0 which satisfies
| | ◦ ζπ = |ζπ|∗ ◦d′. We look at the finite components of these characters and put
as in (2.4.4)

π∗f = πf ⊗ (|ζπ|∗)−1. (63)

This module has a unitary central character. It is easy to see how the Satake
parameter changes under the twisting. We have the homomorphism T (A) →
C ′(A) and therefore (|ζπ|∗)−1 induces also a homomorphism from T (Af ) to R×>0.
Then it is clear that we get for the Satake parameters the equality

ω(πp ⊗ (|ζπ|∗p)−1) = ω(πp)(|ζπ|∗p)−1 (64)

Let us assume that πf occurs as an isotypical subspace in some H•(SGKf ,M̃λ⊗
C), where λ = λ(1) + δ. The element δ is an element in X∗(C ′) ⊗ Q. To an
element η ∈ X∗(C ′) ⊗ R we have attached an element |η| and since ζπf is of
type δ ◦ dC we have

(|ζπ|∗)−1 = |δ|.

We also have the cocharacter χ : Gm → T then it is clear that the composition
(|ζπ|∗)−1 ◦ χ induces a homomorphism Gm(Q)\Gm(A) → R×>0 which is of the
form

((|ζπ|∗)−1 ◦ χ)A : x 7→ |x|<χ,δ>. (65)

Then we have

Lunit(π∗f , rχ, s) = Laut(πf , rχ, s+ < χ, δ >) (66)

We now assume that π∗f is the finite part of a cuspidal unitary representa-

tion (See 4.2), then the functions Lunit(π∗f , rχ, s) are studied in the theory of
automorphic forms. The Euler factors are now meromorphic functions in the
variable s ∈ C. Since π∗f is unitary it follows that the Satake parameters satisfy
some bounds and this implies that the infinite product converges if <(s) >> 0. If
for all p 6∈ Σ the representation π∗p is in the unitary principal series, i.e |ω∗i,p| = 1
then it follows from standard arguments that the infinite product over p 6∈ Σ
converges for <(s) > 1.

It is a conjecture (proved in some cases) that Lunit(πf , rχ, s) has analytic
continuation into the entire complex plane and that there is a functional equa-
tion relating Lunit(πf , rχ, s) and Lunit(π∨f , rχ, 1− s).

But of course any theorem proved for the L-functions Lunit(π∗f , rχ, s) trans-

lates into a theorem for the automorphic L functions Laut(πf , rχ, s).
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Given a automorphic representation π which occurs in the cuspidal spectrum
then we may twist it by any character ξ : C ′(Q)\C ′(A) → R×>0, this group of
characters is equal to X∗(C ′) ⊗ R. We get a principal homogenous space ( a
torsor) of automorphic representations {π ⊗ ξ}ξ∈Ξ.

For the Euler factors p 6∈ Σ we have

1

det(Id− rχ((ωp)(πp ⊗ ξp))p−s|Eχ)
) =

1

det(Id− rχ((ωp)(πp ))p−<χ,ξ>−s|Eχ)
)

(67)

and hence we get for our automorphic L-function

Laut(πf ⊗ ξf , rχ, s) = Laut(πf , rχ, s+ < χ, ξ >) (68)

The representation π∗ is then the unique cuspidal (in the above sense) rep-
resentation in this principal homogeneous spaces {π⊗ξ}ξ∈Ξ, i.e. it is the unique
representation which has a unitary central character. In other words π∗f provides
a trivialization of the torsor. Then we define for any π ⊗ ξ

Lunit(πf ⊗ ξf , rχ, s) = Lunit(π∗f , rχ, s) (69)

the unitary L-function is constant on the torsor, i.e. invariant under twisting.

We compare the automorphic L− function to the rational L− function. We
start from an absolutely irreducible module πf which occurs in Coh!(G,Kf , λ)
and which is defined over some finite extension F/Q. As usual we write λ =
λ(1) + δ, (See(22)). We know that the central character ζπf is an algebraic
Hecke character of type δ. Our Hecke module πf is an absolutely irreducible
module over F . If we want to compare its L functions to automorphic L-
functions we need to choose an embedding ι : F ↪→ C and consider the module
Vπf ⊗F,ι C = Vι◦πf . The we will see in section 4.2 that ι ◦ πf is the finite part
of an automorphic representation occurring in the discrete (or the cuspidal)
spectrum. Hence we have defined L̃aut(ι ◦ πf , rχ, s)). We can also consider the
”extension” of the rational L-function

ι◦Lrat(πf , rχ, s) =
∏
p∈Σ

ι◦Lrat
p (πf , rχ, s)

∏
p 6∈Σ

1

det(Id− ι(p<χ,ρ>rχ(ωp(πp)))p−s|Eχ)

Then it is clear that

ι ◦ Lrat(πf , rχ, s) = Laut(ι ◦ πf , rχ, s− < χ, ρ >). (70)

The central character of ι ◦ πf is of type δ, it follows from (22) that some non
zero multiple rδ ∈ X∗(T ). Then we put < χ, δ >= 1

r < χ, rδ >, this is a rational
number. Then we get

ι ◦ Lrat(πf , rχ, s) = Laut(ι ◦ πf , rχ, s− < χ, δ >) (71)

We still have another L function which is attached to a Hecke module πf
which occurs in the cohomology, this is the cohomological L function. Let us
decompose the representation Eλ into weight spaces
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Eχ =
⊕
ν

Eχ,ν =
⊕

ν∈X∗,+(T )

⊕
w∈W/Wν

Eχ,w(ν)

then we get with m(ν, χ) = dim(Eχ,w(ν)). Such a weight vector space is zero
unless we have ν < χ.

det(Id− rχ(ωp)p
−s|Eχ) =

∏
ν∈X∗,+(T )

∏
w∈W/Wν

(1− ωp(w(ν))p−s)m(ν,χ)

For a given ν we expand the inner product∏
w∈W/Wν

(1− ωp(w(ν))p−s) = 1− (
∑

w∈W/Wν

ωp(w(ν)))p−s . . . .

Now we recall that

p<χ,λ
(1)>−<χ,δ>ch(χ) = S(λ)

χ

is an operator on the integral cohomology (See (27)). Then our recursion formula
( 58) implies that

p<χ,λ
(1)>−<χ,δ>Sχ′

is an operator on the integral cohomology, we simply have to observe that <
χ, λ(1) > ≥ < χ′, λ(1) >. From this it follows directly that for ν ∈ X∗,+(T )
which occurs as a weight in rχ we have

p<χ,λ
(1)+ρ>−<χ,δ>

∑
w∈W/Wν

ωp(w(ν)) ∈ OF

because < χ, λ(1) > > < ν, λ(1) > . Then the right hand side in the above
formula can be written

1− p<χ,λ
(1)+ρ>−<χ,δ>(

∑
w∈W/Wν

ωp(w(ν)))p−s−<χ,λ
(1)+ρ>+<χ,δ> . . .

We introduce the new variable s′ = s+ < χ, λ(1) + ρ > − < χ, δ > and put

c(χ, λ) =< χ, λ(1) + ρ > − < χ, δ > (72)

∏
w∈W/Wν

(1− pc(χ,λ)ωp(w(ν))p−s
′
) = 1− pc(χ,λ)(

∑
w∈W/Wν

ωp(w(ν)))p−s
′
. . .

(73)

Hence we define the cohomological local Euler factor at p

Lcoh
p (πf , rχ, s) =

1

det(Id− pc(χ,λ)rχ(ωp)p−s)
. (74)

(It seems to be reasonable and very adequate to define for any highest weight
λ the modified weight λ̃ = λ+ ρ.)
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We look at this local Euler factor from a slightly different point of view.
Our πf is an absolutely irreducible module which occurs in the cohomology
H•? (SGKf ,Mλ⊗F ), where F/Q is an abstract (normal) finite extension of Q. For
an unramified prime p the local factor is simply a homomorphism πp : Hp → E.
The previous computations show that the denominator is equal to a polynomial
in the ”variable” p−s and with coefficients in OF , i.e.

det(Id− pc(χ,λ)rχ(ωp)p
−s) = 1−A1(p, λ, χ)(πp)p

−s +A2(p, λ, χ)(πp)p
−2s · · · ∈ OF [p−s]

(75)

where the Ai(p, λ, χ) are certain explicitly computable elements in H(λ)
Z . (We

showed this only for A1(p, λ, χ) but the same kind of reasoning gives it for the
other Ai(p, λ, χ).) In the expression of the right hand side the Satake parameter
does not enter.

The cohomological L function is defined as

Lcoh(πf , rχ, s) =
∏
p∈Σ

Lcoh
p (πp, rχ, s)

∏
p 6∈Σ

1

1−A1(p, λ, χ)(πp)p−s +A2(p, λ, χ)(πp)p−2s . . .
.

(76)

Again we do not discuss the factors at the primes in Σ.
In the definition of the automorphic L function the Satake parameter is an

element in LG(C) or in other words ωp(ν) ∈ C× and Laut
p (πf , rχ, s) is an honest

analytic function in the complex variable s for <(s) >> 0.
If we want to compare the cohomological L-function to the automorphic L

-function we have to pick an element ι ∈ I(F,C), then ι ◦ πf is an absolutely
irreducible Hecke module over C. To ι ◦ πp belongs a Satake parameter ωp and
then

det(Id−rχ(ωp)p
−s+c(χ,λ)) = 1−ι(A1(p, λ, χ))(πp))p

−s+ι(A2(p, λ, χ))(πp)p
−2s . . .

and this tells us that we have

Lcoh(ι ◦ πf , rχ, s) = Laut(ι ◦ πf , rχ, s− c(χ, λ)) (77)

3.1.4 Invariance under twisting

We remember that we introduced the quotient C′ = T /T (1) and the isogeny
dC : C → C′. (See 1.1). The map dC in 1.1 induces a map from our locally
symmetric space

SGKf
dC′−→ SC

′

KC′∞×KC
′
f

We assume that K∞ is connected and then KC
′

∞ is also connected.
We can modify our system of coefficients if we replace λ by λ + δ1 with

δ1 ∈ X∗(C′). Then δ1 provides a local coefficient system Z[δ1] on SC′
KC′∞×KC

′
f

and

since KC
′

∞ is connected we get a canonical class

eδ1 ∈ H0(SC
′

KC′∞×KC
′
f

,Z[δ1])
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which generates the rank one submodule of type |δf |−1 in the decomposition
(37). We pull this back by d′C and we get a class in

eδ1 ∈ H0(SGKf ,Z[δ1]) (78)

(see section (2.5.2)). We have the isomorphism Mλ,Z ⊗ Z[δ1]
∼−→Mλ+δ1,Z and

then the cup product with eδ1 yields an isomorphism

H•! (SGKf ,M̃λ,Z) ∪ eδ1
∼−→ H•! (SGKf ,M̃λ+δ1,Z) (79)

This isomorphism is compatible with the action of the integral Hecke algebra
provided we choose the right identification

H(λ)
Z → H(λ+δ1)

Z

which is given by a · ch(xf ) 7→ p<ch(xf ),δ1>a · ch(xf ).
If we extend the coefficients to F then this cup product yields an isomorphism

H•(SGKf ,M̃λ,F )(πf )
∼−→ H•(SGKf ,M̃λ+δ1,F )(πf ⊗ |δ1,f |−1) (80)

Then our cohomological L-function has the property

Lcoh(πf ⊗ |δ1,f |−1, rχ, s) = Lcoh(πf , rχ, s) (81)

This invariance under twists is of course also a consequence of the definition
in terms of the automorphic L-function.

We may interpret this differently. Our λ is a sum of a semi-simple component
λ(1) plus an abelian part δ We can use the isomorphisms in (80) to define a vector
space

H•(SGKf ,M̃λ(1)+,F ){πf}, (82)

this vector space has a distinguished isomorphism to any of theH•(SGKf ,M̃λ+δ1,F )(πf⊗
|δ1,f |−1), we could say that it the direct limit of all these spaces. By {σf} we
understand the array

{σf} = {. . . , πf ⊗ |δ1,f |−1, }δ1∈X∗(C′).

Using (81) we have now defined Lcoh({πf}, rχ, s)

For any pair χ ∈ X∗(T ), λ ∈ X∗(T ), where χ is in the positive chamber and
λ a dominant weight we define the weight

w(χ, λ) =< χ, λ(1) + ρ > . (83)

Here we observe that χ provides a highest weight representation r = rχ of LG
and λ a highest weight representation of G so we could also write

w(χ, λ) = w(rχ,Mλ) = w(r,M). (84)

This means that we may consider the weight as a number attached to a pair of
irreducible rational representations of LG and G. It also depends only on the
semi simple part of λ.
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3.1.5 A different look

We could look at the previous discussion from another point of view. Given our
coefficient systemMλ where λ = λ(1) + δ and an absolutely irreducible module
πf ∈ Coh!(G,λ,Kf ). As explained above we get X∗(C ′) torsor (λ+δ′, πf ⊗|δ′f |)
of such objects. If we choose a ι : F ↪→ C then we can think of ι ◦ πf as the
finite part of an automorphic representation π. Then we get a second torsor
for the above group Ξ = X∗(C ′) ⊗ R. The inclusion X∗(C ′) ↪→ Ξ yields an
interpolation of the first torsor into the second one. To any element π ⊗ ξ we
defined the automorphic L function Laut(ι◦πf ⊗ ξf , rχ, s). Now the unitary and
the cohomological L-function are defined as the automorphic L function of a
specific point in the torsor, i.e. a specific trivialization.

To define the unitary L function we choose the specific point for which the
central character is unitary, for the cohomological L -function we choose the
”optimal” point πf ⊗ |δ′f | for which we have

Lcoh
p (πf ⊗ |δ′f |, rχ, s)−1 ∈ OF [p−s]. (85)

If we are investigating analytic questions concerning automorphic forms the
unitary L is the right object, but if we want to capture the integral structure of
the cohomology we prefer to work with the cohomological L function.

3.1.6 The motives

We consider an isotypical submodule H•! (SGKf ,M̃λ;F )(πf ) in the inner coho-
mology. The Langlands philosophy predicts the existence of a collection of pure
motives over Q with coefficients in F.

{M(πf , rχ)}rχ
which has certain properties. We will not be absolutely precise in the follow-

ing but we list certain properties this motive should have. We should assume
that πf is not some kind of exceptional Hecke module (for instance it should
not be endoscopic), and I can not give a precise definition what that means. We
will make it more precise later when we discuss the case that our group is Gln.

This motive should be invariant under twists, i.e. we want that

M(πf ⊗ |δf |, rχ) = M(πf , rχ)

First of all this motive has a Betti-realization M(πf , rχ)B , which is simply an
F vector space of dimension dim(rχ). Such a motive has a de-Rham realization
M(πf , rχ)dRh, this is another F -vector space of the same dimension. It has a
descending filtration

M(πf , rχ)dRh = F 0(M(πf , rχ)de−Rh) ⊃ F 1(M(πf , rχ)de−Rh) ⊃ . . .

· · · ⊃ Fw(F 0(M(πf , rχ)dRh) ⊃ Fw+1(F 0(M(πf , rχ)dRh) = 0.

The number w = w(πf , χ) is the weight of the motive it is equal to w(χ, λ).
Furthermore we have a comparison isomorphism

IB−dRh : M(πf , rχ)B ⊗ C ∼−→M(πf , rχ)dRh ⊗ C,
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this yields periods and these periods should be related to πf , this is rather
mysterious.

For any prime ` and any prime l|` in F we get a Galois representation

ρ(πf , χ) : Gal(Q̄/Q)→ GL(M(πf , rχ)B ⊗ Fl)

which is unramified outside Σ ∪ {l} and for any such prime we have

det(Id− ρ(πf , χ)(Φ−1
p )p−s,M(πf , rχ)B ⊗ Fl) = Lcoh

p (πf , rχ, s)
−1,

or in other words we expect that the semi-simple conjugacy classes

ρ(πf , χ)(Φ−1
p ) ∼ pc(χ,λ)rχ(ωp) (86)

and hence we want

Lcoh(πf , rχ, s) = L(M(πf , rχ), s)

The existence of these hypothetical motives has a lot of consequences. Once
we have established such a relation

Lcoh(πf , rχ, s) = L(M(πf , rχ), s)

then we can exploit this in both directions. We have a certain chance to prove the
conjectural analytic properties and the conjectural functional equation for the L-
function of the motive M(πf , rχ), provided we can prove this for Lcoh(πf , rχ, s).
On the automorphic side we know many cases in which we can prove these
properties of the L-function using the theory of automorphic forms.

In the other direction we have Deligne’s theorem concerning the absolute
values of the Frobenius. This implies Ramanujan (more details later)

We seem to be very far away from proving these conjectures, but there are
many instances where some parts of this program have been established and
there are also some very interesting cases where this correspondence has been
verified experimentally.

3.1.7 The case G = Gln

3.1.8 Notations for the dual group LG

We want to verify formula (57) in the special case G = Gln/Z. In this case t we
have the cocharacters χi which send t to the diagonal matrix t 7→ diag(t, . . . , t, 1 . . . , 1)
where t is placed to the first i dots. They satisfy < χi, αj >= δi,j for 1 ≤ i ≤
n, 1 ≤ j ≤ n − 1. They are uniquely determined by this condition modulo the
cocharacter χn which identifies Gm with the center. For 1 ≤ ν ≤ n − 1 the
cocharacter χi determines a maximal parabolic subgroup Pi ⊃ T whose roots
∆Pi = {α| < χi, α >≥ 0}. The parabolic subgroup P−i will be the opposite
parabolic subgroup.

Let ηi : Gm → T be the cocharacter which sends t to t on the i− th spot on
the diagonal and to 1 at all others. If we identify the module of cocharacters
with the character group of the dual torus T∨ ⊂L G = Gln then the differences
ηi − ηj will be the roots, the simple roots are ηi − ηi+1 and the fundamental

dominant weights are the semi simple components (
∑i
i=1 ηi)

(1).
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3.1.9 Formulas for the Hecke operators

We consider the homomorphism r : Kp = Gln(Zp) → Gln(Fp) then we check

easily that the intersection Kp∩χi(p)Kpχi(p)
−1 = K

(χi(p))
p is the inverse image

of the parabolic subgroup P−i (Fp) under r.
We want to evaluate the integral∫

Kpχi(p)Kp

φωp(x)dx

We write choose representatives ξ for the cosets of Kp/K
(χi(p))
p and write Kp =

∪ξξK(χi(p))
p . We observe that φωp is constant on the cosets ξK

(χi(p))
p . Hence we

see that ∫
Kpχi(p)Kp

φωp(x)dx =
∑
ξ

φωp(ξχi(p))) (87)

The Bruhat decomposition gives us a nice system of representatives forKp/K
(χi(p))
p =

Gln(Fp)/P−i (Fp). Let WMi
be the Weyl group of the standard Levi subgroup

Mi = Pi∩P−i and we choose a system of representatives WPi for W/WMi
Then

we get a disjoint decomposition

Gln(Fp) =
⋃

w∈WPi

UB(Fp)wP−i (Fp),

here UB is the unipotent radical of the standard Borel subgroup. The function
φωp is constant on the double cosets. If we write a representative in the form
ξ = uw then the factor w is determined by ξ but the factor u is not. This factor

is only unique up to multiplication from the right by a factor u ∈ U (w,−)
B (Fp) =

UB(Fp) ∩ wP−i w−1(Fp). Hence we may choose our u in the subgroup

U
(w,+)
B (Fp) =

∏
α∈∆+|<χi,w−1α>>0

Uα(Fp) (88)

and our sum in (87) becomes∑
w∈WPi

∑
u∈U(w,+)

B (Fp)

φωp(uwχi(p))) =
∑

w∈WPi

pl(w)φωp(wχi(p)w
−1)) (89)

where l(w) is the cardinality of the set {α ∈ ∆+| < χi, w
−1α >> 0}. We recall

the definition of the spherical function and get for our integral

∑
w∈W/WMi

pl(w)ωp(wχi(p)w
−1))|ρ|p(wχi(p)w−1)) =

∑
w∈W/WMi

pl(w)−<χi,w−1ρ>ωp((wχi)(p))

(90)

Now one checks easily that pl(w)−<χi,w−1ρ> = p<χi,ρ> and hence we get the
desired formula∫

Kpχi(p)Kp

φωp(x)dx = p<χi,ρ>
∑

w∈W/WMi

ωp((wχi)(p)) (91)
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This is the formula (57) for the group Gln and the special choice of the cochar-
acters χ = χi. The only cocharacter χ′ < χi is the trivial cocharacter, in our
situation its contribution to (57) is zero.

Let us have a brief look at an arbitrary reductive (split or may be only
quasisplit) group G/Q, let us assume that the center is a connected torus C/Q.
We choose a maximal torus T/Q which is contained in a Borel subgroup B/Q.
We have the homomorphism to the adjoint group G→ Gad it maps T to Tad =
T/C. Again we may also define the fundamental cocharacters χi : Gm → T
which satisfy < χi, αj >= δi,j . They are only well defined modulo cocharacters
χ : Gm → C but this does not matter so much. Our above method to compute
the eigenvalue of ch(χi) still works if the cocharacter χi is ”minuscule” which
means that < χi, αj >∈ {−1, 0, 1}. In this case the formula (91) is still valid,
again there is no contribution from the trivial character.

We return to G = Gln and to our speculations about motives. We choose
a weight module Mλ where λ =

∑
i aiγi + dδ, where the γi are the funda-

mental weights and δ is the determinant. The ai are integers and we have the
consistency condition

∑
iai ≡ nd mod n. Let us pick an isotypical submodule

H•(SGKf ,Mλ ⊗ F )(πf ). In section 2.3 we define the Hecke operators

T coh,λ
χ : H•? (SGKf ,Mλ)→ H•? (SGKf ,Mλ)

and these endomorphisms induce endomorphisms

T coh,λ
χ : H•?, int(SGKf ,Mλ ⊗ F )(πf )→ H•?, int(SGKf ,Mλ ⊗ F )(πf )

Let πf = ⊗πp be an irreducible Hecke module and at an unramified place p
let ωp be the Satake parameter. Our Satake parameter is determined by the
n-tuple of numbers

ωp(ηi(p)) = ωi,p for i = 1, . . . , n

The cocharacter χn : Gm → T identifies Gm with the center of Gln. Our
Hecke-module πf has a central character and this provides a Hecke character

πf ◦ χn : Gm(Af ) = IQ,f → F×

The restriction of Mλ to Gm is the character ωλ : t 7→ tnd and the type of
πf ◦ χn is of course ωλ.

Our cocharacters χi define representations of the dual group which is again
Gln and in fact χ1 yields the tautological representation r1 : Gln

∼−→ Gl(V ).
Then χi yields the representation ri = Λi(r1) : Gln → Gl(Λi(V )). For any
subset I ⊂ {1, 2, . . . , n} we define

ωI,p =
∏
i∈I

ωi,p

and then our formula (91) in combination with the formula (27 ) in section 2.3
and the observation that < χi, δ >= i yields

T coh,λ
χi (πp) = p<χi,λ

(1)+ρ>−id
∑

I:#I=i

ωI,p (92)
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and by the same token we get for the cohomological L-function

Lcoh(πf , rν , s) =
∏
p∈S

Lcoh
p (πf , ri, s)

∏
p 6∈S

( ∏
I:#I=i

1

(1− p<χi,λ(1)+ρ>−idωI,pp−s)

)
(93)

Here we see in a very transparent way the independence of the twist: If we
modify λ to λ+ rδ then we have to modify πf to πf ⊗ |δf |−r. This means that
the ωI,p get multiplied by pir and the modifications cancel out.

We assume that πf ∈ Coh(H•! (SGKf ,M̃λ)), then we will see in section 4.2

that πf is essentially unitary. The central character of Mλ is x 7→ xnd and
hence we get that π∗f = πf ⊗ |δf |d is unitary. Then the Satake parameter of π∗f
is given by

ω∗i,p = ωi,pp
−d for i = 1, . . . , n (94)

where the factor p−d = |p|dp and we observe that these numbers are also invariant
under twists by a power of |δf |.

Since the operators T coh,λ
χi operate on the integral cohomology it follows that

the numbers T coh,λ
χi (πf ) are algebraic integers. We easily check that for all i ≤ n

i(< χ1, λ
(1) + ρ > −d) ≥< χi, λ

(1) + ρ > −id

and this implies that the numbers∑
I:#I=i

∏
ν∈I

p<χ1,λ
(1)+ρ>−dων,p

are algebraic integers and hence we can conclude
The numbers

ω̃i,p = p<χ1,λ
(1)+ρ>−dωi,p = p<χ1,λ

(1)+ρ>ω∗i,p (95)

are algebraic integers
Observe that these numbers are invariant under twists by a power of |δf |.
We want t make few remarks about the relationship between the automor-

phic and the cohomological L-functions, especially we comment the shift in the
variable s.

For the automorphic L -function we assume that we are over C, we have
chosen an embedding ι : F ↪→ C. If our isotypical Hecke module πf is cuspidal
(see Thm. 4.2) then the considerations around this theorem show that πf is
essentially unitary. The center C = Gm, the quotient C ′ = Gm and the isogeny
dC : x 7→ xn.

We come back to the Langlands philosophy. It predicts that for our a
”cuspidal” πf and the cocharacter χ1 we should be able to attach a motive
M(πf , r1) = M(πf , χ1) with coefficients in F. This motive provides a compati-
ble system of l- adic Galois representations

ρl(πf , χ1) : Gal(Q̄/Q)→ Gln(Fl) = Gl(M(πf , χ1)ét,l) (96)
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which are unramified outside {l} ∪ S and for p 6∈ S ∪ {l} we should have

det(Id− ρl(πf , χ1)(Φ−1
p )p−s) =

∏
i

(1− p<χ1,λ
(1)+ρ>−dωi,pp

−s) (97)

and this means that up to the local factors at the bad primes we should have

Lmot(M(πf , χ1), s) = Lcoh(πf , χ1, s) (98)

The existence of the compatible system of Galois representation has been
shown by Harris - Kai-Wen Lan -Taylor and Thorne and by P. Scholze.

Once we have the motive for the cocharacter χ1 we easily get it the other χi
we simply have to look at the exterior powers Λi(M(πf , χ1)).

Now we see that that numbers ω̃ν,p can be interpreted as the eigenvalues of
the Frobenius on Mét,l(πf , χ1). Under the assumption that πf is ”cuspidal” we
expect that the motive M(πf , χ1) is pure of weight w(χ1, λ) we get

|ω̃ν,p| = p
w(χ1,λ)

2

and this is the Ramanujan conjecture. We will explain in the section on
analytic aspects, that for cuspidal πf the Ramanujan conjecture says that for
any embedding ι : F ↪→ C we have

|ι ◦ ω∗ν,p| = 1

This suggests that we call the array ω̃p = {ω̃1,p, . . . , ω̃n,p} the motivic Satake
parameter (with respect to the tautological representation r1 .) Of course it can
always be defined, independently of the existence of the motive.

We will see in the next section that the inner cohomology is trivial unless our
highest weight is essentially self dual, this means that λ(1) = −w0(λ(1)). Let us
assume that this is the case. If r∨1 is the dual of the tautological representation
then the eigenvalues of r∨1 (ωp) are by

r∨1 (ωp) = {ω−1
1,p, . . . , ω

−1
n,p}.

The highest weight of r∨1 is the cocharacter −ηn =
∑n−1
i=1 ηi − det (This has to

be read in X∗(T∨)) Then

c(−ηn, λ) =< χ1,−w0(λ(1)) > +d

and under our assumption that λ is essentially self dual we know

< χ1,−w0(λ(1)) >=< χ1, λ
(1) >=

w(χ1, λ)

2
.

This implies that the motivic Satake parameters with respect to the dual
representation r∨1 are the numbers

{p<χ1,λ
(1)>+dδω−1

1,p, . . . , p
<χ1,λ

(1)>+dδω−1
n,p} (99)
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In the following section on Poincaré duality we will see that for any isotypical
module Hi

! (SGKf ,M̃λ,F )(πf ) the dual module π∨f appears in Hd−i
! (SGKf ,M̃λ∨,F ).

Then we get an equality of local Euler factors

Lcoh(πp, r
∨
1 , s) = Lcoh(π∨p , r1, s) (100)

The concept of motives allows us to define the the dual motive. If our motive
has weight w(M) then Poincaré duality suggests that we define the motive

M∨ = Hom(M,Z(−w(M)) (101)

The l adic realization as Galoismodule gives us

M∨ét,l = Hom(Mét,l,Zl(−w(M))

If {α1, . . . , αm} are the eigenvalues of Φ−1
p on Mét,l then {α−1

1 pw(M), . . . , α−1
m pw(M)}

are the eigenvalues of Φ−1
p on M∨ét,l.

Therefore we can say: If we find a motive M(πf , χ1) for πf the we also find
the motive for π∨f and we have

M(π∨f , χ1) = M(πf , χ1)∨

4 Analytic methods

4.1 The representation theoretic de-Rham complex

4.1.1 Rational representations

We start from a reductive group G/Q for simplicity we assume that the semi
simple componentG(1)/Q is quasisplit. There is a unique finite normal extension
F/Q, F ⊂ C such that G(1) ×Q F becomes split, if T (1)/Q is a maximal torus
which is contained in a Borel subgroup B/Q then the Galois group Gal(Q̄/Q)
acts on X∗(T (1) ×Q F ) and by permutations on the set of positive roots πG ⊂
X∗(T (1) ×Q F ) corresponding to B/Q. This action factors over the quotient
Gal(F/Q). Then it also acts on the set of highest weights. Since our group is
quasi split we find for any highest weight an absolutely irreducible G ×Q F -
module Mλ.

r : G×Q K → Gl(Mλ)

whose highest weight is λ. Since we assumed that Q ⊂ F ⊂ Q̄ ⊂ C we get the
extension

rC : (G×Q K)×K C→ Gl(Mλ ⊗F C).

Given such an absolutely irreducible rational representation, we can construct
two new representations. At first we can form the dual M∨λ,C = HomC(Mλ,C)

and the complex conjugate MC of our module Mλ. On the dual module we
have the contragredient representation r∨, which is defined by φ(rC(g)(v)) =
r∨C(g−1)(φ)(v).

To get the rational representation on the conjugate module M̄ ⊗F C, we
recall its definition: As abelian groups we have M⊗F C = M̄ ⊗F C but the
action of the scalars is conjugated, we write this as z ·c m = z̄m. Then the
identity gives us an identification
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EndC(M⊗F C) = EndC(M̄λ ⊗F C).

Now we define an action r̄C on M̄λ ⊗F C: For g ∈ G(C) we put

r̄C(g)m = rC(g) ·c m.

This defines an action of the abstract group G(C), but this is in fact obtained
from a rational representation. Therefore M∨C and MC both are given by a
highest weight.

The highest weight ofM∨λ is −w0(λ). Herew0 is the unique element w0 ∈W ,
which sends the system of positive roots ∆+ into the system ∆− = −∆+.

The highest weight of M̄λ ⊗F C is c(λ) where c ∈ Gal(C/R) ⊂ Gal(F/Q) is
the complex conjugation acting on X∗(T ×Q F ). So we may say: MλC =Mλ̄.

We will call the module Mλ- conjugate-autodual or simply c-autodual if

c(λ) = −w0(λ) (102)

In the following few sections (until 4.3.5 we will always assume that our local
system (resp. the corresponding representation) are local systems in C-vector
spaces (resp. C-vector spaces M̃λ). Therefore we will suppress the factor ⊗C.

4.1.2 Harish-Chandra modules and (g,K∞)-cohomology.

Now we consider the group of real points G(R), it has the Lie algebra g, inside
this Lie algebra we have the Lie algebra k of the group K∞. We have the notion
of a (g,K∞) module: This is a C-vector space V together with an action of g
and an action of the group K∞. We have certain assumptions of consistency:

i) The action of K∞ is differentiable, this means it induces an action of k,
the derivative of the group action.

ii) The action of g restricted to k is the derivative of the action of K∞.

iii) For k ∈ K∞, X ∈ g and v ∈ V we have

(Ad(k)X)v = k(X(k−1v)).

Inside V we have have the subspace of K∞ finite vectors, a vector v is called
K∞ finite if the C- subspace generated by all translates kv is finite dimensional,
i.e. v lies in a finite dimensional K∞ invariant subspace. The K∞ finite vectors
form a subspace V (K∞) and it is obvious that V (K∞) is invariant under the
action of g, hence it is a (g,K∞) sub module of V. We call a (g,K∞) module a
Harish-Chandra module if V = V (K∞).

For such a (g,K∞)-module we can write down a complex

HomK∞(Λ•(g/k), V ) = {0→ V → HomK∞(Λ1(g/k), V )→ HomK∞(Λ2(g/k), V )→ . . . }

where the differential is given by

dω(X0, X1, . . . , Xp) =

p∑
i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xp)+
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∑
0≤i<j≤p

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, , . . . , X̂j , . . . , Xp).

A few comments are in order. We have inclusions

HomK∞(Λ•(g/k), V ) ⊂ Hom(Λ•(g/k), V ) ⊂ Hom(Λ•(g), V ).

The above differential defines the structure of a complex for the rightmost
term, we have to verify that the leftmost term is a subcomplex, this is not so
difficult.

We define the (g,K∞) cohomology as the cohomology of this complex, i.e.

H•(g,K∞, V ) = H•(HomK∞(Λ•(g/k), V )).

It is clear that the map

H•(g,K∞, V
(K∞))→ H•(g,K∞, V )

is an isomorphism.
If we have two (g,K∞) modules V1, V2 and form the algebraic tensor product

W = V1⊗ V2 the we have a natural structure of a (g,K∞) -module on W : The
group K∞ acts via the diagonal and U ∈ g acts by the Leibniz-rule U(v1⊗v2) =
Uv1 ⊗ v2 + v1 ⊗ Uv2. If both modules are Harish-Chandra modules, then the
tensor product is also a Harish-Chandra module.

Of course any finite dimensional rational representation of the algebraic
group also yields a Harish-Chandra module.

For us the (g,K∞) module C∞(G(Q)\G(A)/Kf ),- this is the space of func-
tions which are C∞ in the variable g∞- is one of the most important (g,K∞)
-modules. We may also consider the limit over smaller and smaller levels Kf

we get the space C∞(G(Q)\G(A)), which consists of those functions on G(A),
which are left invariant under G(Q), right invariant under a suitably small open
subgroup Kf ⊂ G(Af ) and which are C∞ in the variable g∞. On these functions
the group G(A) acts by translations from the right, since our functions are C∞
we also get an action of the Lie algebra g. Hence this is also a (g,K∞)×G(Af )-
module.

If we fix the level see that C∞(G(Q)\G(A)/Kf )) is a (g,K∞) × HKf , the
Hecke algebra acts by convolution. We choose a highest weight moduleMλ and
apply the previous considerations to the Harish-Chandra module

V = C∞(G(Q)\G(A)/Kf )⊗Mλ.

Notice that we can evaluate an element f ∈ C∞(G(Q)\G(A)/Kf ) ⊗Mλ in a
point g = (g∞, gf ) and the result f(g) ∈ Mλ. The Hecke algebra acts via

convolution on the first factor.
Let us assume that our compact subgroup Kf ⊂ G(Af ) is neat, i.e. for

any g = (g∞, gf ) ∈ G(A) we have g−1(K∞ × Kf )g ∩ G(Q) = {e}. In this

case we know that M̃ is a local system and we can form the de-Rham complex
Ω•(SGKf ,M̃λ).

We have an action of the Hecke algebra on this complex and we have the
following fundamental fact:
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Proposition 4.1. We have a canonical isomorphism of complexes

HomK∞(Λ•(g/k), C∞(G(Q)\G(A)/Kf )⊗Mλ)
∼−→ Ω•(SGKf ,M̃λ),

this isomorphism is compatible with the action of the Hecke algebra on both sides

This is rather clear. We have the projection map

q : G(R)×G(Af )→ G(R)/K∞ ×G(Af )/Kf = X ×G(Af )/Kf

let x0 ∈ X ×G(Af )/Kf be the image of the identity e ∈ G(R). The differential
Dq(e) maps the Lie algebra g = tangent space of G(R) at e to the tangent

space TX,x0
at x0 × ef . This provides the identification TX,x0

∼−→ g/k.
An element ω ∈ HomK∞(Λp(g/k), C∞(G(Q)\G(A)/Kf )⊗Mλ) can be evalu-

ated on a p-tuple (X0, X1, . . . , Xp−1) and the result

ω(X0, X1, . . . , Xp−1) ∈ C∞(G(Q)\G(A)/Kf )⊗Mλ.

We want to produce an element ω̃ in the de-Rham complex Ω•(SGKf ,M̃λ).

Pick a point x × g
f
∈ X × G(Af )/Kf , we find an element (g∞, gf ) ∈ G(R) ×

G(Af ) such that g∞x0 = x. Our still to be defined form ω̃ can be evaluated at
a p-tuple (Y0, . . . , Yp−1) of tangent vectors in x × g

f
and the result has to be

an element in M̃C,x. We find a p-tuple (X0, X1, . . . , Xp−1) of tangent vectors
at x0 which are mapped to (Y0, . . . , Yp−1) under the differential Dg of the left
translation by g. We put

ω̃(Y0, . . . , Yp−1)(x× g
f
) = g−1

∞ ω(X0, . . . , Xp−1)(g∞, gf ).

At this point I leave it as an exercise to the reader that this gives the iso-
morphism we want. We recall that the de-Rham complex (Reference Book Vol.
!) computes the cohomology and therefore we can rewrite the de-Rham isomor-

phism BodeRh

H•(SGKf ,M̃λ)
∼−→ H•(HomK∞(Λ•(g/k), C∞(G(Q)\G(A)/Kf )⊗Mλ) (103)

From now on the complex HomK∞(Λ•(g/k), C∞(G(Q)\G(A)/Kf ) ⊗Mλ) will
also be called the de-Rham complex.

By the same token we can compute the cohomology with compact supports

BodeRhcs

H•c (SGKf ,M̃λ)
∼−→ H•(HomK∞(Λ•(g/k), Cc,∞(G(Q)\G(A)/Kf )⊗Mλ) (104)

where Cc,∞(G(Q)\G(A)/Kf ) are the C∞ function with compact support. These
isomorphisms are also valid if we drop the assumption that Kf is neat.

The Poincaré duality on the cohomology is induced by the pairing on the
de-Rham complexes:

Proposition 4.2. If ω1 ∈ HomK∞(Λ•(g/k), C∞(G(Q)\G(A)/Kf ) ⊗ M̃) is a

closed form and ω2 ∈ HomK∞(Λ•(g/k), C∞,c(G(Q)\G(A)/Kf ) ⊗ M̃∨) a closed
form with compact support in complementary degree then the value of the cup
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product pairing of the classes [ω1] ∈ Hp(SGKf ,M̃λ), [ω2] ∈ Hd−p
c (SGKf ,M̃λ

∨
) is

given by

< [ω1] ∪ [ω2] >=

∫
SGKf

< ω1 ∧ ω2 >

(Reference Book Vol. !)

4.1.3 Input from representation theory of real reductive groups.

Let us consider an arbitrary irreducible (g,K∞)- module V. We also assume that
for any ϑ ∈ K̂∞ the multiplicity of ϑ in V is finite (we say that V is admissible).
Then we can extend the action of the Lie-algebra g to an action of the universal
enveloping algebra U(g) on V and we can restrict this action to an action of
the centre Z(g). The structure of this centre is well known by a theorem of
Harish-Chandra, it is a polynomial algebra in r = rank(G) variables, here the
rank is the absolute rank, i.e. the dimension of a maximal torus in G/Q. (See
Chap. 4 sect. 4)

Clearly this centre respects the decomposition into K∞ types, since these
K∞ types come with finite multiplicity we can apply the standard argument,
which proves the Lemma of Schur. Hence Z(g) has to act on V by scalars, we
get a homomorphism χV : Z(g)→ C, which is defined by

zv = χV (z)v.

This homomorphism is called the central character of V .

A fundamental theorem of Harish-Chandra asserts that for a given central
character there exist only finitely many isomorphism classes of irreducible, ad-
missible (g,K∞)-modules with this central character.

Of course for any rational finite dimensional representation r : G/Q →
Gl(Mλ) we can consider Mλ ⊗ C as (g,K∞)-module. If Mλ is absolutely
irreducible with highest weight λ (See chap. IV) then it also has a central
character χM = χλ.

Wigner’s lemma: Let V be an irreducible, admissible (g,K∞)-module, let
M = Mλ, a finite dimensional, absolutely irreducible rational representation.
Then H•(g,K∞, V ⊗MC) = 0 unless we have

χV (z) = χM∨(z) = χMλ∨ (z) for all z ∈ Z(g)

Since we also know that the number of isomorphism classes of irreducible,
admissible (g,K∞)-modules with a given central character is finite, we can con-
clude that for a given absolutely irreducible rational module Mλ the num-
ber of isomorphism classes of irreducible, admissible (g,K∞)-modules V with
H•(g,K∞, V ⊗MC) 6= 0 is finite.

The proof of Wigner’s lemma is very elegant. We haveM⊗V =M∨⊗V and
hence we have H0(g,K∞,M⊗ V ) = Hom(M∨, V )(g,K∞) = Homg,K∞(M∨, V ).
In [B-W] , Chap.I 2.4 it is shown, that the category of g,K∞ -modules has
enough injective and projective elements (See [B-W], I. 2.5) . If I is an injective
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g,K∞-module thenM⊗ I is also injective because for any g,K∞-module A we
have Hom(A,M⊗ I) = Hom(M∨, I). Hence an injective resolution 0 → V →
I0 → I1 . . . yields an injective resolution 0→M→M⊗ I0 →M⊗ I1 . . . and
from this we get

Hq(g,K∞,M⊗ V ) = Extqg,K∞(M∨, V ).

Any z ∈ Z(g) induces an endomorphism of Mλ and V . Since Ext• is func-
torial in both variables, we see that z induces endomorphisms z1 (via the ac-
tion on Mλ) and z2 (via the action on V ) on Extqg,K∞(M∨, V ). We show that

z1 = z2. This is clear by definition for Ext0
g,K∞(M∨, V ) = Homg,K∞(M∨, V ) :

For z ∈ Z(g) and φ ∈ Homg,K∞(M∨, V ),m ∈ Mλ we have z1φ(m) = φ(zm) =
z2(φ(m)). To prove it for an arbitrary q we use devissage and induction. We
embed V into an injective g,K∞ module I and get an exact sequence

0→ V → I → I/V → 0

and from this and Extqg,K∞(Mλ, I) for q > 0 we get

Extq−1(g,K∞,Mλ, I/V ) = Extq(g,K∞,Mλ, V ) for q > 0.

Now by induction we know z1 = z2 on the left hand side, so it also holds on
the right hand side.

If now χV 6= χM∨ then we can find a z ∈ Z(g) such that χM∨(z) =
0, χV (z) = 1. This implies that z1 = 0 and z2 = 1 on all Extq(g,K∞(Mλ, V ).
Since we know that z1 = z2 we see that the identity on Extq(g,K∞(Mλ, V ) is
equal to zero and this implies the assertion.

On the universal enveloping algebra U(g) we have an antiautomorphism u 7→t

u which is induced by the antiautomorphism X 7→ −X on the Lie algebra g. If
V is an admissible (g,K∞)-module, then we can form the dual module V ∨ and
if we denote the pairing between V, V ∨ by < , >V then

< Uv, φ >V =< v,t Uφ >V for all U ∈ U(g), v ∈ V, φ ∈ V ∨.

If V is irreducible, then it has a central character and we get

χV ∨(z) = χV (tz).

This applies to finite dimensional and infinite dimensional (g,K∞)-modules.

4.1.4 Representation theoretic Hodge-theory.

We consider irreducible unitary representations G(R)→ U(H). We know from
the work of Harish-Chandra:

1) If we fix an isomorphism class ϑ irreducible representations of K∞ then
the isotypical subspace dimCH(ϑ) ≤ dim(ϑ)2, i.e. ϑ occurs at most with mul-
tiplicity dim(ϑ).

2) The direct sum
∑
ϑ⊂K̂∞ H(ϑ) = H(K) ⊂ H is dense in H and it is an

admissible irreducible Harish-Chandra -module.
We call an irreducible (g,K∞)-module unitary, if it is isomorphic to such an

H(K).
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For a given G/R and any rational irreducible moduleMλ Vogan and Zucker-
man give a finite list of certain irreducible, admissible (g,K∞)− modules Aq(λ),
for which H•(g,K∞, Aq(λ)⊗Mλ) 6= 0 they compute these cohomology group.
This list contains all unitary, irreducible (g,K∞)−modules, which have non
trivial cohomology with coefficients in Mλ.

For the following we refer to [B-W] Chap. II , §1-2 . We want to apply the
methods of Hodge-theory to compute the cohomology groups H•(g,K∞, V ⊗
Mλ) for an unitary (g,K∞)-module V. This means have a positive definite scalar
product < , >V on V, for which the action of K∞ is unitary and for U ∈ g and
v1, v2 ∈ V we have < Uv1, v2 >V + < v1, Uv2 >V = 0.

In the next step we introduce for all p a hermitian form on HomK∞(Λp(g/k), V⊗
Mλ). To do this we construct a hermitian form on Mλ.

(The following considerations are only true modulo the centre). We consider
the Lie algebra and its complexification gC = g ⊗ C. On this complex vector
space we have the complex conjugation − : U 7→ Ū . We rediscover g as the
set of fixed points under −. We also have the Cartan involution Θ which is
the involution which has k as its fixed point set. Then we get the Cartan
decomposition

g = k⊕ p where p is the -1 eigenspace of Θ.

The Killing form is negative definite on k and positive definite on p, we
have for the Lie bracket [p, p] ⊂ k. We consider the invariants under − ◦ Θ,
this is the Lie algebra gc = k ⊕

√
−1 ⊗ p. On this real Lie algebra the Killing

form is negative definite and gc is the Lie algebra of an algebraic group Gc/R
whose base extension Gc ⊗R C ∼−→ G ⊗R C and whose group Gc(R) of real
points is compact (this is the so called compact form of G). We still have
the representation Gc/R → Gl(Mλ) which is irreducible and hence we find a
hermitian form < , >λ on Mλ, which is invariant under Gc(R) and which is
unique up to a scalar.

This form satisfies the equations

< Um1,m2 >M + < m1, Um2 >λ= 0 for all m1,m2 ∈Mλ, U ∈ k

this is the invariance under K∞ and

< Um1,m2 >M=< m1, Um2 >λ for all m1,m2 ∈Mλ, U ∈ p

this is the invariance under
√
−1⊗ p.

Now we define a hermitian metric on V ⊗Mλ, we simply take the tensor
product < , >V ⊗ < , >λ=< , >V⊗λ . Finally we define the (hermitian)
scalar product on HomK∞(Λ•(g/k), V ⊗Mλ). We choose and orthonormal (with
respect to the Killing form) basis E1, E2, . . . , Ed on p, we identify g/k

∼−→ p.
Then a form ω ∈ HomK∞(Λp(g/k), V ⊗Mλ) is given by its values ω(EI) ∈ V ⊗
Mλ, where I = {i1, i2, . . . , ip} runs through the ordered subsets of {1, 2, . . . , d}
with p elements. For ω1, ω2 ∈ HomK∞(Λp(g/k), V ⊗Mλ) we put

< ω1, ω2 >=
∑

I,|I|=p

< ω1(EI), ω2(EI) >V⊗λ (105)
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Now we can define an adjoint operator

δ : HomK∞(Λp(g/k), V ⊗Mλ)→ HomK∞(Λp−1(g/k), V ⊗Mλ), (106)

which can be defined by a straightforward calculation. We simply write a for-
mula for δ: For an element Ei we define E∗i (v ⊗m) = −Eiv ⊗m + v ⊗ Eim.
Then we can define δ by the following formula:

We have to evaluate δ(ω) on EJ = (Ei1 , . . . , Eip−1) where J = {i1, . . . , ip−1}.
We put

δ(ω)(EJ) =
∑
i 6∈J

(−1)p(i,J∪{i})E∗i ωJ∪{i},

where p(i, J ∪ {i}) denotes the position of i in the ordered set J ∪ {i}. With
this definition we get for a pair of forms ω1 ∈ HomK∞(Λp−1(g/k), V ⊗Mλ) and
ω2 ∈ HomK∞(Λp(g/k), V ⊗Mλ) (See [B-W], II, prop. 2.3)

< dω1, ω2 >=< ω1, δω2 > (107)

We define the Laplacian ∆ = δd+ dδ. Then we have ([B-W] , II ,Thm.2.5)

< ∆ω, ω >≥ 0 and we have equality if and only if dω = 0, δω = 0 (108)

Inside Z(g) we have the the Casimir operator C (See Chap. 4). An element
z ∈ Z(g) acts on V ⊗Mλ by z⊗ Id via the action on the first factor and by the
scalar χλ(z) via the action on the second factor. Then we have

Kuga’s lemma : The action of the Casimir operator and the Laplace op-
erator on HomK∞(Λp(g/k), V ⊗Mλ) are related by the identity

∆ = C ⊗ Id− χλ(C).

If the g,K∞ module is irreducible, then ∆ acts by multiplication by the scalar
χV (C)− χλ(C)

This has the following consequence
If V is an irreducible unitary g,K∞- module and if Mλ is an irreducible

representation with highest weight λ then

H•(g,K∞, V ⊗MC) =

{
0 if χV (C)− χλ(C) 6= 0

HomK∞(Λ•(g/k), V ⊗Mλ) if χV (C)− χλ(C) = 0
.

This only applies for unitary g,K∞-modules, but for these it is much stronger:
It says that under the assumption χV (C) = χλ(C) we have χV = χλ ( we only
have to test the Casimir operator) and it says that all the differentials in the
complex are zero.

4.2 Input from the theory of automorphic forms

We apply this to the spaces of square integrable functions on G(Q)\G(A)/Kf .
Because of the presence of a non trivial center, we have to consider functions
which transform in a certain way under the action of the center. We may assume

65



that coefficient system Mλ has a central character and this central character
defines a character ζλ on the maximal Q-split torus S ⊂ C. This character can
be evaluated on the connected component of the identity of the real valued
points and induces a (continuous) homomorphism ζ∞ : S0(R)→ R×>0. Then we
define

C∞(G(Q)\G(A)/Kf , ζ
−1
∞ ) (109)

to be the subspace of those C∞ functions which satisfy f(z∞g) = ζ−1
∞ (z∞)f(g)

for all z∞ ∈ S0(R),∈G(A). The isogeny dC : C → C ′ (see 1.1) induces an isomor-
phism S0(R)

∼−→ S′,0(R), where S′ is the maximal Q split torus in C ′. Therefore
we get a character ζ ′∞ : S′,0(R)→ R×>0 and this is also a character ζ ′∞ : G(R)→
R×>0 and its restriction to S0(R) is ζ∞. If now f ∈ C∞(G(Q)\G(A)/Kf , ζ

−1
∞ )

then

f(g)ζ ′∞(g) ∈ C∞(G(Q)S0(R)\G(A)/Kf ) (110)

We say that f ∈ C∞(G(Q)\G(A)/Kf , ζ
−1
∞ ) is square integrable if∫

(G(Q)S0(R)\G(A)/Kf )

|f(g)ζ ′∞(g)|2dg <∞ (111)

and this allows us to define the Hilbert space L2(G(Q)\G(A)/Kf , ζ
−1
∞ ). Since

the space (G(Q)S0(R)\G(A)/Kf ) has finite volume we know that

ζ ′∞ ∈ L2(G(Q)\G(A)/Kf , ζ
−1
∞ ).

The group G(R) acts on C∞(G(Q)\G(A)/Kf , ζ
−1
∞ ) by right translations and

hence we get by differentiating an action of the universal enveloping algebra

U(g) on it. We define by C(2)
∞ (G(Q)\G(A)/Kf , ζ

−1
∞ ) the subspace of functions f

for which Uf is square integrable for all U ∈ U(g).

This allows us to define a sub complex of the de-Rham complex Ltwo

HomK∞(Λ•(g/k), C(2)
∞ (G(Q)\G(A)/Kf , ζ

−1
∞ )⊗Mλ). (112)

We will not work with this complex because its cohomology may show some bad
behavior. (See remark below).

We do something less sophisticated, we simply define H•(2)(S
G
Kf
,M̃λ) ⊂

H•(SGKf ,M̃λ) to be the image of the cohomology of the complex (112) in the

cohomology. Hence H•(2)(S
G
Kf
,M̃λ) is the space of cohomology classes which

can be represented by square integrable forms.

Remark: Some authors also define L2 de-Rham complexes, using the above
complex (112) and then they take suitable completions to get complexes of
Hilbert spaces. These complexes also give cohomology groups which run under
the name of L2-cohomology. These L2-cohomology groups are related but not
necessarily equal to our H•(2)(S

G
Kf
,M̃λ). They can be infinite dimensional.

The Hilbert space L2(G(Q)\G(A)/Kf , ζ
−1
∞ ) is a module for G(R)×HKf the

group G(R) acts by unitary transformations and the algebra HKf is selfadjoint.
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Let us assume that H = Hπ∞×πf is an irreducible unitary module for G(R)×
H =

⊗′
pHp and assume that we have an inclusion of this G(R)×H-module

j : H ↪→ L2(G(Q)\G(A)/Kf , ζ
−1
∞ ).

It follows from the finiteness results in 4.1.4 that induces an inclusion into the
space of square integrable C∞ functions

H(K∞) ↪→ C(2)
∞ (G(Q)\G(A)/Kf , ζ

−1
∞ )(K∞).

We consider the (g,K∞)− cohomology of this module with coefficients in our
irreducible module Mλ, we assume χV (C) = χλ(C). We have H•(g,K∞, H ⊗
Mλ) = HomK∞(g,K∞, H

(K∞) ⊗Mλ) and get

H•(g,K∞, H
(K∞)⊗MC)

j•−→ H•(g,K∞, C∞(G(Q)\G(A)/Kf , ζ
−1
∞ )(K∞)⊗Mλ).

This suggests that we try to ”decompose” C∞(G(Q)\G(A)/Kf , ζ
−1
∞ )(K∞)

into irreducibles and then investigate the contributions of the irreducible sum-
mands to the cohomology. Essentially we follow the strategy of [Bo-Ga] and
[Bo-Ca] but instead of working with complexes of Hilbert spaces we work with
complexes of C∞ forms and modify the arguments accordingly.

It has been shown by Langlands, that we have a decomposition into a discrete
and a continous spectrum

L2(G(Q)\G(A)/Kf ) = L2
disc(G(Q)\G(Af )/Kf )⊕ L2

cont(G(Q)\G(Af )/Kf ),

where L2
disc(G(Q)\G(Af )/Kf ) is the closure of the sum of all irreducible closed

subspaces occuring in L2(G(Q)\G(A)/Kf ) and where L2
cont(G(Q)\G(Af )/Kf )

is the complement.

The discrete spectrum L2
disc(G(Q)\G(Af )/Kf ) contains as a subspace the

cuspidal spectrum L2
cusp(G(Q)\G(Af )/Kf ) :

A function f ∈ L2(G(Q)\G(Af )/Kf ) is called a cusp form if for all proper
parabolic subgroups P/Q ⊂ G/Q, with unipotent radical UP /Q the integral

FP (f)(g) =

∫
UP (Q)\UP (A)

f(ug)du = 0,

this means that the integral is defined for almost all g and zero for almost all

g. The function FP (f)(g), which is an almost everywhere defined function on
P (Q)\G(A)/Kf is called the constant Fourier coefficient of f along P/Q. The
cuspidal spectrum the the intersection of all the kernels of the FP .

If our group is anisotropic, then it does not have any proper parabolic sub-
group and in this case we have L2

cusp(G(Q)\G(Af )/Kf ) = L2
disc(G(Q)\G(Af )/Kf ) =

L2(G(Q)\G(Af )/Kf ).

For any unitary G(R) × H- module Hπ = Hπ∞ ⊗ Hπf we put Wπ,cusp =
HomG(R)×H(Hπ, L

2
cusp(G(Q)\G(Af )/Kf )). We can ignore the H-module struc-

ture and define

Wπ∞,cusp = HomG(R)(Hπ∞)⊗Hπf , L
2
cusp(G(Q)\G(Af )/Kf )).
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It has been shown by Gelfand-Graev and Langlands that

mcusp(π∞) =
∑
πf

dim(Wπ,cusp) <∞.

We get a decomposition into isotypical subspaces

L2
cusp(G(Q)\G(Af )/Kf ) =

⊕
π∞⊗πf

(L2
cusp(G(Q)\G(Af )/Kf )(π∞ × πf ),

where (L2
cusp(G(Q)\G(Af )/Kf )(π∞ × πf ) is the image of Wπ,cusp ⊗ Hπ in

L2
cusp(G(Q)\G(Af )/Kf ).

The cuspidal spectrum has a complement in the discrete spectrum, this is
the residual spectrum L2

res((G(Q)\G(Af )/Kf ). It is called residual spectrum,
because the irreducible subspaces contained in it are obtained by residues of
Eisenstein classes.

Again we define Wπ,res = HomG(R)×H(Hπ, L
2
res(G(Q)\G(Af )/Kf )), (resp.

Wπ∞,res = HomG(R)(Hπ∞ , L
2
cusp(G(Q)\G(Af )/Kf )), and it is a deep theorem of

Langlands that mres(π∞) = dim(Wπ∞,res) <∞. Hence we get a decomposition

L2
res(G(Q)\G(Af )/Kf ) =

⊕
π∞⊗πf

(L2
res(G(Q)\G(Af )/Kf )(π∞ × πf ).

If our group G/Q is isotropic, then the one dimensional space of constants
is in the residual (discrete) spectrum but not in the cuspidal spectrum.

Langlands has given a description of the continuos spectrum using the theory

of Eisenstein series, we have a decomposition decomp-cont

L2
cont(G(Q)\G(Af )/Kf ) =

⊕
Σ

H̃+
P (πΣ), (113)

we briefly explain this decomposition following [Bo-Ga]. The Σ are so called
cuspidal data, this are pairs (P, πΣ) where P is a proper parabolic subgroup
and πΣ is a representation of M(A) = P (A)/U(A) occurring in the discrete
spectrum L2

cusp(M(Q)\M(A)).

Let M (1)/Q be the semi simple part of M and recall that C/Q was the center
of G/Q. We consider the character module Y ∗(P ) = Hom(C ·M (1),Gm). The
elements Y ∗(P )⊗C provide homomorphisms γ⊗z : M(A)/C(A)M (1)(A)→ C×.
(See (14)). The module Y ∗(P )⊗Q comes with a canonical basis which is given
by the dominant fundamental weights γµ which are trivial on M (1). We define

ΛΣ = Y ∗(P )⊗ iR = {
∑
µ

γµ ⊗ itµ|tµ ∈ R}

this is a group of unitary characters. For σ ∈ ΛΣ we define the unitarily induced
representation

Ind
G(A)
P (A)πΣ ⊗ (σ + ρP ) = IGP πΣ ⊗ σ

{f : G(A)→ L2
res(M(Q)\M(A))(πΣ)|f(pg) = (σ + |ρP |)(p)πΣ(p)f(g)}

(114)
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where of course p ∈ P (A), g ∈ G(A) and ρP ∈ Y ∗(P ) ⊗ Q is the half sum of
the roots in the unipotent radical of P. This gives us a unitary representation
of G(A). Let dΣ be the Lebesgue measure on ΛΣ then we can form the direct
integral unitary representations

HP (πΣ) =

∫
ΛΣ

IGP πΣ ⊗ σ dΣσ (115)

The theory of Eisenstein series gives us a homomorphism of G(R)×H -modules

EisP (πΣ) : HP (πΣ)→ L2
cont(G(Q)\G(Af )/Kf ). (116)

Let us put

Λ+
Σ = {

∑
µ

γµ ⊗ itµ|tµ ≥ 0}

then the restriction

EisP (πΣ) : H+
P (πΣ) =

∫
Λ+

Σ

IGP πΣ ⊗ σ dΣσ → L2
cont(G(Q)\G(Af )/Kf ). (117)

is an isometric embedding. The image will be denoted by H̃+
P (πΣ) these spaces

are the elementary subspaces in [B-G]. Two such elementary subspaces H̃+
P (πΣ), H̃+

P1
(πΣ1)

are either orthogonal to each other or they are equal. We get the above decom-
position if we sum over a suitable set of representatives of cuspidal data.

Now we are ready to discuss the contribution of the continuous spectrum to
the cohomology. If we have a closed square integrable form

ω ∈ HomK∞(Λp(g/k), C2
∞(G(Q)\G(A)/Kf )⊗Mλ),

then we can decompose it
ω = ωres + ωcont,

both summands are C2
∞ and closed.

Proposition 4.3. The cohomology class [ωcont] is trivial.

Proof. This now the standard argument in Hodge theory, but this time we apply
it to a continuous spectrum instead of a discrete one. We follow Borel-Casselman
and prove their Lemma 5.5 (see [B-C]) in our context”

We may assume that ω∞ lies in one of the summands, i.e. ωcont = Eis(
∫

ΛΣ
ω∨(σ)dΣσ)

where ω∨(σ) ∈ HomK∞(Λp(g/k), IGP πΣ⊗σ⊗Mλ)) is the Fourier transform of ω∞
in the L2., (theorem of Plancherel). As it stands the expression

∫
ΛΣ
ω∨(σ)dΣσ)

does not make sense because the integrand is in L2 and not necessarily in L1.
If we choose a symmetric positive definite quadratic form h(σ) =

∑
ν,µ bν,µtνtµ

and a positive real number τ then the function

hτ (σ) = (1 + τh(σ)m)−1 ∈ L2(ΛΣ)

and then ω∨(σ)hτ (σ) is in L1 and by definition

lim
τ→0

∫
ΛΣ

ω∨(σ)hτ (σ)dΣσ) =

∫
ΛΣ

ω∨(σ)dΣσ (118)
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where the convergence is in the L2 sense. Since ω∞ ∈ HomK∞(Λp(g/k), IGP πΣ⊗
σ ⊗Mλ) we get get that ω∨(σ) has the following property

For any polynomial P (σ) =
∑
aµt

µ in the variables tµ and with real coeffi-

cients the section diffmult

ω∨(σ)P (σ) is square integrable (119)

this follows from the well known rules that differentiating a function provides
multiplication by the variables for the Fourier transform.

The Lemma of Kuga implies

∆(ω∨(σ)) = (χσ(C)− χλ(C))ω∨(σ)

and if σ =
∑
γµ ⊗ it µ the eigenvalue is

χσ(C)− χλ(C) =
∑

aν,µtνtµ +
∑

bµtµ + cπΣ
− cλ. (120)

where cπΣ is the eigenvalue of the Casimir operator of M (1) on πΣ If the tµ ∈ R
then this expression is always ≤ 0 especially we see that the quadratic form
on the right hand side is negative definite. This implies that for σ ∈ ΛF the
expression χσ(C)−χλ(C) assumes a finite number of maximal values all of them
≤ 0 and hence

VΣ = {σ|χσ(C)− χλ(C) = 0} (121)

is a finite set of point. This set has measure zero, since we assumed that P was
a proper parabolic subgroup. The of σ for which H•(g,K∞, HΛΣ

(σ)⊗MC) 6= 0
is finite. We choose a C∞ function hΣ(σ) which is positive, which takes value
1 in a small neighborhood of VΣ, which takes values ≤ 1 in a slightly larger
neighborhood and which is zero outside this second neighborhood. Then we
write

ω∞ = Eis(

∫
Λ+

Σ

hΣ(σ)ω∨(σ)dΣσ) + Eis(

∫
Λ+

Σ

(1− hΣ(σ))ω∨(σ)dΣσ)

We have dω∨(σ) = 0 and hence we get

∆((1− hΣ(σ))ω∨(σ) = d
(

(χσ(C)− χλ(C))(1− hΣ(σ))δω
∨(σ)

)
and this implies that

Eis(

∫
Λ+

Σ

(1−hΣ(σ))ω∨(σ)dΣσ) = dEis(

∫
Λ+

Σ

(1−hΣ(σ))(χσ(C)−χλ(C))−1δω∨(σ)dΣσ)

It is clear that the integrand in the second term-
∫

Λ+
Σ

(1 − hΣ(σ))(χσ(C) −
χλ(C))−1δω∨(σ) still satisfies (119) and then our well known rules above imply
that ψ = Eis(

∫
Λ+

Σ
(1 − hΣ(σ))(χσ(C) − χλ(C))−1δω∨(σ)dΣσ) is C2

∞. Therefore

the second term in our above formula is a boundary.
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ωcont =

∫
ΛΣ

hΣ(σ)ω(σ)dΣσ + dψ.

This is true for any choice of hΣ. Hence the scalar product < ω−dψ, ω−dψ >
can be made arbitrarily small. Then we claim that the cohomology class [ω] ∈
H•(HomK∞(Λp(g/k), C∞(G(Q)\G(A)/Kf ) ⊗Mλ) must be zero. This needs a
tiny final step.

We invoke Poincaré duality: A cohomology class in [ω] ∈ Hp(SGKf ,M̃λ) is

zero if and only the value of the pairing with any class [ω2] ∈ Hd−p
c (SGKf ,M̃λ

∨
)

is zero. But the (absolute) value [ω] ∪ [ω2] of the cup product can be given
by an integral (See Prop.4.2). Therefore it can be estimated by the norm <
ω − dψ, ω − dψ > (Cauchy-Schwarz inequality) and hence must be zero.

As usual we denote by Ĝ(R) the unitary spectrum, for us it is simply the
set of unitary irreducible representations of G(R). Given M̃λ, we define

Coh(λ) = {π∞ ∈ Ĝ(R)| H•(g,K∞, Hπ∞ ⊗ M̃λ) 6= 0}.

The theorem of Harish-Chandra says that this set is finite.
Let

HCoh(λ) =
⊕

π:π∞∈Coh(λ)

L2
disc(G(Q)\G(Af )/Kf )(π∞ × πf ),

the theorem of Gelfand-Graev and Langlands assert that this is a finite sum of
irreducible modules. This space decomposes again into Hcusp

Coh(λ) ⊕H
res
Coh(λ)

Then we get
Theorem (Borel, Garland, Matsushima-Murakami )
a)The map

H•(g,K∞, H
(K∞)
Coh(λ)⊗Mλ) = HomK∞(Λ•(g/k), H

(K∞)
Coh(λ)⊗Mλ)→ H•(2)(S

G
Kf
,M̃λ)

surjective. Especially the image contains H•! (SGKf ,M̃λ).

b) (Borel) The homomorphism

H•(g,K∞, H
(cusp,K∞)
Coh(λ) ⊗Mλ)→ H•(SGKf ,M̃λ)

is injective.
[Bo-Ga ] Prop.5.6, they do not consider the above space H•(2)(S

G
Kf
,M̃λ) we

added an ε > 0 to this proposition by claiming that this space is the image.

In general the homomorphism

H•(g,K∞, H
res
res(λ),K∞)⊗Mλ)→ H•(SGKf ,M̃λ)

is not injective. We come to this issue in the next section.
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If we denote by H•cusp(SGKf ,M̃λ) the image of the homomorphism in b), then
we get a filtration of the cohomology by four subspaces

H•cusp(SGKf ,M̃λ) ⊂ H•! (SGKf ,M̃λ) ⊂ H•(2)(S
G
Kf
,M̃λ) ⊂ H•(SGKf ,M̃λ). (122)

We want to point out that our space H•(2)(S
G
Kf
,M̃λ) is not the space denoted

by the same symbol in the paper [Bo-Ca]. They define L2 cohomology as the
complex of square integrable forms, i.e. ω and dω have to be square integrable.
But then a closed form ω which is in L2 gives the trivial class in their cohomology
if we can write ω = dψ where ψ must also be square integrable. In our definition
we do not have that restriction on ψ.

4.2.1 A formula for the Poincaré duality pairing

We assume that −w0(λ) = c(λ). We have the positive definite hermitian scalar

product on HomK∞(Λ•(g/k), H
(K∞)
Coh(λ)⊗Mλ) (See(105)). On the other hand we

have the Poincaré duality pairing

Hi
! (SGKf ,M̃λ)(ωf )×Hd−i

! (SGKf ,M̃λ∨)(ω1,f )→ C (123)

where ωf ·ω1,f = 1. To relate these two products we recall the Hodge ∗-operator.
(See for instance Vol. I. 4.11) This operator yields an isomorphism

∗ : HomK∞(Λp(g/k), C∞(G(Q)\G(A)/Kf )⊗Mλ)
∼−→

HomK∞(Λd−p(g/k), C∞(G(Q)\G(A)/Kf )⊗Mcλ)
(124)

We can use the ∗ operator to define the adjoint δ = (−1)d(p+1)+1 ∗d∗ and hence
the Laplacian ∆ (See (106). Especially the ∗ operator yields an identification
between the C∞-functions and the C∞ differential forms in top degree.

We consider two differential forms

ω1, ω2 ∈ HomK∞(Λp(g/k), C2
∞(G(Q)\G(A)/Kf )⊗Mλ)

which are square integrable, then we defined the scalar product (See(105) <
ω1, ω2 > of these two forms. By definition this scalar product is an integral over
a function

< ω1, ω2 >=

∫
SGKf

{ω1, ω2}.

If we have two closed forms ω1 ∈ HomK∞(Λp(g/k), C2
∞(G(Q)\G(A)/Kf ) ⊗

Mλ), ω2 ∈ HomK∞(Λd−p(g/k), C2
∞(G(Q)\G(A)/Kf )⊗Mλ∨) and if one of these

forms has compact support -say ω2-then they define cohomology classes [ω1] ∈
Hp(SGKf ,M̃λ), [ω2] ∈ Hd−p

c (SGKf ,M̃λ∨) and the cup product [ω1∪ [ω2] is defined

and given by an integral (See proposition 4.2) over a form in top degree. Now
we check easily - and this is the way how the ∗ operator is designed that for
ω1, ω2 ∈ HomK∞(Λp(g/k), C2

∞(G(Q)\G(A)/Kf )⊗Mλ) the integrand

{ω1, ω2} =< ω1 ∧ ∗ω2 > .

Now we can formulate the

72



Proposition 4.4. If ω1, ω2 ∈ HomK∞(Λp(g/k), H
(K∞)
Coh(λ) ⊗ Mλ) and if both

classes [ω1], [∗ω2] are inner classes, i.e. can be represented by compactly sup-
ported forms then

< ω1, ω2 >= [ω1] ∪ [∗ω2]

Proof. Postponed We exploit the fact that we can construct a real valued h :
SGKf → R>0

This proposition is of course a consequences of Hodge theory if the quotient
SGKf is compact, but if this is not the case, then the assertion is delicate. In fact
we have the standard example which shows that we need the assumption that
both classes [ω1], [∗ω2] are inner. If take ω1 = ω2 to be the form in degree zero
given by the constant function 1. Then the left hand side is non zero but the
class ∗1 is the volume form which is trivial if SGKf is not compact, and therefore
the right hand side is not zero.

The proposition has the following nice corollary

Corollary 4.1. If ω ∈ HomK∞(Λp(g/k), H
(K∞)
Coh(λ) ⊗Mλ) is non zero and if the

restrictions of ω and ∗ ω to the boundary are zero then [ω] 6= 0

Now we remember that in the previous sections we made the convention
(See end of (4.1.1)) that our coefficient systems Mλ are C vector spaces. We
now revoke this convention and recall that the coefficient systems Mλ should
be replaced by Mλ ⊗F C. Then in the above list (122) of four subspaces in
the cohomology the second and the fourth subspace have a natural structure of
F -vector spaces and they have a combinatorial definition, whereas the first and
third subspace need some input from analysis in their definition. In other words
if we replace Mλ in (122) by Mλ ⊗f C then the second and the fourth space
can be written as

H•! (SGKf ,M̃λ)⊗F C ⊂ H•(SGKf ,M̃λ)⊗F C

We believe that also the third space has a combinatorial definition, for this
we need the weighted cohomology groups: Weighted cohomology ; G. Harder;
R. MacPherson; M. Goresky Inventiones mathematicae (1994).

4.3 Consequences.

4.3.1 Vanishing theorems

If V is unitary and irreducible, then we have that V̄
∼−→ V ∨ and this implies

for the central character

χV (z) = χV ∨(z) for allz ∈ Z(g).

Combining this with Wigner’s lemma we can conclude

If V is an irreducible unitary (g,K∞)-module, Mλ is an irreducible rational
representation, and if

H•(g,K∞, V ⊗Mλ) 6= 0

then χM∨λ (z) = χMλ
(tz) = χM̄λ

(z)
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In other words: For an unitary irreducible (g,K∞)-module V the cohomology
with coefficients in an irreducible rational representationM vanishes, unless we
have M∨λ

∼−→ M̄λ, or in terms of highest weights unless −w0(λ) = c(λ). (See
3.1.1)

If we combine this with the considerations following Wigner’s lemma we get

Corollary If M is an absolutely irreducible rational representation and if
M∨λ is not isomorphic to M̄λ then

H•(2)(S
G
Kf
,M̃λ) = 0.

Hence also
H•! (SGKf ,M̃λ) = 0.

We will discuss examples for this in section 4.3.2

4.3.2 The group G/Q = Sl2/Q

Let us consider the group G/Q = Sl2/Q. We have tautological representation
Sl2 ↪→ Gl(Q2) = Gl(V ) and we get all irreducible representations of we take the
symmetric powersMn = Symn(V ) of V. (See 2, these are theMn[m] restricted
to Sl2, then the m drops out.)

In this case the Vogan-Zuckerman list is very short. It is discussed in [Slzwei]
for the groups Sl2(R) and Sl2(C), where both groups are considered as real Lie-
groups.

In the case Sl2(R) we have the trivial module C and for any integer k ≥ 2
we have two irreducible unitarizable (g,K∞)-modules D±k (the discrete series
representations) (See [Slzwei], 4.1.5 ). These are the only (g,K∞)-modules
which have non trivial cohomology with coefficients in a rational representation.
If we now pick one of our rational representation Mn, then the non vanishing
cohomology groups are

Hq(g,K∞,Mn ⊗ C) = C for l = 0, q = 0, 2

Hq(g,K∞,D±k ⊗Mn ⊗ C) = C for l = k − 2, q = 1

The trivial (g,K∞)-module C occurs with multiplicity one in L2(G(Q)\G(A)/Kf )
hence we get for the trivial coefficient system a contribution

H•(g,K∞,C⊗Mn⊗C) = H0(g,K∞,C)⊕H2(g,K∞,C) = C⊕C→ H•(2)(S
G
Kf
,C).

This map is injective in degree 0 and zero in degree 2.
For the modules D±k we have to determine the multiplicities m±(k) of these

modules in the discrete spectrum of L2(G(Q)\G(A)/Kf ). A simple argument
using complex conjugation tells us m+(k) = m−(k) Now we have the fundamen-
tal observation made by Gelfand and Graev, which links representation theory
to automorphic forms:

We have an isomorphism

Homg,K∞(D+
k , L

2
disc(G(Q)\G(A)/Kf )

∼−→ Sk(G(Q)\H×G(Af )/Kf ) =
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space of holomorphic cusp forms of weight k and level Kf

This is also explained in [Slzwei] on the pages following 23. We explain how
we get starting from a holomorphic cusp form f of weight k an inclusion

Φf : D+
k ↪→ L2

disc(G(Q)\G(A)/Kf )

and that this map f 7→ Φf establishes the above isomorphim. This gives us the
famous Eichler-Shimura isomorphism

Sk(G(Q)\H×G(Af )/Kf )⊕ Sk(G(Q)\H×G(Af )/Kf )
∼−→ H1

! (SGKf ,M̃k−2).

4.3.3 The group G/Q = RF/Q(Sl2/F ).

For any finite extension F/Q we may consider the base restriction G/Q =
RF/Q(Sl2/F ). (See Chap-II. 1.1.1). Here we want to consider the special case
the F/Q is imaginary quadratic. In this case we have G⊗ C = Sl2 × Sl2/C the
factors correspond to the two embeddings of F into C. The rational irreducible
representations are tensor products of irreducible representations of the two
factorsMλ =Mk1

⊗Mk2
where againMk = Symk(C2). These representations

are defined over F .
In this case we discuss the Vogan-Zuckerman list in [Slzwei], here we want

to discuss a particular aspect. We observe that

M∨λ
∼−→Mk1

⊗Mk2
,M̄λ =Mk2

⊗Mk1

and hence our corollary above yields for any choice of Kf

H•! (SGKf ,M) = 0 if k1 6= k2.

In Chapter II we discuss the special examples in low dimensions. We take
F = Q[i] and Γ = Sl2[Z[i]] this amounts to taking the standard maximal com-
pact subgroup Kf = Sl2[ÔF ]. If now for instance k1 > 0 and k2 = 0, then we get

H•! (SGKf ,Mλ) = 0. Hence we have by definition H•! (SGKf ,M) = H•Eis(SGKf ,M̃)
and we have complete control over the Eisenstein- cohomology in this case.
Hence we know the cohomology in this case if we apply the analytic methods.

On the other hand in Chapter II we have written an explicit complex of finite
dimensional vector spaces, which computes the cohomology. It is not clear to
me how we can read off this complex the structure of the cohomology groups.

We get another example where this phenomenon happens, if we consider
the group Sln/Q if n > 2. In Chap. IV 1.2 we described the simple roots
α1, α2, . . . , αn−1, accordingly we have the fundamental highest weights ω1, . . . , ωn−1.
The element w0 (See 4.1.1) has the effect of reversing the order of the weights.
Hence we see that for λ =

∑
niωi we have

H•! (SGKf ,Mλ) = 0

unless we have −w0(λ) = λ and this means ni = nn−1−i.
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4.3.4 The algebraic K-theory of number fields

I briefly recall the definition of the K-groups of an algebraic number field F/Q.
We consider the group Gln(OF ), it has a classifying space BGn. We can pass to
the limit lim

n→∞
Gln(OF ) = Gl(OF ) = G and let BG its classifying space. Quillen

invented a procedure to modify this space to another space BG+, whose funda-
mental group is now abelian, but which has the same homology and cohomology
as BG. Then he defines the algebraic K-groups as

Ki(OF ) = πi(BG+).

The space is an H-space, this means that we have a multiplication m :
BG+ × BG+ → BG+ which has a two sided identity element. Then we get a
homomorphism m• : H•(BG+,Z)→ H•(BG+×BG+,Z) and if we tensorize by
Q and apply the Künneth-formula then we get the structure of a Hopf algebra
on the Cohomology

m• : H•(BG+,Q)→ H•(BG+,Q)⊗H•(BG+,Q)

Then a theorem of Milnor asserts that the rational homotopy groups

πi(BG+)⊗Q = prim(Hi(BG,Q),

where prim are the primitive elements, i.e. those elements x ∈ Hi(BG,Q) for
which

I sketch a second application. We discuss the group G = RF/Q(Gln/F ),

where F/Q is an algebraic number field. the coefficient system M̃λ = C is
trivial. In this case Borel, Garland and Hsiang have shown hat in low degrees
q ≤ n/4

Hq(SGKf ,C) = Hq
(2)S

G
Kf
,C).

On the other hand it follows from the Vogan-Zuckerman classification, that
the only irreducible unitary (g,K∞) modules V , for which Hq(g,K∞, V ) 6=
0 and q ≤ n/4 are one dimensional.

Hence we see that in low degrees

Hq(g,K∞,C)→ Hq(SGKf ,C)

is an isomorphism (Injectivity requires some additional reasoning.)
On the other hand we have Hq(g,K∞,C) = HomK∞(Λ•(g/k),C) and ob-

viously this last complex is isomorphic to the complex Ω•(X)G(R) of G(R)-
invariant forms on the symmetric space G(R)/K∞. Our field has different em-
beddings τ : F ↪→ C, the real embeddings factor through R, they form the set
Sreal
∞ and the pairs of may conjugate embeddings into C form the set Scomp

∞
Then

X =
∏

v∈Sreal
∞

Sln(R)/SO(n)×
∏
Scomp
∞

Sln(C)/SU(n).

Now the complex Ω•(X)G(R) of invariant differential forms (all differentials are
zero) does not change if we replace the group

G(R) =
∏

v∈Sreal
∞

Sln(R)×
∏
Scomp
∞

Sln(C)
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by its compact form Gc(R) and then we get the complex of invariant forms on
the compact twin of our symmetric space

Xc =
∏

v∈Sreal
∞

SUn(R)/SO(n)×
∏
Scomp
∞

(SU(n)× SU(n))/SU(n),

but then
Ω(Xc)

Gc(R) = H•(Xc,C).

The cohomology of the topological spaces like the one on the right hand side
has been computed by Borel in the early days of his career.

If we let n tend to infinity, we can consider the limit of these cohomology
groups, then the limit becomes a Hopf algebra and we can consider the primitive
elements

4.3.5 The semi-simplicity of the inner cohomology

Now we assume again that our representation M̃λ is defined over some number
field F we consider it as a subfield of C. In other word we have a representation
r : G×F → Gl(Mλ). We have defined H•! (SGKf ,M̃), this is a finite dimensional
F -vector space and Theorem 2 in Chapter II asserts that this is a semi simple
module under the Hecke algebra. This is now an easy consequence of our results
above.

The module H1 ⊂ L2
disc(G(Q)\G(Af )/Kf ) can also be decomposed into a

finite direct sum of irreducible G(R)×HKf modules

H1 =
⊕

π∞⊗πf∈Ĥ1

(Hπ∞ ⊗Hπf )m1(π∞×πf ),

this module is clearly semi-simple. Of course it is not a (g,K∞)-module, but
we can restrict to the K∞-finite vectors and get

H•(g,K∞, H
(K∞)
1 ⊗Mλ⊗C) =

⊕
π∞⊗πf∈Ĥ1

(
HomK∞(Λ•(g/k), Hπ∞⊗MC)⊗Hπf

)m1(π∞×πf )

This is a decomposition of the left hand side into irreducible HKf modules. Now
we have the surjective map

H•(g,K∞, H
(K∞)
1 ⊗Mλ ⊗ C)→ H•(2)(S

G
Kf
,M̃λ ⊗ C)

hence it follows that H•(2)(S
G
Kf
,M̃λ ⊗ C)) is a semi simple HKf module and

hence also H•! (SGKf ,M̃λ) is a semi simple HKf module.
At this point we encounter an interesting problem. We have the three sub-

spaces (See end of 3.2)

H•cusp(SGKf ,M̃λ⊗C) ⊂ H•! (SGKf ,M̃λ)⊗C ⊂ H•(2)(S
G
Kf
,M̃λ⊗C) ⊂ H•(SGKf ,M̃λ)⊗C,

note the positions of the tensor symbol ⊗. The first and the third space are only
defined after we tensorize the coefficient system by C, whereas the second and
the fourth cohomology groups by definition F vector spaces tensorized by C.

77



Now the question is whether the first and the third space also have a natural
F -vector space structure. Of course we get a positive answer, if the Manin-
Drinfeld principle holds. All the vector spaces are of course modules under the
Hecke algebra and we and we can look at their spectra

Σ(H•cusp(SGKf ,M̃λ ⊗ C)) = Σcusp Σ(H•! (SGKf ,M̃λ ⊗ C)) = Σ!

Σ(H•(2)(S
G
Kf
,M̃λ ⊗ C)) = Σ(2) Σ(H•(SGKf ,M̃λ ⊗ C)) = Σ

.

If now for instance Σcusp∩(Σ! \Σcusp = ∅ then we can define H•cusp(SGKf ,M̃λ) ⊂
H•! (SGKf ,M̃λ) as the subspace which is the sum of the isotypical components in
Σcusp.

If this is the case we say that the cuspidal cohomology is intrinsically defin-
able and we get a canonical decomposition

H•! (SGKf ,M̃λ) = H•cusp(SGKf ,M̃λ)⊕H•!,noncusp(SGKf ,M̃λ).

The classical Manin-Drinfeld principle refers to the two spectra Σ! ⊂ Σ, if it
is true in this case we get a decomposition

H•(SGKf ,M̃λ) = H•! (SGKf ,M̃λ)⊕H•Eis(SGKf ,M̃λ)

the canonical complement is called the Eisenstein cohomology. (See Chap. II
2.2.3 and Chap III 5.)

4.4 Franke’s Theorem

: ........................................

5 Modular symbols

5.1 The general pattern

We start from the following data. Let H/Q be a (reductive) subgroup of our

groupG/Q. LetK
H,(1)
∞ be the connected component of the identity of a maximal

compact subgroup of H(R) we put XH = H(R)/K
H,(1)
∞ . We have the spaces

SGKf = G(Q)\X ×G(Af )/Kf ,SHKH
f

= H(Q)\XH ×H(Af )/Kf .

From the inclusion i : H → G we get maps between these locally symmetric
spaces

j(x, g
f
) : SHKH

f
→ SGKf

which depend on the choice of ”pin points” (x, g
f
) ∈ X × G(Af ). These pin

points have to be chosen with some care:

a) The point x ∈ X can be viewed as a Cartan involution Θx on G(R) and
Θx should fix H(R). Hence it is also a Cartan involution on H and we require

that it is the identity on our chosen K
H,(1)
∞ . Let us denote this subset of X

by X(H,KH,(1)
∞ ). Let N be the subgroup of the normalizer of H/Q which also
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normalizes K
H,(1)
∞ . Then N(R) acts on X(H,KH,(1)

∞ ). I think that this action is
transitive and the orbits under the groupN(R)(1) are the connected components.

b)The element g
f

has to satisfy a similar condition:

KH
f gfKf = g

f
Kf

(Recall that we always have make careful choices of the level if we deal with
integral cohomology.)

Choosing (x, g
f
) we get a map

j(x, g
f
) : H(Q)\H(R)/KH

∞ ×H(Af )/KH
f −→ SGKf

which is defined by

(h∞, hf ) 7→ (h∞x, hfgf ).

Now we assume that we have coefficient systems M̃O,Oµ coming from rep-
resentations of ρ : G/Z → Gl(MO) resp. a one dimensional representation
µ : H/Z → Gm. We assume that we also have a homomorphism from the re-
striction of ρ to H/Z to µ, i.e

rλ,µ :MO → Oµ

which invariant under the action of H. This induces a homomorphism of sheaves

r∗λ,µ : j(x, g
f
)∗(M̃O)→ Õµ. (125)

Then these data provide a homomorphism for the cohomology groups

j(x, g
f
)• : H•(SGKf ,M̃)→ H•(SHKH

f
,Oµ)

We are interested in this homomorphism in degree dH = dimSH
KH
f
.

In this degree we know the compactly supported cohomology of SH
KH
f

HdH
c (SHKH

f
,Oµ) = HdH (SHKH

f
, i!(Õ)µ) =

⊕
χ

HdH (SHKH
f
, i!(Õ)µ)[χf ]

where we sum over characters χ̃f of type µ. on π0(H(R))×H(Af ) (See (2.5.2))
The eigenspaces are projective O- modules of rank one let us assume that they
are free and that we have chosen generators cχ. We will call such generators
modular symbols.

We see that the homomorphism j(x, g
f
)• is not yet good enough it has the

wrong target, if we want to evaluate cohomology classes on the fundamental
cycles of HdH (SH

KH
f
, i!(Õ)µ). We need to modify the source.

We study the extension of j(x, g
f
) to the compactification

j̄(x, g
f
) : S̄HKH

f
→ S̄GKf
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We recall the construction of sheaves with intermediate support conditions
(2.1.2.Let us assume that we can find a Σ such that the image of ∂(S̄H

KH
f

) factors

through ∂Σ(S̄GKf ). Then our homomorphism r yields a homomorphism between

sheaves (see ( 19))

r!
λ,µ : j̄(x, g

f
)∗(iΣ,∗,!(M̃))→ i!(Õµ). (126)

and hence we get a homomorphism in cohomology

j̄((x, g
f
), rλ,µ)dH : HdH (SGKf , iΣ,∗,!(M̃))→ HdH (SHKH

f
, i!(Õµ)) (127)

If we change x inside a connected component ofX(H,KH,(1)
∞ ) then j̄((x, g

f
), rλ,µ)dH

does not change, and hence we can view x as a discrete variable.
We still have the variable g

f
. This has to satisfy the above condition b), it

has to respect the level and we have to fix the level because we want to get
integral cohomology groups. If we tensorize our coefficient systems with F ( the
quotient field of O ) then we can consider the limit

lim
Kf

H•(SGKf ,M̃F ) = H•(SG,M̃F ),

and this limit is now a π0(G(R)) × G(Af ) module. Doing this also with SH
KH
f

we can forget the constraint on g
f

and we get an intertwining operator

j̄((x, g
f
), rλ,µ)dH : HdH (SG, iΣ,∗,!(M̃))Q̄)→ HdH (SH , i!(Q̄µ)) =

⊕
χ

Q̄[χ̃f ]

(128)

where the direct sum on the right hand side is now infinite, we sum over all
characters of type µ.

Assume that we have chosen a basis element cχ ∈ HdH (SH , i!(Q̄µ))[χ] (a

modular symbol) for all χ. For a class ξ ∈ HdH (SG, iΣ,∗,!(M̃))Q̄) we get

j̄((x, g
f
), rλ,µ)dH (ξ) =

∑
χ

Fχ(ξ, (x, g
f
))cχ (129)

The cohomology HdH (SG, iΣ,∗,!(M̃))Q̄) is a π0(G(R))×G(Af )-module.

Lemma 5.1. We get get an intertwining operator between π0(G(R))×G(Af )-
modules

Jcχ(rλ,µ) : HdH (SG, iΣ,∗,!(M̃)))→ Ind
π0(G(R))×G(Af )

π0(H(R))×H(Af )χ̃
−1
f

The question arises to compute this operator. Of course it is not so clear
what this means. First of all we have the problem that we do not know the left
hand side. Recall that the left hand side still sits in an exact sequence

0→ HdH−1(∂π(SG),M̃Q̄)→ HdH (SG, iΣ,∗,!(M̃))Q̄)→ HdH
! (SG,M̃)Q̄)→ 0.
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We try to produce absolutely irreducible submodules

HdH (SG, iΣ,∗,!(M̃))F )(πf ) ⊂ HdH (SG, iΣ,∗,!(M̃))F

and restrict the intertwining operator to this submodule. Then we may be lucky
and the space of π0(G(R)) × G(Af ) homomorphisms of this submodule into

Ind
π0(G(R))×G(Af )

π0(H(R))×H(Af )χ̃
−1
f is one dimensional and contains some kind of canonical

generator . In this case the intertwining operator is essentially given by a number

1) We may, of course, consider first the boundary map

HdH−1(∂SGKf ,M̃O) −→ HdH
c (SGKf ,M̃O),

and restrict the map Jcχ to its image.
If we want to understand this restriction – perhaps we should simply denote

it by ∂Jcχ – then we have to look at the image of cχ under the boundary map

∂ : HdH (SH
KH
f
, ∂SH

KH
f
,M̃O) −→ HdH−1(∂SH

KH
f
,M̃O)yj(x, g

f
)

HdH−1(∂SGKf ,M̃O).

I think this restriction is not so interesting, since we are basically dealing with
a smaller group.

In certain cases it happens that

j(x, g
f
)(∂cχ) = 0 (M1)

If this condition is satisfied, then we know that Jcχ factorizes over

Jcχ : HdH
! (SGKf ,M̃O) −→ Ind

G̃(Af )

H̃(Af )
χ̃−1
f .

If this is the case we are somewhat better off, because cohomology classes in
HdH

! (SGKf ,MC) can be constructed and described using automorphic forms (Θ-

series or Fourier expansions (See 2.2.2).) Moreover we know that after tensoriza-
tion with the quotient field F of O the inner cohomology becomes semi simple
and we can restrict Jcχ to isotypical submodules. (See next section)

Of course we are always in this special case it the group H/Q is anisotropic,
because in this case j(x, g

f
) ∈ Hd−dH

c (SGKf ,M̃F ) = HdH (SGKf ,M̃O).

In this case we may even pair j(x, g
f
) with elements in HdH (SGKf ,M̃O)

2) Another condition that may be satisfied is the Manin-Drinfeld principle,
i.e. we have an isotypical decomposition

HdH
Eis(SGKf ,M̃F )⊕HdH

! (SGKf ,M̃F ). (M2)

Then we may restrict Jcχ to the second summand. We get

Jcχ,! : HdH
! (SGKf ,M̃F ) −→ Ind

G̃(Af )

H̃(Af )
χ̃f .

3)
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5.1.1 Model spaces

I want to introduce some abstract concept of the production of cohomology
classes and the evaluation of these intertwining operators on these classes. To
do this we introduce model spaces.

We assume that we have a family of local smooth and admissible represen-
tations {Xπv} where v runs over all places. For almost all finite places p the
representation {Xπp} should be an unramified irreducible principal series repre-
sentation. We assume that Xπ∞ is an irreducible Harish-Chandra module with
non trivial cohomology H•(g,K∞, Xπ∞ ⊗MC) 6= 0. Furthermore we assume
that we have an intertwining operator of (g,K∞)×G(Af )-modules

Φ : Xπ∞ ⊗
⊗
p

Xπp −→ C∞(G(Q)\G(A)).

This induces of course an intertwining operator

H•(g,K∞, Xπ∞ ⊗MC)⊗
⊗

pXπp
Φ•−→ H•(g,K∞, C∞(G(Q)\G(A))⊗MC)

= H•(SG,M̃C)

We introduce a subspace of C∞(G(Q)\G(A)). We consider the subspace of func-
tions of moderate growth and inside this space we consider the space of functions
which are cuspidal along the strata ∂P (SG) for the parabolic subgroups P ∈ Σ,
i.e. which satisfy ∫

UP (Q)\UP (A)

f(ug)du ≡ 0

for these parabolic subgroups. Let us call this subspace C(Σ)
∞ (G(Q)\G(A)). We

assume that our intertwining operator factors through the subspace of Σ cusp-
idal functions

Φ : Xπ∞ ⊗
⊗
p

Xπp −→ C(Σ)
∞ (G(Q)\G(A)) (130)

and we assume in addition that we have multiplicity one, this means that Φ is
unique up to scalar.

We have an action of π0(G(R)) on H•(g,K∞, Xπ∞⊗MC) let ε : π0(G(R))→
{±1} be a character and let ωε be a differential form representing an eigenclass
[ωε]. In [Ha-Gl2] we explain how a Hecke character χf extends to a character χ̃f :
π0(H(R))H(Af ) → {±1}. We have the homomorphism π0(H(R)) → π0(G(R))
and we require that χ∞ = ε∞

We get a diagram

H•(g,K∞, Xπ∞ ⊗MC)(ε∞)⊗⊗pXπp

↓ ΦdH

HdH (g,K∞, C(Σ)
∞ (G(Q)\G(A))⊗MC)

ΦdH,Σ−→ HdH (SGKf ,M̃λ)⊗ C
↑ idHΣ ⊗ C

Ind
π0(G(R))×G(Af )

π0(H(R))×H(Af )χ̃
−1
f ⊗ C

Jcχ←− HdH (SG, iΣ,∗,!(M̃)))⊗ C
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Proposition 5.1. The image of ΦdH is contained in the image of idHΣ ⊗ C

Proof. Careful analysis using reduction theory

We now make the further assumption that the Manin-Drinfeld principle is
valid for the image HdH

Σ,! (SGKf ,M̃λ) of idHΣ , this means that we have unique

G(Af )-invariant section

sdHΣ : HdH
Σ,! (S

G,M̃)→ HdH (SG, iΣ,∗,!(M̃))) (131)

Then we get an arrow

HdH (g,K∞, C(Σ)
∞ (G(Q)\G(A))⊗MC)→ Ind

π0(G(R))×G(Af )

π0(H(R))×H(Af )χ̃
−1
f ⊗ C

which should be placed into the middle of the above diagram. The cohomol-
ogy on the left hand side can by computed by the de-Rham complex.

Theorem 5.1. This arrow is given by the integral

Jcχ(ξ)((x, g
f
), rλ,µ)([ω]) =

∫
SH
KH
f

rλ,µ(j∗(x, g
f
)(ω))

We can take the composition

ΦdH : HdH (g,K∞, π∞⊗MC)(ε∞)⊗
⊗
p

Xπp −→ HdH
! (SG,M̃C)

Jcχ,!−→ Ind
G̃(Af )

H̃(Af )
χ̃−1
f

Let us pick a form in the ε-eigenspace

ωε ∈ HomK∞(ΛdH (g/k), π∞ ⊗ M̃C)

and let us assume that the restriction of ε to π0(H(R)) is the infinity component
of χ̃. Then we get a new intertwining operator

Jcχ,!(ωε) :
⊗
p

Xπp −→ Ind
G(Af )

H(Af ) χ
−1
f

which is defined by

Jcχ,!(ωε)(ψf ) = Jcχ,! ◦ ΦdH (ωε ⊗ ψf )].

Again we have the problem to compute this operator. The situation has changed.
The source and the target of Jcχ,! ◦ ΦdH are restricted tensor products of local

representations. A necessary condition for Jcχ,! ◦ΦdH 6= 0 is that for all primes
p the vector space

HomG(Qp)(Xπp , Ind
G(Qp)

H(Qp)χ
−1
p ) 6= 0. (Ip)

Therefore we assume that this condition is fulfilled. There are cases where the
above condition is not always true, see for instance the Hilbert modular surfaces
[H-L-R].
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If the local condition (Ip) is satisfied for all primes p, then we have interesting
special cases where

dim HomG(Qp)(Xπp , Ind
G(Qp)

H(Qp)χ
−1
p ) = 1 (Ipp)

Let us assume that the representations Xπp are somehow given to us as very
concrete representations and (Ipp) is true for all primes p. Then it may be
possible to select at each prime p a natural generator

I loc
χp ∈ HomG(Qp)(Xπp , Ind

G(Qp)

H(Qp)χ
−1
p ).

(This will be discussed in our examples.) We can define

I loc
χf

=
⊗
p

I loc
χp ∈ HomG(Af )(

⊗
p

Xπp , Ind
G(Qp)

H(Af )χ
−1
f )

and now we can formulate the following question:

The operator Jcχ,!(ωε) is a multiple of the product of local operators, the
problem arises to compute the proportionality factor in

Jcχ,!(ωε) = L(πf , χ) · I loc
χf
.

The general idea is that this proportionaly factor is related to a special value
of an L-function attached to

⊗
v πv.

5.2 Rationality and integrality results

We assume that we have fixed a finite level. We assume that the Manin-Drinfeld
principle (131 ) is valid we get a decomposition up to isogeny

HdH−1(∂(SGKf ),M̃)⊕HdH
Σ,! (S

G
Kf
,M̃) ⊂ HdH (SGKf , iΣ,∗,!(M̃))). (132)

An absolutely irreducible isotypical submoduleHdH
Σ,! (SGKf ,M̃)F (πf ) ⊂ HdH

Σ,! (SGKf ,M̃)F

can also be viewed as a submodule in HdH (SGKf , iΣ,∗,!(M̃)F )).

We intersectHdH
Σ,! (SGKf ,M̃)F (πf ) with the integral cohomologyHdH (SGKf ,M̃OF )

and get the submodule HdH
Σ,! (SGKf ,M̃OF ) int(πf ) ⊂ HdH

Σ,! (SGKf ,M̃)OF ) int. The
same procedure gives us a submodule

HdH (SGKf , iΣ,∗,!(M̃OF )) int(πf ) ⊂ HdH (SGKf , iΣ,∗,!(M̃OF )) int (133)

The map

rΣ,! : HdH (SGKf , iΣ,∗,!(M̃))OF ) int(πf )→ HdH
Σ,! (S

G
Kf
,M̃OF ) int(πf ) (134)

becomes an isomorphism if we tensorize it by F and hence the image of this
map is a submodule of finite index. We define
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∆(πf ) = [HdH
Σ,! (S

G
Kf
,M̃OF ) int(πf ) : rΣ,!(H

dH (SGKf , iΣ,∗,!(M̃)OF ) int(πf ))]

(135)

We return to our model space and assume that we have multiplicity one
(130). Our isotypical subspace in (133) is defined over the field F. We now
assume that all the local components Xπp are defined over F , i.e. the local
representations are defined over F. Then we get for any embedding σ : F → C
an isomorphism

ΦHσ (ωε) : (
⊗
p

Xπp)⊗σ C)→ HdH (SG, iΣ,∗,!(M̃F ))(πf × ε∞)⊗σ C (136)

these are isomorphisms over C between absolutely irreducible G(Af ) modules
which are defined over F . Hence we can find numbers (the periods) Ω(πf×ε, σ) ∈
C× such that

ΦHσ (ωε)

Ω(πf × ε, σ)
:
⊗
p

Xπp
∼−→ HdH (SG, iΣ,∗,!(M̃F ))(πf × ε∞) (137)

is an isomorphism over F. We can choose these periods consistent with the
action of the Galois group and then it becomes clear that these period arrays
are unique up to an element in F×.

We may also assume that after fixing a level we have an integral structure

on our model space, i.e we have lattices X
Kp
πp,OF which are modules under the

Hecke algebra. If we invert some primes and pass to OF [ 1
N ] then we can arrange

our periods in such a way that

ΦHσ (ωε)

Ω(πf × ε, σ)
: (
⊗
p

X
Kp
πp,OF ⊗OF [

1

N
])
∼−→ HdH (SGKf , iΣ,∗,!(M̃OF )) int(πf × ε∞)⊗OF [

1

N
])

(138)

This pins down the periods up to an element in OF [ 1
N ]×.

We get a formula

j((x, g
f
), rλ,µ)(ΦdH (

[ωε]

Ω(πf , ωε)
× ψf )) =

L(π ⊗ χ, µ)

Ω(πf , ωε)
I loc
χf

(ψf )(g
f
)cχ (139)

By definition of the expression ΦdH ( [ωε]
Ω(πf ,ωε)

×ψf )the left hand side is rational

if ψf ∈
⊗

pXπp,F and we get a rationality statement for the value of the L-

function provided we know that I loc
χf

(ψf )(g
f
) is non zero and in F.

We have to choose ψf ∈
⊗

pX
Kp
OF [ 1

N ]
, and we choose g

f
such that KH

f gfKf =

g
f
Kf )). The first choice provides an integral cohomology class inHdH (SGKf ,M̃OF [ 1

N ])(πf ).

But this class is not necessarily the image of an integral class under rΣ,! this
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will be the case if we multiply it with ∆(πf ). Once we have done this we get
that

j((x, g
f
), rλ,µ)(ΦdH (

[ωε]

Ω(πf , ωε)
×∆(πf )ψf )) = ∆(πf )

L(π ⊗ χ, µ)

Ω(πf , ωε)
I loc
χf

(ψf )(g
f
)cχ

(140)

is a number in OF [ 1
N ].

Then we have to optimize the choice of g
f
, this means that we have to keep

the numerator of I loc
χf

(ψf )(g
f
) small. Then we get an integrality result for the

L-value.
We discuss this in the next example.

5.3 The special case Gl2

We consider the special case G = Gl2/Q. In this case we have very nice model
spaces, namely the Whittaker model, our map Φ is given by the Fourier expan-
sion and the theory of the Kirillow-model gives us a canonical choice for the local
intertwining operators. LetMn be the Q-vector space of homogeneous polyno-

mials P (X,Y ) of degree n and with coefficients in Q. An element γ =

(
a b
c d

)
acts by (γP )(X,Y ) = P (aX + cY, bX + dY ). Sometimes we twist this action
by a power of the determinant det(γ)r, then the module is denoted by Mn[r].
From now on M will be one of the modules Mn[r], i.e. our highest weight
will be the pair λ = (n, r). The subgroup which provides the modular symbols
will be our standard maximal torus T and the rλ,µ will be the projections to
Xn−µY µ.

We assume that a Kf is been chosen. Let us assume that we selected a

Kf stable lattice M̃Z and we consider the exact sequence of modules under the
Hecke algebra

→ H0(∂SGKf ,M̃Z)→ H1
c (SGKf ,M̃Z)→ H1(SGKf ,M̃Z)→ H1(∂SGKf ,M̃Z).

We can tensorize our sequence by Q, and then in this case the Manin-Drinfeld
principle is valid

H1
c (SGKf ,M̃) = H1

Eis(SGKf ,M̃))⊕H1
! (SGKf ,M̃).

The first summand can be described in terms of induced representations

H0(∂SGKf ,M̃)⊗Q =
⊕

χ: type(χ)=λ

(
Ind

G̃(A)

B̃(A)
χ̃
)Kf

where λ is the highest weight of our module, where χ runs over the Hecke
characters with some restriction conditions dictated by Kf , and where χ̃ is the
character on π0(T (R))× T (Af ) attached to it (see [GL2], ......).

The module H1
! (SGKf ,M̃) is semisimple, if we tensorize by Q, then we get

an isotypical decomposition

H1
! (SGKf ,M̃Q) =

⊕
πf

H1(SGKf ,M̃Q)(πf )
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where πf is an isomorphism class of a (finite dimensional) Q-vector space with
an irreducible action of H on it. Since we fixed the level we have only finitely
many of them. The Galois action on Q induces a permutation of the πf , if
σ ∈ Gal(Q/Q), then we can define the isomorphism class πσf . It is clear that we

have a finite extension Q(πf ) ⊂ Q such that πσf = πf for all σ ∈ Gal(Q/Q(πf )).
The field Q(πf ) is the field of definition of the representation πf .

For almost all primes p we have Kp = Gl2(Zp) and the local Hecke algebra
H(G(Qp)//Kp) = Q[Tp, Zp, Z

−1
p ] and πp is simply determined by the eigenvalues

ωp, ωp of Tp and Tp,p. on the one dimensional vector space of Kp invariant
vectors. Then Q(πp) = Q[ωp, ωp].

5.3.1 Input from the theory of automorphic forms 2

The theory of automorphic forms for Gl2 provides the following extra informa-
tions:

(i) The multiplicity of H1(SGKf ,MQ)(πf ) is two. (Multiplicity one.)

(ii) If we know the numbers ωp(πf ), ωp(πf ) for almost all unramified prime,
then πf is uniquely determined. (Strong multiplicity one.)

(iii) On H1(SGKf ,MQ)(πf ) we have an action of π0(G∞). This group is the
quotient of

T (R) ∩K∞
∼−→ π0(T∞)

∼−→
{(
±1 0
0 ±1

)}
,

by the subgroup generated by

(
−1 0
0 −1

)
.

Under the action of π0(G∞) an eigenspace decomposes into two pieces

H1
! (SGKf ,MQ)(πf ) =

⊕
ε::π0(G∞)→{±1}

H1
! (SGKf ,MQ)(ε, πf ).

Both pieces have multiplicity equal to one.

Of course we can find a finite extension F/Q such that we have this decom-
position already over F . If we also invoke the Manin-Drinfeld decomposition,
we find

H1
c (SGKf ,M̃F ) = H1

Eis(SGKf ,M̃F )⊕
⊕
πf ,ε

H1
! (SGKf ,M̃F )(ε, πf ).

Now we consider the ring OF ⊂ F . For any cohomology group we define the
image

Im(H•? (?,M̃OF ) −→ H•? (?,M̃F )) =: H•? (?,M̃OF )int

it is also simply this cohomology divided by the torsion. Then we get a decom-
position up to finite quotient isogeny

H1
Eis(SGKf ,M̃OF )int ⊕H1

! (SGK ,M̃OF )int

Then the submodules
H1

!,ε(SGKf ,MO)(πf )int

87



are the isotypical summands in the cohomology H1
! (SGKf ,MO)int.

We may also define isotypical quotients. They are obtained if we divide
H1

! (SGKf ,MO)int by the complementary summand to H1
! (SGKf ,MO)int, and we

denote these quotients by

H1
! (SGKf ,MO)[ε, πf ]int.

We have a natural inclusion

H1
! (SGKf ,MO)(ε, πf )int −→ H1

! (SGKf ,MO)[ε, πf ]int,

and the quotient is a finite module.

5.3.2 The Whittaker model

We assume that πf is a representation which occurs in the decomposition of

H1
! (SGKf ,M̃F ). Let π∞ be the discrete series representation which has nontrivial

cohomology with coefficients in MC. Now we choose an additive character
τ : AQ/Q → S1. It may be the best to choose the standard character which is

trivial on Ẑ ⊂ Af and at infinity is x 7→ e2πix.
Our representation π∞⊗πf (which is known as a module of C-vector spaces)

has a unique Whittaker model

W(π∞ ⊗ πf , τ)C.

This is the unique subspace in

W(τ)C =

{
f : G(A)/Kf → C | f

((
1 u
0 1

)
g

)
= τ(u)f(g)

}
,

which is invariant unter GL2(R)×H and isomorphic to π∞ ⊗ πf . The Fourier
expansion provides an inclusion

W(π∞ ⊗ πf , τ)
F−→ A0(G(Q)\G(A))

F(f)(g) =
∑
t∈Q×

f

((
t 0
0 1

)
g

)
,

where A0 means the space of cusp forms. This gives us an isomorphism

H1(g,K∞,W(π∞, τ)⊗MC)⊗W(πf , τ)
∼−→ H1

! (SGKf ,M̃C)(πf ).

We have

H1(g,K∞,W(π∞, τ)⊗MC) = HomK∞(Λ1(g/k),W(π∞, τ)⊗ M̃C)
= C ωn + C ω−n

where I will pin down these two generators later. We assume that

(
−1 0
0 1

)
ωn =

ω−n. Then
ω+ = 1

2 (ωn + ω−n)

ω− = 1
2 (ωn − ω−n)
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form generators of the spaces

HomK∞(Λ1(g/k),W(π∞, τ)⊗ M̃C)±.

Now our general procedure outlined in 2.1.1 provides intertwining operators

F1
1 (ωε) :

⊗
p

W(πp, τ)→ H1(SGKf ,M̃C)ε(ε, πf ) (141)

5.3.3 The integral model for W(πp, τ).

Our representation πp has a field of definition Q(πp) which is a finite extension
of Q. To get this field of definition we look at the space of Q-valued functions

WQ(τ) =

{
f : G(Qp)→ Q | f

((
1 up
0 1

)
gr

)
= τ(up)f(gp)

}
.

On this space I defined an action of the Galois group ([Ha-Mod]) as follows.

fσ(g) =

(
f

((
t−1
σ 0
0 1

)
g

))σ
,

and Q(πp) is the number field for which Gal(Q/Q(πp)) is the stabilizer of
W(πp, τ).

The space WQ(πp, τ)is finite dimensional over Q, and the space of functions

which are invariant under Gal(Q/Q(πp)) is a Q(πp) vector space W(πp, τ) on
which H(G(Qp)//Kp) acts absolutely irreducible. We haveW(πp, τ)⊗Q(πp)Q =
WQ(πp, τ).

Of course Q(πp) ⊂ Q(πf ), and we define a subring O(πf ) ⊂ Q(πf ). This
is the ring of integers in Q(πf ) but we invert the primes which occur in the
conductor of πf , i.e. all the primes where πp is ramified. Let us denote the
product of these primes by N .

We have the action of HcohZ (See 1.2.1.(ii)) on the cohomolgy and hence
we get an action of the algebra H(G(Qp)//Kp)Z on W(πp, τ) and this gives
us a finitely generated O(πp)- module of endomorphisms. Hence we can find
invariant lattices W(πp, τ)O(πp). If we invert a few more primes then we can
achieve that two such choices just differ by an element a ∈ O(πp). We assume
that such a choice of lattices has been made at all primes p. If we are in
the unramified case then we will make a very particular choice later. We put
WO(πf )(πf , τ) =

⊗
pWO(πf )(πp, τ) ( See 2.2.7 ).

If we take an element σ ∈ Gal(Q/Q) then it conjugates the representation
πp into πσp and we get a map

W(πp, τ)
σ̃−→ W(πσp , τ)

f 7→ fσ

This map is a semilinear isomorphism.
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5.3.4 The periods

Now we have constructed the intertwining operator

F (1)
1 (ωε) :

⊗
p

WO(πf )(πp, τ)⊗ C −→ H1(SG,MO)(ε, πf )⊗ C,

and we can define a complex number Ωε(πf ) such that

Ωε(πf )−1 · F (1)
1 (ωε) :

⊗
p

WO(πf )(πf , τ)
∼−→ H1(SG,MO)(ε, πf ) (142)

provided O(πf ) has class number one. Then this number is called a period and
it is unique up to an element in O(πf )×. We may also look at the conjugates of
. . . πσf . . . of πf . We can choose these periods consistently (see [Ha-Mod]) and
hence we even get a period vector

Ωε(Πf )−1 = (. . .Ωε(π
σ
f )−1 . . .)σ:Q(πf )→C.

5.3.5 The modular symbols for Gl2

We start from GL2/Q and a coefficient system Mn[r]. Now we consider the
modular symbols arising from the subgroup

H = T =

{(
t1 0
0 t2

)}

Our module Mn[r]Z =

n⊕
ν=0

ZXνY n−ν decomposes into eigenspaces ZXνY n−ν .

Hence we get

H0(STKT
f
,M̃O) =

n⊕
ν=0

⊕
χ:type(χ)=γν

Ocχ,

and since the Manin-Drinfeld principle is valid we get a canonical decomposition

H1
c (SG,M̃Q) = H1

Eis(SGKf ,M̃Q)⊕H1
! (SG,M̃Q),

and this means that we have a canonical section

H1
! (SG,M̃Q) −→ H1

c (SG,M̃Q),

and hence we can define the intertwining operator

Jcχ,! : H1
! (SG,M̃∨F ) −→ Ind

G(Af )

H(Af ) χ
−1
f .

Let us assume that we have an isotopical component H1
! (SG,M̃∨Q(πf ))(πf ), then

we can consider the composition

Jcχ,! ◦ Ωε(πf )−1F (1)
1 (ωε) :

⊗
p

WO(πf )(πp, τ) −→ Ind
G̃(Af )

H̃(Af )
χ̃−1
f .
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5.3.6 The local intertwining operators

We need to investigate the space of intertwining operators

HomG(Qp)(W(πp, τp) , Ind
G(Qp)

T (Qp)χ
−1
p ).

Of course we need to assume that the central character ω(πp) is equal to the
character χp restricted to the centre. We introduce the subtorus

T1(Qp) =

{(
t 0
0 1

)}
of T (Qp) and we restrict χp to this subgroup and call this restriction χ

(1)
p . For

t ∈ Q×p we denote by h(t) the matrix h(t) =

(
t 0
0 1

)
.

Now it is easy to write down an intertwining operator, namely

Ip(f)(g) =

∫
T1(Qp)

f(h(t)g)χ(1)
p (h(t))d×t,

where of course d×t is an invariant measure on T1(Qp). Of course we have to
discuss the convergence of this integral.

Before doing that we convince ourselves that this is the only intertwing
operator operator up to a scalar factor, the condition (Ipp) is valid. If we apply
Frobenius reciprocity we see that

HomG(Qp)(W(πp, τp) , Ind
G(Qp)

T (Qp)χ
−1
p ) = HomT (Qp)(W(πp, τp) , χ

−1
p )

The restriction of the functions in W(πp, τp) to T1(Qp) is injective (See [Go])
and the image of the restriction map is called theKirillov model K(πp, τp). On
this Kirillov model the torus T1(Qp) acts by translation. It is known that the
Kirillov model contains the space Cc(Q×p ) of Schwartz functions, this are the
locally constant functions with compact support on Q×p . This space of Schwartz
functions has at most codimension 2 and it is of course invariant under T1(Qp).
Hence it is clear that the restriction of our intertwning operator to the space
of Schwartz functions is ( up to a scalar factor ) given by the integral. If our
representation is supercuspidal then K(πp, τp) = Cc(Q×p ) and we we get existence
and uniqueness up to a scalar of the intertwining operator very easily. In the
general case we have to show that it extends and for this we have to invoke the
theory of local L-functions. If we introduce a parameter s ∈ C, then the integral∫

T1(Qp)

f(h(t)g)χ(1)(h(t)) · |t|s−1d×t

is convergent for <(s) >> 0 and can be analytically continued to a meromorphic
function in the entire plane with at most two poles (see [J-L], [Go]). In [J-L] the

authors attach a local L-function L(πp ⊗ χ(1)
p , s) to πp ⊗ χ(1)

p which has exactly
poles for those values of s where the integral does not converge and then

I loc(πp, χ
−1
p , s)f(g) = L(πp ⊗ χ(1)

p , s)−1

∫
T1(Qp)

f(h(t)g)χ(1)(h(t)) · |t|s−1d×t
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provides an intertwining operator

I loc(πp, χ
−1
p , s) :W(πp, τp)C → Ind

G(Qp)

T (Qp)χ
−1
p | |1−s

which is everywhere holomorphic and non zero. If we evaluate at s = 1 we get
a generator

I loc(πp, χ
−1
p ) :W(πp, τp)C → Ind

G(Qp)

T (Qp)χ
−1
p .

The arithmetic properties of this operator will be discussed in the next section.
In defining the local L-function we have to be a little bit careful, we will give

a precise formula further expression for the unramified case further down. Our
local L-factor will differ by a shift by 1/2 in the variable s from the L-factor in
[J-L] etc. Will will come back to this point later.

5.3.7 The unramified case

To see what is going on we consider the special case that πp = πp(λp) is an
unramified principal series representation. This means that

λp :

(
t1 ∗
0 t2

)
−→ λp,1(t1) · λp,2(t2)

is an unramified character and πp(ωp) is the representation obtained by unitary
induction from ωp, i.e. we consider the space of functions

Indun(λp) =

{
f : G(Qp)→ C | f

((
t1 ∗
0 t2

)
g

)
= λp,1(t1)λp,2(t2) ·

∣∣∣ t1
t2

∣∣∣ 1
2

p
f(g)

}
,

where the functions are locally constant. In this case it is not difficult to compute
the intertwining operator to the Whittaker model

Rp : Indun(λp) −→W(πp(λp), τp),

it is given by

Rp(f)(g) =

∫
U(Qp)

f(wug)τp(u)du,

where w =

(
0 −1
1 0

)
. Again we have a problem of convergence. To solve this

we simply compute the integral. Let us also assume that the additive character
τp is trivial on

Zp = U(Zp) =

{(
1 u
0 1

) ∣∣∣ u ∈ Zp
}
,

and nontrivial on 1
pZp. We know that f(wug) becomes constant in the variable

u if u ∈ pmZ with m large. Hence we have to compute

∞∑
ν=1

∫
p−ν+mZp\p−ν+1+mZp

f(wug)τp(u)du,

and for convergence we have to discuss what happens if ν → ∞. We write
u = p−nε with n >> 0 and ε ∈ Z×p . Then wu = wuw−1w and

wuw−1 =

(
1 0

−p−nε 1

)
=

(
pnε−1 −1

0 p−nε

)(
0 1
−1 pnε−1

)
.
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Then

f(wug) = f

((
pnε−1 −1

0 p−nε

)(
0 1
−1 pnε−1

)
wg

)

λp,1(p)nλp,2(p)−np−nf

((
0 −1
1 pnε−1

)
wg

)
,

and f

((
0 −1
1 pnε−1

)
wg

)
= f(g) if n >> 0, especially it will not depend on

ε. This means that for n >> 0∫
p−nZp\p1−nZp

f(wug)τ(u)du = const

∫
p−nZp\p+1−nZp

τ(u) = 0,

and hence our integral is actually a finite sum.
Let us consider the special case where f = fλp ∈ Iun(λ) is the spherical

function which takes the value 1 at the identity. This means that for g = b · k
with k ∈ Gl2(Zp)

fλp

((
t1 ∗
0 t2

)
k

)
= λp,1(t1)λp,2(t2) ·

∣∣∣ t1
t2

∣∣∣ 1
2

,

and we keep our assumption on τp. Then our computation yields

Rp(fλp)(e) =
∫
U(Qp)

fλp(wu) =

∫
U(Zp)

fλp(wu)τ(u)du+

∞∑
ν=1

∫
p−νZp\p−ν+1Zp

fλp(wu)τ(u)du =

1 +
∫
p−1Zp\Zp fλp(wu)τ(u)du = 1− λp,1(p)

λp,2(p)p
−1,

because all the terms with ν ≥ 2 vanish since τp | 1
pZp 6= 1.

The same kind of computation gives us also the value

Rp(fλp)

(
pk 0
0 1

)
.

It is zero for k < 0 and for k ≥ 0 we get

p−
k
2

(
λp,2(p)k +

(
1− 1

p

)
λp,2(p)k−1λp,1(p) . . .+

(
1− 1

p

)
λp,1(p)k − λp,1(p)k+1

λp,2(p) p−1
)

=

p−
k
2

(
λp,2(p)k + λp,2(p)k−1λp,1(p) + . . .+ λp,1(p)k

) (
1− λp,1

λp,2
(p)p−1

)
.

We put
1

1− λp,1
λp,2

(p)p−1
Rp(fλp) = Ψλp .

(If
λp,1
λp,2

(p)p−1 = 1 then the induced representation is not irreducible.) This

means that Ψλp is the spherical Whittaker function which has value 1 at the
identity element.
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Now we can discuss the integral Whittaker model at an unramified place p.
In this case we assume that Kp = Gl2(Zp) and we putW(πp)O(πp) = O(πp)Ψλp ,
the module is of rank one.

We return to our intertwining operator from the Whittaker model to the in-

duced representation Ind
G(Qp)

H(Qp) χ
−1
p . We assume that χ

(1)
p is also unramified, we

normalize d×t(Z×p ) = 1. We want to compute the value of the local intertwining
operator on Ψλp . Then∫

Q×p Ψλp

((
t 0
0 1

))
χ

(1)
p (t)|t|s−1d×t =

∞∑
k=0

Ψλp

((
pk 0
0 1

))
χ(1)
p (p)kpk(1−s) =

∞∑
k=0

p
k
2

(
λp,2(p)k + λp,2(p)k−1λp,1(p) + . . .+ λp,1(p)k

)
χ(1)
p (p)kp−ks =

1(
1− p 1

2λp,2(p)χ
(1)
p (p)p−s

)(
1− p 1

2λp,1(p)χ
(1)
p (p)p−s

)
Now we work with the module Mn, i.e. we do not make a twist by the de-
terminant. If we look at the definition of the Hecke operators on the integral
cohomology ( See [Heck]) then we notice that in this case we do not need a mod-
ification of the operators Tp, Tp,p to get them acting on the integral cohomology.
We conclude that the numbers

p1/2λp,1(p) = αp, p
1/2λp,2(p) = βp

are algebraic integers. Since the central character is of type x 7→ xn we conclude
αpβp has absolute value pn+1 and of course the Weil conjectures imply |αp| =
|βp| = p(n+1)/2. The numbers αp + βp, αpβp generate the field Q(πp) and the
number L(π ⊗ χ(1), 1) ∈ Q(πp, χ

(1)). From this we conclude that the local
intertwining operator I loc(πp, χ

−1
p ) is defined over Q(πp, χ

(1)) we get

I loc(πp, χ
−1
p ) :W(πp, τp)Q(πp,χ(1)) → (Ind

G(Qp)

T (Qp)χ
−1
p )Q(πp,χ(1))

In fact it transforms the spherical function Ψλp into the spherical function in
the induced module which also takes value one at the identity element.

A similar consideration shows that also at the finitely many remaining places
we can define a local intertwining operator I loc(πp, χ

−1
p ) over Q(πp, χ

(1)). Here
we have to look up the table for the local L factors in [Go]. We define the so
called local intertwing operator as restricted tensor product

I loc(πf , χ
−1
f ) =

⊗
p

I loc(πp, χ
−1
p )

These local operators are almost compatible with the action of the Galois
action. We observe for σ ∈ Gal(Q/Q) we have the transformation rule L(πp ⊗
χ

(1)
p , 1)σ = L(πσp ⊗ (χ

(1)
p )σ, 1)σ. But the integral is not quite compatible with

the action of the Galois group. We have the following commutative diagram:
For σ ∈ Gal(Q/Q)

I loc(πf , χ
−1
f ) : W(πf , τ) −→ Ind

G(Af )

H(Af ) χ
−1
f

↓ σ ↓ σ
I loc(πf , χ

−1
f )χ

(1)
f (tσ) : W(πσf , τ) −→ Ind

G(Af )

H(Af ) (χσf )−1

.
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We discuss the local case where πp is unramified and χ
(1)
p is ramified and

its conductor is fp > 0 Let T1(Zp)(pfp) ⊂ T1(Zp) be the subgroup of units

≡ 1 mod pfp , then character χ
(1)
p is trivial on the on this subgroup but not on

T1(Zp)(pfp−1) We normalize d×tp to give T1(Zp)(pfp) the volume one. Again
an intertwining operator is given by the integral

f 7→
∫
T1(Qp)

f(h(tp)g)χ(1)(h(tp)) · d×tp = Iχpf(e)

We have to optimize our choices (See 5.2). For our function f we have to take
the spherical Whittaker function Ψλp . For gp we choose an element

gp = (

(
1 1

pn

1 1

)
).

We want T1(Zp)(pfp)gpKp = gpKp a simple calculation says that this is the
case if and only if (

1 − 1
pn

1 1

)
h(tp)

(
1 1

pn

1 1

)
h(tp) ∈ Kp

and this says (
1 (tp − 1) 1

pn

1 1

)
∈ Kp.

Since tp ≡ 1 mod pfp we see that this is the case if and only if n ≤ fp. Let
us choose such an n, i.e. a gp.

To compute the intertwining operator we have to evaluate at e (Frobenius
reciprocity) and we observe

Iχp(Ψλp)(

(
1 1

pn

1 1

)
) = Iχp(

(
1 1

pn

1 1

)
Ψλp)(e)

By definition this operator is given

Iχp(

(
1 1

pn

1 1

)
Ψλp)(e) =

∫
T1(Qp)

Ψλp(

(
1

tp
pn

1 1

)
h(tp))χ

(1)(h(tp)) · d×tp

Since Ψλp is in the Whittaker model the last integral becomes∫
T1(Qp)

τp(
tp
pn

)Ψλp(h(tp))χ
(1)(h(tp)) · d×tp

The value Ψλp(h(tp)) depends only on ordp(tp) = νp and hence our integral
becomes

∞∑
νp=0

Ψλp(

(
pνp 0
0 1

)
)χ(1)(pνp)

∫
T (1)(Zp)

τp(p
νp−nε)χ(1)(ε)d×ε

The integral is a Gauss sum, it vanishes unless νp − n ≤ −fp, since we have
n ≤ fp and νp ≥ 0, the only non zero term is νp = 0, n = fp.

Hence we see that the local contribution at a prime p where πp is unramified
and χ(1) is ramified is given by the Gauss sum G(χ(1), τp). Hence we get for a
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πf which is globally unramified and a character χ and for the above choice of
g
p

and Ψπf = ⊗Ψλp

j((x, g
f
), rλ,µ)(F(

[ωε]

Ω(πf , νε)
×Ψπf )) =

L(πf ⊗ χ, µ)

Ω(πf , ωε)

∏
p

G(χ(1)
p , τp)cχ (143)

5.3.8 Fixing the period

The actual of computation the period may be a highly non trivial. Actually
this may even not be so important. But it is indeed of interest to compute the
factorization of the L-values, this means we have to compute the numbers

ordp(
L(πf ⊗ χ, µ)

Ω(πf , ωε)
) (144)

for as many p ⊂ OF as possible.
Of course we have problems to fix the period if the class number of OF is

not one, but this does not matter for the above question, we have to fix a prime
p and then we have to choose a good period locally at p. This means we solve
the problem alluded to in (138) only locally at p.

We discuss this problem in a very special case where our group G = Gl2, the
maximal compact subgroup Kf =

∏
p Gl2(Zp) and our coefficient system M is

the module of homogenous polynomials P (X,Y ) of degree n and coefficients in
Z. Hence the Hecke algebra HKf = ⊗′pHKp is unramified at all primes p it is
commutative. Our isotypical component πf defines an ideal I(Πf ) ⊂ HKf and
the quotient HKf /I(Πf ) is an order in the field Q(I(Πf )) = HKf /I(Πf ) ⊗ Q,
which is finite extension of Q. (I replaced πf by Πf because the ideal does not
change if we conjugate πf the ideal I(Πf ) is associated to the Galois orbit of
πf . I prefer to view Q(Πf ) as an abstract extension of Q.) This ideal I(Πf ) de-

fines a submodule H1
! (SGKf ,M̃) int(I(Πf )) = Ann(I(Πf )), this is the submodule

annihilated by I(Πf ).
We can think of πf as simply being a modular cusp form f of weight k = n+2.

To get our isotypical module H1
! (SGKf ,M̃OF ) int we have to find a homomor-

phism σ : HKf /I(Πf )→ OF and then

H1
! (SGKf ,M̃OF ) int(πf ) = H1

! (SGKf ,M̃) int(I(Πf ))⊗HKf ,σ OF (145)

We have the action of complex conjugation, i.e. of π0(G(R)), on the coho-
mology H1

! (SGKf ,M̃) int(I(Πf )) we get the decomposition (up to an isogeny of

degree 2m)

H1
! (SGKf ,M̃) int(I(Πf )) ⊃ H1

!,+(SGKf ,M̃) int(I(Πf ))⊕H1
!,−(SGKf ,M̃) int(I(Πf ))

(146)

and after taking the tensor product by Q both summands become one dimen-
sional vector spaces over Q(I(Πf )). But it is by no means clear that the integral
modules are isomorphic.

This becomes a little bit better if tensor by OF then then we have again
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H1
! (SGKf ,M̃OF ) int(πf ) ⊃ H1

!(,+S
G
Kf
,M̃OF ) int(πf )⊕H1

!(,−S
G
Kf
,M̃OF ) int(πf )

(147)

and now the two summands are are OF modules of rank one and get their struc-
ture as Hecke-modules from the homomorphism σ. ( In a sense πf = (Πf , σ))
But still they are not necessarily isomorphic. If we want to define the periods
we need class number one. But instead of defining a period we define a local
periods. If we tensor the semilocal ring OF,p = OF ⊗Z(p) then the class number
problem disappears we can choose a period such that we get an isomorphism

Ω
(p)
± (πf )−1 · F (1)

1 (ω±) :
⊗
p

WOF,p(πf )(πf , τ)
∼−→ H1

!,±(SGKf ,MOF,p)(πf ) (148)

Recall that we viewed πf as a modular form f of weight k we change the

notation for the periods slightly and denote them by Ω
(p)
± (f). Our character χ

will now be unramified which implies that it is uniquely determined by its type
µ. We put ν = µ+ 1 then we get for ν = 1, 2, . . . , k− 1 the following integrality
statement

∆(f)
L(f, ν)

Ω±(f)
∈ OF,p (149)

But we can still do a little bit better. Recall that we have to evaluate our
integral cohomology class on a modular symbol cµ. This modular symbol is a
relative cycle from 0 to i∞ (just along the imaginary axis) loaded by an element
eµ = XµY n−µ, we denote it by [0, i∞] × eν . The index µ runs from zero to n.

This is a relative cylce and defines a class in H1(SGKf , ∂(SGKf ),M̃). We have the
boundary operator

∂ : H1(SGKf , ∂(SGKf ),M̃)→ H0(∂(SGKf ),M̃). (150)

We represent the boundary by the circle at i∞ then it is clear that

∂(eµ) = eµ − weµ (151)

and we see that ∂(eµ) is a torsion class if µ 6= 0, n. Not only that it is a torsion
class it is annihilated by a power of the Hecke-operator Tnp . This implies that

Tnp ([0, i∞]×eµ) can be lifted to a homology class in Ẽµ ∈ H1(SGKf ,M̃). But then

it is clear that the evaluation of our generator ξ± in H1
!,±(SGKf ,MOF,p)(πf ) on

this lifted cycle gives an integral value. Since ξ± is an eigenvalue for the Hecke
operator we get for µ = 1, .., n− 1 and ν = µ+ 1

< ξ±, Ẽµ >= πf (Tp)
n < ξ, eµ >= πf (Tp)

n L(f, ν)

Ωε(ν)(f)
∈ OF,p (152)

This means that we do not need the factor ∆(f) in front.
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We choose a prime p in OF lying above p. Let us now assume that πf (Tp)
is a unit, i.e. f is ordinary at p then we can conclude that

L(f, ν)

Ω
(p)
± (f)

∈ OF,p

and consequently

ordp(
L(f, ν)

Ω
(p)
± (f)

) ≥ 0 for all 2 ≤ ν ≤ k − 2 (153)

We also know what we should expect at the argument ν = k−1. In this case
∂(en) is not a torsion element, but we know that for all primes ` the element
(`k−1 +1−πf (T`))∂(en) is annihilated by a power of Tp. If bp(f) is the minimum
of the numbers ordp(`k−1 + 1− πf (T`)) then we can conclude that

ordp(
L(f, µ)

Ω
(p)
± (f)

) + bp(f) ≥ 0 for µ = 1, k − 1 (154)

Hence we can say (still a little bit conjecturally and using Poincare’-duality
and the fact that the modular symbols cµ generate the relative homology. (H.
Gebertz, Diploma Thesis Bonn .)

If p is ordinary then the numbers Ω
(p)
± (f)are the right periods at p if and only

if one of the non negative numbers in the + or − part of the lists (153),(154)

Lf,p = { ordp(
L(f, k − 1)

Ω
(p)
− (f)

) + bp(f), ordp(
L(f, k − 2)

Ω
(p)
+ (f)

), . . . , ordp(
L(f, ν)

Ω
(p)
± (f)

), . . . }

is zero.
This discussion is interesting in view of the conjectures on congruences in

[Ha-Cong]. In this note we make conjectures about some congruences between
Siegel and elliptic modular forms, these congruences are congruences modulo a
”large” prime and I do not really say what a large prime should be. Already in
[Ha-Cong] I address the issue that we have to choose the right period, but there
the choice is rather ad hoc.

Now we have a better recipe. The heuristic argument for the existence of
the congruences only works if the prime is ordinary for the modular form f. But
in this case we have now a much more precise rule to compute the period. For
an ordinary prime p we should expect a congruence if for one of the members in
the above lists we find a strictly positive value. Here we should still be a little
bit more careful, my heuristic argument predicts congruences if p occurs in the
denominator of a ratio

ordp(
Lf,p(ν)

Lf,p(ν + 1)
) < 0 , ν = k − 2, k − 3, . . . , k/2 + 1

so we should pay attention to possible cancellations.
Checking the list of the list of the modular forms of weight 12,16,18,20,22,26

we find that the only cases of ordinary primes for which we expect congruences
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are indeed the cases k = 22, ` = 41 and k = 26, ` = 29, 43, 97 and they are
already in [Ha-Cong]. Here is no cancellation.

It will be very interesting to check the case of the two dimensional space of
cusp forms of weight 24. In this case the field F = Q(

√
144169). Again we find

very few instances of ordinary candidates, these are the primes dividing 73, 179
and the congruences have been checked.

But apart from these two cases we have the two divisors of 13, they occur
rather frequently in our list Lf,p and it seems to be interesting to see what
happens.

The modular form f of weight 24 has an expansion with coefficients in Q(ω)
where ω2 = 144169, we write the first few terms

f(q) = q + 12(45− ω)q2 + 36(4715 + 16 · ω)q3 + 32(395729− 405 · ω)q4+

1410(25911 + 128 · ω)q5 · · ·+ 658(3325311035− 23131008 · ω)q13 . . .
(155)

and this provides the two modular forms f (+) (resp. f (−)) with real coefficients
which we get if we send ω to the positive root

√
144169 (resp. negative root).

We have the periods Ω±(f (+)),Ω±(f (−)) and we know that

L(f (+), ν)

Ωε(ν)(f (+))
,
L(f (−), ν)

Ωε(ν)(f (−))
∈ Q(

√
144169) (156)

Looking at the norms of these numbers we find some factors of 13. The prime
13 decomposes in Z[ω] and we see that the two prime factors above thirteen are
given by the homomorphism φ5 : ω 7→ 5 mod 13. and φ8 : ω 7→ 8 mod 13 We
check that f (+) is ordinary at φ8 but not at φ5. But if we look at the prime

factor decomposition of L(f(+),ν)
Ωε(ν)(f(+))

then we see that φ5 occurs non trivially but

φ8 does not. Hence we do not expect the existence of a Siegel modular form
and a congruence modulo φ5 because φ5 is not ordinary for f (+). The prime φ8

is ordinary for f (+) but this prime does not occur in the L-values.

5.3.9 Anton’s Congruence

The issue to fix the period becomes even more delicate once we allow ramifi-
cation. Let us consider the case of the congruence subgroup Γ0(p), this means
that our open compact subgroup will be K0,f (p) =

∏
q:q 6=p Gl2(Zq) × K0(p).

Again we can determine the periods locally at a prime ` by evaluating period
integrals against certain modular symbols. The point is that we have more mod-
ular symbols, because we allow ramification. To get control over these modular

symbols we consider the representation Ind
Kf
K0,f (p)1, i.e. the induced from the

trivial representation of K0,f (p) to the maximal compact subgroup Kf . This
representation can be viewed as a representation of Gl2(Fp), it is of dimension
p+ 1 and it has the Steinberg-module Stp of dimension p. Then we can consider

the cohomology H1(SGKf ,M̃n ⊗ Stp), and new forms f for Γ0(p) correspond to

eigenclasses in H1
! (SGKf ,M̃n ⊗ Stp).

We can construct modular symbols with coefficients in M̃n⊗Stp. The stan-
dard torus T (Fp) acts on Stp and under this action we get a decomposition into

99



eigenspaces (we invert the divisors of p(p− 1) let R = Z[ 1
p(p−1) ])

Stp ⊗R =
⊕

χ:F×p→µp−1

Reχ (157)

(The trivial character occurs two times)
Hence we can define modular symbols eµ ⊗ eχ where eµ is as above. Then

we get integrality for the values

L(f ⊗ χ, µ)

Ωε(µ,χ)(f)
G(χ, τ) (158)

Since we inverted p the Gaussian sum does not play any role. We assume that the
modular symbols eµ⊗eχ generate the relative homology H1(SGKf , ∂(SGKf ),M̃n⊗
Stp⊗R). Hence we can fix the periods locally at a prime ` which does not divide
p(p−1) and which is ordinary for f. We compute the L-values and then we must
have

ordl(
L(f ⊗ χ, µ)

Ωε(µ,χ)(f)
) ≥ 0 (159)

and for both signs ε(µ, χ) at least one of these numbers has to be zero. Here l
runs over the divisors of ` in OF [ζp−1].

We want to consider the special case of modular forms of weight 4 for Γ0(p).
In this case we have only three critical values L(f ⊗ χ, µ) for µ = 1, 2, 3.

We are interested in this case because we want to understand the conjectures
in [Ha-Cong] also in the case of a non regular coefficient system, especially we
want to look at the case of the trivial coefficient system, i.e. the case where the
representation is one dimensional. Then we find modular forms of weight four
in the boundary cohomology and this forces us to allow ramification. But we
want to keep ithe ramification as small as possible.

We start from the group G = GSp2/Z, we choose as level subgroup the
group Kf = KG

f,p =
∏
q:q 6=pG(Zq) × K0(p), where K0(p) is the group of Zp

valued points of the unique non special maximal parahoric subgroup scheme
Pγ1 . (Here γ1 is the fundamental weight attached to the short root viewed as a
cocharacter, we have < γ1, α1 >= 1, < γ1, α2 >= 0. ). This choice KG

f,p defines
an arithmetic subgroup Γp ⊂ GSp2(Q) which is called the paramodular group.

We consider the homomorphism

H3(SGKf , R)
r−→ H3(∂(SGKf ), R) (160)

The right hand side contains a contribution coming from the cuspidal co-
homology of the stratum of the Siegel parabolic subgroup, this is the contri-
bution H1

! (SM
KM
f
, H2(uP , R)). The point is that now that KM

f = K0,f (p) =∏
q:q 6=p Gl2(Zq)×K0(p), which we introduced above. The M -module H2(uP , R)

is the standard three dimensional representation. Hence this cohomology is de-
scribed by the space of modular forms of weight 4 for the group Γ0(p).

Any modular (new) form f of weight 4 for Γ0(p), yields a contribution

H1
! (SMKM

f
, H2(uP , R))[f ]
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of rank one over R ⊗ OF . Let us consider the inverse image H3(SGKf , R)[f ] =

r−1(H1(SM
KM
f
, H2(uP , R)[f ])). We consider the restriction

H3(SGKf , R)[f ]
rf−→ H1(SMKM

f
, H2(uP , R)[f ] (161)

We invoke results from Eisenstein cohomology. Schwermer has shown: This
restriction map is surjective if and only if we have L(f, 2) = 0 otherwise we
encounter a pole of an Eisenstein class.

I also discuss an analogous situation in the appendix of [Ha-Eis]. There
I assume that we have no ramification, but I discuss non trivial non regular
coefficient systems. A rather speculative computation using the comparison
between the Lefschetz and the topological trace formula suggests that in this
case

rf has a non trivial kernel H3
! (SGKf , R)[f ] if and only if the sign of the func-

tional equation for L(f, s) is minus one.
Let us believe that the same is true in this case (and if we do not believe

in the trace formula we could also try to explain this kernel as a Gritsenko lift)
and we get the exact sequence

0→ H3
! (SGKf , R)[f ]→ H3(SGKf , R)[f ]

rf−→ H1(SMKM
f
, H2(uP , R)[f ], (162)

where H3
! (SGKf , R)[f ] is the Scholl motive attached to f. This yields an extension

class of motives

X (f) ∈ Ext1(R(−2), H3
! (SGKf , R)[f ]). (163)

Tony Scholl suggests to attach a number to such an extension. More precisely he
suggests to construct a suitable biextension, this can be done by the Anderson
construction introducing an auxiliary prime p0.) and then this number should
be essentially

L′(f,2)
Ω+(f)

L(f,3)
Ω−(f)

(164)

Under this assumption the denominator L(f,3)
Ω−(f) becomes interesting. Since we

fixed the period, we can ask whether ordinary primes l dividing this number yield
denominators of Eisenstein classes and hence congruences. Such a congruence
has been detected by Anton Mellit in the case p = 61 and ` = 43. Checking the
tables of W. Stein we find that for p = 61 the cohomology H1

! (SM
KM
f
, H2(uP , R))

is of rank 2 × 15 and decomposes into a 12-dimensional and a 18 dimensional
piece (over Q). The 6 dimensional piece corresponds to a modular cusp form f
of weight 4 for Γ0(61) its coefficients lie in a field of degree 6 over Q. The sign in
the functional equation is −1 and we should look for the prime decomposition
of the number

L(f, 3)

Ω−(f)
(165)
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over ` = 43. We know that there is a Siegel modular form for Γ61 which is
not a Gritsenko lift and satisfies the congruence (Poor-Yuen).The question is
whether a divisor l|` occurs in the value above. But then it becomes clear that
we to obey strict rules to fix the period.

We may also check some other primes p and compute the ratios in (165) and
look whether they are divisible by interesting primes and whether these primes
yield congruences for non Gritsenko lifts.

5.4 The L-functions

Again I have to say a few words concerning L-functions.
To get the automorphic L-functions at the unramified places we have to

introduce the dual group G∨(C) ( this is Gl2(C) in this case ) and a finite di-
mensional representation r of this group. The definition of the dual group is
designed in such a way that the Satake parameter ωp of an unramified represen-
tation at p can be interpreted as a semi simple conjugacy class in G∨(C) (see
[La]). Therefore we can form the expression

L(πp, r, s) = det(Id− r(ωp)p−s)−1

and then the global L function L(π, r, s) is defined as the product over all these
unramified L -factors times a product over suitable L-factors at the finite primes.
If we do this for our automorphic forms on Gl2 and if r = r1 is the tautological
representation of Gl2(C) then we get the local L-factors

L(πp, r1, s) =
1

(1− λp,2(p)p−s) (1− λp,1(p)p−s)

and we see that it differs by a shift by 1/2 from our previous definition. Our
earlier L -function was the motivic L-function, its definition does not require
the additional datum r. Our automorphic form π defines a motive M(π). This
motive has the disadvantage that it does not occur in the cohomology of a
variety, it occurs only after we apply a Tate twist to it. The central character
ω(π) has type x 7→ xn and defines a Tate motive. The automorphic form
π ⊗ ω(π)−1 = π∨ occurs in the cohomology

H1(SGKf ,M̃[−n]) ⊃ H1(SGKf ,M̃[−n])(π ⊗ ω(π)−1) = H1(SGKf ,M̃[−n])(π∨)

whereMn[−n] is obtained by twisting the original module by the −n-th power
of the determinant. (See [Ha-Eis], III). This motive occurs in the cohomology
of a quasiprojective scheme ( See also [Scholl] ) Now we adopt the point of view
that πf is a pair (Πf , ι) (See 1.2.6) and then M(π) defines a system of l-adic
representations ρ(π)l which are also labelled by the ι : Q(πf ) → Q̄. Then it is
Delignes theorem that for unramified primes

L(πp, r1, s−
1

2
) = Lp((M(π∨), s) = det(Id− ρ(Fp)

−1
p |M(π∨)l p

−s)

for a suitable choice of ` 6= p.
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5.4.1 Weights and Hodge numbers

We may of course look at the motives M(π) which are attached to an eigenspace
in H1

! (SGKf ,M̃[−k])(π) in other words we twisted the natural module Mn by
the −k-th power of the determinant. Again we get an l-adic representation ρl
and the Weil conjectures imply that the eigenvalues of the inverse Frobenius

ρl(F
−1
p ) all have the same absolute value p

2k−n+1
2 . The number 2k − n + 1 is

usually called the weight w(ρl) of the Galois representation or also the weight
w(M(π)) of the motive M(π).

The central character ω(π) of π has a type and if we make the natural identi-
fication of Gm with the centre then the type of ω(π) is an integer type(ω(π)) ∈ Z
and the formula for the weight is

w(M(π)) = −type(ω(π)) + 1.

This weight plays a role if we want to get a first understanding of the analytic
properties of the motivic L-functions. Its abcizza of convergence is the line
<(s) = w(M(π)) + 1.

The special case k = n is special, because in this case our motive occurs in the
cohomolgy of a variety. The eigenvalues of the Frobenius are algebraic integers
and the non zero Hodge numbers are hn+1,0 and h0,n+1. If k is arbitrary then the
centre acts on Mn[−k] by the character t(k) = n− 2k and the non zero Hodge

numbers will be h1+
n−t(k)

2 ,−n+t(k)
2 . We notice that for an isotypic component

H1
! (SGKf ,M̃[−k])(π) the number t(k) is the type of the central character ω(π).

5.5 The special values of L-functions

We now observe that the local L factors L(M(π∨⊗ (χ(1))−1), s) which we intro-
duced in 2.2.6 are actually the local L-factrs of the motivic L-function, i.e.

L(M(π∨ ⊗ (χ(1))−1), s) = L(M(π∨ ⊗ (χ(1))−1), s)

Theorem 5.2. With these notations we can give a formula for the composition

Jcχ,! ◦ Ωε(πf )−1 · F (1)
1 (ωε) =

L(M(π∨ ⊗ (χ(1))−1), 1)

Ωε(πf )
· I loc(πf , χ−1

f )

5.5.1 Applications

We evaluate this formula at elements ψf ∈ W(πf , τ)O(πf ,χ) and an element

g
f
∈ G(Af ). We get Ωε(πf )−1 · F (1)

1 (ωε)(ψf ) = ψ̃f ∈ H1
!,ε(SGKf ,M̃)O(πf ,χ) and

Jcχ,!(ψf )(g
f
) =

L(M(π∨ ⊗ (χ(1))−1), 1)

Ωε(πf )
· I loc(πf , χ−1

f )(ψf )(g
f
))

We have seen that Jcχ,!(ψf )(g
f
)d(g

f
) (Lemma 2.2 ) is an integer and it is obvious

that d(g
f
) =

∏
p d(gp). If we choose for ψf an element which is also a product

ψf (g
f
) =

∏
p ψp(gp) then we get

Jcχ,!(ψf )(g
f
)
∏
p

d(gp) =
L(M(π∨ ⊗ (χ(1))−1), 1)

Ωε(πf )
·
∏
p

I locp (πp, χ
−1
p )(ψp)(gp)d(gp))
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The factors in the products over all primes are equal to one at almost all places.
Then we have to optimize the choices of ψp and gp. First of all we can choose
these data such that all local factors are different from zero. Then we conclude
that we have an invariance under Galois for the L-values

(
L(M(π∨ ⊗ (χ(1))−1), 1)

Ωε(πf )
)σ = χ(1)(tσ)

L(M((π∨ ⊗ (χ(1))−1)σ, 1)

Ωε(πσf )

We may observe that the characters χ(1) can be written as product of a Dirichlet
character and a power of the Tate character, i.e. χ(1) = φ·α−ν where ν = 0, . . . n.
Now we can write

M(π∨ ⊗ (χ(1))−1) = M(π∨ ⊗ φ−1)⊗ Z(ν)

and
L(M(π∨ ⊗ (χ(1))−1), 1) = L(M(π∨ ⊗ φ−1), 1 + ν)

and the arguments 1+ν are exactly the critical arguments for the motive M(π∨⊗
φ−1) in the sense of Deligne.

Of course we are now able to prove also some integrality results, it is clear
that the left hand side is integral, more precisely it is an element in O(πf , χf ).
Now we have to work with local representations to find out under which condi-
tions we can force the product of local factors to be a unit or at least to bound
the primes dividing it. Hence we have a tool to show that

L(M(π∨ ⊗ (χ(1))−1), 1)

Ωε(πf )
∈ O(πf , χf )

at least if we invert a few more primes.

5.5.2 The arithmetic interpretation

It is clear that we have some control of the primes that have to be inverted. I
call them small primes. The main reason why I am interested in the integrality
statement for these special values is, that I want to understand what it means
if a large prime divides these values.

I strongly believe that the large primes dividing these L-values are related
to the denominators of Eisenstein classes for the cohomology of the symplectic
group, what this means will be explained in 5.6 and we also refer to the notes
[kolloquium.pdf]. In the following section I want to give some idea how such a
relationship between the arithmetic properties of the L-values and the integral
structure of the cohomology as a Hecke-module should look like.

6 Eisenstein cohomology

Our starting point is a smooth group scheme G/Spec(Z) whose generic fiber
G = G×ZQ is reductive and quasisplit. We assume the group scheme is reductive
over the largest possible open subset of Spec(Z) and at the remaining places it
is given by a maximal parahoric group scheme structure. If G is split, then we
assume that G is split. We define Kf = G(Ẑ) =

∏
p G(Zp) ⊂ G(Af )
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We choose a Borel subgroup B/Q and a torus T/Q ⊂ B/Q. We assume that

T (Af )∩Kf = T/Ẑ) is maximal compact in T (Af ). Let λ ∈ X∗(T ) be a highest
weight, let Mλ be a highest weight module attached to this weight. It is a
Z-module, the module Mλ ⊗Q is a highest weight module for the group G/Q.
We consider

6.1 The Borel-Serre compactification

We consider our space

SGKf = G(Q)\G(A)/K∞Kf

and its Borel-Serre compactification

i : SGKf → S̄
G
Kf
.

Our highest weight module Mλ provides a sheaf M̃λ on these spaces.
We have an isomorphism

H•(SGKf ,M̃λ)
∼̃−→H•( ¯SGKf ,M̃λ)

for any coefficient system M̃λ coming from a rational representationM of G(Q).
The boundary ∂S̄K is a manifold with corners. It is stratified by submanifolds

∂S̄K =
⋃
P

∂PSGKf ,

where P runs over the G(Q) conjugacy classes of proper parabolic subgroups
defined over Q. We identify the set of conjugacy classes of parabolic subgroups
with the set of representatives given by the parabolic subgroups that contain
our standard Borel subgroup B/Q. Then we have

H•(∂PSGKf ,M̃λ) = H•(P (Q)\G(A)/K∞Kf ,M̃λ)

We have a finite coset decomposition

G(Af ) =
⋃
ξf

P (Af )ξfKf ,

for any ξf put KP
f (ξf ) = P (A)f ∩ ξfKfξ

−1
f . Then we have

P (Q)\X ×G(Af )/Kf =
⋃
ξf

P (Q)\X × P (Af )/KP
f (ξf )ξf ,

If Ru(P ) ⊂ P is the unipotent radical, then

M = P/Ru(P )

is a reductive group. For any open compact subgroup Kf ⊂ G(Af )(resp. for
K∞ ⊂ G∞) we define KM

f (ξf ) ⊂ M(Af )(resp. KM
∞ ⊂ M∞) to be the image of

KP (ξf ) in M(Af ) (resp. M∞). We put

SMKf (ξf ) = M(Q)\M(A)/KM
∞K

M
f (ξf )
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and get a fibration

πP : P (Q)\X × P (Af )/KP
f (ξf )→M(Q)\M(A)/M(Q)\KM

∞ ×KM
f (ξf )

where the fibers are of the form ΓU\Ru(P )(R) and where ΓU ⊂ U(Z) is of finite
index and defined by some congruence condition dictated by KP

f (ξf ). The Lie-
algebra u of Ru(P ) is a free Z-module and it is clear that we have an integral
version of the van -Est theorem which says:

If R = Z[ 1
N ] where a suitable set of primes has been inverted then

H•(ΓU\Ru(P )(R),M̃R)
∼−→ H•(u,M̃R).

More precisely we know that the local coefficient system R•πP∗(M̃) is obtained
from the rational representation of M on H•(u,M).

Hence we get

H•(∂PS,M̃R) =
⋃
ξf

H•(SMKM
f (ξf ),

˜H•(u,M)R),

and
H•(u,MR) =

⊕
w∈WP

H l(w)(u,MR)(w · λ),

where WP is the set of Kostant representatives of W/WM and where w · λ =
(λ+ ρ)w − ρ and ρ is the half sum of positive roots.

The primes which we have to be inverted should be those which are smaller
than the coefficients of the dominant weights in the highest weight of M. But
at this point we may have to enlarge the set of small primes.

We conclude

The cohomology of the boundary strata ∂PSGKf with coefficients in M can be
computed in terms of the cohomology of the reductive quotient, where we have
coefficients in the cohomology of the Lie algebra of the unipotent radical with
coefficients in M

In the following considerations we sometimes suppress the subscriptsKf ,K
M
KM
f

and so on. Then we mean that the considerations are valid for a fixed level or
that we have taken the limit over the Kf . (See the remarks below concerning
induction)

6.1.1 The two spectral sequences

The covering of the boundary by the strata ∂PS provides a spectral sequence,
which converges to te cohomology of the boundary. We can introduce the
simplex ∆ of types of parabolic subgroups, the vertices correspond to the
maximal ones and the full simplex corresponds to the minimal parabolic. To
any type of a parabolic P let d(P ) its rank, we make the convention that
d(P ) − 1 is equal to the dimension of the corresponding face in the simplex.
Let M = MP = P/Ru(P ) be the reductive quotient (the Levi quotient). If
ZM/Q is the connected component of the identity of the center of M/Q then
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d(P ) is also the dimension of the maximal split subtorus of ZM/Q minus the
dimension of the maximal split subtorus of ZG/Q. The covering yields a spec-
tral sequence whose E•,•1 term together with the differentials of our spectral
sequence is given by

0→ E0,q
1 =

⊕
P,d(P )=1

Hq(∂PS,M)
d0,q

1−→ · · · →
⊕

P,d(P )=p+1

Hq(∂PS,M)
dp,q1−→

(166)

where the boundary map dp,q1 is obtained from the restriction maps (See [Gln]).
There is also a homological spectral sequence which converges to the cohomology
of the boundary. It can be written as a spectral sequence for the cohomology
with compact supports. Let d be the dimension of S then we have a complex

→
⊕

P,d(P )=p+1

Hd−1−p−q−1
c (∂PS,M)

δ1−→
⊕

P,d(P )=p

Hd−1−p−q
c (∂PS,M)→

(167)

and therefore the E1
•,• term is

E1
p,q =

⊕
P,d(P )=p

Hd−1−p−q
c (∂PS,M)

the (higher) differential go from (p, q) to (p− r, q + 1− r).

6.1.2 Induction

The description of the cohomology of a boundary stratum is a little bit clumsy,
since we are working with the coset decomposition. The reason is that we are
working on a fixed level, if we consider cohomology with integral coefficients. If
we have rational coefficients then we can pass to the limit. Then

H•(∂PSGKf ,M̃) = lim
Kf
H•(P (Q)\G(A)/K∞Kf ,M̃) =

Ind
π0(G(R)×G(Af )

π0(M(R)×P (Af ) lim
KM
f

H•(SMKM
f
, ˜H•(u,M)) = Ind

π0(G(R))×G(Af )

π0(M(R))×P (Af )H
•(SM , ˜H•(u,M)),

where the induction is ordinary group theoretic induction. We should keep in
our mind that the π0(M(R))×P (Af ) -modules are in fact π0(M(R))×M(Af )-
modules. We need some simplification in the notation and we will write for any
such π0(M(R))×M(Af ) module H

Ind
π0(G(R))×G(Af )

π0(M(R))×P (Af )H = IGMH

We will use the same notation for an induction from the torus T to M .
Under certain conditions we also have the notion of induction for Hecke

- modules and we can work with integral coefficient systems. This will be
discussed at another occasion.
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But I want to mention that in the case that Kf is a hyperspecial maxi-
mal compact subgroup ( in the cases where we are dealing with a split semi-
simple group scheme over Spec(Z) we can take Kf =

∏
G(Zp) (see 1.1)) then

G(Qp) = P (Zp)Kp = B(Zp)Kp the group theoretic induction followed by taking
Kf invariants gives back the original module. In this case we do not have to
induce!

Of course we have to understand the coefficient systems H•(u,M), for this
we need the theorem of Kostant which will be discussed in the next section.

6.1.3 A review of Kostants theorem

At this point we can make the assumption that our group G/Q is quasisplit, we
also assume that G(1)/Q is simply connected. Then we may assume that MZ
is irreducible and of highest weight λ. Let B/Q be a Borel subgroup, we choose
a torus T/Q ⊂ B/Q. Let X∗(T ) = Hom(T ×Q Q̄,Gm ×Q Q̄ be the character
module, it comes with an action of a finite Galois group Gal(F/Q), here F
is the smallest sub field of Q̄ over which G/Q splits. Let T (1)/Q ⊂ T/Q the
maximal torus in G(1)/Q, then X∗(T (1)) contains the set ∆ of roots, the subset
∆+ of positive roots (with respect to B.) The set of simple roots is identified
to a finite index set I = {1, 2, . . . , r}, i.e we write the set of simple roots as
π = {α1, . . . , αi, . . . , αr} ⊂ ∆+. We assume that the numeration is somehow
adapted the Dynkin diagram. The finite Galois group Gal(F/Q) acts on I
and π by permutations. Attached to the simple roots we have the dominant
fundamental weights {, . . . , γi, . . . , γj , . . . } they are related to the simple roots
by the rule

2
< γi, βj >

< βj , βj >
= δi,j .

The dominant fundamental weights form a basis of X∗(T (1)).
Our maximal torus T/Q is up to isogeny the product of T (1) and the central

torus C/Q, i.e. T = T (1) ·C and the restriction of characters yields an injection

j : X∗(T )→ X∗(T (1))⊕X∗(C),

this becomes an isomorphism if we tensorize by the rationals

X∗Q(T ) = X∗(T )⊗Q ∼−→ X∗Q(T (1))⊕X∗Q(C).

This isomorphism gives us canonical lifts of elements in X∗(T (1)) or X∗(C)
to elements in X∗Q(T ) which will be denoted by the same letter. Especially the
fundamental weights γ1 . . . , γi, . . . are elements in X∗Q(T ).

Let λ ∈ X∗(T ) be a dominant weight, our decomposition allows us to write
it as

λ =
∑
i∈I

aiγi + δ = λ(1) + δ

we have ai ∈ Z, ai ≥ 0 and δ ∈ X∗(C). To such a dominant weight λ we
have an absolutely irreducible G× F -module Mλ.
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We consider maximal parabolic subgroups P/Q ⊃ B/Q. These parabolic
subgroups are given by the choice of a Gal(F/Q) orbit ĩ = J ⊂ I Such an orbit
yields a character γJ =

∑
i∈J γi The parabolic subgroup P/Q provided by this

datum is determined by its root system ∆P = {β ∈ ∆| < β, γJ >≥ 0}. The
choice of the maximal torus T ⊂ P also provides a Levi subgroup M ⊂ P but
actually it is better to consider M as the quotient P/UP .

The set of simple roots of M (1) is the subset πM = {. . . , αi, . . . }i∈IM , where
of course IM = I \J. We also consider the group G(1)∩M = M1. It is a reductive
group, it has T (1) as its maximal torus. We apply our previous considerations
to this group M1. It has a non trivial central torus C1/Q. This torus has a
simple description, we pick a root αi, i ∈ J, we know that J is an orbit under
Gal(F/Q). We have the subfield Fαi ⊂ F such that Gal(F/Fαi) is the stabilizer
of αi. Then it is clear that

C1
∼−→ RFαi/Q(Gm/Fαi),

up to isogeny it is a product of an anisotropic torus C
(1)
1 /Q and a copy of Gm.

The character module X∗Q(C1) is a direct sum

X∗Q(C1) = X∗Q(C
(1)
1 )⊕QγJ . (168)

Here X∗Q(C
(1)
1 ) = {γ ∈ X∗Q(C1) | < γ,

∑
i∈J αi >= 0}. The half sum of positive

roots in the unipotent radical is

ρU = fP γJ (169)

where 2fP > 0 is an integer.
We also have the semi simple part T (1,M) ⊂ M (1) and again we get the

orthogonal decomposition

X∗Q(T (1)) = X∗Q(T (1,M))⊕X∗Q(C1) =
⊕
i∈IM

Qαi⊕
⊕
i∈J

Qγi =
⊕
i∈IM

QγMi ⊕
⊕
i∈J

Qγi.

Here we have to observe that the γMi , i ∈ IM are the dominant fundamental
weights for the group M (1), they are the orthogonal projections of the γi to the
first summand in the above decomposition. We have a relation

γj = γMj +
∑
i∈ĩ

c(j, i)γi, for j ∈ IM

and we have c(j, i) ≥ 0 for all i ∈ J.
Let W be absolute Weylgroup and subgroup WM ⊂ W the Weyl group of

M . For the quotient WM\W we have a canonical system of representatives

WP = {w ∈W | w−1(πM ) ⊂ ∆+}.

To any w ∈W we define w ·λ = w(λ+ρ)−ρ where ρ us the half sum of positive
roots. If we do this with an element w ∈WP then µ = w · λ is a highest weight
for M (1) and w · λ defines us a module for M . Then Kostants theorem says

H•(uP ,Mλ) =
⊕

w∈WP

H`(w)(uP ,M)(w · λ),
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the summands on the right hand side are the irreducible modules attached to
w · λ, they sit in degree

l(w) = #{α ∈ ∆+|w−1α ∈ ∆−} (170)

Each isomorphism class occurs only once.
We write

w · λ = µ(1,M) + δ1︸ ︷︷ ︸ +δ

∈ X∗Q(T (1,M))⊕X∗Q(C1) ⊕X∗(C)

(171)

We decompose δ1 and define the numbers a(w, λ) (see (168))

δ1 = δ′1 + a(w, λ)γJ .

Then we get

w(λ+ ρ)− ρ = µ(1,M) + a(w, λ)γJ (172)

We also consider the extended Weyl group W̃ , this is the group of automor-
phisms of the root system. Let w0 ∈W be the element sending all positive roots
into negative ones. We have an automorphism Θ− ∈ W̃ inducing t 7→ t−1 on
the torus. Let Θ = w0 ◦Θ−. This element induces a permutation on the set π of
positive roots, which may be the identity and induces −1 on the determinant.
Then

Θλ =
∑
i∈I

aΘiγi − δ

is a dominant weight and the resulting highest weight module is dual module
to Mλ. Therefore we get a non degenerate pairing

H•(uP ,Mλ)×H•(uP ,MΘλ)→ HdUP (uP , F ) = F (−2ρU ),

which respects the decomposition, i.e. we get a bijection w 7→ w′ such that
l(w) + l(w′) = dUP and such

H l(w)(uP ,Mλ)(w · λ)×H l(w′)(uP ,MΘλ)(w′ ·Θλ)→ HdUP (uP , F ) (173)

is non degenerate. We conclude

a(w, λ) + a(w′,Θλ) = −2fP . (174)

We say that w · λ is in the positive chamber if

a(w, λ) ≤ −fP (175)

The element Θ conjugates the parabolic subgroup P into the parabolic subgroup
Q, which may be equal to P or not. If P = Q resp. P 6= Q then we say that P
is (resp. not ) conjugate to its opposite parabolic. If Θ− is in the Weyl group
then all parabolic subgroups are conjugate to their opposite. In this case we
have Θ = 1.
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Conjugating by the element Θ provides an identification θP,Q : WP ∼−→WQ.
We have two specific Kostant representatives, namely the identity e ∈WP and
the element wP ∈ WP , this is the element which sends all the roots in UP to
negative roots (the longest element). Its length l(wP ) is equal to the dimension
dP = dim(UP ).

Any element in w ∈WP can be written as product of reflections

w = sαi1 . . . sαiν (176)

where ν = l(w) and the first factor αi1 ∈ J. We always can complement this
product to a product giving the longest element

sαi1 . . . sαiν sαiν+1
. . . sαidP

= wsαiν+1
. . . sαidP

= wP , (177)

The inverse of the element sαiν+1
. . . sαidP

is

w′ = sαidP
. . . sαiν+1

∈WQ

This defines a second bijection iP,Q : WP ∼−→ WQ which is defined by the
relation

w = wP · iP,Q(w) = wP · w′, l(w) + l(w′) = dP (178)

The composition θ−1
P,Q ◦ IP,Q : WP →WP is the bijection provided by duality.

The element wP conjugates the Levi subgroup M of P into the Levi subgroup
of Q = wPPw

−1
P . The element w̃P = ΘwP conjugates the parabolic subgroup

P into its opposite (which is conjugate to Q) and induces an automorphism on
the subgroup M which is a common Levi-subgroup of P and its opposite.

If we choose w = e then∑
i∈I

aiγi + δ =
∑
i∈IM

aiγ
M
i +

∑
j∈J

(
∑
i∈IM

aic(i, j) + nj)γj + δ.

Since J is the orbit of an element i ∈ I we see that < γj , αj > is independent
of j and hence we get easily

∑
j∈J

(
∑
i∈IM

aic(i, j) + nj)γj =
1

#J
(
∑
j∈J

(
∑
i∈IM

aic(i, j) + nj))γJ + δ′

and hence

a(e, λ) =
1

#J
(
∑
j∈J

(
∑
i∈IM

aic(i, j) + aj))

If we choose ΘP then as an M -moduleMΘP ·λ is dual toMΘλ(−2fJγJ). We
write Θλ+ ρ =

∑
i∈I aΘiγi − δ and then

wP (
∑
i∈I

aiγi + δ) =
∑
i∈IM

nΘiγ
M
i −

∑
j∈J

(
∑

Θi∈IM

aΘic(Θi,Θj) + aΘj)γj − 2fJγJ − δ.
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and especially we find

a(wP , λ) = −(
1

#J
(
∑
j∈J

(
∑
i∈IM

aΘic(Θi,Θj) + aΘj)) + 2fJ)γJ

In general we have the inequalities

a(ΘP , λ) ≤ a(w, λ) ≤ a(e, λ).

We can write our relation (172) slightly differently. We can move the half
sum of positive roots to the right and split into ρ = ρM + fP γJ . We put µ̃(1) =
µ(1,M) + ρM and then we write

w(λ+ ρ) = µ̃(1) + (a(w, λ) + fP )γJ = µ̃(1) + b(w, λ)γJ (179)

and of course now we have

b(w, λ) + b(w′,Θλ) = 0. (180)

6.1.4 The inverse problem

Later we will encounter the following problem. Our data are as above and we
start from a highest weight for M , we write

µ = µ(1) + δ1 + aγJ + δ =
∑
i∈IM

nΘiγ
M
i + δ1 + aγJ + δ.

We ask whether we can find a λ such that we can solve the equation (Kost).
More precisely: We give ourselves only the semi simple component µ(1) of µ and
we ask for the solutions

w(λ+ ρ) = µ̃(1) + . . .

where w ∈WP and λ dominant, i.e. we only care for the semi simple component.
Let us consider the case where J = {i0}, i.e. it is just one simple root. Then

the term δ1 disappears and our equation becomes

w(λ+ ρ) = µ̃(1) + bγi0 + δ,

of course the δ is irrelevant, but we want to know the range of the values
b = b(λ,w) when µ̃(1) is fixed, but λ,w vary. Of course it may be empty. Let us
fix a w and let us assume we have solved w(λ+ ρ) = µ̃(1) + . . . . Then it is clear
that the other solutions are of the form λ+ ρ+ ν where wν ∈ Qγi0 . These ν are
of the form ν = cν0 with c ∈ Z. We write ν0 =

∑
i∈I biγi and it is easy to see

that there must be some bi > 0 and some bj < 0. This implies that λ + cν0 is
dominant if and only if c ∈ [M,N ], an interval with integers as boundary point.
This of course implies that -still for a given w - the values b = b(λ,w) also have
to lie in a fixed finite interval

b = b(w, λ) ∈ [bmin(w, µ̃(1)), amax(w, µ̃(1)] = I(w, µ̃(1)).

This will be of importance because these intervals will be related to intervals
of critical values of L-functions.
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6.2 The goal of Eisenstein cohomology

The goal of the Eisenstein cohomology is to provide an understanding of the re-
striction map r in theorem ( 2.1). More precisely we assume that we understand
(can describe) the cohomology H•(∂SGKf ,M̃λ) then we want to understand the

image H•Eis(∂SGKf ,M̃λ) in terms of this description. Under certain conditions

we will construct a section Eis : Hi
Eis(∂SGKf ,M̃λ,C)→ Hi(SGKf ,M̃λ,C). It is clear

from the previous considerations that understanding of H•(∂SGKf ,M̃λ) requires

understanding cohomology of H•(SM
KM
f
, ˜H•(u,M)) and we have to compute the

differentials in the spectral sequence. These differentials will depend on the

Eisenstein cohomology of H•(SM
KM
f
, ˜H•(u,M)). Under certain conditions the

spectral sequence degenerates at E2 level and I do not know whether this is
true in general. In a certain sense it would be much more interesting if this is
not the case.

We consider certain submodules in the cohomology of the Borel-Serre com-
pactification for which we can construct a section as above. We start from a
maximal parabolic subgroup P/Q, let M/Q be its reductive quotient. We define

H•! (∂PSGKf ,M̃λ) =
⊕

w∈WP

H
•−l(w)
! (SMKM

f
, H l(w)(uP ,M̃)(w · λ)) ⊂ H•(∂PSGKf ,M̃λ)

(181)

We will abbreviate H l(w)(uP ,M̃)(w · λ) = M̃(w · λ) where always keep in mind
that the element w ∈ WP knows what the actual parabolic subgroup is and
that M̃(w · λ) sits in degree l(w).

By definition the inner cohomology is the image of the cohomology with
compact supports. This implies that the submodule⊕

P :d(P )=1

Hq
! (∂PSGKf ,M̃λ) ⊂

⊕
P :d(P )=1

Hq(∂PSGKf ,M̃λ) = E0,q
1

is annihilated by all differentials d0,q
ν and hence we get an inclusion

iP : ⊕w∈WP IGPH
•−l(w)
! (SMKM

f
,M(w · λ))→ H•(∂SGKf ,Mλ) (182)

Taking the direct sum over the maximal parabolic subgroups yields a sub-
module

H•! (∂SGKf ,M̃λ) ↪→ H•(∂SGKf ,M̃λ) (183)

The Hecke algebra acts on these two modules. Let us assume that this submod-
ule when tensorized by Q is isotypical in H•! (∂SGKf ,M̃λ ⊗ Q). Then we get a
decomposition

H•! (∂SGKf ,M̃λ ⊗Q)⊕H•non!(∂SGKf ,M̃λ ⊗Q) = H•(∂SGKf ,M̃λ ⊗Q). (184)

We formulated the goal of the Eisenstein cohomology, we described an isotypical
subspace and we know can ask: What is the intersection of H•Eis(∂SGKf ,M̃λ⊗Q)

with this subspace, or what amounts to the same, what is H•!,Eis(∂SGKf ,M̃λ⊗Q).
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The element Θ induces an involution on the set of parabolic subgroups con-
tainingB (= set ofG(Q) conjugacy classes of parabolic subgroups) two parabolic
subgroups P,Q ⊃ B are called associate if ΘP = Q.We can decompose the coho-
mology H•! (∂SGKf ,M̃λ⊗Q) into summands attached to the classes of associated
parabolic subgroups

H•! (∂SGKf ,M̃λ ⊗Q) =
⊕

P :P=ΘP

H•! (∂PSGKf ,M̃λ)⊕
⊕
[P,Q]

H•! (∂PSGKf ,M̃λ)⊕H•! (∂QSGKf ,M̃λ)

(185)

where in the second sum Q = ΘP. Each summand is a sum over the elements
of WP and then we can decompose under the action of the Hecke algebra. We
choose a sufficiently large extension F/Q and in the case P = ΘP we get

H•! (∂PSGKf ,M̃λ ⊗ F ) =
⊕

w∈WP

⊕
σf

H
•−l(w)
! (SMKM

f
,M̃(w · λ)⊗ F )(σf ) (186)

In the case P 6= ΘP = Q we group the contributions from the two parabolic
subgroups together. To any w ∈WP we have the element iP,Q(w) = w′ ∈WQ.
We also group the terms corresponding to w and w′ together. To any σf which

occurs in H
•−l(w)
! (SM

KM
f
, H l(w)(uP ,M̃)(w · λ)⊗ F ) we find a σ′f = σwPf |γΘj |

2fQ
f ,

which occurs in the second summand.
The decomposition into isotypical pieces becomes⊕

σf

(
H
•−l(w)
! (SMKM

f
,M̃(w · λ)⊗ F )(σf )⊕H•−l(w

′)
! (SM

′

KM′
f

,M̃(w′ · λ)⊗ F )(σ′f )
)

(187)

We can define the second step in the filtration ( 20) as the inverse image of
H•! (∂SGKf ,M̃λ) under the restriction r.

6.2.1 Induction and the local intertwining operator at finite places

Our modules σf are modules for the Hecke algebras HM
KM
f

= ⊗pHMKM
p
. Therefore

we can write them as tensor product σf = ⊗pσp. We consider a prime p where
σf is unramified then we get can give a standard model for this isomorphism
class. The module Hσp is the rank one OF -module OF , i.e. it comes with a
distinguished generator 1. The Hecke algebra acts by a homomorphism (See 2.3)

h(σp) : H(M,w·λ)

KM
p ,Z → OF (188)

and gives us the Hecke-module structure on Hσp . We can induce Hσp to a
HGKG

p
module. This is actually the same OF module but now with an action

of the algebra H(G,λ)

KG
p ,Z

. We simply observe that we have an inclusion H(G,λ)

KG
p ,Z

↪→

H(M,w′·λ)

KM
p ,Z and induction simply means restriction.

It follows easily from the description of the description of the spherical (un-
ramified) Hecke modules via their Satake-parameters that the induced modules

Hσp and Hσ′p
are isomorphic as H(G,λ)

KG
p ,Z

-modules and hence we get that after
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induction the two summands in (187) become isomorphic. We choose a local
intertwining operator

T loc
p : Hσp → Hσ′p

(189)

simply the identity.
We postpone the discussion of a local intertwining operator at ramified

places.

6.3 The Eisenstein intertwining operator

We start from an irreducible unitary module Hσ∞×Hσf = Hσ and assume that
we have an inclusion Φ : Hσ ↪→ L2

cusp(M(Q)\M(A)). We assume that σf occurs

in the cohomology H•cusp(SM
KM
f
,M̃(w · λ)C) and we assume that w · λ is in the

positive chamber. We consider Φ as an element of W (σ) and for the moment
we identify Hσ to its image under Φ. We stick to our assumption that σ occurs
with multiplicity one in the cuspidal spectrum.

Then we we can consider the induced module, recall that this is the space
of functions

{f : G(A)→ Hσ|f(pg) = p̄f(g)} (Ind)

where p̄ is the image of p in M(A). We can define the subspace H
(∞)
σ consisting

of those f which satisfy some suitable smoothness conditions and then we can

define a submodule Ind
G(A)
P (A)H

(∞)
σ where the f(g) ∈ H(∞)

σ and the f themselves

also satisfy some smoothness conditions.
We embed this space into the space A(P (Q)\G(A)) by sending

f 7→ {g 7→ f(g)(eM )},

here A denotes some space of automorphic forms. This an embedding of G(A)-
modules or an embedding of Hecke modules if we fix a level.

We have the character γP : M → Gm, for any complex number z this yields
a homomorphism |γP |z : M(A) → R× which is given by |γP | : m 7→ |γP (m)|z.
As usual we denote by C(|γP |z) the one dimensional C vector space on which
M(A) acts by the character |γP |z. Then we may twist the representation Hσ

by this character and put Hσ⊗|γP |z = H⊗C(|γP |z). An element g ∈ G(A) can

be written as g = pk, p ∈ P (A), k ∈ K0
f where K0

f ⊃ Kf is a suitable maximal
compact subgroup and now we define h(g) = |γP |(p).

Eisenstein summation yields embeddings

Eis : Ind
G(A)
P (A)H

(∞)
σ ⊗ |γP |z → A(G(Q)\G(A)), (190)

where
Eis(f)(g) =

∑
γ∈P (Q)\G(Q)

f(γg)(eM )h(γg)z,

it is well known that this is locally uniformly convergent provided <(z) >> 0
and it has meromorphic continuation into the entire z plane (See [Ha-Ch]).

We assumed that Hσ is in the cuspidal spectrum. We get important infor-
mation concerning these Eisenstein series, if we compute their constant Fourier
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coefficient with respect to parabolic subgroups: For any parabolic subgroup
P1/Q ⊂ G/Q with unipotent radical U1 ⊂ P1 we define (See [Ha-Ch], 4)

FP1(Eis(f))(g) =

∫
U1(Q)\U1(A)

Eis(f)(ug)(eM )du.

This essentially only depends on the G(Q)-conjugacy class of P1/Q. It it
also in [Ha-Ch] , 4 that this constant term is zero unless P1 is maximal and the
conjugacy class of P1 is equal to the conjugacy class of P/Q or the conjugacy
class of Q/Q. (which may or may not be equal to the conjugacy class of P/Q.)

These constant Fourier coefficients have been computed by Langlands, we
have to distinguish the two cases:

a) The parabolic subgroup P/Q is conjugate to an opposite parabolic Q/Q.
In this case we have a Kostant representative wP ∈ WP which conjugates

Q/Q into P/Q and it induces an automorphism of M/Q. We get a twisted
representation wP (σ) of M(A). In the computation of the the constant term we
have to exploit that σ is cuspidal and we get two terms:

FP ◦ Eis : Ind
G(A)
P (A)Hσ ⊗ |γP |z →

Ind
G(A)
P (A)Hσ ⊗ |γP |z ⊕ Ind

G(A)
P (A)HwP (σ) ⊗ |γQ|2fP−z ⊂ A(P (Q)\G(A)).

(191)

We can describe the image. It is well known, that we can define a holomorphic
family

T loc(z) : Ind
G(A)
P (A)Hσ ⊗ |γP |z → Ind

G(A)
P (A)HσwP ⊗ |γQ|

2fP−z

which is defined in a neighborhood of z = 0 and which is nowhere zero. This
local intertwining operator is unique up to a nowhere vanishing holomorphic
function h(z). It is the tensor product over all places T loc(z) = ⊗vT loc

v (z).
For the unramified finite places the local operator is constant, i.e. does not
depend on z and is equal to T loc

p in section (6.2.1) and T loc(0) = ⊗pT loc
p . At

the remaining factors there is a certain arbitrariness for the choice of the local
operator and some fine tuning is appropriate.

We also assume that we have chosen nice model spaces Hσ∞ , Hσ′∞ , and an
intertwining operator

T loc
∞ : Hσ∞ → Hσ′∞

(192)

which is normalized by the requirement that it induces the ”identity” on a
certain fixed KM

∞ type.

Then we get the classical formula of Langlands for the constant term: For

f ∈ Ind
G(A)
P (A)Hσ ⊗ |γP |z we get

FP ◦ Eis(f) = f + C(σ, z)T loc(z)(f), (193)

where C(σ, λ, z) is a product of local factors C(σv, z) and where C(σv, z) is a
function in z which is holomorphic for <(z) ≥ 0 (here we need that w · λ is in
the positive chamber.) This function compares our local intertwining operator
to an intertwining operator which is defined by the integral.
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The computation of this factor is carried out in H. Kims paper in [C-K-
M], chap. 6. He expresses the factor in terms of the automorphic L function
attached to σf . To formulate the result of this computation we have to recall the
notion of the dual group (3.1). Inside the dual group LG we have the dual group
LM which acts by conjugation on the Lie algebra u∨P . The set of roots ∆+

U∨P
is a

set of cocharacters of T/Q, a coroot α∨ ∈ ∆+
UP

defines a one-dimensional root

subgroup u∨P,α∨ . The LM -module u∨P decomposes into submodules. We recall
that the maximal parabolic subgroup P/Q was obtained from the choice of a
Galois-orbit ĩ ⊂ I (6.1.3) and any

α∨ ∈ ∆+
U∨P
, χ = a(α∨, ĩ)χĩ +

∑
j 6∈ĩ

mĩ,jχj . (194)

Here the coefficients are integers ≥ 0 and a(α∨, ĩ) > 0. For a given integer a > 0
we define

u∨P [a] =
⊕

α∨:a(α∨ ,̃i)=a

u∨P,α∨ (195)

it is rather obvious that u∨P [a] is an invariant submodule under the action of M
and actually it is even irreducible. Let us denote the representation of M/Q on

u∨P [a] by r
u∨P
a . In the following ηa will be the highest weight of r

u∨P
a .

With these notations we get the following formula for the local factor at p
(See[Kim])

Cp(σ, z) =

r∏
a=1

Laut(σp, r
u∨P
a , a(z − fP ))

Laut(σp, r
u∨P
a , a(z − fP ) + 1)

T loc
p (z)(f) (196)

We do not discuss the ramified finite places, from now on we assume that
σf is unramified. Then we get

C(σ, z) = C(σ∞, z)
∏
p

Cp(σp, z) = C(σ∞, z)

r∏
a=1

Laut(σf , r
u∨P
a , a(z − fP ))

Laut(σf , r
u∨P
a , a(z − fP ) + 1)

The local factor at infinity depends on the choice of T loc
∞ , in 1.2.4 we gave

some rules how to fix it, if it is not zero on cohomology.
b) The opposite group Q/Q is not conjugate to P/Q, then we have to com-

pute two Fourier coefficients namely FP and FQ in this case we get

F : Ind
G(A)
P (A)Hσ ⊗ |γP |z

FP⊕FQ−→

Ind
G(A)
P (A)Hσ⊗|γP |z⊕Ind

G(A)
Q(A)Hσ⊗|γQ|2fP−z ⊂ A(P (Q)\G(A))⊕A(Q(Q)\G(A)).

and again we get

F ◦ Eis(f) = f + C(σ∞, z)
∏
a

Laut(σf , r
u∨P
a , a(z − fP ))

Laut(σf , r
u∨P
a , a(z − fP ) + 1)

T loc(z)(f), (197)
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where now T loc(z) is a product of local intertwining operators

T loc
v : Ind

G(Qv)
P (Qv)Hσv ⊗ |γP |z → Ind

G(Qv)
Q(Qv)HσwPv

⊗ (2fP − z).

It is also due to Langlands that the Eisenstein intertwining operator is holo-
morphic at z = 0 if the factor in front of the second term is holomorphic at z = 0.
Up to here σ can be any representation occurring in the cuspidal spectrum of
M.

Now we assume that we have a coefficient system M = Mλ and a w ∈
WP such that our σf occurs in H

•−l(w)
! (SM

KM
f
,M̃(w · λ) ⊗ F ). Then we find a

(m,KM
∞ )− module Hσ∞ such that H•(m,KM

∞ , Hσ∞ ⊗M(w · λ)) 6= 0. We also
find an embedding

Φι : Hσ∞ ⊗Hσf ⊗F,ι C ↪→ L2
cusp(M(Q)\M(A)) (198)

Let us assume that w · λ or equivalently σf are in the positive chamber. In
case a) we have holomorphicity at z = 0 if the weight λ is regular (See [Schw]
) and in case b) the Eisenstein series is always holomorphic at z = 0. In this
section that we assume that the Eisenstein series is holomorphic at z = 0 and
hence we can evaluate at z = 0 in (344) and get an intertwining operator

Eis ◦ Φι : Ind
G(A)
P (A)Hσ → A(G(Q)\G(A)). (199)

We get a homomorphism on the de-Rham complexes

HomK∞(Λ•(g/k), Ind
G(A)
P (A)Hσ ⊗F,ι C⊗Mλ)→ HomK∞(Λ•(g/k),A(G(Q)\G(A))⊗ M̃λ)

(200)

We introduce the abbreviation Hι◦σf = Hσf ⊗F,ι C and decompose Hι◦σ =
Hσ∞ ⊗Hι◦σf . We compose (200) with the constant term and get

F ◦ Eis• : HomK∞(Λ•(g/k), Ind
G(R)
P (R)Hσ∞ ⊗Mλ)⊗Hι◦σf →

HomK∞(Λ•(g/k), Ind
G(R)
P (R)Hσ∞ ⊗Mλ)⊗Hι◦σf )⊕HomK∞(Λ•(g/k), Ind

G(R)
Q(R)Hσ′∞

⊗Mλ)⊗Hι◦σ′f )

(201)

where P = Q in case a).

We choose an ω ∈ HomK∞(Λ•(g/k), Ind
G(R)
P (R) ⊗ Mλ) and consider classes

ω⊗ψf and map them by the Eisenstein intertwining operator to the cohomology
(or the de-Rham complex) on SGKf . Then the restriction of of the Eisenstein
cohomology to the boundary is given by the classes

Φι(ω ⊗ ψf +
1

Ω(σf )
C(σ∞, λ)C(σf , λ)T loc

∞ (ω)⊗ T loc
f (ψf )) (202)

Here the factor C(σf , λ) can be expressed in terms of the cohomological L-
function. Translating the formula (196) yields (see 179)

C(σf , λ) =
∏
a

Lcoh(σf , r
u∨P
a , < ηa, µ̃

(1) > −b(w, λ) < ηa, γP >)

Lcoh(σf , r
u∨P
a , < ηa, µ̃(1) > −b(w, λ) < ηa, γP > +1)

(203)
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We may complete the cohomological L-function by the correct factor at infinity
and replace the ratio of L-values by the corresponding ratio of values for the
completed L− function. By definition we have < ηa, γP >= a and then our
formula for the second term in (202 ) becomes

1

Ω(σf )

∏
a

Λcoh(σf , r
u∨P
a , < ηa, µ̃

(1) > −ab(w, λ))

Λcoh(σf , r
u∨P
a , < ηa, µ̃(1) > −ab(w, λ) + 1)

C∗(σ∞, λ)T loc
∞ (ω)⊗ T loc

f (ψf ))

(204)

This formula needs some comments. The factor C∗(σ∞)T loc
∞ is a representa-

tion theoretic contribution it is not easy to understand. Experience shows that
becomes very simple at the end. In SecOps.pdf we discuss the special case of
the symplectic group.

The number Ω(σf ) is a period, it will be discussed later.

We see that the constant term is the sum of two terms. The first term repro-
duces the original class from which we started. We assumed that w or w ·λ it is
in the positive chamber (see(175)). The second term is some kind of scattering
term which is the image of the first term under an intertwining operator. In
case a) the restriction of the second term gives a class in the same stratum, in
case b) the restriction of the second term gives a class in a second stratum.

At this point I formulate a general principle

Under certain circumstances the second term is of fundamental
arithmetic interest, it contains relevant arithmetic information.

To exploit this information we have to understand several aspects of the
behavior of this second term in the constant term. We have to recall that is
obtained as the evaluation of a meromorphic function C(σf , λ, z) at z = 0,
i.e. we have to know whether it has pole at z = 0 or not. We also have
to understand the contribution C(σ∞, λ)T loc

∞ , and we have to understand the
arithmetic nature of this term, it is a product and some of the factors yield
an algebraic number and the rest will have a motivic interpretation. This is
explained further down and in [Mix-Mot-2013.pdf].

We give some more detailed indications how such arithmetic applications
may look like. We assume that w ·λ is in the positive chamber and l(w) ≥ l(w′).
Let us also assume that the Eisenstein intertwining operator is holomorphic at
z = 0. Then we have to look at

T loc,•
∞ : HomK∞(Λ•(g/k), Ind

G(R)
P (R)Hσ∞ ⊗Mλ)→ HomK∞(Λ•(g/k), Ind

G(R)
P (R)Hσ′∞

⊗Mλ)

(205)

The two complexes can be described by the Delorme isomorphism

HomK∞(Λ•(g/k), Ind
G(R)
P (R)Hσ∞ ⊗Mλ)

∼−→
⊕

w∈WP

HomKM
∞

(Λ•−l(w)(m
(1)
C /kM )), Hσ∞ ⊗M(w · λ))

(206)
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Our intertwining operator respects this decomposition and we get

T loc,•
∞ (w) : HomKM

∞
(Λ•−l(w)(m

(1)
C /kM )), Hσ∞ ⊗M(w · λ))→

HomKM
∞

(Λ•−l(w
′)(m

(1)
C /kM )), Hσ′∞

⊗M(w′ · λ))

Now we know that for regular representationsMλ the cohomologyHν(m,KM
∞ , Hσ∞⊗

M(w · λ)) is non zero only for ν in a very narrow interval around the middle
degree (See [Vo-Zu], Thm. 5.5). If the difference |l(w) − l(w′)| is greater than
the length of this interval, then the following condition is fulfilled

In any degree T loc,•
∞ (w) induces zero on the cohomology. (Tzero)

In this cases (and under the assumption that the Eisenstein series is holo-
morphic at z = 0) the Eisenstein intertwining operator gives us a section for the
Hecke-modules

EisC : Hq−l(w))(SMKM
f
,M(w · λ)⊗ C)(σf )→ Hq(SGKf ,M̃λ ⊗ C) (207)

6.4 The special case Gln

Our group is Gln/Q and we choose a parabolic subgroup P containing the
standard Borel subgroup and with reductive quotient M = Gln1

×Gln2
× · · · ×

Glnr . We want to construct Eisenstein cohomology classes in H•(SGKf ,M̃λ,C)

starting from cuspidal classes in H•(∂PSGKf ,M̃λ,C). For an element w ∈ WP

we write

w(λ+ ρ) = µ(1) − b1(w, λ)γn1 − b2(w, λ)γn1+n2 + · · · − br(w, λ)γn1+···+nr−1 + dδ.

(208)

It is the sum of the semi simple part (with respect to M)

µ(1) = (b1γ
M
1 + · · ·+ bn1−1γ

M
n1−1) + (bn1+1γ

M
n1+1 + . . . bn1+n2−1γ

M
n1+n2−1) + . . .

(209)

= µ
(1)
1 + · · ·+ µ(1)

r

(210)

and the abelian part µab.
We assume that bi(w, λ) ≥ 0 i.e. w(λ + ρ) is in the negative chamber and

we also assume that the µ
(1)
i are self dual, this is a condition on λ,w. We

decompose the strongly inner cohomology

H•cusp(∂PSGKf ,M̃λ) =
⊕

w∈WP

⊕
σf

IndGPH
•−l(w)
cusp (SMKM

f
,M̃w·λ)(σf ) (211)

The Künneth-theorem implies that σf = σ1,f ⊗ σ2,f ⊗ · · · ⊗ σr,f . At an
unramified place p then this module has a Satake parameter

ωp(σf ) = {ω1,p, . . . , ωn1,p, ωn1+1,p, . . . , ωn1+n2,p, . . . }
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where the first n1 entries are the Satake parameters of σ1,f and so on.
We choose an ι : E → C. We take an irreducible submodule Hσf

then we

find an irreducible (g,KM
∞ )-module Hσ∞

and an embedding

Φ : Hσ∞
⊗Hσf

⊗E,ι C = Hσ ↪→ Ccusp(M(Q)\M(A)) (212)

For z = (z1, z2, . . . , zr−1), zi ∈ C we define the character

|γP |z = |γn1
|z1 |γn1+n2

|z2 . . . |γn1+n2+···+nr−1
|zr−1 : M(A)→ C×

By the usual summation process we get an Eisenstein intertwining operator

Eis(σ, z) : IGPHσ ⊗ |γP |z → A(G(Q)\G(A)) (213)

the series is locally uniformly converging in a region where all <(zi) >> 0 and
hence the Eisenstein intertwining operator is holomorphic in this region. We
know that it admits a meromorphic extension into the entire Cr−1.

We want to evaluate at z = 0 this is possible if Eis(σ, z) is holomorphic at
z = 0, we have to find out what happens at z = we have to consider the constant
term (constant Fourier coefficient) of Eis(σ, z) along parabolic subgroups P1.
(See [H-C] ) These constant Fourier coefficients a given by integrals

FP1 : f(g) 7→
∫
UP1

(Q)\UP1
(A)

f(ug)du. (214)

It suffices to compute these constant terms only for parabolic subgroups con-
taining our given maximal torus. It is shown in [H-C] that the constant term
evaluated at Eis(σ, z)(f) is zero unless P and P1 are associate, this means that
the Levi subgroups M and M1 are isomorphic. (For this we need the cuspi-
dality condition (See [H-C], )( But then we can find an element in the Weyl
group which conjugates M into M1 and hence we may assume that P and P1

both contain our given Levi subgroup M. Of course now P1 may not contain
the standard Borel subgroup.)

We may also assume that n1 = n2 = · · · = nj1 < nj1+1 = · · · = nj1+j2 <
· · · < nj1+...js−1+1 = · · · = nj1+···+js = nr, Then it is easy to see that the
number of conjugacy classes of parabolic subgroups which contain M is equal
to r!/j1!j2!...js!.

We compute FP1 ◦ Eis(σ, z)(f) following [H-C], . By definition (adelic vari-
ables in U(A), P (A), ...are underlined)

FP1 ◦ Eis(σ, z)(f)(g) =

∫
UP1

(Q)\UP1
(A)

∑
a∈P (Q)\G(Q)

fz(aug)du (215)

Let WM be the Weyl group of M, the Bruhat decomposition yields G(Q) =⋃
w∈W P (Q)\wP1(Q), put P

(w)
1 (Q) = w−1P (Q)w ∩ P1(Q) then our expression

becomes (we pull the summation over W to the front)

FP1 ◦ Eis(σ, z)(f)(g) =
∑

WM1
\WM,M1/WM

∫
UP1

(Q)\UP1
(A)

∑
b∈P (w)

1 (Q)\P1(Q)

fz(wbug)du

(216)
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where WM is the Weyl group of M. If now for a given w the intersection of
algebraic groups w−1U1w ∩M = V has dimension > 0, then this intersection is
the unipotent radical of a proper parabolic subgroup of M. Since σ is cuspidal
the integral over V (Q)\V (A) is zero, therefore this w contributes by zero. Hence
we can restrict our summation over those w ∈W which satisfy wMw−1 = M1.
let us call this set WM,M1 . But then

P
(w)
1 (Q)\P1(Q) = w−1UP (Q)w ∩ UP1(Q)\UP1(Q)

and the above expression becomes

FP1 ◦ Eis(σ, z)(f)(g) =
∑
WM\WM,M1/WM

∫
UP1

(Q)\UP1
(A)

∑
v∈U(w)

P1
(Q)\UP1

(Q)
fz(wvug)du =

∑
WM\WM/WM,M1

∫
(w−1UPw∩UP1

\UP1
)(A)

fz(wug)du

(217)

Our parabolic subgroup P contains the standard Borel subgroup, let U−P be the
unipotent radical of the opposite group. In the argument of fz we conjugate by

w, then UP ∩ wUP1
w−1 \wUP1

w−1 = wUP1
w−1 ∩ U−P = U−,wP,P1

.

FP1 ◦ Eis(σ, z)(f)(g) =
∑

WM1
\WM,M1/WM

∫
U−,wP,P1

(A)

fz(uwg)du (218)

We pick a w, the group M acts by the adjoint action on w−1U−,wP,P1
w and hence

by a character δ
(w)
P.P1

on the highest exterior power of the Lie-algebra of this
group. Then this operator sends

FP1,w ◦ Eis(σ, z) : IGPHσ ⊗ |γP |z → IGP1
Hσw−1 ⊗ (|γP |z)w

−1

|δ(w)
P.P1
| (219)

The integral is a product of local integrals over all places, we may assume that
fz = f∞,z

∏
p:prime fp,z. and then∫

U−,wP,P1
(A)

fz(uwg)du =

∫
U−,wP,P1

(R)

f∞,z(u∞wg∞)
∏
p

∫
U−,wP,P1

(Qp)

fp,z(upwgp)

(220)

and here the local integrals yield intertwining operators

TP,P1,w
v (σv, z) : IGPHσv

⊗ |γP |zv → IGP1
Hσw−1

v
⊗ |γP |w

−1z
v ⊗ |δ(w)

P.P1
|v (221)

Proposition 6.1. We can find local intertwining operators

TP,P1,w,loc
v (σv, z) : IGPHσv

⊗ |γP |zv → IGP1
Hσw−1

v
⊗ |γP |w

−1z
v ⊗ |δ(w)

P.P1
|v (222)

which have the following properties

a) They are holomorphic and nowhere zero in <zi ≥ 0 (we are still assuming
that µ is in the negative chamber.)

b) They have a certain rationality property ( For the case of finite places see
[Ha-Ra] 7.3.2.1, for the infinite places [Ha-HC ] )
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c) At the unramified primes v = p they map the spherical vector to the
spherical vector.

and finally we have

FP1,w ◦ Eis(σ, z) = C(w,P, P1, σ, z) T
P,P1,w,loc
∞ (σ∞, z)⊗

′⊗
p:primes

TP,P1,w,loc
p (σp, z)

(223)

where C(w,P, P1, σ, z) is a meromorphic function in the variable z. Therefore
these functions C(w,P, P1, σ, z) decide whether Eis(σ, z) is holomorphic at z =
0, the poles of Eis(σ, z) at z are the poles of the C(w,P, P1, σ, z).

We compute these factors C(w,P, P1, σ, z). By definition the group U−,wP,P1

is a subgroup of U−P and as such it it easy to describe. Recall that our our
group M is Gln1

× · · · ×Glnr and this corresponds to a decomposition of Qn =
X1⊕X2⊕· · ·⊕Xr into subspaces and for any two indices 1 ≤ i < j ≤ r we define
Gi,j to be the subgroup Gl(Xi ⊕ Xj) acting trivially on all other summands.
For all pairs i, j we define the cocharacters χi,j : Gm → T where χi,j(t) is the
diagonal matrix having t as entry at place i, and t−1 at place j and 1 everywhere
else. We define wi, :=< χi,j , µ

(1) > .

The intersection Gi,j ∩U−,wP,P1
is either trivial or it is the full left lower block

unipotent group U−i,i+1

This tells us that the above integral can be written as iterated integral over
subgroups of the form Uν,µ(A). To be more precise: If U−,wP,P1

6= 1 then we find
an index i such that Ui,i+1 is not trivial. In a first step we compute the local

integral
∫
Ui,i+1(Qp)

f
(0)
p,z (upwgp)dup at finite places where our representation σp

unramified. We are basically in the situation, that our parabolic subgroup is
maximal. The group P ′ = P ∩ Gi,i+1 contains the standard Borel subgroup,
P ′1 = P1 ∩Gii,i+1 is the opposite and w = e. Then

Cp(e, P
′, P ′1, σ, z) =

Lcoh(σi,p × σ∨i+1,p,
wi,i+1

2 + bi(w, λ)+ < χi,i+1, z > −1)

Lcoh(σi,p × σ∨i+1,p,
wi,i+1

2 + bi(w, λ)+ < χi,i+1, z >)

(224)

A standard argument (See Langlands, Kim, Shahidi ) tells us that we can
reduce the computation of the iterated integral to situations like the one above
and then we get at unramified places

Cp(w,P, P1, σ, z) =
∏
i,j

Lcoh(σi,p × σ∨j,p,
wi,j

2 + bi,j(w, λ)+ < χi,j , z > −1)

Lcoh(σi,p × σ∨j,p,
wi,j

2 + bi,j(w, λ)+ < χi,j , z >

(225)

Here the indices i, j run over those indices for which Ui,j ⊂ U−,wP,P1
, and bi,j(w, λ) =<

χi,j , µ
ab > .

Now we define Cv(w,P, P1, σ, z) for all places v by the above expression,
where we express the the cohomological L factor by the automorphic Rankin-
Selberg L factor with the shift in the variable s. We go back to equation (223 )
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and define

C(w,P, P1, σ, z) =
∏
v

Cv(w,P, P1, σ, z). (226)

We from the above proposition (6.1) that the factors C(w,P, P1, σ, z) de-
termine the analytic behavior of Eis(σ, z) at z = 0. We have to exploit the
analytic properties of the Rankin-Selberg L-functions. Here we have to use
Shahidi’s theorem which yields -(always remember that µ is in the negative
chamber-)

Lcoh(σi,p × σ∨j,p,
wi,j

2
+ bi,j(w, λ)+ < χi,j , z > −1) (227)

is holomorphic at z = 0 unless we are in the following special case:

a) In the product in formula ( 225) we have factors (i, i + 1) where ni =

ni+1, µ
(1)
i = µ

(1)
i+1 and bi(w, λ) = 1.

b) The pair σi × σi+1 is a segment, this means that σi ⊗ deti = σi+1

If these two conditions are fulfilled then C(w,P, P1, σ, z) has first order pole
along zi = 0.

The denominator is always holomorphic and never zero at z = 0. (This is a
deep theorem: it is the prime number theorem for Rankin-Selberg L-functions.)

6.4.1 Resume and questions

We see that we get an abundant supply of cohomology classes: Starting from

any parabolic P and an isotypical subspace IndGPH
•−l(w)
cusp (SM

KM
f
,M̃w·λ)(σf ) we

get the Eisenstein intertwining operator (See equation (213)). We analyze what
happens at z = 0. If it is holomorphic we get a Hecke invariant homomorphism

Eis•(0) : H•(g,K∞, IndGPσ∞ ⊗ M̃)⊗ IndGPHσf
→ H•(SGKf ,M̃C) (228)

We can restrict these cohomology classes to the boundary and even to bound-
ary strata ∂Q(SGKf ,M̃) where Q runs over the parabolic subgroups associate
to P, or more generally those parabolic subgroups which contain an associate
to P. This means that the class ”spreads out” over different boundary strata
These restrictions to these other strata are given by certain linear maps which
are product of ”local intertwining operators” times certain special values of L
functions.

In certain cases this ”spreading out” is highly non trivial. We have to clarify
some local issues. First of all we have to find out whether the local intertwining
operators are non zero and have certain rationality properties. Especially we
have to show that these local operators at the infinite places induce non zero
maps between the cohomology groups of certain induced Harish-Chandra mod-
ules. And we have to show that these maps on the level of cohomology have
rationality properties. ([Ha-HC] , [Ha-Ra], 7.3, )

If these local issues are settled then we can argue: The image of the co-
homology H•(SGKf ,M̃) in the cohomology of the boundary is defined over Q
(or some number field depending on our data). Since the L− values enter in
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the description of this image we get rationality statements for special values of
L-functions.

This has been exploited in some cases ([Ha-Gl2], [Ha-Gln], [Ha-Mum]) and
the so far most general result in this direction is in [Ha-Ra] (See previous sec-
tion).

But in case we have a pole we may also produce cohomology classes by taking
residues, again starting from one boundary stratum. The restriction of these
classes to the boundary will spread out over other strata in the boundary and
we may play the same game. In this case the non vanishing issue of intertwining
operators on cohomological level comes up again and will be discussed in the
following section. (See Thm. 6.1)

We also will encounter situation where a pole along a plane zi = 0 (or
may be even several such planes ) ”fights” with a zero along some other planes
containing zero. Then this influences the structure of the cohomology. But
how? This question has been discussed in [Ha-Gln]. Is the order of vanishing
along this zero visible in the structure of the cohomology? Or is it visible in the
structure of the cohomology of the boundary, or in the spectral sequence?

6.5 Residual classes

We have seen that our Eisenstein classes may be singular at z = 0. In this section
we look at the extremal case that Eis(σ, z) has simple poles along the lines
zi =< χni,ni+1, z >= 0, In this case we call these Eisenstein classes residual.

It follows from the work of Moeglin-Waldspurger [M-W] that this can only
happen under some very special conditions.

We start from a factorization n = uv we look the parabolic subgroup Pu,v
which contains the standard Borel subgroup and has reductive quotient Glu ×
Glu × · · · × Glu. The standard maximal torus is a product T =

∏i=v
i=1 Ti and

accordingly we have X∗(T ) =
⊕i=v

i=1 X
∗(Ti). We have an obvious identification

Ti = Gum.
We choose a highest weight λ =

∑
aiγi + dδ, we assume that it is self dual,

i.e. ai = an−i. We have a restriction on the character µ = w·λ = w(λ+ρN )−ρN ,
we must have

w(λ+ ρN )− ρN = b1γ
M
1 + b2γ

M
2 + · · ·+ bu−1γ

M
u−1 − (u+ 1)γu

+b1γ
M
1+u + b2γ

M
2+u + · · ·+ bu−1γ

M
2u−1 − (u+ 1)γ2u + . . .

. . .

b1γ
M
(v−1)u+1 + b2γ

M
2 + · · ·+ bu−1γ

M
vu−1 + dγuv (229)

where γuv = δ = det . The highest weight is a sum µ =
∑
µi where

µi = µ(1) − dideti and di − di+1 = −1. (230)

where the semi simple component µ(1) = b1γ
M
1 + b2γ

M
2 + · · · + bu−1γ

M
u−1 =

b1γ
M
1+u + b2γ

M
2+u + · · · + bu−1γ

M
2u−1 . . . is ”always the same”. We notice that

of course we have the self duality condition bi = bu−i. Furthermore we have∑
di = −d.
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We define

Dµ =

i=v⊗
i=1

Dµi (231)

and start from our isotypicalH•cusp(SM
KM
f
,Dµ⊗Mw·λ)(σf ). The Künneth formula

yields that we can write σf = σ1,f × σ2,f × · · · × σv,f where all the σi,f occur
in the cuspidal cohomology of Glu, hence they may be compared. The relation
(230) allows us to require that σi+1,f = σi,f ⊗ |δ|. If this is satisfied we say that
σf is a segment. We assume v 6= 1 and hence P 6= G.

We know that under the assumption that σf is a segment (and only under
this assumption) the factor C(σ,wP , z) has a simple poles along the lines zi = 0,
and this is the only term in (??) having these poles. The operator T loc(σ, s) is
a product of local operators at all places

T loc(σ, z) = T loc
∞ (σ∞, s)×

∏
p

T loc
p (σp, z),

and the local factors are holomorphic as long as <(zi) ≥ 0. We take the residue
at z = 0 i.e. we evaluate

(
∏

zi)FP ◦ Eis(σ ⊗ s)|z=0 = (
∏

zi)C(σ,wP , z)|z=0T
loc(σ,wP , 0)(f) (232)

This tells us that the residue of the Eisenstein class gives us an intertwining
operator

Resz=0Eis(σ ⊗ z) : aInd
G(R)
P (R)Dµ ⊗ Vσf → L2

disc(G(Q)\G(A)/Kf , ω
−1
Mλ
|S(R)0)

(233)

The image Jσ∞ ⊗ Jσf is an irreducible module ( this is a Langlands quotient)

and via the constant Fourier coefficient it injects into aInd
G(A)
P (A))Dµ′ ⊗ Vσf . At

the infinite place we get a diagram

Ind
G(R)
P (R)Dµ

T (loc)(Dµ)−→ Jσ∞
↓

Ind
G(R)
P (R)Dµ′

(234)

It is a - not completely trivial - exercise to write down the solutions for the
system of equations (229). We start from a highest weight of a special form

λ = a1γu + a2γ2u + · · ·+ av−1γ(v−1)u + dδ (235)

which in addition is essentially self dual, i.e. ai = av−i the number d is uninter-
esting and only serves to satisfy the parity condition.

We choose a specific Kostant representative w′u,v ∈ WP whose τ - it is the
permutation in the letters 1, 2, . . . , n given by the following rule: write ν =
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i + (j − 1)v with 1 ≤ i ≤ u then w′u,v(ν) = j + (i − 1)v. Then we compute
w′u,v(λ+ ρN )− ρN ∈ X∗(T × E) and we get

(w′u,v(λ+ ρN )− ρN ) =
(a1 + v − 1)γM1 + (a2 + v − 1)γM2 + (au−1 + v − 1)γMu−1

(a1 + v − 1)γM1+u + (a2 + v − 1)γM2+u + (au−1 + v − 1)γMu−1+u
...

(a1 + v − 1)γM1+(v−1)u + (a2 + v − 1)γM2+(v−1)u + · · ·+ (au−1 + v − 1)γMu−1+(v−1)u)+

−(u− 1)(γu + γ2u + · · ·+ γ(v−1)u) + dδ

(236)

The length of this Kostant representative is

l(w′u,v) = n(u− 1)(v − 1)/4.

Let wP be the longest Kostant representative which sends all the roots in UP
to negative roots. Then we define the (reflected) Kostant representative wu,v =
wPw

′
u,v. We get

wu,v(λ+ ρ)− ρ = µ = (a1 + v − 1)(γM1 + γM1+u + · · ·+ γM1+(v−1)u)+

(a2 + v − 1)(γM2 + γM2+u + · · ·+ γM2+(v−1)u)+

...

(au−1 + v − 1)(γMu−1 + γMu−1+u + · · ·+ γMu−1+(v−1)u)+

−(u+ 1)(γu + γ2u + · · ·+ γ(v−1)u) + dδ. (237)

Hence we see that we the semi simple component stays the same and the abelian
parts differ by 2(γu+γ2u+· · ·+γ(v−1)u)) We see that we can solve ( 229) provided
bi ≥ v − 1.

6.5.1 The identification Jσ∞
∼−→ Aq(λ))

Of course we expect

H•(g,K∞, Jσ∞ ⊗Mλ) 6= 0. (238)

In the paper [Vo-Zu] the authors give a list of irreducible (g,K∞) modules
Aq(λ) which have non trivial cohomology H•(g,K∞, Aq(λ)⊗Mλ) 6= 0. This list
contains all unitary modules having this property. On the other hand we know
that any such unitary Aq(λ) can be written as a Langlands quotient. In the
paper of Vogan and Zuckerman it is explained how we can get a given unitary
Aq(λ) as Langlands quotient, basically this means we construct a diagram of
the form (234) but where now we have Aq(λ) in the upper right corner instead
of Jσ∞ . In the following section we describe a specific Aq(λ) and write it as
a Langlands quotient (i.e. we find its Langlands parameters) this means we
determine the upper left and lower right entries and then check that these entries
are the ones in diagram (234). From this we will derive the following

The map

H•(g,K∞, Jσ∞ ⊗Mλ)⊗ Jσf → H•(SGKf ,M̃λ) (239)

is non zero in degree l(w′u,v) = n(u− 1)(v − 1)/4.
See Theorem (6.1)
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6.6 Detour: (g, K∞)− modules with cohomology for G =
Gln

I want to fix some notations and conventions.
Let T/Q be the maximal torus in Gln/Q, let T (1) = Sln∩T. We put r = n−1.

We have the standard basis for the character-module X∗(T ):

ei : T → Gm, t 7→ ti.

The positive (resp. simple roots) roots are αi,j = ei − ej , i < j, (resp.
αi = ei − ei+1.) We have the determinant δ =

∑n
1 ei.

The fundamental weights are elements in X∗(T )⊗Q, they are defined by

γi =

i∑
ν=1

eν −
i

n
δ,

these γi are the fundamental weights if we restrict to Sln, the image of γi
under the restriction map lies in X∗(T (1)).

From now on my natural basis for X∗(T )⊗Q will be

{γ1, . . . , γi, . . . , γr, δ}.

This basis respects the decomposition of T into T (1) ·Gm, the first factor is
its component in Sln and the second one is the central torus.

We also have the cocharacters χi ∈ X∗(T (1)) which are given by

χi : t 7→



1 0 0 . . . 0

0
. . . . . . . . . . . . . . .

0 0 t 0 . . . 0
0 . . . 0 t−1 . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . 0 1


and the central cocharacter

ζ : t 7→


t 0 0 . . . 0
0 t . . . . . .

0 0
. . . . . .

0 . . . 0


We have the standard pairing (χ, γ) 7→< χ, γ > between cocharacters and char-
acters which is defined by γ ◦ χ = {t 7→ t<χ,γ>}. We have the relations

< χj , γi >= δij , < χi, αi >= 2

the character δ is trivial on the χi and δ ◦ ζ = {t 7→ tn}. It is clear that an
element γ =

∑
i aiγi + dδ ∈ X∗(T ) if and only if the ai, nd ∈ Z and we have the

congruence ∑
iai ≡ nd mod n.
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We identify the center of Gln with Gm via the cocharacter ζ, the character
module of Gm is Z. Hence the central character ωλ is an integer and we find

ωλ = nd.

Actually this central character should be considered as an element in Z mod n
because we can replace d by r + d and then the central character changes by a
multiply of n. If λ ∈ X+(T (1)) is a dominant weight then we write it as

λ =
∑

aiγi

then we have ai ≥ 0.

6.6.1 The tempered representation at infinity

We consider the group Gln/R, we choose a essentially selfdual highest weight

λ =
∑n−1

1 aiγi + dδ( i.e. ai = an−i) . The ai are integers and d is a half integer
which satisfies the parity condition

d ∈ Z if n is odd ,
n

2
an

2
≡ nd mod n if n is even

We want to recall the construction of a specific (g,K∞) -module Dλ such that

H•(g,K∞,Dλ ⊗Mλ) 6= 0

and we will also determine the structure of this cohomology. This module is
the only tempered Harish-Chandra module which has non trivial cohomology
with coefficients in Mλ. The center Gm of Gln acts on the module Mλ by the
character ωλ : x 7→ xnd. Since we want no zero cohomology the center S(R)
of Gln(R) acts by the central character (ωλ)−1

R on Dλ. The module Dλ will be
essentially unitary with respect to that character.

We construct our representation Dλ by inducing from discrete series repre-
sentations. We consider the parabolic subgroup ◦P whose simple root system
is described by the diagram

◦ − × − ◦ − ×− · · · − ◦(−×) (240)

i.e. the set of simple roots I◦M of the semi simple part of the Levi quotient ◦M
is consists of those which have an odd index. Let m be the largest odd integer
less or equal to n − 1 then αm is the last root in the system of simple roots in
I◦M . Of course m = n− 1 if n is even and m = n− 2 else.

The reductive quotient is equal to Gl2×Gl2× . . .Gl2(×Gm), where the last
factor occurs if n is odd. This product decomposition of ◦M induces a product
decomposition of the standard maximal torus T =

∏
i:iodd Ti(×Gm) and for the

character module we get

X∗(T ) =
⊕
i:iodd

X∗(Ti)(⊕X∗(Gm)) (241)
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The semi simple reductive quotient ◦M (1)(R) is A1×A1×· · ·×A1, the number
of factors is

◦r = (m+ 1)/2 =

{
n
2 if n is even
n−1

2 if n is odd

We also introduce the number

ε(n) =

{
0 if n even

1 if n odd
(242)

We have a very specific Kostant representative wun ∈ W
◦P . The inverse of

this permutation it is given by

w−1
un = {1 7→ 1, 2 7→ n, 3 7→ 2, 4 7→ n− 1. . . . }.

The length of this element is equal to 1/2 the number of roots in the unipotent
radical of ◦P, i.e.

l(wun) =


1
4n(n− 2) if n is even

1
4 (n− 1)2 if n is odd

(243)

We compute

wun(λ+ ρ)− ρ =
∑

i:i odd

biγ
◦M(1)

i + dδ =
∑

i:i odd

bi
αi
2

+ dδ = µ̃(1) + dδ. (244)

(The subscript un refers to unitary, it refers also to the length being half the
dimension of the unipotent radical. Here we have to observe that w · λ is an
element in X∗(T ) but the individual summands may only lie in X∗(T ) ⊗ Q =
X∗Q(T ). Any element γ ∈ X∗(T ) also defines a quasicharacter γR : T (R) → R×
(by definition). But an element γ ∈ X∗Q(T ) only defines a quasicharacter |γ|R :

T (R)→ R×>0 which is defined by |γ|R(x) = |mγ(x)|1/m.)
To compute the coefficients bj we use the pairing (See56) and observe that

< χi, γj >= δi,j . Then

bj =< χj , wun(λ+ ρ)− ρ >=< w−1
un χj , λ+ ρ > − < χj , ρ > . (245)

Now the choice of wun becomes clear. It is designed in such a way that

w−1
un χ1(t) =



t 0 0 . . . 0

0
. . . . . . . . . . . . . . .

0 0 1 0 . . . 0
0 . . . 0 1 . . . 0

. . . . . . . . .
. . . 0

0 0 0 . . . 0 t−1


, w−1

un χ3(t) =


1 0 0 . . . 0
0 t . . . . . . . . . . . .
0 0 1 0 . . . 0
0 . . . 0 1 . . . 0
. . . . . . . . . t−1 0
0 0 0 . . . 0 1


and for the general odd index j we have w−1

un χj(t) = h(j+1)/2 where for all
1 ≤ ν ≤ n/2 we denote by hν(t) the diagonal matrix which has a 1 at all entries

130



different from ν, n+ 1− ν and which has entry t at ν and t−1 at n+ 1− ν. Then
hν = {t 7→ hν(t)} is a cocharacter. It is clear that

γi(hν(t)) =

{
t if ν ≤ i ≤ n− ν
1 else

This yields for j = 1, . . . ,◦ r

b2j−1 =
∑
ν

(aν + 1) < hj , γν > − < χj , ρ >= (
∑

j≤ν≤n−j

(aν + 1))− 1.

We should keep in mind that we assume aν = an−ν . Then we can rewrite the
expressions for the bν :

b2j−1 =

{
2aj + 2aj+1 + · · ·+ 2an

2−1 + an
2

+ n− 2j if n is even

2aj + 2aj+1 + · · ·+ 2an−1
2

+ n− 2j if n is odd
(246)

The b2j+1 will be called the cuspidal parameters and we summarize

The b2j−1 have the same parity, this parity is odd if n is odd. If n is even
then b2j−1 has parity of an

2
. We have b1 > b3 > · · · > bm > 0. They only depend

on the semi simple part λ(1).

By Kostants theorem

wun · λ = wun(λ+ ρ)− ρ

is the highest weight of an irreducible representation of ◦M. This irreducible
representation occurs with multiplicity one in H l(wun)(u◦P ,Mλ).

The highest weight of this representation is

wun · λ = wun(λ+ ρ)− ρ =
∑

i:i odd

biγ
◦M(1)

i + dδ − (2γ2 + 2γ4 + · · ·+ 2γm−1 +
3

2
γm+1)

(247)

Digression: Discrete series representations of Gl2(R), some conventions

We consider the group Gl2/Spec(Z), the standard torus T and the standard
Borel subgroup B. We have X∗(T ) = {γ = aγ1 + dδ|a ∈ Z, d ∈ 1

2Z; a + 2d ≡ 0
mod 2} where

γ(

(
t1 0
0 t2

)
) = t

a
2 +d
1 t

− a2 +d
2 = (

t1
t2

)
a
2 (t1t2)d

(Note that the exponents in the expression in the middle term are integers)
A dominant weight λ = aγ1 +dδ is a character where a ≥ 0. These dominant

weights parameterize the finite dimensional representations of Gl2/Q. The dual
representation is given by λ∨ = aγ1−dδ. But these highest weights also parame-
terize the discrete series representations of Gl2(R), (or better the discrete series
Harish-Chandra modules). The highest weight λ defines a line bundle L−aγ+dδ

on B\G and
Mλ = H0(B\G,L−aγ+dδ)
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Then we get an embedding and a resulting exact sequence

0→Mλ → IGB ((−aγ1 + dδ)R)→ Dλ∨ → 0

and Dλ∨ is the discrete series representation attached to λ∨. ( Note the subscript

R can not be pulled inside the bracket!).
A basic argument in representation theory yields a pairing

IGB ((−aγ1 − dδ)R)× IGB (((a+ 2)γ1 + dδ)R)→ R

(here observe that 2γ1 = 2ρ ∈ X∗(T )).
From this we get another exact sequence which gives the more familiar def-

inition of the discrete series representation

0→ Dλ → IGB (((a+ 2)γ1 + dδ)R)→Mλ → 0. (248)

The module Dλ is also a module for the group K∞ = SO(2) and it is well
known that it decomposes into K∞ types

Dλ = · · · ⊕ Cψν . . .Cψ−a−4 ⊕ Cψ−a−2 ⊕ Cψ+a+2 ⊕ Cψa+4 . . . (249)

(End of digression)

We return to our formula (247). The group

◦M =
∏
i:iodd

Mi × (Gm)

where Mi = Gl2. If Ti is the maximal torus in the i-th factor, then the highest

weight is γ
◦M(1)

i and let δi be the determinant on that factor. The indices i
run over the odd numbers 1, 3, . . . ,m. If n is odd then let δn : T → Gm be the
character given by the last entry. Then we have for the determinant

δ = δ1 + δ3 + · · ·+ δm +

{
0

δn
(250)

We want to write the character 2γ2 + 2γ4 + · · · + 2γm−1 + 3
2γm+1 in terms

of the δi. We recall that

γ2 = δ1 − 2
nδ

γ4 = δ1 + δ3 − 4
nδ

...
γm−1 = δ1 + δ3 · · ·+ δm−2 − m−1

n δ
and if n is odd

γm+1 = δ1 + δ3 · · ·+ δm − m+1
n δ

(251)

Then the summation over the δ-terms on the right hand side yields

− 1

n
(4 + 8 + · · ·+ 2(m− 1)−

{
0
3
2 (m+ 1)

) = −[
n− 1

2
] (252)
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and if we take our formula (250) into account and also count the number of
times a δi occurs in the summation we get

2γ2 + 2γ4 + · · ·+ 2γm−1 +
3

2
γm+1 =

{
(n2 − 1)δ1 + (n2 − 3)δ3 + · · ·+ (−n2 + 1)δm−2 n ≡ 0 mod 2
n−2

2 δ1 + · · ·+ −n+4
2 δm − n−1

2 δn else

(253)

Let us denote the coefficient of δi in the expressions on the right hand side by
c(i, n.) We recall that we still have the summand dδ in our formula (??. Then

µ = wun · λ =
∑

i:i odd

biγ
◦M(1)

i + (c(i, n) + d)δi +

{
dδ

(−n−1
2 + d)δn

(254)

We claim that the individual summands are in the character modules X∗(Ti)
(resp. X∗(Gm)). This means that

biγ
◦M(1)

i + (c(i, n) + d)δi ∈ X∗(Ti), −
n− 1

2
+ d ∈ Z. (255)

We have to verify the parity conditions. If n is odd the the parity condition
for λ says that d ∈ Z. On the other hand we know that in this case the bi are
odd and since the c(i, n) are also odd the parity condition is satisfied for the
individual summands.

If n is even then the parity condition for for λ says that n
2 an2 ≡ nd mod n.

We know that the bi all have the same parity: bi ≡ an2 mod 2. Hence need that
an

2
≡ 2d mod 2, but this is the parity condition for λ.

For any of the characters µi we have the induced representations I
◦Mi

Bi
(µi +

2ρi) the discrete series representation Dµi and the exact sequence

0→ Dµi → I
◦Mi

Bi
(µi + 2ρi)→Mµi → 0. (256)

The tensor product

Dµ =
⊗
i:iodd

Dµi ⊗ C(−n− 1

2
+ d) (257)

is a module for ◦M.
Here we have to work with K

◦M
∞ = K∞ ∩◦ M. This compact group is not

necessarily connected, its connected component of the identity is

K
◦M
∞ ∩◦M (1)(R) = SO(2)× SO(2)× · · · × SO(2) = K

◦M,(1)
∞ .

An easy computation shows

K
◦M
∞ =

{
S(O(2)×O(2)× · · · ×O(2)) if n is even

O(2)×O(2)× · · · ×O(2) if n is odd
, (258)

since K∞ ⊂ Sln(R) we have the determinant condition in the even case, in the
odd case we have the {±1} in the last factor and this relaxes the determinant
condition.
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Under the action of K
◦M,(1)
∞ we get a decomposition

Dµ =
⊕
ε

◦r⊗
i=1

( ∞⊕
νi=0

Cψεi(bi+2+2νi)

)
(259)

occur with multiplicity one. Here ε = (. . . , εi, . . . ) is an array of signs ±1.
The induced representation (algebraic induction)

Ind
G(R)
◦P (R)Dµ = Dλ (260)

is an irreducible essentially unitary (g,K∞) -module, this is the module we
wanted to construct. (To be more precise: We first construct the induced rep-
resentation of G(R) where G(R) is acting on vectors space V∞ consisting of a
suitable class of functions from G(R) with values in Dµ and then we take the

K∞ finite vectors in V∞.) The restriction of this module to K
(1)
∞ s given by

Ind
K(1)
∞

K◦M
(1)

∞
Dµ =

⊕
ε

◦r⊗
i=1

( ∞⊕
νi=0

Ind
K(1)
∞

K◦M
(1)

∞
Cψεi(bi+2+2νi)

)
(261)

(The last induced module is defined in terms of the theory of algebraic groups.

We consider K
(1)
∞ as the group of real points of an algebraic group, namely the

connected group of the identity of the fixed points under the Cartan involution

Θ. Then K
◦M(1)

∞ is the group of real points of a maximal torus. Then

Ind
K(1)
∞

K◦M
(1)

∞
Cψεi(bi+2+2νi) =

{f |f regular function f(tk) =
∏
j ei(t)

εi(bi+2+2νi)f(k), for all t ∈ K◦M(1)

∞ , k ∈ K∞}
(262)

)
We compute the cohomology of this module

HomK∞(Λ•(g/k), Dλ ⊗Mλ) = H•(g,K∞, Dλ ⊗Mλ),

i.e. the differentials in the complex on the left hand side are all zero. (Reference
to 4.1.4)

We apply Delorme to compute this cohomology. We can decompose ◦m =◦

m(1) ⊕ a then ◦k ⊂◦ m(1) and

HomK∞(Λ•(g/k), Dλ ⊗Mλ) = HomK◦M∞
(Λ•(◦m/◦k),Dµ̃ ⊗Mwun·λ) =

HomK◦M∞
(Λ•(◦m(1)/◦k),Dµ̃ ⊗Mwun·λ)⊗ Λ•(a). (263)

If we replace K
◦M
∞ on the right hand side by its connected component of the

identity then we have an obvious decomposition

Hom
K
◦M,(1)
∞

(Λ•(◦m(1)/◦k),Dµ ⊗Mwun·λ) =
⊗
i:i odd

Hom
K
i,◦M,(1)
∞

(Λ•(◦m(i,1)/◦ki),Dbi ⊗Mbi)

(264)
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the factors on the right hand side are of rank two: We have K
i,◦M,(1)
∞ = SO(2)

and under the adjoint action of K
i,◦M,(1)
∞ the module m(i,1)/◦ki⊗C decomposes

m(i,1)/◦ki ⊗ C = CP∨i,+ ⊕ CP∨i,−

(See [Sltwo.pdf]) Then the two summands are generated by the tensors

ωi,+ = P∨i,+ ⊗ ψbi+2 ⊗m−bi , ω̄i,− = P∨i,− ⊗ ψ−b−2 ⊗mbi (265)

where m±(bi) is a highest (resp.) lowest weight vector for Ki,◦M
∞ acting on

Mwun·λ. On the tensor product on the right we have an action of the maximal
compact subgroup O(2)×O(2)×· · ·×O(2) and under this action it decomposes
into eigenspaces of dimension one. These eigenspaces are given by the product
of sign characters ε = (ε1, ε2, . . . ).

Then it becomes clear that HomK◦M∞
(Λ•(◦m(1)/◦k),Dµ⊗Mwun·λ) is of rank

one if n is odd and for n even it decomposes into two eigenspaces for the action
of the group O(2)×O(2)× · · · ×O(2)/S(O(2)×O(2)× · · · ×O(2)) = {±1}

HomK◦M∞
(Λ•(◦m(1)/◦k),Dµ ⊗Mwun·λ) =

HomK◦M∞
(Λ•(◦m(1)/◦k),Dµ ⊗Mwun·λ))+ ⊕HomK◦M∞

(Λ•(◦m(1)/◦k),Dµ ⊗Mwun·λ))−

We have to recall thatMλun
◦M

= H l(wun)(u◦P ,Mλ) is a cohomology group in
degree l(wun). The classes in the factors of the last tensor product lie in degree
1, hence the multiply up to classes in degree ◦r. This means that

Hq(g,K∞,Dλ ⊗Mλ) 6= 0 exactly for q ∈ [l(wun) +◦ r, l(wun) + n] (266)

in the minimal degree ◦r it is of rank 2 or 1 depending on the parity of n.

6.6.2 The lowest K∞ type in Dλ

The maximal compact subgroup K∞ is the fixed group of the standard Cartan-
involution Θ : g 7→ tg

−1
. The subgroup ◦M is fixed under Θ and the subgroup

SO(2)×SO(2)×· · ·×SO(2) = K
◦M,(1)
∞ = T c1 is a maximal torus in K∞. It is the

stabilizer of a direct sum decompositions of Rn into two dimensional oriented
planes Vi plus a line Rz if n is odd, we write

Rn =
⊕

Vi ⊕ (Rz) (267)

The Cartan involution is the identity on our torus T c1/R. This torus can
be supplemented to a Θ− stable maximal torus by multiplying it by the torus
T1,split which is the product of the diagonal tori acting on the Vi in (267) times
another copy of Gm acting on Rz (if necessary). So we get a maximal torus
T1 = T c1 · T1,split. Obviously T1 is the centralizer of T c1 and the centralizer of
T1,split is the group ◦M.

If we base change to C then T c1 splits. We identify

SO(2)
∼−→
(
a b
−b a

)
(268)
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and then the character group X∗(T c1 ×C) = ⊕Zeν where on the ν-th component

eν :

(
a b
−b a

)
7→ a+bi = a+b

√
−1. Then this choice provides a Borel subgroup

Bc ⊃ T c1 × C, for which the simple roots αc1, α
c
2, . . . , α

c
◦r are{

e1 − e2, e2 − e3, . . . , e◦r−1 − e◦r, e◦r−1 + e◦r for n even

e1 − e2, e2 − e3, . . . , e◦r if n is odd

(See [Bou] ). For n even we get the fundamental dominant weights

γcν =


e1 + e2 + · · ·+ eν , if ν <◦ r − 1
1
2 (e1 + e2 + · · ·+ e◦r−1 − e◦r) if ν =◦ r − 1
1
2 (e1 + e2 + · · ·+ e◦r−1 + e◦r) if ν =◦ r

(269)

and for n odd we get

γcν =

{
e1 + e2 + · · ·+ eν , if ν <◦ r
1
2 (e1 + e2 + · · ·+ e◦r) last weight

(270)

An easy calculation shows

◦r∑
i=1

giei =

{
(g1 − g2)γc1 + (g2 − g3)γc2 + · · ·+ (g◦r−1 − g◦r)γc◦r−1 + (g◦r−1 + g◦r)γ

c
◦r n even

(g1 − g2)γc1 + (g2 − g3)γc2 + · · ·+ (g◦r−1 − g◦r)γ◦r−1 + 2g◦rγ
c
◦r n odd

(271)

The character
∑◦r
i=1 giei is dominant (with respect to Bc ) if{
g1 ≥ g2 ≥ . . . g◦r−1 ≥ ±g◦r if n is even

g1 ≥ g2 ≥ · · · ≥ g◦r−1 ≥ g◦r ≥ 0
(272)

Under the action of K
(1)
∞ the (g,K

(1)
∞ )- module Dλ decomposes into a direct

sum

Dλ =
⊕
µc

Dλ(Θµc) (273)

where µc ∈ X∗(T c × C) is a highest weight, Θµc is the resulting irreducible
K∞-module and Dλ(Θµc) is the isotypical component.

We introduce the highest weight (see (246))

µc0(λ) = (b1 + 2)e1 + (b3 + 2)e2 + · · ·+ (b2◦r−1 + 2)e◦r (274)

and and in terms of our dominant weight λ this is

µc0(λ) =

{
2(a1 + 1)γc1 + · · ·+ 2(a◦r−1 + 1)γc◦r−1 + 2(a◦r−1 + a◦r + 3)γc◦r if n is even

2(a1 + 1)γc1 + · · ·+ 2(a◦r + 3)γc◦r if n is odd

(275)

For λ = 0 we get an expression (not depending on the parity of n)

µc0(0) = 2γc1 + · · ·+ 2γc◦r−1 + 6γc◦r (276)
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In the case that n is even the group K∞ contains the element θ which maps
ei → ei for i ≤◦ r − 1 and e◦r → −e◦r or what amounts to the same exchanges
γc◦r−1 and γc◦r and fixes the other fundamental dominant weights. Then

µ̄c0(λ) := ϑ(µc0(λ)) = 2γc1 + · · ·+ 6γc◦r−1 + 2γc◦r + ϑ(λc) (277)

Proposition 6.2. If n is odd then the K
(1)
∞ - type Θµc0(λ) occurs in Dλ with

multiplicity one. All other occurring K
(1)
∞ types are ”larger”, i.e. their highest

weight satisfies µc = µc0(λ) +
∑
niα

c
i with ni ≥ 0. We have

H•(g,K∞,Dλ ⊗Mλ) = HomK∞(Λ•(g/k),Θµc0(λ) ⊗Mλ)

If n is even then the (g,K
(1)
∞ ) module Dλ decomposes into two irreducible

sub modules
Dλ = D+

λ ⊕ D−λ .

The K
(1)
∞ types Θµc0(λ) resp. Θµ̄c0(λ) occur with multiplicity one (resp. zero ) in

D+
λ ( resp. D−λ ). They are the lowest K

(1)
∞ types respectively. We have

H•(g,K
(1)
∞ ,Dλ ⊗Mλ) = H•(g,K

(1)
∞ ,D+

λ ⊗Mλ)⊕H•(g,K(1)
∞ ,D−λ ⊗Mλ) =

Hom
K

(1)
∞

(Λ•(g/k),Θµc0(λ) ⊗Mλ)⊕Hom
K

(1)
∞

(Λ•(g/k),Θµ̄c0(λ) ⊗Mλ)

Proof. For two fundamental weights we write µc ≥ µc1 if µc is ”larger” than
µc1 in the above sense. We start from ( 261 ) and consider a single summand

Ind
K(1)
∞

K◦M
(1)

∞
Cψεi(bi+2+2νi). This induced module decomposes into isotypical mod-

ules

Ind
K(1)
∞

K◦M
(1)

∞
Cψεi(bi+2+2νi) =

⊕
µc

Ind
K(1)
∞

K◦M
(1)

∞
Cψεi(bi+2+2νi)(Θµc) (278)

where µc runs over the set of dominant weights, where Θµc is the irreducible

module of highest weight µc and where Ind
K(1)
∞

K◦M
(1)

∞
Cψεi(bi+2+2νi)(Θµc) is the

isotypical component. If we pick any dominant weight µc then Frobenius reci-
procity yields that

Θµc occurs in Ind
K(1)
∞

K◦M
(1)

∞
Cψεi(bi+2+2νi) with multiplicity k ⇐⇒

t 7→
∏
j ei(t)

εi(bi+2+2νi) occurs in Θµc with multiplicity k
(279)

and if k > 0 this implies µc ≥ t 7→
∏
j ei(t)

εi(bi+2+2νi)(t). It it easy to see that

we get minimal K
(1)
∞ types only if all νi = 0. But

t 7→
∏
j

ei(t)
εi(bi+2) is dominant ⇐⇒

{
ε = (1, 1, . . . , 1,±1) if n even

ε = (1, 1, . . . , 1, 1) if n odd

(280)

and in the n even case these two characters are exactly µc0(λ) and µ̄c0(λ) and in
the n odd case this character is µc0(λ).
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6.6.3 The unitary modules with cohomology, cohomological induc-
tion.

We start from an essentially self dual highest weight λ and the attached highest
weight module Mλ. In their paper [Vo-Zu] Vogan and Zuckerman construct
a finite family of (g,K∞) modules denoted by Aq(λ) which have non trivial
cohomology with coefficients in Mλ., i.e.

H•(g,K∞, Aq(λ)⊗Mλ) 6= 0

They also show that all unitary irreducible (g,K∞) -modules with non trivial
cohomology in with coefficients in Mλ. are of this form. We briefly recall their
construction and translate it into our language and our way of thinking about
these issues.

We introduce the torus S1/R whose group of real points is the unit circle in
C× and we chose once for all an isomorphism

i0 : S1 ×R C ∼−→ Gm/C (281)

We consider the free Z module

HomR(S1, T c1 ) = HomR(S1, T1) = X∗(T
c
1 ×R C)

where of course the last identification depends on the choice of i0. We have the
standard pairing < , > : X∗(T1 ×R C)×X∗(T1 ×R C)→ Z.

The first ingredient in the construction of an Aq(λ) is the choice of a cochar-
acter χ : S1 → Tc (defined over R). From this cocharacter we get the centralizer
Zχ , this is a reductive subgroup whose set of roots is

∆χ = {α ∈ ∆ ⊂ X∗(T1 ×R C)| < χ,α >= 0}.

We can also define
∆+
χ = {α| < χ,α > > 0},

this set depends on the choice of i0 (see (281)). This provides a parabolic
subgroup Pχ ⊂ G×R C whose system of roots is ∆χ ∪∆+

χ . Clearly Θ(Pχ) = Pχ
hence Pχ is the Θ-stable parabolic subgroup attached to the datum χ. This
parabolic subgroup is only defined over C, if we intersect it with its conjugate
P̄χ then we get the centralizer Zχ of χ. We relate this to the notations in [Vo-
Zu]: the q in Aq(λ) is the Lie-algebra of Pχ, the group Zχ is the L. Let uχ
be the Lie algebra of Uχ. The datum χ determines the q in Aq(λ). We could
introduce the notation Aq(λ) = Aχ(λ). Since T1 is the centralizer of Tc we can
find a generic cocharacter χgen such that Pχgen

= Bc our chosen Borel subgroup
in ◦M.

To a highest weight λ which is trivial on the semi-simple part Z
(1)
χ Vogan-

Zuckerman attach an irreducible unitary (g,K∞) module Aq(λ) such that

H•(g,K∞, Aq(λ)⊗Mλ) 6= 0.

Vogan and Zuckerman show (based on results of many others ) that all the
unitary irreducible (g,K∞) modules with non trivial cohomology in Mλ are
isomorphic to an Aq(λ).
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Furthermore they give a description of the K∞ types occurring in Aq(λ)
especially they show that Aq(λ) contains a lowest K∞ type. This lowest K∞-
type is given by a dominant weight which obtained by the following rule:

We consider the action of the group K∞ on the unipotent radical Uχ and
on the Lie algebra uχ and the restriction of this action to T c1 . The torus T1 also
acts on uχ and under this action we get a decomposition into one dimensional
eigenspaces

uχ =
⊕
α∈∆+

χ

uα

let us choose generators Xα in these eigenspaces. We observe that the roots
α,Θα ∈ ∆+ induce the same root αc on T c1 . The vector Vαc = Xα −ΘXα ∈ uχ
is a non zero eigenvector for T c1 and

uχ ∩ (p⊗ C) =
⊕

(α,Θα)∈∆+
χ

CVαc

the sum runs over the unordered pairs. Then

µc(χ, λ) =
∑

(α,Θα)∈∆+
χ

αc + λc (282)

is a highest weight of a representation Θµc(χ,λ) of K
(1)
∞ and this is the lowest

K
(1)
∞ type in Aq(λ). We get

H•(g,K(1)
∞ , Aq(λ)⊗Mλ) = Hom

K
(1)
∞

(Λ•(g/k), Aq(λ)⊗Mλ) = Hom
K

(1)
∞

(Λ•(g/k),Θµc(χ,λ) ⊗Mλ)

(283)

The module is determined by these properties:

1) It has non trivial cohomology with coefficients in Mλ

2) It has µc(χ, λ) as highest weight of a minimal K∞ type. (See Thm. 5. 3
in [Vo-Zu].)

Recall that our aim at this moment is to identify the module Jσ∞ to an
Aq(λ), and to achieve this goal we exhibit a list of very specific Aq(λ)’s.

6.6.4 Comparison of two tori

We need to compute µc(χ, λ) and to achieve this goal the author of this book
modifies the Cartan involution in order to do the computation in a split group.
Our standard torus T is contained in the standard Borel subgroup B of upper
triangular matrices. Let w0 be an element in the normalizer of T which conju-
gates B into its opposite Borel subgroup. If we replace our Cartan involution
by Θ1 = w0Θ then Θ1 fixes T and the Borel subgroup B. This is not a Cartan
involution, but it is easily seen that it is conjugate to Θ over Gln(C). and

Θ1 :


t1 0 0 . . .
0 t2 . . . . . .

0 0
. . . 0 . . .

0 . . . tn−1

0 tn

 7→

t−1
n 0 0 . . .
0 t−1

n−1 . . . . . .

0 0
. . . 0 . . .

0 . . . t−1
2

0 t−1
1

 (284)
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We can decompose T up to isogeny into a torus Tc on which Θ1 acts by the
identity and a torus Tsplit where it acts by x 7→ x−1 :

Tc = {


t1 0 0 . . .
0 t2 . . . . . .

0 0
. . . 0 . . .

0 . . . t−1
2

0 t−1
1

} resp. Tsplit = {


t1 0 0 . . .
0 t2 . . . . . .

0 0
. . . 0 . . .

0 . . . t2
0 t1

}

It is clear that a suitable permutation matrix conjugates T1,split into Tsplit.
This permutation matrix maps the centralizer of T1,split (which is ◦M) to the
centralizer ◦M ′ of Tsplit and the anisotropic torus T c1 to an anisotropic torus T c1

′

in ◦M ′. Then we can find an element m ∈ ◦M ′(C) which conjugates T c1
′ × C

into Tc.
The composition of these conjugations provides an identification of the char-

acter modules X∗(T1×C) = X∗(T ) which respects the product decompositions
and hence we get

X∗(T c1 × C) = X∗(Tc). (285)

We choose our conjugating element m such that the ei ∈ X∗(T c1×C) are mapped
to the element t 7→ ti (for i = 1 to ◦r ).

Inside X∗(T ) we have the dominant fundamental weights γ1, . . . , γn−1, let
γ̄i be the restriction of γi to T c1 then we have γ̄i = γ̄n−i. We can interpret the
γ̄i also as elements in X∗(T1 × C) ⊗ Q we require that the restriction of γ̄i to
T1,split is trivial. Then we can write

γ̄i =

{
1
2 (γi + γn−i) if i 6= n

2

γi else
(286)

We can relate the dominant weights γci and the γ̄i: If n is even then

γcν = γ̄ν for 1 ≤ ν <◦ r − 1, γc◦r−1 = γ̄◦r−1 −
1

2
γ̄◦r, γ

c
◦r =

1

2
γ̄◦r (287)

For n odd we get

γcν = γ̄ν for 1 ≤ ν <◦ r, γc◦r =
1

2
γ̄◦r

The Borel subgroup B is invariant under Θ1, the root subgroup Ui,j ; 1 ≤ i <
l ≤ n is conjugated into Un+1−j,n+1−i. Inside the unipotent radical we have the
half diagonal of spots (◦r,◦ r+ 1 + 2ε(n)), . . . (2, n− 1), (1, n) The involution is a
reflection along this half diagonal and the spots on the left of the half diagonal
form a system of representatives for ∼ Θ1. Of course we have a corresponding
Borel subgroup B1 ⊃ T1 × C of G× C.

Proposition 6.3. Under the above identification the restrictions of the γ
◦M
2i−1

to Tc are equal to the ei in X∗(T c1 × C).

We want to compute µc(χ, λ). By definition this is an element in X∗(Tc×C)
using the identification in (6.6.4) we carry out this computation in X∗(Tc). A
cocharacter χ : Gm → Tc is of the form
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χ : t 7→


tm1 0 0 . . .
0 tm2 . . . . . .

0 0
. . . 0 . . .

0 . . . t−m2

0 t−m1


since we want Pχ ⊃ B1 we require m1 ≥ m2 ≥ m◦r ≥ 0. (If n is odd then there
is an m◦r+1 = 0). Let us start with the regular case, this means that all ≥ signs
are actually strict, i.e. > signs. Then it an easy computation that

µc(χreg, λ) =

{
ne1 + (n− 2)e2 + · · ·+ 2e◦r + λc if n is even

ne1 + (n− 2)e2 + · · ·+ 3e◦r + λc if n is odd
(288)

The set ∆+
χreg

is the set of roots of B modulo the conjugation Θ1. Hence we
see that

µc(χreg, λ) = µc0(λ).

The interesting contribution is in fact µc(χreg, , 0) and this is the number µc0
in (276) We can express µc(χreg, 0) in terms of the fundamental weights γi (or
the γ̄i) we use the formulas (287). We get

µc(χreg, 0) = 2γ̄1 + 2γ̄2 + · · ·+ 2γ̄◦r−1 +

{
2γ̄◦r n ≡ 0 mod 2

6γ̄◦r n ≡ 1 mod 2
(289)

If χ is not regular then the relevant information extracted from χ is the list

tχ = (t1, t2, . . . , ts; t0)

(the type of χ) where the ti are the length of the intervals where the mi > 0
are constant, i.e. m1 = m2 = · · · = mt1 > mt1+1 = · · · = mt1+t2 > . . . . The
number t0 is the length of the interval where mi = 0. The Θ stable parabolic Pχ
subgroup only depends on tχ. The types tχ have to satisfy the (only) constraint

2
∑

tν + t0 = n (290)

The regular case corresponds to the list (1, 1, . . . , 1; 0 or 1). In the general case
we get a decorated Dynkin diagram where the crossed out roots are those where
the mi jump.

−×− ◦ − ◦ − ◦ − ×−×− ◦ − · · · − ◦ − × · · · × − ◦ − · · · − ◦

This decorated diagram is symmetric under the reflection i 7→ n − i. We look
at the connected component of ◦-s. These components come in pairs unless the
component is invariant under the reflection, i.e. it is central. The non central
pairs

πχ,ν =
×− ◦− · · · − ◦ − ×− · · · × − ◦ − · · · − ◦

αiν αjν αn−jν αn−iν
(291)

are labelled by the indices ν for which tν > 1, and are of length tν−1 = jν−iν+1.
(The meaning of the indices iν , jν is explained in the diagram). The central
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connected component is of length t0 − 1, of course it may be empty. We write
it as

πχ,0 =
×− ◦ − · · · − ◦ −×

αi0 αj0
(292)

where of course i0 = n−j0. Let πχ be the union of these connected components.
Let ∆+

ν be the set of positive roots which are sums of roots in πν .

To compute µc(χ, 0) we have to subtract from µc(χreg, 0) the sum of roots
in ∆+

ν with jν <
◦ r and the sum of roots in ∆+

0 /{Θ1}.
A simple calculation shows that for ν > 0

2ρ(ν) =

i=jν∑
i=iν

γi + γn−i − (tν − 1)(γiν−1 + γiµ+1) (293)

where we put γ−1 = γn = 0. This means that subtracting 2ρ(ν) from the sum
which yields µc(χreg, 0) has the effect that the sum

∑i=jν
i=iν

γi + γn−i = 2
∑
γ̄i

cancels out and we have to add (tν−1)(γiν−1+γiµ+1). Observe that iν−1, jµ+1 6∈
πχ. We still have to subtract the contribution from the central component ∆+

0 .
We have to sum the roots in ∆+

0 /{Θ1} this means that we take half the sum of
all roots and add half the sum of the symmetric roots. This yields

2ρ(0) =
1

2
((j0 − i0 + 1)αi0 + · · ·+ (j0 − i0 + 1)αj0) +

1

2
(αi0 + · · ·+ · · ·+ αj0) =

((j0 − i0 + 2)ᾱi0 + · · ·+ (. . . )ᾱ◦r

we see again that the sum
∑n−i0
i=i0

γ̄i drops out and we have to add a term
t0(γi0−1 + γi0+1).

Hence we get: Let πcχ be the union of the πcν and πc0. Then

µc(χ, 0) =
∑
i 6∈πcχ

(2 + ci(χ, 0))γci

where

ci(χ, 0) =

{
(tν− − 1) + (tν+ − 1) if ν 6= 0

(tν− − 1) + tν+ if ν = 0
(294)

and where tν− − 1 is the length of connected component directly to the left of
iν − 1 and tν+ − 1 is the length of the component directly to the right of iν − 1.

If we have chosen a highest weight λ =
∑
aiγi then we require ai = an+1−i ≥

0 and we must have ai = 0 for all i ∈ πχ. Then

µc(χ, λ) =
∑
i 6∈πχ

(2 + ci(χ, 0) + 2ai)γ
c
i .

For us a special case is of interest. We decompose n = uv and take χu,v = χ
of type tχ = (v, v, . . . , v). Hence the reductive quotient of the Θ stable parabolic
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subgroup is M∨ = Glv×Glv×· · ·×Glv, the number of factors is u. In this case
we get

◦ − ◦ · · · − ◦− × − ◦ − ◦ − · · · − ◦ − × − ◦ . . .
α1 α2 αv−1 αv αv+1 α2v−1 α2v

(295)

so the indices outside πχ are the multiples of v. Let us denote by q the Lie-
algebra of Pχu,v .

µc(χu,v, λ) =
∑

ν:νv≤u2

(2 + 2(v − 1) + e(ν))γcνv + λc (296)

where e(ν) = 0 except in the case that ◦r ∈ [νv, (ν + 1)v] and then it is equal
to 1.

6.6.5 The Aqu,v (λ) as Langlands quotients

Let n = uv and q = qu,v as above. The parabolic is Pχu,v To realize Aqu,v (λ) as
Langlands quotient we apply the procedure described in [Vo-Zu], p.82-83. We
have to find a parabolic subgroup P ⊂ Gln/R and a tempered representation
σ∞ of M = P/U such that

a) our λ is a character on P,

b) the module aInd
G(R)
P (R)σ∞ has the right infinitesimal character,

c) the module Ind
G(R)
P (R)σ∞ restricted to K∞ contains µc(χu,v, λc) as minimal

K∞ type.

To get our parabolic subgroup we choose a cocharater ηu,v : Gm → T , this
cocharacter is defined as

t 7→ ηu,v(t) =



tv 0 0 . . .
0 tv−1 . . . . . .

0 0
. . . 0 . . .

0 . . . t1

0 tv

0 tv−1

0
. . .


(297)

i.e. we have u copies of the diagonal matrix diag(tv, tv−1, . . . , t) on the diagonal.
This cocharacter η = ηu,v(t) yields a parabolic subgroup Pη which contains

the torus and has as roots ∆η = {α| < η, α >≥ 0}. Its reductive quotient is
Glu×Glu×· · ·×Glu where the number of factors is v. The embedding into Gln
is not the obvious one and Pη does not contain the standard Borel subgroup of
upper triangular matrices.

To describe the relation between these two groups we denote by e1, e2, . . . , en
the standard orthonormal basis of our underlying vector space Rn. Then we
group these basis elements

{{e1, . . . , ev}, {{ev+1, . . . , e2v}, . . . , {e(u−1)v+1, . . . , euv}}
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and this grouping yields a direct sum decomposition

Rn = (Re1 ⊕ · · · ⊕ Rev)⊕ (Rev+1 ⊕ · · · ⊕ Re2v)⊕ · · · ⊕ (Re(u−1)v+1, . . . ,Reuv) =

V1 ⊕ V2 ⊕ · · · ⊕ Vu
(298)

and then M∨ = Gl(V1)× · · · ×Gl(Vu).
We get a second grouping of the basis elements

{{e1, ev+1, . . . , e(u−1)v+1}, {e2, ev+2, . . . , e(u−1)v+2}, . . . }, {. . . euv}} (299)

which yields direct sum decomposition

Rn =
(
Re1 ⊕ Rev+1 ⊕ · · · ⊕ Re(u−1)v+1

)
⊕
(
Re2 ⊕ Rev+2 ⊕ · · · ⊕ Re(u−1)v+2

)
⊕ . . .

W1 ⊕W2 ⊕ · · · ⊕Wv

(300)

and then M = Gl(W1)×Gl(W2)× · · · × Gl(Wv) = Glu ×Glu × · · · ×Glu. The
groups M∨ and M are mutual centralizers of each other.

The two groupings define two different Borel subgroups, the first one defines
the standard Borel B of upper triangular matrices and the second Borel B∗

fixes the flag {e1}, {e1, ev+1} . . . . Let us denote by λ∗, ρ∗,w∗u,v, . . . the dominant
weight with respect to B∗, the half sum of positive roots and so on. Our highest
weight λ is trivial on the semi simple part of M∨ it must be of the form (235)
Now we consider the highest weight for the group M

w∗u,v(λ
∗ + ρ∗)− ρ∗ = µ∗ = (a1 + v − 1)(γ∗,M1 + γ∗,M1+u + · · ·+ γ∗,M1+(v−1)u)+

(a2 + v − 1)(γ∗,M2 + γ∗,M2+u + · · ·+ γ∗,M2+(v−1)u)+

...

(au−1 + v − 1)(γ∗,Mu−1 + γ∗,Mu−1+u + · · ·+ γ∗,Mu−1+(v−1)u)+

−(u+ 1)(γ∗u + γ∗2u + · · ·+ γ∗(v−1)u) + dδ.

(301)

We choose σ∞ = Dµ∗ . (See (231))

We check the lowest K∞ type in IndGP∗Dµ∗ . To compute this lowest K∞
type we write M =

∏
Mν where of course each Mν = Glu. Accordingly we

write T =
∏
Tν . The weight µ∗ =

∑
µ∗ν where the semi simple part is ”always

the same”. We apply the considerations in section 6.6.1 to the factors Mν . We
take ν = 1 then

µ∗1 = (a1 + v − 1)γ∗1 + (a2 + v − 1)γ∗1 + · · ·+ (au−1 + v − 1)γ∗u−1 + d∗detu

Inside M1 we have the subgroup ◦M1 which is the reductive Levi factor of ◦P1

as in section 6.6.1 and we have the Kostant element w1,un. Then we consider
the character

µ̃∗1 = w1,un(µ∗1 + ρ∗1)− ρ∗1 =
∑

i:i odd

b∗i γ
◦M

(1)
1

i + µ̃∗,ab
1 (302)
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where again the b∗i are the cuspidal parameters and they are given by

b∗2j−1 = v(u+ 1− 2j)− 1 +

{
2aj + 2aj+1 + · · ·+ 2au

2−1 + au
2

if u is even

2aj + 2aj+1 + · · ·+ 2au−1
2

if u is odd

(303)

The abelian part µ̃∗,ab
1 does not play any role in the following ( The λ in section

(6.6.1) is now µ∗1 and the µ in formula (254) is now µ̃∗1) We renumber our basis
(299)

{f1, f2, . . . , fu−1, fu, . . . } = {e1, ev+1, . . . , e(u−1)v+1, e2, . . . } (304)

and decompose the space Rn into a direct sum of euclidian planes (plus a line
if n is odd)

Rn = (Rf1 ⊕ Rf2)⊕ (Rf3 ⊕ Rf4)⊕ · · · ⊕ (Rfn).

and this provides a maximal anisotropic torus

T ∗c = SO(2)× SO(2)× · · · × SO(2)

In analogy with section 6.6.2 we write

X∗(T ∗c ⊗ C) = ⊕Zfj (305)

where fj is defined in analogy with the eν in section 6.6.2.
We have

M = Gl(Rf1 ⊕ Rf2 ⊕ · · · ⊕ Rfu)× · · · ×Gl(Rf(v−1)u+1 ⊕ · · · ⊕ Rfuv)

and the intersection T ∗,Mc = T ∗c ∩M is a maximal anisotropic torus in M. It is
equal to T ∗c if u is even. If u is odd ( and v > 1) then it is a proper sub torus,
if ◦ru = u−1

2 then

T ∗,Mc = SO(2)× · · · × SO(2)︸ ︷︷ ︸ ×{±1}× SO(2)× · · · × SO(2)︸ ︷︷ ︸×{±1}×
◦ru factors spot u and u+ 1 ◦ru factors

(306)

where the product of signs is one. To get the torus T ∗c we have to put another
SO(2) at the spots (u, u+1), (2u, 2u+1), . . . . We apply the reasoning of section
(6.6.2) to the factors Mν .

The representation Dµ∗1 = IndM1
◦Pν
Dµ̃∗1 contains as lowest KMν

∞ type the rep-
resentation with highest weight

(b∗1 + 2)f1 + (b∗3 + 2)f2 + · · ·+ (b∗2◦ru−1 + 2)f◦ru

where the b∗2j−1 are taken from (303). This weight occurs in Dµ̃∗1 Hence we see
that as a T ∗c module the representation ⊗Dµ̃∗

ν
contains the weight (depending

on u even or odd)
(

(b∗1 + 2)f1 + (b∗3 + 2)f2 + · · ·+ (b∗2◦ru−1 + 2)f◦ru)
)

+
(

(b∗1 + 2)f◦ru+1 + . . .
)

+ . . .(
(b∗1 + 2)f1 + (b∗3 + 2)f2 + · · ·+ (b∗2◦ru−1 + 2)f◦ru−1)

)
+
(

(b∗1 + 2)f◦ru+1 + . . .
)

+ . . .

(307)
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This weight is not dominant, to get a dominant weight we have to reorder the
fν according to the size of the coefficient in front. Then we get a dominant
weight

(b∗1 + 2)(f†1 + f†2 + · · ·+ f†v ) + (b∗3 + 2)(f†v+1 + f†v+2 + · · ·+ f†2v) + . . . (308)

and then formula (288) and the formula for the b∗j give us the following dominant
weight expressed in terms of the fundamental dominant weights∑

ν:νv≤u2

(2v + e(ν) + 2aν)γcνv (309)

This is now the weight µc(χu,v, λ) in (288). Hence we see that Θµc(χu,v,λ)

occurs with multiplicity one in Dµ) : Ind
G(R)
P (R)Dµ and we get

Theorem 6.1. We have a nonzero intertwining operator : T (loc)(Dµ) : Ind
G(R)
P (R)Dµ →

Ind
G(R)
P (R)Dµ′ and get a diagram

Ind
G(R)
P (R)Dµ

T (loc)(Dµ)−→ Aq(λ)

↓
Ind

G(R)
P (R)Dµ′

(310)

The horizontal arrow is surjective, and the vertical arrow is injective. The map
induced by the vertical arrow in cohomology

Hq(g,K∞;Aq(λ)⊗Mλ) −→ Hq(g,K∞; aInd
G(R)
P (R)Dµ′ ⊗Mλ)

is a bijection in the lowest degree of nonzero cohomology; this lowest degree is

q = v

[
u2

4

]
+
n(u− 1)(v − 1)

4
.

Proof. We have an inclusion between the two complexes

HomK0
∞

(Λ•(g/k), Aq(λ)⊗Mλ))→ HomK0
∞

(Λ•(g/k), Ind
G(R)
P (R)Dµ′ ⊗Mλ).

In the complex on the left all differentials are zero. It follows from the work of
Kostant that we have a splitting

Hom(Λ•(uP ),Mλ)) = H•(uP ,Mλ)⊕AC•

where H•(uP ,Mλ) is the space of harmonic forms (and this space is isomorphic
to the cohomology H•(uP ,Mλ). ) and where AC• is an acyclic complex.

We have Delorme’s formula

HomK0
∞

(Λ•(g/k), Ind
G(R)
P (R)Dµ′ ⊗Mλ) = HomKM

∞
(Λ•(m/kM ),Dµ′ ⊗Hom(Λ•(uP ),Mλ)) =

HomKM
∞

(Λ•(m/kM ),Dµ′ ⊗H•(uP ,Mλ))⊕HomKM
∞

(Λ•(m/kM ),Dµ′ ⊗AC•)
(311)
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The (m/KM
∞ ) has a lowest KM

∞ ) type ϑ(µ′), which can be computed easily from
3.1.4 and we have

HomKM
∞

(Λ•(m/kM ),Dµ′⊗H•(uP ,Mλ)) = HomKM
∞

(Λ•(m/kM ),Dµ′(ϑ(µ′))⊗H•(uP ,Mλ)).

Using the formula in [Vo-Zu] for the highest weight of the lowest K∞-type
Θ(q, λ) in Aq(λ) we see that Θ(q, λ) is the lowest K∞ type in IndK∞

KM
∞
. This

implies that the map

HomK∞(Λ•(g/k),Aq(λ)(Θ(q, λ)⊗Mλ)→ HomKM
∞

(Λ•(m/kM ),Dµ′ ⊗H•(uP ,Mλ))

(312)

is an isomorphism of vector spaces (but not of complexes). But since the complex
on the right is zero in degrees • < q it follows that the classes in the image of
HomK∞(Λq(g/k), Aq(λ)(Θ(q, λ))⊗Mλ) survive in cohomology.

We got to the global context, we have a diagram

Jσ∞ ⊗ J
Kf
σf ↪→ L2

disc(G(Q)\G(A)/Kf , ω
−1
Mλ
|S(R)0)

↓ ↓ FP
aInd

G(A)
P (A)Dµ′ ⊗ V

Kf
σf ↪→ A(P (Q)U(A)\G(A)/Kf )

(313)

This induces maps in cohomology

H•(g,K∞, Jσ∞ ⊗Mλ)⊗ JKfσf → H•(SGKf ,M̃λ)

↓ ↓ FP

H•(g,K∞,
aInd

G(R)
P (R)Dµ′ ⊗Mλ)⊗ V Kfσf ↪→ H•(∂PSGKf ,M̃λ)

(314)

The left vertical arrow is non zero for • = q, the horizontal arrow in the bottom
line is injective for all values of • (Borel see ) hence the horizontal arrow in the
top line is non zero in degree • = q.

Of course we also should investigate the horizontal arrow in the to line in
all degrees, this question becomes delicate. To answer it we should invoke the
results in Franke’s paper [ ] or we could work with proposition (4.4) or its
corollary (4.1).

In the extremal case u = n, v = 1 the parabolic subgroup P is all of G
and Aq(λ) = Dλ. In this case, and only this case, the representation Aq(λ) is
tempered.

In the other extremal case that u = 1, v = n the representation Jσ∞ is
one dimensional - (basically it is the space of constant functions twisted by a
character on the group of connected components ) - in this case the map in the
top row is understood in terms of the topological model (Franke + Diploma
students).
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6.6.6 Congruences

We formulate a condition (NUQuot ) (No unitarizable quotient) for the induced
module:

The induced module IGP (σf ) as module under the Hecke- algebra does not
have a non trivial quotient which admits a unitary scalar product (here it may
be necessary to pass to the corresponding representation of G(Af )).

The negation of this condition (UQuot) says that for all primes p the induced
module IGP σp has a unitarizable quotient.

This condition has been discussed in [Ha-Eis] Kap. II, 2.3.

If we have (NUQuot ) then

HomHGKf
(IGP (σf ), H•! (SGKf ,M⊗ C)) = 0 (315)

this implies that the Manin-Drinfeld is valid and this implies that our above
section is defined over F , i.e. we get a unique section of Hecke-modules

Eis : Hq−l(w))(SMKM
f
,M(w · λ)⊗ F )(σf )→ Hq(SGKf ,M̃λ ⊗ F ). (316)

Then is looks as if the second term is completely uninteresting, but in fact
it is not. In the lecture notes volume [Ha-Eis] we raise the question whether
it influences the structure of the integral cohomology Hq

int(SGKf ,M̃λ ⊗ F ). In
some cases we have convincing experimental evidence that ”arithmetic” of the
ratio of special values

1

Ω(σf )

∏
a

Λcoh(σf , r
u∨P
a , < ηa, µ̃

(1) > −ab(w, λ))

Λcoh(σf , r
u∨P
a , < ηa, µ̃(1) > −ab(w, λ) + 1)

(317)

has influence on the structure integral of the cohomology. Under certain condi-
tions the above expression is a product of an algebraic part and the value of a
motivic extension class. Primes dividing the denominator of the algebraic part
may occur in the denominator of the Eisenstein class and we will have congru-
ences (See (5.2),(135). This will be explained in the next section in the special
case of the group GSp2/Z.

6.6.7 Attaching motives to σf???

The condition (NUQuot )) will be true if λ is sufficiently regular but for non
regular weights it fails. If the weight is not regular then we may have a pole of
the Eisenstein series at z = 0. This possibility has to be discussed, it can only
happen if we have (UQuot). But even if we have (UQuot) we may not have a
pole.

Let us assume that we have (UQuot) and the Eisenstein operator is holomor-
phic at z = 0. Then we may have several copies of J(σf ) in H•! (SGKf ,M̃λ ⊗C).

This defines again an isotypical submodule H•! (SGKf ,M̃λ ⊗ F )(σ̄f ). We get an
exact sequence

0→ H•! (SGKf ,M̃λ ⊗ F )(σ̄f )→ X (σf )→ J(σf )→ 0 (318)
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This is a sequence of Hecke-modules over F, the section (207) provides a section
over C.

If our locally symmetric space SGKf the set of complex points of a Shimura
variety then we can interpret this sequence as a mixed motive. This motive has
an extension class in the category of mixed Hodge-structures

[X (σf )]B−dRh ∈ Ext1
B−dRh(J(σf ), H•! (SGKf ,M̃λ ⊗ F )(σ̄f )) (319)

and in some cases we can compute this class (we have to look at a suitable
bi-extension) and express it in terms of the second term in the constant term
(See [MixMot-2013.pdf]. )

We have seen that in many situations the space SM
KM
f

is not the set of complex

points of a Shimura variety and therefore we do not know how to attach a
motive or an ` adic Galois representation to it. (Sometimes we know how to
attach a motive to it but it is simply a Tate motive). But if it happens that the
module J(σf ) produces a non trivial submodule H•! (SGKf ,M̃λ⊗F )(σ̄f )) then the

situation changes and we can attach a Galois-module H•! (SGKf ,M̃λ ⊗ Fλ)(σ̄f ))

to it which contains a lot of information about σf . Again we refer to ( [MixMot-
2013.pdf].) We have seen in [Ha-Eis] (3.1.4.) that this can happen.

6.6.8 The motivic interpretation of Shahidis theorem

We go back to a general submodule σf = σ
(1)
f ×σ

(2)
f = σf ∈ Coh(H•cusp(SM

KM
f
,M̃w·λ),

we drop the assumptions above. We assume that we can attach motives M(σ
(1)
f , r1),M(σ

(2)
f , r1)

where r1 is the tautological representation. (Actually we do not need the mo-
tives it suffices to have the compatible systems of l-adic representations) Then
we can attach the Rankin-Selberg motive to this pair

MRS(σf ,Ad) = M(σ
(1)
f , r1)×M(σ

(2)
f , r1)∨ = Hom(M(σ

(2)
f , r1),M(σ

(1)
f , r1))⊗ Z(−w(µ(2), r2))

(320)

Under the assumption of the theorem the we have M(σ
(1)
f , r1)

∼−→ M(σ
(2)
f , r1)

and we see that the Galois module Hom(M(σ
(2)
f , r1),M(σ

(1)
f , r1)) contains a copy

of Zl(0) and therefore we get an exact sequence of Galois modules

0→ Z(−w(µ(2), r2))→MRS(σf ,Ad)ét,Ad →M(0)
RS(σf ,Ad)ét,Ad → 0

Hence the motivic L function is a product

L(MRS(σf ,Ad)ét,Ad, s) = L(Z(−w(µ(2)), s)L(M(0)
RS(σf ,Ad)ét,Ad, s)

If we substitute for s the expression

w(r1, µ
(1)
1 ) + w(r2, µ

(1)
2 )

2
− b(w, λ) + s = w(r2, µ

(1)
2 )− b(w, λ) + s

then we find

L(MRS(σf ,Ad)ét,Ad, s) = ζ(−b(w, λ) + s)L(M(0)
RS(σf ,Ad)ét,Ad, s)
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Then the motivic interpretation of Shahidis theorem is, that L(M(0)
RS(σf ,Ad)ét,Ad,w(r2, µ

(1)
2 )−

b(w, λ) + s) is holomorphic at s = 0 and non zero (this is in a sense the prime
number theorem for this L function) and therefore - if we have b(w, λ) = −1-
the pole comes from the first order pole of the Riemann -ζ function. If now

σ
(1)
f × σ

(2)
f = σf occurs in the cuspidal cohomology then we have an inclusion

Dµ ×Hσf ↪→ A(M(Q)\M(A)/KM
f )

We form the Eisenstein intertwining operator and compose it with constant
Fourier coefficient, then we get

FP ◦ Eis(s) : f 7→ f + C(σ, s)T loc(s)(f) (321)

The operator T loc(s) = T loc
∞ (s)⊗

⊗
T loc
p (s) is holomorphic at s = 0. Under

our assumptions the function C(σ, s) has a first order pole at s = 0 and we get
a residual intertwining operator

Ress=0 : IndGPDµ ×Hσf ⊗ (0)→ A(2)(G(Q)\G(A)/Kf ) (322)

6.6.9 Rationality results

Finally we want to discuss the case that P 6= Θ(P ) = Q. If this happens then
SGKf is never a Shimura variety. We have isotypical pieces (see (187) )

H
•−l(w)
! (SMKM

f
,M̃(w · λ)⊗ F )(σf )⊕H•−l(w

′)
! (SM

′

KM′
f

,M̃(w′ · λ)⊗ F )(σ′f )

(323)

and we know that component of the Eisenstein cohomology consists of the classes

{ψf ⊕ L(σf )T loc
f (ψf )} (324)

where L(σf ) is an element of F and for all ι : F → C we have

ι(L(σf )) =
1

Ω(ι ◦ σf )
C(σ∞, λ)C(ι ◦ σf , λ) (325)

If the factor at infinity C(σ∞, λ) 6= 0 then we get from this rationality results
for the ratios of L-values. (See [Ha-Mum], [Ha-Rag]) These rationality results
will be important when we discuss the arithmetic nature of the numbers in??

Combining the results of Borel–Garland [?] and Mœglin–Waldspurger [?] we
get that the homomorphism⊕

u|n

⊕
σf :segment

H•(g,K∞;Aq(λ)⊗Mλ)⊗ Jσf → H•(2)(S
G
Kf
,Mλ) (326)

is surjective. This gives us the decomposition into isotypical spaces ofH•(2)(S
G
Kf
,Mλ).

We separate the cuspidal part (v = 1) from the residual part and get

H•(2)(S
G
Kf
,Mλ) =

⊕
πf :cuspidal

H•cusp(SGKf ,Mλ)(πf ) ⊕
⊕
u|n
u<n

⊕
σf :segment

H•(g,K∞;Aq(λ)⊗Mλ)⊗ Jσf ,
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where the bar on top means we have gone to its image via the map in (326). It
follows from the theorem of Jacquet–Shalika [?] that there are no intertwining
operators between the summands.

In the extremal case u = n, v = 1 the parabolic subgroup P is all of G
and Aq(λ) = Dλ. In this case and only this case the representation Aq(λ) is
tempered, and the lowest degree of nonvanishing cohomology is the number bFn .
An easy computation shows that in the case v > 1 the number q < bFn . Then
our theorem above implies that in degree q

Hq(γ,K∞;Aq(λ)⊗Mλ)⊗ Jσf → Hq(SGKf ,Mλ)

is injective. This has also been proved by Grobner [?]. The above result,
which we announced earlier (??), can be sharpened as in the following theorem.
During the induction argument we use Thm. ?? for the reductive quotients M
of the parabolic subgroups.

7 The example G = Sp2/Z
7.1 Some notations and structural data
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α2

α1 γ2γ1

The maximal torus is

T0/Z = t =
{

t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1

}

the simple roots are

α1(t) = t1/t2, α2(t) = t22

and the fundamental dominant weights are

γ1(t) = t1, γ2(t) = t1t2

and finally we have
2γM1 = t1/t2
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We choose a highest weight λ = n1γ1 + n2γ2 let Mλ be a resulting module
for G/Spec(Z). We get the following list of Kostant representatives for the Siegel
parabolic subgroup P and they provide the following list of weights.

1 · λ = λ = 1
2 (2n2 + n1)γ2 + n1γ

M1
1

s2 · λ = 1
2 (−2 + n1)γ2 + (2n2 + n1 + 2)γM1

1

s2s1 · λ = 1
2 (−4− n1)γ2 + (2 + 2n2 + n1)γM1

1

s2s1s2 · λ = 1
2 (−6− 2n2 − n1)γ2 + n1γ

M1
1 ,

We choose for K∞ ⊂ Sp2(R) the standard maximal compact subgroup U(2),
it is the centralizer of the matrix

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


which defines a complex structure. With this choice we can define SGKf =

G(Q)\G(R)/K∞ ×G(Af )/Kf .

7.2 The cuspidal cohomology of the Siegel-stratum

We consider the cohomology groups H•(SGKf ,M̃λ) and the resulting fundamen-

tal exact sequence. We have the boundary stratum ∂P (SGKf ) with respect to the
Siegel parabolic. Let us assume that we are in the unramified case, then we get

H•(∂P (SGKf ),M̃λ) =
⊕

w∈WP

H•−l(w)(SMKM
f
, H l(w)(uP ,Mλ)) (327)

We look at the case w = s2s1 in this case we know how to describe the cor-
responding summand in terms of automorphic forms on Gl2. We introduce the
usual abbreviation H l(w)(uP ,Mλ) =Mλ(w · λ).

Our coefficient modules are the modules attached to the highest weight

w · λ = µ = (2 + 2n2 + n1)γM1
1 +

1

2
(−4− n1)γ2

Let us put k = 4+2n2 +n1 and m = 1
2n1. We give the usual concrete realization

for these modules as M2+2n2+n1 [n2 − 3− k] =Mk−2[n2 − 3− k]
Let us look at the space SM

KM
f
. The group M/Spec(Z) is isomorphic to Gl2,

it is the Levi-quotient of the Siegel parabolic. The group KM
∞ is the image

of P (R) ∩K∞ under the projection P (R) → M(R). This is the group O(2) it
contains the standard choice KM

∞ (1) = SO(2) as a subgroup of index 2. Hence
we get a covering of degree 2

˜SM
KM
f

= M(Q)\M(R)/KM
∞ (1)×M(Af )/KM

f → SMKM
f

(328)

We get an inclusion

i : H1(SMKM
f
,Mλ(w · λ)) ↪→ H1( ˜SM

KM
f

,Mλ(w · λ)). (329)
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On the cohomology on the right we have the action of O(2)/SO(2) = Z/2Z
and the cohomology decomposes into a + and a − eigenspace. The inclusion i
provides an isomorphism of the left hand side and the + eigenspace.

This inclusion is of course compatible with the action of the Hecke algebra.
If we pass to a suitable extension F/Q we get the decompositions into isotypic
subspaces if we tensor our coefficient system by F . An isomorphism type σf
occurs with multiplicity one on the left hand side and with multiplicity two
on the right hand side. Over the ring OF the modules H1

±, int(SMKM
f
,Mλ(w ·

λ)F )(σf ) are of rank one, hence we can find locally in the base Spec(OF ) an
isomorphism

T arith(σf ) : H1
+( ˜SM

KM
f

,Mλ(w · λ)F ))(σf )
∼−→ H1

−( ˜SM
KM
f

,Mλ(w · λ)F ))(σf )

(330)

The isomorphism given by the fundamental class (see(79) interchanges the +
and the − eigenspace, hence we can arrange our arithmetic intertwining operator
such that it satisfies

T arith(σf ⊗ |δf |) = T arith(σf ⊗ |δf |)−1 (331)

We consider the transcendental description of the cohomology groups

H1( ˜SM
KM
f

,Mλ(w · λ)C) =
⊕
σf

H1
+( ˜SM

KM
f

,Mλ(w · λ)C)(σf )⊕H1
−( ˜SM

KM
f

,Mλ(w · λ)C)(σf )

(332)

We consider the standard Borel subgroup B ⊂ M the standard split torus
T0 ⊂ B it contains our torus Z0. We define the character

χµ = (k,m+ 2) : B(R)→ C×, χ(t) = γM1 (t)k|γ2|m+2.

It yields the induced Harish-Chandra module I
M(R)
B(R) χµ : We consider the

functions

f : M(R)→ C; f(bg) = χ(b)f(g); f |T1 is of finite type .

This is in fact a (m,KM,0
∞ ) -module, it contains the discrete representation Dχµ .

We have the decomposition

Dχµ =
⊕

ν≡0(2),|ν|≥k

Fφχ,ν

where

φχ,ν(g) = φχ,ν(b

(
cos(φ) sin(φ)
− sin(φ) cos(φ

)
) = χ(b)e2πiνφ.

Of course KM,0
∞ = T1(R) = {e(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ

)
} and we can write

e(φ)ν = e2πνiφ.
We have the well known formula for the ((m,KM,0

∞ ) cohomology
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H1((m,KM,0
∞ ),Dχµ ⊗Mλ(w · λ)) = HomKM,0

∞
(Λ1(m/kM ),Dχµ ⊗Mλ(w · λ)) =

(333)

CP∨+ ⊗ φχ,−k ⊗ vk−2 + CP∨− ⊗ φχ,k ⊗ v−k+2 = Cωk,m + Cω̄k,m
(334)

Here vk−2 = (X + iY )k−2, resp. v2−k = (X − iY )k−2 are two carefully chosen
highest (resp. lowest) weight vectors with respect to the action of KM,0

∞ . The
elements P± are the usual elements in m/k. We choose a model space Hσf for
σf i.e. a free rank one OF -module on which the Hecke algebra acts by the
homomorphism σf : HM

KM
f
→ OF . We also choose and embedding ι : F ↪→ C

and an (m,KM,0
∞ )×KM

∞ ×HMKM
f

- invariant embedding

Φι : Dχµ ⊗Hσf ⊗F,ι C→ L2
0(M(Q)\M(A)) (335)

this is unique up to a scalar in C× because the representation is irreducible and
occurs with multiplicity one in the right hand side. This yields an isomorphism

Φ1
ι : H1((m,KM,0

∞ ),Dχµ⊗Mλ(w·λ))⊗Hσf⊗F,ιC
∼−→ H1( ˜SM

KM
f

,Mλ(w·λ)C)(ι◦σf )

We observe that the element ε =

(
−1 0
0 1

)
∈ KM

∞ has the following effect

Ad(ε)(P+) = P− , ε(φχ,k) = φχ,−k and ε(vk−2) = (−1)mv2−k (336)

Hence we see that

ω
(+)
k,m = ωk,m + (−1)mω̄k,m resp. ω

(−)
k,m = ωk,m − (−1)mω̄k,m (337)

are generators of the + and the − eigenspace in H1(m,KM,0
∞ ,Dχµ⊗Mλ(w ·λ)).

Therefore our map Φ and the choice of these generators provide isomorphisms

Φ(+)
ι : Hσf ⊗F,ι C

∼−→ H1
+( ˜SM

KM
f

,Mλ(w · λ)C)(ι ◦ σf ), (338)

Φ(−)
ι : Hσf ⊗F,ι C

∼−→ H1
−( ˜SM

KM
f

,Mλ(w · λ)C)(ι ◦ σf ) (339)

The choice of P+, P− and φχ,−ν is canonic, hence we see that the identifications
depend only on Φι , which is unique up to a scalar. This means that the
composition

T trans(ι ◦ σf ) = Φ(−)
ι ◦ (Φ(+)

ι )−1

: H1
+( ˜SM

KM
f

,Mλ(w · λ)C)(ι ◦ σf )
∼−→ H1

−
˜SM
KM
f

,Mλ(w · λ)C)(ι ◦ σf )

yields a second (canonical) identification between the ± eigenspaces in the co-
homology. Our arithmetic intertwining operator (See (330) yields an array of
intertwining operators

T arith(σf )⊗F,ι C : H1
+( ˜SM

KM
f

,Mλ(w · λ)F ))(σf )⊗F,ι C
∼−→ H1

−( ˜SM
KM
f

,Mλ(w · λ)F ))(σf )⊗F,ι C
(340)
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Hence get an array of periods which compare these two arrays of intertwining
operators

Ω(σf , ι)T
trans(ι ◦ σf ) = T arith(σf )⊗F,ι C (341)

Our formula (331) tells us that we can arrange the intertwining operators such
that

Ω(σf ⊗ |δf |, ι) = Ω(σf , ι)
−1 (342)

These periods are uniquely defined up to a unit in O×F .

7.2.1 The Eisenstein intertwining

We pick a σf which occurs in H1
! ( ˜SM

KM
f

,Mλ(w · λ)F )), we choose a ι : F ↪→ C
and we choose an embedding

Φι : Dχµ ⊗Hσf ⊗F,ι C ↪→ L2
cusp(M(Q)\M(A)) (343)

and from this we get the Eisenstein intertwining

Eis ◦ Φι : Ind
G(R)
P (R)(Dχµ)⊗Hσf ⊗F,ι C→ A(G(Q)\G(A)) (344)

(Here we use that Kf = GSp2(Ẑ).) Hence we get an intertwining operator

Eis• : HomK∞(Λ•(g/k), IGP (Dχµ)⊗Mλ)⊗Hσf ⊗F,ι C→ HomK∞(Λ•(g/k),A(G(Q)\G(A))⊗Mλ)
(345)

and this induces a homomorphism in cohomology

H3(g,K∞, I
G
P (Dχµ)⊗Mλ)⊗Hσf ⊗F,ι C)→ H3(SGKf ,M̃λ,C) (346)

and we want to compose it with the restriction to the cohomology of the
boundary. We have to compose it with the the constant Fourier coefficient
FP : A(G(Q)\G(A))→ A(P (Q)U(A)\G(A)). We know that FP maps into the
subspace

IGP Dχµ ⊗Hσf ⊗F,ι C
FP−→ IGP Dχµ ⊗Hσf ⊗F,ι C

⊕
IGP Dχµ′ ⊗Hσ

wP
f |γP,f |2fP ⊗F,ι C

(347)

where µ′ = wPw ·λ = s2 ·λ = (2+2n2 +n1)γM1
1 + 1

2 (−2+n1)γ2. More precisely
we know that for h ∈ IGP Dχµ ⊗Hσf ⊗F,ι C

FP (h) = h+ C(σ, 0)T loc(0)(h) (348)

where T loc(0) = T loc
∞ ⊗ ⊗pT loc

p . The local intertwining operator at the finite
primes is normalized, it maps the standard spherical function into the standard
spherical function. The operator T loc

∞ will be discussed below.
Our general formula for the constant term yields for an h = h∞ × hf
Explain in more detail
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FP (h) = h+ C(σ∞, λ)T loc
∞ (h∞)

Lcoh(f, n1 + n2 + 2)

Lcoh(f, n1 + n2 + 3)

ζ(n1 + 1)

ζ(n1 + 2)
× T loc

f (0)(hf )

(349)

(For the following compare SecOps.pdf) We analyze the factor C(σ∞, λ)T loc
∞

more precisely we study the effect of this operator on the cohomology. Let us
look at the map between complexes

T loc,•
∞ : HomK∞(Λ•(g/k), IGP Dχµ ⊗Mλ)→ HomK∞(Λ•(g/k), IGP Dχµ′ ⊗Mλ)

(350)

The intertwining operator T loc
∞ : IGP Dχµ → IGP Dχµ′ has a kernel Dχµ , this is a

discrete series representation. We know that

HomK∞(Λ•(g/k),Dχµ ⊗Mλ) = HomK∞(Λ3(g/k),Dχµ ⊗Mλ) = (351)

H3(g,K∞,Dχµ ⊗Mλ) = CΩ2,1 ⊕ CΩ1,2 (352)

We have the surjective homomorphism

H3(g,K∞,Dχµ ⊗Mλ)→ H3(Λ3(g/k), IGP Dχµ ⊗Mλ) = H1(m,KM
∞ ,Dχµ ⊗H2(uP ,Mλ) = Cω(3)

(353)

the differential form Ω2,1 + ε(λ)Ω1,2 maps to a non zero multiple A(λ)ω(3). (The
factor ε(λ) is a sign depending on λ). We can write Ω2,1− ε(λ)Ω1,2 = dψ where

ψ ∈ HomK∞(Λ2(g/k),Dχµ ⊗Mλ) (354)

and ω = T loc,2
∞ (ψ) ∈ HomK∞(Λ2(g/k),Dχµ′ ⊗Mλ) is a closed form, hence it

provides a cohomology class. Let us denote this cohomology class by κ(ω(3)).
Choosing ω(3) as a basis element and applying the Eisenstein intertwining

operator (345) yields a homomorphism

Eis(3) ◦ Φι : H1
! ( ˜SM

KM
f

,Mλ(w · λ)F ))(σf ◦ ι)→ H3(SGKf ,M̃λ ⊗ C) (355)

.
The local intertwining operator T loc

∞ maps ω(3) to zero and hence it follows

that the composition r ◦ Eis(3) is the identity, the Eisenstein intertwining oper-

ator yields a section on H1
! ( ˜SM

KM
f

,Mλ(w · λ)F ))(σf ). (Remember w = s2s1). If

we define

H3(SGKf ,M̃λF )(σf ) = r−1(H1
! ( ˜SM

KM
f

,Mλ(w · λ)F ))(σf )) (356)

(Induction does not play a role since the level is one) then we get the decompo-
sition

H3
! (SGKf ,M̃λF )⊕H3

Eis(SGKf ,M̃λF )(σf ) = H3
! (SGKf ,M̃λF )(σf ) (357)
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7.2.2 The denominator of the Eisenstein class

We restrict this decomposition to the integral cohomology (better the image of
the integral cohomology in the cohomology with rational coefficients)

H3
int(SGKf ,M̃λF )(σf ) ⊃ H3

!, int(SGKf ,M̃λF )(σf )⊕H3
int,Eis(SGKf ,M̃λF )(σf )

(358)

The image of H3
int,Eis(SGKf ,M̃λF )(σf ) under r is a submodule of finite index in

H1
!, int(

˜SM
KM
f

,Mλ(w · λ)F ))(σf )) and the quotient is

H3
int(SGKf ,M̃λF )(σf )/(H3

!, int(SGKf ,M̃λF )(σf )⊕H3
int,Eis(SGKf ,M̃λF )(σf )) =

H1
! int(

˜SM
KM
f

,Mλ(w · λ)F ))(σf ))/image(r).

(359)

The quotient on the right hand side is OF /∆(σf ) where ∆(σf ) is the denomi-
nator ideal. Tensoring the exact sequence

0→ H3
!, int(SGKf ,M̃λF )(σf )⊕H3

int,Eis(SGKf ,M̃λF )(σf )→ H1
int(

˜SM
KM
f

,Mλ(w · λ)F ))(σf ))→ OF /∆(σf )→ 0

(360)

by OF /∆(σf ) yields an inclusion

Tor1
OF (OF /∆(σf ),OF /∆(σf ) = OF /∆(σf )) ↪→ H3

!, int(SGKf ,M̃λF )(σf )⊗OF /∆(σf )

(361)

and this explains the congruences.

7.2.3 The secondary class

We choose generators ω(3)(σf )( resp. ω(2)(σwPf |γP,f |2fP )) forH1
int(

˜SM
KM
f

,Mλ(w·

λ)F ))(σf )( resp. H1
int(

˜SM
KM
f

,Mλ(s2 · λ))(σf )) (Perhaps we can do this only lo-

cally on Spec(OF ).) We may arrange these generators such that T arith(σf )(ω(3)(σf )) =
ω(2)(σwPf |γP,f |2fP ). The isomorphism

Φ(3)
ι : H3(g,K∞,Dχµ ⊗Mλ)⊗Hσf ⊗F,ι C

∼−→ H1
int(

˜SM
KM
f

,Mλ(w · λ)F ))(ι ◦ σf )

(362)

maps
(Ω2,1 + ε(λ)Ω1,2)⊗ ω(3)(ι ◦ σf ) 7→ Ω+(σf , ι)ω(σf )

where Ω+(σf , ι) is a period depending on the choice of Φι. The element

(Ω2,1 − ε(λ)Ω1,2)⊗ ω(3)(ι ◦ σf ) = dψ ⊗ ω(3)(ι ◦ σf ).

where ψ ∈ HomK∞(Λ2(g/k), IGP Dχµ ⊗Mλ). The operator T loc(0) in (348) pro-
vides a homomorphism (350)

T loc,2⊗T loc
f : HomK∞(Λ2(g/k), IGP Dχµ⊗Mλ)⊗Hι◦σf → HomK∞(Λ2(g/k), IGP Dχµ′⊗Mλ)⊗H

ι◦σwPf
|γP,f |2fP ))
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Under this homomorphism the class ψ is mapped to a multiple of ω(2)(σwPf |γP,f |2fP )).
We can calculate this multiple, during this calculation we see a second period
Ω−(σf , ι) depending on Φι and the ratio of these periods will be our period
Ω(ι ◦ σf ) in formula (341) .

This period is independent of Φι. To state the final result we denote by f
the modular cusp form attached to σf , this is a modular form with coefficients
in F, then ι ◦ f is a modular form with coefficients in C. By Λ(f, s) we denote
the usual completed L -function. We get

C(σ, 0)T loc(κ(ω(3)(ι ◦ σf )) =( 1

Ω(σf , ι))ε(k,m)

Λcoh(ι ◦ f, n1 + n2 + 2)

Λcoh(ι ◦ f, n1 + n2 + 3)

1

ζ(−1− n1)

)ζ ′(−n1)

π
ω(2)(σwPf |γP,f |

2fP ))

The factor inside the large brackets is essentially rational ( it is in F and

behaves invariantly under the action of the Galois group) the factor ζ′(−n1)
π

should viewed as a generator of a group of extension classes of mixed motives.
For me the most difficult part in the calculation is the treatment of the

intertwining operator at ∞, this is carried out in SecOps.pdf. At the end of
SecOps.pdf. I discuss the arithmetic applications and the conjectural relation-
ship between the primes dividing the denominator of the expression in the large
brackets and the denominators of the Eisenstein classes in (135)
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