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Preface

Finally this is now the book on ”Cohomology of Arithmetic Groups” which
was announced in my two volumes ”Lectures on Algebraic Geometry I and II”
[37],[38]. Originally the purpose of these two volumes was to assemble basic
material for this third volume. This applies especially to the chapters I-IV in
the first volume, where we provide the necessary background in homological
algebra.

During the years 1980-2000 I gave various advanced courses on number the-
ory, algebraic geometry and also on ” Cohomology of Arithmetic Groups” at the
university of Bonn. I prepared some notes for these lectures, because there was
essentially no literature covering this subject.

At some point I had the idea to use these notes as a basis for a book on
this subject, a book that introduced into the subject, but that also covered the
applications to number theory.

It was clear that a self-contained exposition needs some preparation, we need
some basic tools from homological algebra. Since the cohomology groups of
arithmetic groups are sheaf cohomology groups, and since the theory of sheaves
and sheaf cohomology is ubiquitous in algebraic geometry, I had the idea to
write a volume ” Lectures on Algebraic Geometry” where I discuss the impact of
sheaf theory and the cohomology of sheaves to algebraic geometry. This volume
eventually became the two volumes mentioned above and the writing of these
volume is at last partly responsible for the delay.

The applications to number theory concern the relationship between special
values of L-functions and the integral structure of the cohomology as module
under the Hecke algebra. On the one hand we can prove rationality statements
for special values (Manin and Shimura), on the other hand these special values
tell us something about the denominators of the Eisenstein classes. These con-
nections was already discussed in the original notes in 1985 for the special case
of Slo(Z). and the precise results in this special case are stated at the end of
Chapter 5 of this book.

For other groups than Gls this relationship between special values of L-
functions and the denominators of Eisenstein classes is mainly conjectural. It is
one of the central themes of this book. The conjectures concerning the denom-
inators imply congruences between eigenvalues of Hecke operators on different
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groups. It was extremely important for me that these conjectures on congru-
ences got some support by experimental calculations by G. van der Geer and
C. Faber and others.

The subject has some very interesting computational and experimental as-
pects. In principle there exists an algorithm which verifies the denominator
conjecture in any given case. In Chapter 3 we discuss the basic steps for writing
an algorithm which computes the cohomology and the Hecke endomorphisms
explicitly for any specific example. Hence we can check the conjecture in such
a situation. For the group Sly(Z) such explicit calculations have been done by
my former student X.-D. Wang in his Bonn dissertation and with the help of H.
Gangl I also wrote such an algorithm which is discussed in Chapter 3.

But to the best of my knowledge there are only very few other cases, where
we have such an algorithm, which works in practice. For instance it is very
desirable to have such an such an algorithm in the case of the group GSp4(Z)
to treat the issues raised in Chapter 9.

The denominator question is not only an interesting problem in itself, we will
also indicate how these denominators allow us to produce non trivial elements
in certain Selmer groups. This means that we can construct elements in various
Selmer groups which owe their existence certain divisibility of special L-values.
Such a connection between L-values and the structure of the Galois group is a
central theme in number theory and starts with Kummer and continues with
Herbrand, Ribet and Bloch-Kato.

I hope that this book can serve as an introduction into the field ” Cohomology
of Arithmetic Groups”, but since many questions are left open it may also give
a stimulus and motivation for doing interesting research.
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0.1 Introduction

This book is meant to be an introduction into the cohomology of arithmetic
groups, we also indicate some open questions and interesting research problems.

An arithmetic group I is a discrete subgroups of a Lie group G(R) C Gl,,(R)
whose matrix entries satisfy certain rationality and integrality condition. The
most basic example of such a group is the group S1,(Z) C Sl,(R). More gen-
erally we can start from an algebraic subgroup G/Q C Gl,/Q, for instance
the orthogonal group of a quadratic form. Then we get arithmetic groups
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I' ¢ G(Q) C G(R) if we impose certain integrality conditions on the matrix
coefficients of the elements of T

For any I'- module we can define the the cohomology groups H*(I', M) =
@q H9(T', M). These cohomology groups are abelian groups, which are defined
in terms of homological algebra, they are the derived functors of the functor
M — MP (= invariants under T'.)

We are mainly interested in the cohomology of a very special class of I'-
modules. We consider rational representations p : G/Q — Mg, where Mg
is a finite dimensional QQ-vector space. Then we can find finitely generated Z
modules M such that Mg = M ®z Q which are I'-invariant and hence I'-
modules.

Let Koo C G(R) be a maximal compact subgroup, for example SO(n) C
S1,(R). The quotient X = G(R)/K is a symmetric space, it carries a Rieman-
nian metric which is G(R)— invariant under the left action, it may have finitely
many connected components, each connected component is diffeomorphic to R¢,
hence contractible.

Our arithmetic group I' acts properly discontinuously on X we can form the
quotient I'\ X, this quotient is an orbifold. We can pass to a suitable subgroup
of finite index I'" C T such that I has no non trivial elements of finite order
(i.e. is torsion free). Then I'"\X is a Riemannian manifold, it is a so called
locally symmetric space. The map I"\X — I'\X is a finite covering with some
ramifications. If " has elements of finite order then T'\ X is only a Riemannian
orbifold. These spaces I'\X provide a very interesting class of spaces, which
are of interest for differential geometers, mathematicians interested in analysis
on manifolds and topologists. But they are in a sense of arithmetic origin and
therefore they are of interest for number theorists.

Our T module M endows the space T'\ X with a sheaf M (section 6.2) with

values in finitely generated abelian groups. If I' is torsion free then M is a
locally constant sheaf, or in other words a local system.

We introduce the sheaf- cohomology groups

H*(I\X, M) = @ HI(I'\X, M)

these cohomology groups are ”essentially” the same as the above group cohomol-
ogy groups, these two versions of cohomology become equal, if X is connected
and I' is torsion free. We will see that these cohomology groups are finitely
generated Z— modules.

We have some additional structure on these cohomology groups. In general
the quotient space T'\X is not compact. We have the Borel-Serre compacti-
fication i : T\X < I'\X, where i is a homotopy equivalence and I'\X is a
manifold (orbifold) with corners. The difference set 9(T'\X) := I'\X \ ['\ X is
the boundary of the Borel-Serre compactification. Moreover we will construct a

”tubular” neighbourhood N (I'\X) C T\ X of "infinity” (see (1.2.11)). We may
also consider the cohomology with compact supports H?(T'\ X, M). and we get
the fundamental long exact sequence

o HID\X, M) <5 HID\X, M)~ HIN (D\X), M) 5 HIFLT\X, M) = ...
(1)
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We also introduce the ”inner cohomology”
HI(T\X, M) := ker(r) = Im(i.).

A second structural ingredient is the Hecke algebra. We have an action of a
big algebra of operators acting on all these cohomology groups and the action
commutes with arrows in the fundamental exact sequence.

This is the so called Hecke algebra H( or Hr), it originates from the structure
of the arithmetic group I". The group I" has many subgroups I' of finite index,
for which we can construct two arrows

'\ X p:; I\ X. (2)

P2

Such a pair of arrows is also called a correspondence between on I\ X. Such a
correspondence, together with a suitable map u : pj (M) — p5(M), induces an
endomorphism in the cohomology. These endomorphisms act on all the modules

in the exact sequence above and are compatible with the arrows.

The basic objects of interest in this book are the various cohomology groups,
which appear in the fundamental exact sequence, together with the the action of
the Hecke algebra H on them.

It is my intention is to keep the exposition as elementary as possible, the
text should be readable by graduate students. We will need some background
material from algebraic topology and from homological algebra ( cohomology
and homology of groups, spectral sequences, sheaf cohomology). This material
is expounded in the first four chapters in [37], of course it can be found in many
other textbooks.

In the later chapters (starting from chapter 6) we also need results and
concepts from the theory of algebraic groups, the theory of symmetric spaces,
arithmetic groups, and reduction theory for arithmetic groups. Furthermore we
need results from the theory of representations of real semi-simple groups.

This material is somewhat more advanced, but in the in the first five chapters
all these concepts and results are explained in terms in terms of special examples.
Especially the sections on the general reduction theory and the Borel-Serre
compactification (section (1.2.11)) could be skipped in a first reading.

For the the Lie groups Slo(R) and Sly(C) and their arithmetic subgroups
Sly(Z) and Sly(Z[v/—1]) these prerequisite concepts are easy to explain and
we will do so in this book. For instance if I' = Sl3(Z) or more generally a
congruence subgroup of finite index the symmetric space Sly(R)/Ko is the
upper half plane H = {z € C | S(z) = y > 0} = SI3(R)/SO(2). The quotient
space I'\H is punctured Riemann surface. In this special case we have the T’
module M,, = {> a, XY™ "] a, € Z}. We will study the the cohomology
groups H'(I'\H, M,,) and their module structure under the Hecke algebra in
detail. We will prove some very specific results for these cohomology groups.

In Chapter four we discuss results from the theory of representations of the
Lie- groups Sly(R) and Sly(C), and we explain the impact of these results on
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the cohomology. With these results at hand we formulate the famous Eichler-
Shimura isomorphism, and we can sketch its proof. This Eichler-Shimura iso-
morphism also establishes the connection between H*(I'\H, /\;ln) ® C and the
space of modular forms of weight n+ 2. In the second half of this book in Chap-
ter 8 we discuss what is called ”Representation theoretic Hodge theory” and
the Eichler-Shimura theorem becomes a special case of a much more general
theorem.

On the other hand we will show that the results for the special groups
S1(Z), Sla(Z[V/d)), or suitable subgroups of finite index of them, have deep and
interesting consequences. We will discuss the Eisenstein cohomology for these
special groups and explain the interaction between special values of L-functions
and the structure of the cohomology. A prototype of such a result is the formula
for the denominator of the Eisenstein class (Theorem 5.1.2). It is clear that this
result should be a special case of a much more general theorem. At this moment
it is not clear how far these generalisations reach (See section 9.3.1).

In Chapter 5 we discuss some applications of these results to number theory,
and we have to accept some even more advanced topics. We concentrate on the
case that I' C Sl2(Z) and we will use the fact that- with a grain of salt - the
quotient T\H is the set of C-valued points the moduli space of elliptic curves
(with some additional structure). This is also explained in [37],[38].

Then for any prime ¢ the cohomology groups H' (I'\H, /\;ln)(X)Zg) are actually
{-adic etale cohomology groups, especially we get an action of the Galois-group

Gal(Q/Q) on these /— adic cohomology groups. This action commutes with the
action of the Hecke algebra. The insights into the structure of the cohomology
groups as Hecke modules provides insights into the structure of the Galois group

Gal(Q/Q), for instance we discuss the theorem of Herbrand-Ribet ([18], [77])

In Chapter 6 we study the cohomology groups of arithmetic groups in a more
general framework. We start from arbitrary reductive groups G/Q, we assume
some familiarity with the theory of semi -simple real groups and the theory of
symmetric spaces. There will be some overlap with the earlier chapters.

We use the adelic language, our locally symmetric spaces will be double coset
spaces SIGQ_ = G(Q)\G(A)/K.Ky. Here Ky is an open compact subgroup of
G(Ay), it the so called level subgroup. These locally symmetric spaces turn out
to be disjoint unions of the previous ones.

Again define sheaves M on these spaces, this will be sheaves with values
in the category of finitely generated Z-modules. We are interested in the var-
ious cohomology groups H?(ng,./\;l) in our fundamental exact sequence.(1)
We know that all these cohomology groups are finitely generated Z-modules.
(Raghunathan)

Here we have to work a little bit to define the integral cohomology and to
define the action of the Hecke operators on these integral cohomology groups.

In this context the Hecke -algebra becomes a restricted product of local
Hecke -algebras, this means Hy, = ®; H,. The local algebras H, have an
identity. The level subgroup Ky determines a finite set ¥ = Y, of ramified
primes. The sub algebra H*) = ®p€2 is a central sub-algebra of H . For an
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unramified prime p ¢ ¥ the structure of H,, is given by the Satake isomorphism.
(Theorem 6.3.1).

We may pass to the rational cohomology groups H7 (ng M® Q), these are
finite dimensional QQ vector space together with the action of H. We will show
in section 8.1.8 that the action of H on the inner cohomology H (SIG{f ,M®Q)
is semi simple, i.e. each A invariant submodule has a H-invariant comple-
ment. This implies that we can find a finite (normal) extension F/Q such that
Hp (ng ,M® F) is a direct sum of absolutely irreducible H module. Therefore
we get an isotypical decomposition

HY(SF, M F) = & H (S§, M ® F)(y)
WfGCth(G,Kf,M)

where the 7y denote isomorphism classes of absolutely irreducible H-modules.
Such an absolutely irreducible Hecke module is the restricted tensor product:
7y = ®@,mp. The restriction of 7y to H®) gives us a homomorphism 7(*) =
®p€2 : H(E) — Op.

After that we discuss some general facts concerning these cohomology groups
(Poincare duality, homology, adjunction formulas for Hecke operators) and we
have a section on the Gauss-Bonnet theorem.

Chapter 7 is somewhat philosophical. We have seen in the previous Chapter
4 and we will also see in Chapter 8 how the cohomology groups after tensoring by
C are related to the space of automorphic forms. In 1967 R. Langlands formu-
lated a visionary program concerning automorphic forms, this is the Langlands
program. In this Chapter 7 we discuss some of the aspects of this program in the
context of cohomology of arithmetic groups. The main player is the Langlands
dual group VG/Q.

The Langlands dual group VG /Q has the following purpose: For any abso-
lutely irreducible 7 which occurs non trivially in the cohomology H? (S}C(; . M
F) and any p ¢ ¥ the theorem of Satake provides a canonical semi-simple con-
jugacy class wy(m,) € G(F). For any representation r :¥ G/Q — GI(V) of
the algebraic group VG/Q we can attach an L-function which is defined as an
infinite product

1
L®)( = L(
(ms,7.9) Hdet Id — r(wy(mp))p~*|V) pl;[z (Tp, 7 5)

With some extra effort we can also attach local Euler factors L(m,,r,s) to
the ramified primes p € ¥ and then the L function is defined as L(ms,7,s) =

Hp L(mp,m, ).

A very bold prediction of the Langlands philosophy says that to any abso-
lutely irreducible 7 which occurs somewhere in the cohomology Hj(S% - M
F) and any representation r we can find a motive {M(7y,r)} such that we an
equality of L-functions

L(’/Tfara 5) = L(M(Trfar)as)'

It is one of the central themes in this book to investigate the relationship
between the L— functions L(ms,7,s) (analytic properties, special values) and
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the structure of the integral cohomology as modules under the Hecke-algebra,
a first instance is theorem 5.1.2.

In Chapter 8 we develop the analytic tools for the computation of the co-
homology. Here we do not use the language of adeles. We assume that the
I-module M is a C-vector space and it is obtained from a rational representa-
tion of the underlying algebraic group. In this case one may interpret the sheaf
M as the sheaf of locally constant sections in a flat bundle, and this implies
that the cohomology is computable from the de-Rham-complex associated to
this flat bundle. We could even go one step further and introduce a Laplace
operator so that we get some kind of Hodge-theory and we can express the
cohomology in terms of harmonic forms. Here we encounter serious difficulties
since the quotient space I'\ X is not compact. But we will proceed in a slightly
different way. Instead of doing analysis on '\ X we work on Coo (T\G(R)). This
space is a module under the group G(R), which acts by right translations, but
we rather consider it as a module under the Lie algebra g of G(R) on which also
the group K, acts, it is a (g, K)-module.

Since our module M comes from a rational representation of the underlying
group G, we may replace the de-Rham-complex by another complex

H*(g, Ko, Coo(T\G(R)) @ M),

this complex computes the so called (g, K)-cohomology. The general principle
will be to ”decompose” the (g, K)-module Coo (I'\G(R) into irreducible submod-
ules and therefore to compute the cohomology as the sum of the contributions
of the individual submodules. This is a group theoretic version of the clas-
sical approach by Hodge-theory. Again we have to overcome two difficulties.
The first one is that the quotient I'\G(R) is not compact and hence the above
decomposition does not make sense.

The second problem is that we have to understand the irreducible (g, K)-
modules and their cohomology.

The first problem is of analytical nature, we will give some indication how
this can be solved by passing to certain subspaces of the cohomology the so called
cuspidal or better the inner cohomology. The central result is the Theorem8.1.1.

This result is a partial generalisation of the theorem of Eichler-Shimura, it
describes the cuspidal part of the cohomology in terms of irreducible represen-
tations occurring in the space of cusp forms and contains some information on
the discrete cohomology, which is slightly weaker. (See proposition8.1.4) We
shall also give some indications how it can be proved.

We shall shall also state some general results concerning the second problem,
we briefly recall the construction of the irreducible modules with non trivial
(9, Koo) cohomology.

We discuss some consequences of Theorem8.1.1. It implies some vanishing
theorems in cohomology, it implies that the inner cohomology is a semi simple
module for the Hecke-algebra, and it helps to understand the K —-theory of
algebraic number theory.

In the next section we use reduction theory-or better the description of N
(T\X), M)- to discuss some growth conditions for cohomology classes, basically
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we show that cohomology classes which given by a weight can be represented
by differential forms which have essentially the same weight.

In the second half of this chapter we will resume the discussion of modular
symbols.

In the last chapter 9 we discuss the Eisenstein-cohomology. The theorem
of Eichler-Shimura describes only a certain part of the cohomology, the Eisen-
stein -cohomology is meant to fill the gap, it is complementary to the cuspidal
cohomology. These Eisenstein classes are obtained by an infinite summation
process, which sometimes does not converge and is made convergent by analytic
continuation.

In the beginning of this chapter 9 we recall the Borel-Serre compactification,
we discuss the spectral sequences induced by the stratification of the Borel-
Serre boundary. We continue by recalling the process of constructing Eisenstein
cohomology classes by infinite summations and analytic (or meromorphic) con-
tinuation. We already discussed Eisenstein cohomology in this book for the
the case of the special group Sla(R) in chapter 4. For the group Gly/K over a
number field we refer to [33]. We have the general theorem of Franke [24], but I
think that Franke’s theorem is still far away from a final answer, there are many
questions open and we have to exploit the various possibilities for applications
in number theory. In the rest of this chapter we give an outline of these possible
application, we formulate some results and we also formulate some speculative
ideas.

Under certain conditions (if the Manin Drinfeld principle is valid) these
Eisenstein cohomology classes are actually rational classes ( or classes over some
specific number field). Then we may for instance evaluate on certain cycles and
it happens that the result is a special value of an L-function divided by a period
(See for instance chapter 4. ) Hence we can prove rationality results for these
modified L— values. This allows us to prove rationality results for special L-
values. (See [35], [45]).

The central theme of this book is the understanding of the integral cohomol-
ogy H*® (SI% , /\;l) as a module under the Hecke algebra, for instance we want to
understand the denominators of the Eisenstein classes.

In Chapter 9 we formulate the general principle that under suitable con-
ditions this denominator should be related ( divisible?, equal ?) to a certain
special value of an L-function, which occurs in the constant term of the Eisen-
stein series. The prototype of such a relationship occurs in [40], (actually the
”abelian” case is discussed in chapter 5).

This principle ( or conjecture ) can be verified (or falsified) experimentally,
on the other hand there is a strategy to prove assuming certain finiteness for
mixed Grothendieck motives.



Chapter 1

Basic Notions and
Definitions

1.1 Affine algebraic groups over Q.

A linear algebraic group G/Q is a subgroup G C GL,,, which is defined as the
set of common zeroes of a set of polynomials in the matrix coefficients where in
addition these polynomials have coefficients in Q . Of course we cannot take just
any set of polynomials the set has to be somewhat special before its common
zeroes form a group. The following examples will clarify what I mean:

1.) The group GL, is an algebraic group itself, the set of equations is empty.
It has the subgroup Sl,, C GL,,, which is defined by the polynomial equation

Sl, = {z € GL,, | det(z) = 1}

2.) Another example is given by the orthogonal group of a quadratic form
n
flar,...,z,) = ZCWC?
i=

where a; € Q and all a; # 0 (this is actually not necessary for the following).
We look at all matrices

a1 .o Qip

ap1 ... Qnn

which leave this form invariant, i.e.

flaz) = f(z)
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for all vectors x = (z1,...,2,). This defines a set of polynomial equations for
the coefficient a;; of «.
These a form a group, this is the linear algebraic group SO(f).

3.) Instead of taking a quadratic form — which is the same as taking a
symmetric bilinear form — we could take an alternating bilinear form

<23y> :<x17"'7x2n7y1a"'y2n> =

n

Z(‘rlyi+n — Tipn¥i) = f(z,y)-

i=1
This form defines the symplectic group:
Spn = {a € GLa, | (az,oy) = (z,9)} .

An Important remark: The reader may have observed tha we did not specify
a field (or a ring) from which we take the entries of the matrices. This is done
intentionally, because we may take the entries from any commutative ring R
which contains the rational numbers Q and for which 1 € Q is the identity
element (this means that R is a Q— algebra). In other words: for any algebraic
group G/Q C GL,, and any Q algebra R we may define

G(R) C GL,(R)

as the group of those matrices whose coeflicients satisfy the required polynomial
equations.
Adopting this point of view we can say that

A linear algebraic group G/Q defines a functor from the category of Q-
algebras (i.e. commutative rings containing Q) into the category of groups.

4.) Another example is obtained by the so-called 1restriction of scalars. Let
us assume we have a finite extension K/Q, we consider the vector space V = K™.
This vector space may also be considered as a Q-vector space Vj of dimension
n[K : Q] = N. We consider the group

GLN/Q.
Our original structure as a K-vector space may be considered as a map
© : K — Endg(W),

and the group GL,(K) is then the subgroup of elements in GLy(Q) which
commute with all the elements of O(z),x € K. Hence we define the subgroup

G/Q = Rk o(GLn) = {a € GLy | & commutes with ©(K)} . (1.1)
Then G(Q) = GL,(K). For any Q-algebra R we get
G(R) = GL,(K ®q R).

This can also be applied to an algebraic subgroup H/K — GL,/K, ie. a
subgroup that is defined by polynomial equations with coefficients in K.
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Our definition of a linear algebraic group is a little bit provisorial. If we
consider for instance the two linear algebraic groups

1 =z
aie = {(5 1)

1 0
Go/Q = 0 1 C GL3

0 0

then we would like to say, that these two groups are isomorphic. They are
two different “realizations” of the additive group G,/Q. We see that the same
linear algebraic group may be realized in different ways as a subgroup of different
GLN’S.

Of course there is a concept of linear algebraic group which does not rely
on embeddings. The understanding of this concept requires a little bit of affine
algebraic geometry. The drawback of our definition here is that we cannot define
morphism between linear algebraic group. Especially we do not know when they
are isomorphic.

We assert the reader that the general theory implies that a morphism be-
tween two algebraic groups is the same thing as a morphism between the two
functors form Q-algebras to groups. In some sense it is enough to give this
functor. For instance, we have the multiplicative group G,,/Q given by the

functor
R — R*

and the additive group G,/Q given by R — R*.
We can realise (represent is the right term) the the group G,,/Q as

Gm/Q = {((t) t91>} c Gl

1.1.1 Affine group schemes

AGS

We say just a few words concerning the systematic development of the theory
of linear algebraic groups. This is not directly used in the next few chapters but
it will be useful in Chapter 8.

For any field & an affine k-algebra is a finitely generated algebra A/k, i.e.
it is a commutative ring with identity, containing k, the identity of k is equal
to the identity of A, which is finitely generated over k as an algebra. In other
words

A= k[xl,xg,...,xn] = k[Xl,XQ,...,Xn]/I7

where they X; are independent variables and where I is a finitely generated
ideal of polynomials in k[X7,..., X,].

Such an affine k-algebra defines a functor from the category of k— algebras to
the category of sets, namely B — Homy (A, B). A structure of a group scheme
on A/k consists of the following data:

a) A k homomorphism m : A - A ®; A (the comultiplication)
b) A k-valued point e : A — k (the identity element)



4 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

c¢) An inverse inv : A — A,

which satisfy the following requirement: For any k-algebra B our homomor-
phism m induces a map

‘m : Homy (A ®y A, B) = Homy(A, B) x Homy(A, B) — Homy (A, B)

and we require that this induces a group structure on Homyg(A, B). We also
require that the k valued point e is the identity and that inv yields the inverse.

We leave it to the reader to figure out what this means for m, e, inv, especially
what does associativity mean (Hint: Choose B = A).

An affine k-algebra A together with such a collection m,e,inv is called
an affine group scheme G/k = (A, m,e,inv). The k-algebra A is the coordi-
nate ring, or the ring of regular functions of the group scheme. We will de-
note it by A(G). The group of B/k valued points will be denoted by G(B) =
Homy (A(G), B). For g € G(B) and f € A(G) ® B we write g(f) = f(g), we
evaluate the regular function at the point g € G(B).

The group G,, has the coordinate ring A(G,,) = k[t,t~1],m(t) = t®t, e(t) =
1,inv(t) = t~! and the coordinate ring of the additive group G, is A(G,) = k[z
and m(z) =z® 1+ 1®z,e(x) =0,inv(z) = —z.

The group scheme Gl,,/k has the coordinate ring

A=kl eyl/(det(ig)y —1); 1<4,5,<n

and the comultiplication is given by
n
m(wig) =Y Tiw ® T, (1.2)
v=1

It is clear what a homomorphism between affine group schemes is. A ho-
momorphism ¢ : G — H is surjective (resp. injective) if the homomorphism
' A(H) — A(G) is injective (resp.) surjective.

A rational representation of G/k is a homomorphism of group schemes p :

G/k = Gl,/k.

If for instance V/k is a vector space of dimension n then we can define
the group scheme GI(V), if we choose a k-basis on V, then we can identify
GI(V)/k = Gl, /k. If G/k is any affine group scheme, we say that V/k is a G-
module if we have a homomorphism p : G/k — GI(V). Hence we know that for
any k -algebra B/k we have a homomorphism p(B) : G(B) — GI(V ® B). Of
course this is functorial in B/k, i.e. a homomorphism 1 : B/k — B’/k induces
a homomorphism G(B) — G(B’).

We may also consider actions of G/k on vector spaces W/k which are not
of finite dimension, here we require a certain finiteness condition. As before we
have an action

pp:G(B)x (W&B) =W ® B (1.3)
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which is functorial in B/k. But now we assume in addition that for any w € W
there is a finite set of elements wi,ws,...,wy such that for any B/k and any
g9 € G(B)

d
pe(g)w = Zwl ® b;(g) with b; € A(G).
i=1

It suffices to check this for the "universal” element Id € Homy(A(G), A(G)) =
G(A(@Q)), this means we have to find wq, wa,...,wq € W such that

d
pae)(Id)w =" h; @ w; with h; € A(G).
i=1

This implies of course that the k-subspace W’ = >~ kw; which is generated by
these w; is invariant under the action p and it contains w. Hence we see that our
k-vector space W is a union of finite dimensional subspaces which are invariant
under the action of G/k.

Therefore we say that a vector space W/k with an action of G/k is a G-
module if it satisfies the above finiteness condition.

The ring of regular functions A(G) is a G X G module: For (g1,¢2) €
G X, G(B) = G(B) x G(B) the action and f € A(G),z € G(B) the action is
defined by
plgr,92)f(2) = flg1 ' wg).

We have to verify the finiteness condition. To do this we write a formula for
o(91,92)f € A(G)®B. We have the comultiplication m : A(G) — A(G)®kA(G),
we apply it to the first factor on the right hand side and get m1 20m : A(G) —
A(G) ®r A(G) ®% A(G). Then

migom(f) = h, ®h,®h
I

Then by definition

plar.g2)f = > hy @ inv () (91! (g2)

and this says that p(g1,92)f lies in the submodule generated by the h,,.

Of course we may restrict the action to each the two factors, we simply
choose g1 = e,-we get the action by right translations- or we choose g2 = e, this
gives the action by left translations.

It is not difficult to show that for an affine group scheme we can find a
collection of elements eg, €1, ...,e, € A(G) such that e? = e; Vi, e;e; =0 Vi # j
such that 14 = ), e; and such that the subalgebras A(G)e; are integral. Then
there is exactly one element (say eg) such that e(eg) = 1. Then A(G)eg is a
subgroup scheme, it is called the connected component of the identity. (See for
instance [38], Chap. 7, 7.2)

A group scheme G/k is connected, if its affine algebra A(G) = A(G)ey is
integral.
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Base change

If we have a field L D k and a linear group G/k then the group G/L = G x;, L
is the group over L where we forget that the coefficients of the equations are
contained in k. The group G xj, L is the base extension from G/k to L.

1.1.2 Tori, their character module,...

labelCharmod A special class of algebraic groups is given by the tori. An al-
gebraic group T'/k over a field k is called a split torus if it is isomorphic to a
product of G, /k-s,

T/k = GY,.
The algebraic group T'/k is called a torus if it becomes a split torus after a
suitable finite extension of the ground field, i.e we have T xy L — G’ /L.

If we take an arbitrary separable finite field extension L/k we may consider
the functor

R— (L® R)*.

It is not hard to see that this functor can be represented by an algebraic
group over k, which is denoted by Ry /i(Gn, /L) and called the Weil restriction
of G,,/L. We propose the notation

Ryi(Gm/L) = GL/* (1.4)

The reader should try to prove that for a finite extension L/L which is normal

over Q we have : y
GL/* %) L =5 (G,,/L)L*]

and this shows that GTLn/ ¥ is a torus .

A torus T'/k is called anisotropic if is does not contain a non trivial split torus.
Any torus C/k contains a maximal split torus S/k and a maximal anisotropic
torus C7/k. The multiplication induces a map

m:SxC; —C

this is a surjective (in the sense of algebraic groups) homomorphism whose
kernel is a finite algebraic group. We call such map an isogeny and we write
that C = S - C1, we say that C is the product of S and C; up to isogeny.

We give an example. Our torus Ry (G /L) contains G, /k as a subtorus:
For any ring R containing k we have R* = G,,(R) C (R® L)*. On the other
and we have the norm map Nz, : (R® L)* — R* and the kernel defines a
subgroup

R (Gm/L) € Ry (G /L)

and it is clear that

m: Gy X RY), (G /L) = Rp(Gm/L)
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has a finite kernel which is the finite algebraic group of [L : k]-th roots of unity.
For any torus 1" we define the character module as the group of homomor-
phisms

X*(T) = Hom(T,Gnpy).. (1.5)

If the torus is split, i.e. T = GJ, then X*(T) = Z" and the identification is
given by (ni1,na,...,n.) = {(z1,22,...,2,) — 25> ... 2" }. We write the
group structure on X*(7') additively, this means that (y1 +72)(x) = y@)72(z).

It is a theorem that for any torus T'/k we can find a finite, separable, normal
extension L/k such that T Xy L splits. Then it is easy to see that we have an
action of the Galois group Gal(L/k) on X*(T x L) = Z". If we have two tori
T, /K, T,/ K which split over L

Homk(Tl,Tg) ;> Hom Gal(L/k)(X*(TQ Xk L),X*(T1 Xk L)) (16)

To any Gal(L/k)— action on Z" we can find a torus T'/k which splits over L
and which realises this action.

A homomorphism ¢ : Ty /k — Ty /k is called an isogeny if dim(7}) = dim(73)
and if '¢ : X*(Ty) — X*(T1) is injective.

We also define the cocharacter module Hom(G,,,T). If the torus /k = GJ,
then every cocharacter is the form z — (z™,2"2,... 2" It is clear that we
have a pairing

<, >: X.(T) x X*(T) — Z which is defined by y(x(t)) = t<¥"> (1.7)

Semi-simple groups, reductive groups,.

An important class of linear algebraic groups is formed by the semisimple and
the reductive groups. (For a general reference [92].) We do not want to give the
precise definition here. Roughly, a linear group is reductive if it is connected
and if it does not contain a non trivial normal subgroup which is isomorphic to
a product of groups of type G,. A group is called semisimple, if it is reductive
and does not contain a non trivial torus in its centre.

A semi-simple group G/k is simple, if it does not contain any normal sub-
group of dimension > 0. Any semi-simple group is up to isogeny a product of sim-
ple groups. Any semi simple group G/Q contains a maximal torus T/Q C G/Q
such a maximal torus is equal to its own centraliser. A semi simple group is
split if it contains a split maximal torus Tp/k, i.e. a maximal torus which is
split. If T'/k C G/k is any (maximal) torus, then there is a finite extension L/Q
such that T xg L is split, and hence G xg L is also split.

For example the groups Sl,, Sp,, are (split) semi simple, the groups SO(f)
are semi-simple provided n > 3. (See next subsection 1.2.8 ). The groups
Gl,, and especially the multiplicative group Gl; /Q = G,,,/Q are reductive. Any
reductive group G/Q (or over any field of characteristic zero) has a central torus
C'/Q and this central torus contains a maximal split torus S. The derived group
G /Q is semi simple and we get an isogeny

m:GY xC; xS =G
or briefly G = G . ¢ - S.
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If for instance G = Rp,g(Gl,/L) then GV = R; o(Sl,/L) and C =
R1/0(G,, /L) and this yields the product decomposition up to isogeny

G=aW.pW

L/Q(Gm/[’) “Gm. (1~8)

For Gl,,/Q the central torus is the group G,,/Q the center of Sl,,/Q is the finite
group group scheme p, of of n-th roots of unity. The coordinate ring of ., is
the finite algebra A(u,) = Q[t]/(t™ — 1). Of course we may replace Q by any
ring commutative ring R.

We can form the quotient group scheme

this is also the adjoint group of Gl,,/Q and Sl,,/Q, i.e.
Ad(Gl,) = PG, = Gl,/G,, = SL,,/ . (1.10)

We could certainly drop the assumption that a reductive group should be
connected, we could simple say that G/Q is reductive ( semi-simple...) if its
connected component of the identity is reductive (semi-simple...).

Another important class of semi simple groups is given by the quasisplit
groups (see also section 1.2.10. A group G/Q is called quasisplit if it contains
a Borel subgroup B/Q C G/Q. A Borel subgroup B/Q is a maximal solvable
subgroup, it contains a maximal torus T/Q C B/Q, this torus is also a maximal
torus in G/Q. Then B = U x T is the semidirect product of this torus and the
unipotent radical U/Q. We discuss a special example which is of great relevance
for our subject.

Let L/Q be a quadratic extension, let us denote the non trivial automor-
phism by a — a. Let V/L be a finite dimensional vector space together with a
hermitian form h: V xp V — L, i.e. we have

h(v,w) = h(w,v); h(Au + pv,w) = Ah(u, w) + ph(v, w) Yu,v,w € V. A\, u € L.

Furthermore we assume that h is non degenerate, i.e. for any v € Vv # 0
we find a w € V such that h(v,w) # 0. Then we can define the group SU(h)/Q :
For any commutative Q -algebra R we have

SU(R)(R) ={g € SV ®q R | h(gv, gw) = h(v,w) and det(g) =1} (1.11)

Then SU(h)/Q is a semi simple group over Q. We can also define the unitary
group U(h)/Q where we drop the condition that the determinant is one and the
group of hermitian similitudes GU(h) where

GU(R)(R) ={g € GI(V ®q R | h(gv, gw) = d(g)h(v,w) Yv,w € V ®q 1?}, )
1.12

here d : GU(h) — R /g(Gy,) is a homomorphism, the kernel of d is the group
U(h).

We consider the special case where

VzLel@---@Len@(Leo)GBLfn@-“@Lfl
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the summand Leg is left out if dimy V' is even. The hermitian scalar product is
given by

hl(ei,fi) = hl(fi,ei) =1Vi= 1, oy (hl(eo,eo) = 1)

and all other scalar products equal to zero. Then SU(h;) is a quasi split semi
simple group over Q: The elements ¢t € GI(V') for which

t={t:e; > tiegit: fi & (t:eo — toeg with tofg = 1)}

are the Q-valued points of a maximal torus 77/Q C SU(hy). The vector space
V/L comes with a natural flag

F:={0}CLeyC---C®Ley@---® Le, C (Ley @ ... Le, + Leg) C
(Ler®...Le, ®Leg® Lfy,) C...(Ley @ - @ Le, ®Leg ® Lf, ®---® Lfa) CV
(1.13)

Now the subgroup B;/Q C SU(hy)/Q which fixes F is a maximal solvable
subgroup in SU(hy).

1.1.3 The Lie-algebra

We need some basic facts about the Lie-algebras of algebraic groups.

For any algebraic group G/k we can consider its group of points with values
in kle] = k[X]/(X?). We have the homomorphism k[e] — k sending € to zero
and hence we get an exact sequence

0—g— G(k[e]) — G(k) — 1.

The kernel g is a k-vector space, if the characteristic of k is zero, then its
dimension is equal to the dimension of G/k. It is denoted by g = Lie(G).

Let us consider the example of the group G = SO(f), where f: V xV = k
is a non degenerate symmetric bilinear form. In this case an element in G(k[e])
is of the form Id + €A, A € End(V) for which

f((d + eA)v, (Id + eA)w) = f(v, w)
for all v,w € V. Taking into account that €2 = 0 we get
e(f(Av,w) + f(v, Aw)) = 0,

i.e. A is skew with respect to the form, and g is the k-vector space of skew
endomorphisms. If we give V a basis and if f = 3 27 with respect to this basis
then this means the the matrix of A is skew symmetric.

If we consider G = Gl,,/k then g = M,,(k), the Lie-bracket is given by

(A,B) —» AB — BA (1.14)
We have some kind of a standard basis for our Lie algebra

g= ékH o P kEi; (1.15)
=1

4,5,1#]
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where H; (resp.E; ;) are the matrices

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
00 - 0 0 00 1 0
H=1g 0 0 1 o0 ol™PFi=|og0o 0 0 0 o
00 0 ... .0 00 0 ... 0
00 0 0 0 0 00 0 0 0 0

and the only non zero entries (=1) is at (i,7) on the diagonal (resp. and (i, 7)
off the diagonal.)

For the group Sl,/k the Lie-algebra is g(®) = {A € M, (k)| tr(A) = 0} and
again we have a standard basis

n—1
g = EDIC(Hz —Hip1) o @ kE; (1.16)
i=1 irjri]

If p: G — GI(V) is a rational representation of our group G/k then it is clear
from our considerations above that we have a ”derivative” of this representation

dp : g = Lie(G/k) — Lie(GI(V)) = End(V) (1.17)

this is k-linear.

Every group scheme G/k has a very special representation, this is the the
Adjoint representation. We observe that the group acts on itself by conjugation,
this is the morphism

Inn:Gx,G—=G

which on T valued points is given by
Inn(g, g2) = g192(g1) "
This action clearly induces a representation
Ad: G/k — Gl(g)

and this is the adjoint representation. This adjoint representation has a deriva-
tive and this is a homomorphism of k vector spaces

Dag =ad: g — End(g).
We introduce the notation: For 77,75 € g we put
[Ty, T3] := ad(T1)(T?).
Now we can state the famous and fundamental result

Theorem 1.1.1. The map (Th,T2) — [T1, T5] is bilinear and antisymmetric. It
induces the structure of a Lie-algebra on g, i.e. we have the Jacobi identity

[Th, [Tz, T5]] + (T3, [T5, T1]] + (15, [T1, T2]] = 0.
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We do not prove this here. In the case G/k = GI(V') and T}, T> € Lie(Gl(V)) =
End(V) we have [T}, T3] = T1T> — T>T) and in this case the Jacobi Identity is
a well known identity.

On any Lie algebra we have a symmetric bilinear form (the Killing form)
B:gxg—k (1.18)
which is defined by the rule

B(Ty,T,) = trace(ad(Ty) o ad(T»))

A simple computation shows that for the examples g = Lie(Gl,) and g(©) =
Lie(Sl,) we have

B(Tth) =2n tI‘(TlTQ) -2 tr(Tl) tI‘(Tg) (].].9)

we observe that in case that one of the T; is central, i.e.= uld we have B(Ty,T3) =
0. In the case of g(») the second term is zero.

It is well known that a linear algebraic group is semi-simple if and only if
the Killing form B on its Lie algebra is non degenerate.

1.1.4 Structure of semisimple groups over R and the sym-
metric spaces

We need some information concerning the structure of the group Go, = G(R)
for semisimple groups over G/R. We will provide this information simply by
discussing a series of examples.

Of course the group G(R) is a topological group, actually it is even a Lie
group. This means it has a natural structure of a Co, -manifold with respect to
this structure. Instead of G(R) we will very often write Goo. Let G2 be the
connected component of the identity in Go,. It is an open subgroup of finite
index. We will discuss the

Theorem of E. Cartan: The group G2, always contains a maximal com-
pact subgroup K., C G% and all maximal compact subgroups are conjugate
under G%,. The quotient space X = G /K, is again a Coo-manifold. It is dif-
feomorphic to an RN and carries a Riemannian metric which is invariant under
the operation of GO from the left. It has sectional curvature < 0 and there-
fore any two points can be joined by a unique geodesic. The maximal compact
subgroup K C G is connected and equal to its own normalizer. Therefore the
space X can be viewed as the space maximal compact subgroups in GY_.

For any maximal compact subgroup K, C G, exists an unique automor-
phism ©, with ©2 = e such that K, = {g € G |0(g9) = g}, this is the
Cartan involution corresponding to K,. The Cartan involutions are in one-to
one correspondence with the maximal compact subgroups.



12 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

A Cartan involution ©, induces an involution also called ©, on the Lie
algebra ggr of G and we get a decomposition into + eigenspaces

g= £, D Pa; g = {U € g‘e)w(U) = U} P = {V € g|®I(V) = _V}

where of course ¢, is the Lie algebra of K,. The differential of the action of
G on G(R)/K, provides an isomorphism D,, : p, — T:X (then tangent space
at x). For V1,V € p, we have [V1,Va] € €, the map R : p, X p, — &, is the
curvature tensor. The R-vector space g. := £, + /—1p, C g ®g C is a Lie
algebra, for Uy + /—1V1,Us + /—1Va € g. we get for the Lie-bracket

[Ur 4+ V=1V1,Us + V=1Va] = [U1,Us] — V1, Va] +V—=1([Uy, Va] + [Us2, V1]) € g

To this Lie algebra g. corresponds an algebraic group G./R which is a R-form
of G/R, the group G.(R) is compact. The group G./R is called the compact
dual of G/R. On G./R we have only one Cartan involution © = Id.

This theorem is fundamental. To illustrate this theorem we consider a series
of examples:

The groups Sl;(R) and Gl,(R):

The group Slyz(R) is connected. If K C Slz(R) is a closed compact subgroup,
then we can find a positive definite quadratic form

f:R" R,

such that K C SO(f,R). since the group SO(f,R) itself is compact, we have
equality. Two such forms f1, fo define the same maximal compact subgroup if
there is a A > 0 in R such that A\f; = fo. We say that f; and f; are conformally
equivalent.

This is rather clear, if we believe the first assertion about the existence of f.
The existence of f is also easy to see if one believes in the theory of integration
on K. This theory provides a positive invariant integral

C(K) — R
v — /go(k)dk
K
with [ > 0 if ¢ > 0 and not identically zero (positivity), [ ¢(kko)dk =

[ p(kok)dk = [ ¢(k)dk (invariance).
To get our form f we start from any positive definite form fy on R™ and put

flz) = /Kfo(/@)dk.

A positive definite quadratic form on R™ is the same as a symmetric positive
definite bilinear form. Hence the space of positive definite forms is the same as
the space of positive definite symmetric matrices

X ={A=(a;) | A="A,A>0}.
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Hence we can say that the space of maximal compact subgroups in Slz(R) is
given by R
X = X/RY,.

Tt is easy to see that a maximal compact subgroup K C Slz(R) is equal to its
own normalizer (why?). If we view X as the space of positive definite symmetric
matrices with determinant equal to one, then the action of Slz(R) on X =
Sly(R)/K is given by

(9, 4) — g Ay,

and if we view it as the space of maximal compact subgroups, then the action
is conjugation.

There is still another interpretation of the points x € X. In our above inter-
pretation a point was a symmetric, positive definite bilinear form <, >, on R"
up to a homothety. From this we get a transposition g — *g, which is defined
by the rule < gv,u >,=< v, gu >, and from this we get the involution

0,9 ()7 (1.20)
Then the corresponding maximal compact subgroup is

Ky = {g € Sln(R)|O4(9) = g} (1.21)

This involution ©, is a Cartan involution, it also induces an involution also
called O, on the Lie-algebra and it has the property that (See 1.18)

(u,v) — B(u,0.(v)) = Bo, (u,v) (1.22)

is negative definite. This bilinear form is K, invariant. All these Cartan invo-
lutions are conjugate.

If we work with Gl,(R) instead then we have some freedom to define the
symmetric space. In this case we have the non trivial center R* and it is
sometimes useful to define

X = Gl,,(R)/SO(R) - R%,, (1.23)

then our symmetric space has two components, a point is pair (©,,¢) where ¢
is an orientation. If we do not divide by RZ, then we multiply the Riemannian
manifold X by a flat space and we get the above space X.

A Cartan involution on Gl,(R) is an involution which induces a Cartan
involution on Sl, (R) and which is trivial on the center.

Proposition 1.1.1. The Cartan involutions on Gl,(R) are in one to one cor-
respondence to the euclidian metrics on R™ up to conformal equivalence.

Finally we recall the Iwasawa decomposition. Inside Gl,(R) we have the
standard Borel- subgroup B(R) of upper triangular matrices and it is well known
that

Gl.(R) = B(R) - SO(R) - R%, (1.24)

and hence we see that B(R) acts transitively on X.
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The compact dual of Sl,(R)

If G/R is a semi simple group, then G./R is a R-form of G/R. Therefore we
find a cohomology class & € H!C/(R, Aut(G)) corresponding to G.. It is clear
from the Theorem of Cartan how we get a cocycle representing this class: We
choose a Cartan involution © € Aut(G), the Galois group Gal(C/R) is cyclic of
order 2 let ¢ be the generator (the complex conjugation). Then ¢ — co© yields
a l-cocycle in C1( Gal(C/R), Aut(G)(C)). (Lemma 1.2.1 ) and this 1-cocycle
represents the class &..

This means for the group Sl,,/R that
Ge(R) = {g € SL.(O)le(‘g™") = g}
and if we go back to the usual notion and write c(g) = g then we get
Ge(R) = {g € 81,(C)['gg = 1d} = SU(n)

Here of course SU(n) = SU(h.) where h.(z1,22,...,2n) = Y .y 2% is the
standard positive definite hermitian form on C™.

We know that for G/R = Sl,,/R and n > 2 the Cartan involution © is the
generator of Aut(G)/Ad(G) and hence it is clear that . is not in the image of
H'C/(R,Ad(G)) — H'C/(R, Aut(G@)). This means that in this case G./R =
SU(n)/R is not an inner R -form of Sl, /R, in turn this also means that Sl,,/R
is not an inner R -form of SU(n)/R.

In this context the following general proposition is of importance

Proposition 1.1.2. A semi simple group scheme G/R is an inner R form of
its compact dual G./R if an only if

a) The Cartan involution © of G/R is an inner automorphism of G/R.

b) The group G/R has a compact mazimal torus T./R C G/R.

Give a name to this class of groups 7 Examples?

The Arakelow- Chevalley scheme (Gl,,/Z, ©)

We start from the free lattice L = Zey @ Zes @ - - - @ Ze,, and we think of Gl,,/Z
as the scheme of automorphism of this lattice. If we choose an euclidian metric
<, >on L®R, then we call the pair (L,< , >) an Arakelow vector bundle.
From the (conformal class of) metric we get a Cartan involution ©. on Gl,(R),
and the pair (Gl,,/Z, ©) is an Arakelow group scheme.

We may choose the standard euclidian metric with respect to the given basis,
ie. < e;,e; >= 0;;. The the resulting Cartan involution is the standard one:
B0 : g — (tg)~!. This pair (Gl,/Z, ) is called an Arakelow- Chevalley scheme.
(In a certain sense the integral structure of Gl,,/Z and the choice of the Cartan
involution are ”optimally adapted”)

In this case we find for our basis elements in (1.15)

B@o (HZ,HJ) = —277,61"]' + 2; B@o (Ei’j, Ek,l) = —2%(51"]65%1 (125)

hence the E; ; are part of an orthonormal basis.

We propose to call a pair (L,< , >,) an Arakelow vector bundle over
Spec(Z)U{oo} and (Gl,,, ©,) an Arakelow group scheme. The Arakelow vector
bundles modulo conformal equivalence are in one-to one correspondence with
the Arakelow group schemes of type Gl,.
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The group S1,(C)

We now consider the group G/R whose group of real points is G(R) = Sl;(C)
(see 1.1 example 4)).

A completely analogous argument as before shows that the maximal compact
subgroups are in one to one correspondence to the positive definite hermitian
forms on C™ (up to multiplication by a scalar). Hence we can identify the
space of maximal compact subgroup K C G(R) to the space of positive definite
hermitian matrices

X:{A|A:tZ, A>0, detAzl}.
The action of Sl;(C) by conjugation on the maximal compact subgroups becomes
A—gAlg

on the space of matrices.

The orthogonal group:

The next example we want to discuss is the orthogonal group of a non degenerate
quadratic form

2 2 2 2
f@y, .. xn) =27+ 4o, — T — - — T,

since at this moment we consider only groups over the real numbers, we may

assume that our form is of this type. In this case one has the usual notation

SO(f,R) = SO(m,n —m).

Of course we can use the same argument as before and see that for any maximal
compact subgroup K C SO(f,R) we may find a positive definite form

¥ :R" — R

such that K = SO(f,R) N SO(¥,R). But now we cannot take all forms 1, i.e.
only special forms 1) provide maximal compact subgroup.

We leave it to the reader to verify that any compact subgroup K fixes an
orthogonal decomposition R™ = V; @ V_ where our original form f is positive
definite on V and negative definite on V_. Then we can take a 1) which is equal
to f on V4 and equal to —f on V_.

Exercise 3 a) Let V/R be a finite dimensional vector space and let f be a symmetric
non degenerate form on V. Let K C SO(f) be a compact subgroup. If f is not definite
then the action of K on V is not irreducible.

b) We can find a K invariant decomposition V.= V_ @& V. such that f is negative
definite on V_ and positive definite on V.

In this case the structure of the quotient space G(R)/K is not so easy to
understand. We consider the special case of the form

242l —ak = (@1, Tag).
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We consider in R"*! the open subset
X_={v=(21...2p41) | flv) <0}.
It is clear that this set has two connected components, one of them is
Xt ={ve X_|zp >0}

Since it is known that SO(n, 1) acts transitively on the vectors of a given length,
we find that SO(n, 1) cannot be connected. Let GY C SO(n, 1) be the subgroup
leaving X invariant.

Now it is not to difficult to show that for any maximal compact subgroup
K C GY% we can find a ray R%-v C X which is fixed by K.

(Start from vy € X(_+) and show that RYjKwvg is a closed convex cone in

X", It is K invariant and has a ray which has a “centre of gravity” and this
is fixed under K.)

For a vector v = (z1,...,Zp41) € X(_+) we may normalize the coordinate
ZTp4+1 to be equal to one; then the rays Riov are in one to one correspondence
with the points of the ball

(o)

D,= {(I1,~-~,$n)|ﬂf%+...+xi< 1} Cx(_+).

This tells us that we can identify the set of maximal compact subgroups K C
GY, with the points of this ball. The first conclusion is that GY /K ~ D" is
topologically a cell (diffeomorphic to R™). Secondly we see that for a v € X
we have an orthogonal decompositon with respect to f

R™! = () + (v)",

and the corresponding maximal compact subgroup is the orthogonal group on
(v)*.
Give Cartan Involutions?

1.1.5 Special low dimensional cases
1) We consider the ( semi-simple ) group Sla(R). It acts on the upper half plane
H={z]2z€C,3(z) >0}

by

az+b a b
(9,2) — w1 g= (c d) € Slx(R).

It is clear that the stabiliser of the point i € H is the standard maximal compact

subgroup .
- - cosp  sing
Koo = 50(2) = { (— sing cos np) } ’

Hence we have H = Sl3(R)/K. But this quotient has been realized as the
space of symmetric positive definite 2 x 2-matrices with determinant equal to

one
Y1 1 2

r = —x7=1y1 >0,.

{<fc1 y2)|y1y2 o }
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It is clear how to find an isomorphism between these two explicit realizations.
The map
<y1 IE1> . Z‘JF=’171’
T1 Y2 Y2
is compatible with the action of Sly(R) on both sides and sends the identity
10 L
<O 1) to the point <.
If we start from a point z € H the corresponding metric is as follows: We
identify the lattices (1,2) = {a + bz | a,b € Z} = Q to the lattice Z?> C R?

by sending 1 — () and 2 — (). The standard euclidian metric on C =

1
R? induces a metric on Q C C, and this metric is transported to R? by the
identification Q ® R — R2.

We may also start from the (reductive) group Glz(R), it has the centre
C(R) = {(8 55)) }. Let C(R)(® be the connected component of the identity of

C(R).
In this case we define K., = SO(2) x C(R)(®. Then the quotient

Gl(R)/K =HUH_
where H_ is the lower half plane.

2) The two groups Sly(R) and PSIy(R)(®) = SIy(R)/{£Id} give rise to the
same symmetric space. The group PSla(R) acts on the space My(R) of 2 x 2-
matrices by conjugation (the group Gla(R) acts by conjugation and the centre
acts trivially) and leaves invariant the space

{A € My(R) | trace(A) = 0} = M(R).
On this three-dimensional space we have a symmetric quadratic form
B : M)R)—R

1
B : A~ B trace (A?)

and with respect to the basis

i (0 )= D= (5% ). am

this form is 22 + 23 — 22.

Hence we see that SO(MJ(R), B) = SO(2,1), and hence we have an isomor-
phism between PSly(R) and the connected component of the identity G C
SO(2,1). Hence we see that our symmetric space H = Sl5(R)/ K+ = PSl2(R)/K «
can also be realized (see ........ ) as disc

D = {(z1,22) | x? —l—x% <1}

where we normalized 3 = 1 on X(_+) asin ....... .
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The group Sl;(C)

Recall that in this case the symmetric space is given by the positive definite
hermitian matrices

A—{(yzl ;2) |det(A)—1,y1>0}.

In this case we have also a realization of the symmetric space as an upper half

space. We send
now w1
7 — | —,— | =(2,{) e CxR
(& 2= (20) =0 e xR

The inverse of this isomorphism is given by

0 (5 1)

As explained earlier, the action of Gla(C) on the maximal compact subgroup
given by conjugation yields the action

GR) x X — X,

(ga A) — gAtya

on the hermitian matrices. Translating this into the realization as an upper half
space yield the slightly scaring formula

GX(CXR>0)—>CXR>O,
(az +b) (cz +d) +ac¢? ¢ )

9 =0) = <(cz—|—d) (cz+d)+c@(? (cz+d) (cz +d) + ce ¢

1.3.4. The Riemannian metric: It was already mentioned in the state-
ment of the theorem of Cartan that we always have a G2, invariant Riemannian
metric on X. It is not to difficult to construct such a metric which in many
cases is rather canonical.

In the general case we observe that the maximal compact subgroup is the
stabilizer of the point zo = e+ K € G /K = X. Hence it acts on the tangent
space of zg, and we can construct a K-invariant positive definite quadratic form
on this tangent sapce. Then we use the action of G, on X to transport this
metric to an arbitrary point in X: If x € X we find a g so that x = gxg, it
defines an isomorphism between the tangent space at xy and the tangent space
at x. Hence we get a form on the tangent space at x, which will not depend on
the choice of g € GY..

In our examples this metric is always unique up to scalars.

a) In the case of the group Sl;(R) we may take as a base point o € X
the identity Id € Slz(R). The corresponding maximal compact subgroup is the
orthogonal group SO(n). The tangent space at Id is given by the space

Symg(R) = Tix
of symmetric matrices with trace zero. On this space we have the form

Z — trace(Z?),
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which is positive definite (a symmetric matrix has real eigenvalues). It is easy to
see that the orthogonal group acts on this tangent space by conjugation, hence
the form is invariant.

b) A similar argument applies to the group G, = Slz(C). Again the identity
Id is a nice positive definite hermitian matrix. The tangent space consists of
the hermitian matrices

Ty ={A|A="Aand tr(A) =0},
and the invariant form is given by
A — tr(AA).
¢) In the case of the group G C SO(f) where f is the quadratic form
f@1,. o mpqn) =27+ 42l —al .

We realized the symmetric space as the open ball

o

Dp={(z1,...,2n) |23 +.. . +22 <1}

The orthogonal group SO(n, 1) is the stabilizer of 0 €D,,, and hence it is clear
that the Riemannian metric has to be of the form

h(x? + ... 4 22)(de? +...da?)

n

(in the usual notation). A closer look shows that the metrics has to be

dz? + ... +d2?
VA —]

In our two low dimensional spacial examples the metric is easy to determine.
For the action of the group Sla(R) on the upper half plane H we observe that
for any point zg = x + iy € H the tangent vectors %|ZO, a%|ZO form a basis of
the tangent spaces at zg.

If we take zg = i then the stabilizer is the group SO(2) and for

o) ( cos ¢ sing0>'

—sing cosg

We have
0
e(yp) - (6 |Z> = cos 2y -
0 .
e(p) (ay |Z> =sin2¢p -

Hence we find that 8% |; and a@ |; have to be orthogonal and of the same length.
y

Now the matrix
T
0 1

0 _ 0
p |; + sin 2<pa—y |
0
oz

0
|i + cos way\
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sends ¢ into the point z = x + iy. It sends % |; and a% |; into y - 8% |. and

R a% |-, and hence we must have for our invariant metric

0 0 0 0 1 0 0 1
—_— —_— = 0 M —_— —_— = — —_— —_— = —
<ax |Z’ ay |Z> ’ <6$ |Z7 ax |Z> y2 ) <8y ‘27 ay |Z> y27
and this is in the usual notation the metric
1
ds® = E(de + dy?). (1.27)

A completely analogous argument yields the metric

1
ds® = a (d¢? + dx® + dy?) (1.28)

for the space Hj.

1.2  Arithmetic groups

If we have a linear algebraic group G/Q — GL,, we may consider the group
I' = G(Q)NGL,(Z). This is the first example of an arithmetic group. It has
the following fundamental property:

Proposition: The group I' is a discrete subgroup of the topological group
G(R).

This is rather easily reduced to the fact that Z is discrete in R. Actually our
construction provides a big family of arithmetic groups. For any integer m > 0
we have the homomorphism of reduction mod m, namely

GLn(Z) — GLyn(Z/mIZ).

The kernel GL,(Z)(m) of this homomorphism has finite index in GL,(Z)
and hence the intersection IV = GL,,(Z)(m) NT has finite index in T.

Definition 2.1.: A subgroup I' of T' is called a congruence subgroup, if we
can find an integer m such that

GL,(Z)(m)NT cT” CT.

At this point a remark is in order. We explained already that a linear
algebraic group G/Q may be embedded in different ways into different groups
GL,, ie.

— GLy,
G
— GL,,

In this case we may get two different congruence subgroups

Ty = G(Q) N GLy, (Z),T2 = G(Q) N GLn, (Z).
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It is not hard to show that in such a case we can find an m > 0 such that

I'hoIran GLn2 (Z)(m)
I's DI N GLn1 (Z) (m)

From this we conclude that the notion of congruence subgroup does not
depend on the way we realized the group G/Q as a subgroup in the general
linear group.

Now we may also define the notion of an arithmetic subgroup. A subgroup
I € G(Q) is called arithmetic if for any congruence subgroup I' C G(Q) the
group IV N T is of finite index in IV and I'. (We say that IV and I" are commen-
surable.) By definition all congruence subgroups are arithmetic subgroups.

The most prominent example of an arithmetic group is the group
I' =Sl (2).

Another example is obtained as follows. We defined for any number field K/Q
the group

G/Q = Rk q(Sla)

for which G(Q) = Sly(K). If Ok is the ring of integers in K, then I = Sl;(Ok)
(and also T' = GL,(Ok)) is a congruence (and hence arithmetic) subgroup of
G(Q).

It is very interesting that the groups I' = Sla(Z) and Sly(Ok) for imaginary
quadratic K/Q always contain arithmetic subgroups I'' C T which are not con-
gruence subgroups. This means that in general the class of arithmetic subgroups
is larger than the class of congruence subgroups. We will prove this assertion in
Non Congruence subgroups).

If only the group G(R) is given (as the group of real points of a group G/R
or perhaps only as a Lie group, then the notion of arithmetic group I' € G(R)
is not defined. The notion of an arithmetic subgroup I' C G(R) requires the
choice of a group scheme G/Q such that the group G(R) is the group of real
points of this group over Q. The exercise in 1.1.2. shows that different Q- forms
provide different arithmetic groups.

Exercise 2 If v € Gl,(Z) is a nontrivial torsion element and if v = Id mod m
then m =1 or m = 2. In the latter case the element vy is of order 2.

This implies that for m > 3 the congruence subgroup Gl,(Z)(m) of Gl,(Z) is
torsion free.

This implies of course that any arithmetic group has a subgroup of finite
index, which is torsion free.
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1.2.1 Affine group schemes over Z

There is a slightly more sophisticated view of arithmetic groups. In our book
[38] section 7.5.6 and on p. 50,51 we discuss briefly the general notion of a
group scheme over an arbitrary base scheme S. An affine group scheme over
G/Z is a finitely generated Z-algebra A(G) together with a comultiplication
m : A(G) —- A(G) ® A(G). For any Z -algebra B (commutative and with
identity) the comultiplication m induces a multiplication on the B-valued points

“m: Homgg(A, B) x Homyg(A, B) — Homye (A, B)

and the requirement is that this multiplication defines a group structure on
G(B) = Homaig(A, B). In educated language : G/Z is a functor from the
category of affine schemes into the category of groups.

For instance we can define the group scheme Gl,,/Z. The affine algebra is
A(Gln) = Z[Xll, Xlg, e ,le,“ )(217 e 7Xnn7 Y]/(Y det(Xij — 1)

Then the group Gl,,(Z) of Z-valued points of Gl,,/Z is our group Gl,(Z).
If G/Q c Gl,/Qis asubgroup, then the affine algebra A(G) = A(Gl,,)®Q/I,
where I is an ideal in A(Gl,,)®Q. Since G/Q is a subgroup this ideal must satisfy

mar, (I) C A(GL,) @ Q@I+ 1 ® A(Gl,) ® Q.

Let J = A(Gl,,) NI, then it is easy to check that the comultiplication of A(Gl,,)
satisfies
mai, (J) - A(Gln) @JS+J® A(Gln)

and this tells us that mqi, induces a comultiplication
m: A(Gl,)/J — A(Gl,)/J @ A(Gl,,)/J

which provides a group scheme structure. This means that we have extended
the group scheme G/Q to a group scheme over G/Z. The affine algebra A(G) =
A(Gl,,)/J. This extension depends on the choice of the embedding into Gl,,/Q
and it is called the flat extension. Then the base extension G xz Q = G/Q, this
base extension is called the generic fiber of G/Z.

We now may understand our arithmetic group I' = G(Q) N Gl,(Z) as the
group G(Z) of Z valued points of a group scheme over Z. Since we know what
G(Z/mZ) is we can define congruence subgroups 'y as inverse images of sub-
groups H C G(Z/mZ) under the projection G(Z) — G(Z/mZ).

There is the special class of semi-simple or reductive group schemes. Roughly
speaking an affine group scheme G/Z is semi-simple (resp. reductive) , if its
generic fiber G Xz Q is semi-simple (resp. reductive) and if for all primes p
the group scheme G xz F, ( the reduction mod p) is a semi-simple ((resp.
reductive)) group scheme over F,,.

Of course the simplest example of a semi-simple (resp. reductive) group
(scheme) over Z is the group Sl,,/Z (resp. G, /Z).

We can also construct semi-simple group-schemes by taking flat extensions
of orthogonal (resp. symplectic ) groups over Q, (see sectionl.2.1, example 2)
and 3). Here the symmetric (resp. alternating) form has to satisfy certain
arithmetic conditions (See chap4.pdf).
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1.2.2 I -modules

We consider modules M (i.e. abelian groups) with an action of T', (see [37],
Chap. 2). We want to discuss briefly discuss some special classes of such T'-
modules.

The most important classes of I'-modules are the modules of arithmetic
origin. To construct such modules we realise our arithmetic group as I' =
G(Q) N Gl,(Z). Then we take any rational representation p : G/Q — GI(V),
where V is a finite dimensional Q— vector space. Now we look for finitely
generated submodules M C V such that M ® Q = V which are invariant under
the action of I'. Such a module is a I'-module of arithmetic origin.

It is not to difficult to show that given any finitely generated module M’
which is a full sublattice, i.e. M’ ® Q =V, we can find a congruence subgroup
I'1 I such that Ty M’ = M’. Then

M= () M

~yel' /Ty

is a I' module (of arithmetic origin).

A second class of I' modules are those of congruence origin. To get such a
module we simply pick a congruence subgroup I'(N) C I' and then we simply
look at finitely generated abelian groups V' with an action of T'/T'(N) on V.

We get some important examples of I' modules of congruence origin if we
start from a I'-module M of arithmetic origin. Then we choose an integer N
and consider the I' module M ® Z/NZ. On this module T'(V) acts trivially,
hence this module is a I'/T'(N) module of congruence origin.

We go back to the more sophisticated point of view above, our arithmetic
group is the group I' = G(Z) of Z valued points of the flat extension G/Z.

Now we pick a torsion free finitely generated module M, we know what it
means that M is a G/Z module: It simply means that for any commutative ring
B with identity we have a B-linear action of G(B) on the B-module M ® B, or
in other words we have a homomorphism G(B) — Glp(M ®z B). Of course we
require that this action is functorial in B.

For this book -especially for the first half- the group scheme Gly/Z plays
a dominant role. In this case the irreducible representations of Gly xz Q are
well known. We consider the QQ vector space of homogenous polynomials in two
variables and of degree n

Mg :={P(X,Y)=> a,X"Y" ¥|a, € Q}. (1.29)
v=0
We choose an integer m define an action of Gly(Q):
a b a b\,
") POGY) = PaX + eV, bX +dY)det(( ], (1.30)

this gives us the Gly/Q-module M,, g[m].
But now it is easy to get Gly/Z-modules, we simply define

M, = {P(X,Y) = 3 a,X"Y"a, € Z} (1.31)
v=0



24 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

and then we define the Gly/Z modules M,,[m] by the same formula as above.
If n is even we will sometimes with the module M[—%]. (See following remark).

At this point a small remark is in order. If look at M, [m] only as Gly(Z)-
module then the module "knows” what n is, clearly n = rank(M,,) — 1. But
this Glz(Z)- module does not "know” what m is. The only information we get

IS (_01 _01> P=(-1)"P

and from this we only get the value of m mod 2. But if we consider M,,[m] as
module for the group scheme Gly/Z then the module also knows the value of m

because then we know
(O‘ 0) P=amP
0 «

for any @ € R* in any commutative ring R with identity. If n is even we may
consider the module M, [—%], this is a module for PGly/Z = Glz/G,,.

In section 4.1.1 we discuss the corresponding situation for groups Glo(Z[v—d]).

1.2.3 The locally symmetric spaces

We start from a semisimple group G/Q. To this group we attached the the
group of real points G(R) = G. In G+, we have the connected component G,
of the identity and in this group we choose a maximal compact subgroup K.
The quotient space X = G,/K is a symmetric space which now may have sev-
eral connected components. On this space we have the action of an arithmetic
group I'.

We have a fundamental fact:
The action of T' on X is properly discontinuous, i.e. for any point x € X
there exists an open neighborhood U, such that for all v € T we have

YU, NU, =0 or ~vyz=uzx.
Moreover for all x € X the stabilizer
Iy ={y|yz =1}

is finite.

This is easy to see: If we consider the projection p : G(R) - G(R)/K = X,
then the inverse image p~!(U,) of a relatively compact neighborhood U, of
x = gok is of the form V,, - K, where V,, is a relatively compact neighborhood
of gog. Hence we look for the solutions of the equation

ywk =0k vy eT,v,v €V, k k' € K.

Since T is discrete in G(R) there are only finitely many possibilities for v and
they can be ruled out by shrinking U, with the exception of those v for which
vz = x. If yx = z this means that ygoK = goK and hence v € T’ ﬂgOKgO_1 this
intersection is a compact discrete set, hence finite.
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If T has no torsion then the projection
m: X —I\X

is locally a Coo-diffeomorphism. To any point # € '\ X and any point & € 71 (=)
we find a neighborhood Uj; such that

m:Uz—U,.

Hence the space I'\ X inherits the Riemannian metric and the quotient space is
a locally symmetric space.

If our group I' has torsion, then a point £ € X may have a nontrivial
stabilizer I'z. Then it is not difficult to prove that & has a neighborhood Ujz
which is invariant under I'; and that for all § € Uz the stabilizer I'j; C I';. This
gives us a diagram

Ug — F;;\U;; =U,

| |

X —F 5 T\X

i.e. the point € T'\ X has a neighborhood which is the quotient of a neighbor-
hood Uz by a finite group.

In this case the quotient space I'\ X may have singularities. Such spaces are
called orbifolds. They have a natural stratification. Any point x defines a I'
conjugacy class [['z] of finite subgroups I'z C T'. On the other hand a conjugacy
class [c] of finite subgroups H C I' defines the (non empty ) subset (stratum)
I\ X ([c]) of those points € I\ X for which I'; € [¢].

These strata are easy to describe. We observe that for any finite H C I' the
fixed point set X intersected with a connected component of X is contractible.
Let 29 € X be a point with I',, = H. Then any other point z € X is of the
form z = gxy with g € G(R). This implies that g € N(H)(R), where N(H) is
the normaliser of H, it is an algebraic subgroup. Then N(H)(R) N K = K is
compact subgroup, put I'! = ' N(H)(R), and we get an embedding

A\ X7 r\Xx.

This space contains the open subset (T*7\ X)) of those  where H € [I'z]
and this is in fact the stratum attached to the conjugacy class of H.

We have an ordering on the set of conjugacy classes, we have [c1] < [eg] if
for any H; € [c1] there exists a subgroup Hy € [co] such that Hy C Hs. These
strata are not closed, the closure I'\X([c]) is the union of lower dimensional
strata.

If we start investigating the stratification above we immediately hit upon
number theoretic problems. Let us pick a prime p and we consider the group
I' = S1,_1[Z] and the ring of p-th roots of unity Z[(,] as a Z-module is free of
rank p — 1 and hence we get an element

gp € SI(Z[CP]) = Slpfl(Z)
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and hence a cyclic subgroup of order p. But clearly we have many conjugacy
classes of elements of order p in I' because any ideal a is a free Z-module. If we
want to understand the conjugacy classes of elements of order p or the conjugacy
classes of cyclic subgroups of order p in Sl,,_1(Z) we need to understand the ideal
class group. In the next section we will discuss some simple examples.

These quotient spaces I'\ X attract the attention of various different kinds of
mathematicians. They provide interesting examples of Riemannian manifolds
and they are intensively studied from that point of view. On the other hand
number theoretic data enter into their construction. Hence any insight into the
structure of these spaces contains number theoretic information.

It is not difficult to see that any arithmetic group I' contains a normal
congruence subgroup I which does not have torsion. This can be deduced
easily from the exercise .... at the end of this section. Hence we see that I\ X
is a Riemannian manifold which is a finite cover of I'\X with covering group
['/T’. The following general theorem is due to Borel and Harish-Chandra:

The quotient T\ X always has finite volume with respect to the Riemannian
metric. The quotient space T\X is compact if and only if the group G/Q is
anisotropic.

We will give some further explanation below.

1.2.4 Low dimensional examples

We consider the action of the group I' = Sl3(Z) C Slo(R) on the upper half
plane
X=H={2|9(z) =y >0} =SL(R)/SO(2).

As we explained in .... we may consider the point z = x+1iy as a positive definite
euclidian metric on R? up to a positive scalar. We saw already that this metric
can be interpreted as the metric on C induced on the lattice Q@ = (1,z). The
action of Slo(Z) on the upper half plane corresponds to changing the basis 1, z
of Q into another basis and then normalizing the first vector of the new basis
to length equal one.

This means that under the action of Sly(Z) we may achieve that the first
vector 1 in the lattice is of shortest length. In other words 2 = (1, z) where now
|z| > 1.

Since we can change the basis by 1 — 1 and z — z 4+ n. We still have
|z + n| > 1. Hence see that this condition implies that we can move z by these
translation into the strip —1/2 < R(z) < 1/2 and since 1 is still the shortest
vector we end up in the classical fundamental domain:

F={z| -1/2 <R(z) <1/2,]2[ > 1} (1.32)

Two points z1, 29 € F are inequivalent under the action of Sl(Z) unless they
differ by a translation. i.e.

1 1
21:7§+it, 22121+1:§+it,
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or we have |z1| =1 and 23 = f%. Hence the quotient Slz(Z)\H is given by the

following picture

>

It turns out that this quotient is actually a Riemann surface, i.e. the finite
stabilizers at ¢ and p do not produce singularities. As a Riemann surface the
quotient is the complex plane or better the projective line P*(C) minus the point
at infinity.

It is clear that the points ¢ and p = +% + % —3 in the upper half plane are
-up to conjugation by an element vy € Sly(Z)- the only points with non-trivial
stabiliser . Actually the stabilisers are given by

= {5 9} {0 D))



28 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

We denote the matrices
0 1 -1 1
s=(% o) m=( o)

The second example is given by the group I' = Sly(Z[i]) C Sl2(C) = G, =
Rc/r(Gla/C)(R) (See(1.1) . Here we should remember that the choice of G
allows a whole series of arithmetic groups. For any imaginary quadratic exten-
sion K = Q(v/—d) with O as its ring of integers we may embed K into C and
get

Sl(Ok) =T C G-

If the number d becomes larger then the structure of the group I' becomes
more and more complicated. We discuss only the simplest case.

We will construct a fundamental domain for the action of I' on the three-
dimensional hyperbolic space Hs = C x Ryy.

We identify H3 with the space of positive definite hermitian matrices

X ={AeM(C)| A=A, A>0,det(A) = 1}.

Q= 2z]i] - <(1)) +7[i) (2)

in C? and view A as a hermitian metric on C? where C/Q has volume 1. Let
ey = () be a vector of shortest length. We can find a second vector €; = ()

B
é

ideal domain. We consider the vectors e}, + ve] where v € Z[i]. We have

We consider the lattice

so that det : ) = 1. This argument is only valid because Z][i] is a principal

(eh +vel,eh +velya = {eh +ve: 1)V a+vie],eh)a+Tley, e))a + vi{e], e])a.

Since we have the the euclidean algorithm in Z[i] we can choose v such that

<e/17 6/1>A'

N | =

1
—§<€/1, eél> < Re<€/1, 6/2>A’ %<€/1, 6/2>A <
If we translate this to the action of Sly(Z[i]) on Hj then we find that every point
x = (z;¢) € Hj is equivalent to a point in the domain

F={(2:0) | — < Re(),3(2) < 552+ 2 2 1},

N =

Since we have still the action of the matrix (é _01) we even find a smaller

fundamental domain

F={(0] —% < Re(2),3(2) < 21274 ¢2 > 1 and Re(2) + S(2) > 0}

DN =

I want to discuss also the extension of our considerations to the case of the
reductive group Gla(C). In such a case we have to enlarge the maximal compact
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subgroup. In this case the group K = Sl (2)-C* = K -C* is a good choice
where C* is the centre of Gla(C). Then we get

Hj = Sly(C)/K = Gly(C)/K

i.e. we have still the same symmetric space. But the group I' = Gly(Z[i]) is still
larger. We have an exact sequence

1-T =T —={i"} > 1.
v 0
0 i) ( The centre Zr has

index 2 in Zf. Since the centre acts trivially on the symmetric space, hence the

The centre Zx of [ is given by the matrices {(

above fundamental domain will be “cut into two halfes” by the action of T the
SV
matrices (ZO ?) induce rotation of v -90° around the axis z = 0 and therefore
it becomes clear that the region
Fo={(2,¢) |0 < 3(2),Re(2) < 5,22+ (* > 1}

is a fundamental domain for T

The translations z — z + 1 and z — z + ¢ identify the opposite faces of F.
This induces an identification on Fj, namely

On the bottom of the domain Fp, namely
(1) ={(z¢) eR|z+ =1}
we have the further identification

(2,¢) — (i%, Q).

Hence we see that the quotient space f\Hg is given by the following figure.
I want to discuss the fixed points and the stabilizers of the fixed points of I.
Before I can do that, I need some simple facts concerning the structure of Gls.
The group Gly(K) acts upon the projective line P*(K) = (K2 \ {0})/K*.
We write
PYK) = (K)U{oc} ; K(ze; +e3) =x,Key = 0.

It is quite clear that the action of g = (: ?) € Glp(K) is given by

ar + f3

T = pompry £

The action of Glz(K) on P*(K) is transitive. For a point x € P!(K) the stabilizer
B, is clearly a linear subgroup of Gly/K. If x = oo, then this stabilizer is the

subgroup
a u
v 0))-
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w9}

It is clear that these subgroups B, are conjugate under the action of Gla(K).
They are in fact maximal solbable subgroups of Gls.

If we have two different points x1, 7o € P(K), then this corresponds to a
choice of a basis where the basis vectors are only determined up to scalars. Then
the intersection of the two groups By, N B, is a so-called maximal torus. If we
choose z1 = Kej, o = Kes, then

B, ={(5 )}

Any other maximal torus of the form B,,, B is conjugate to Ty under Gly(K).
Now we assume K = C. We compactify the three dimensional hyperbolic
space by adding P*(C) at infinity, i.e.

and for x = 0 we get

Hg‘—)ﬁg :H3UP1((C) :(CXRZ()U{OO}.

(The reader should verify that there is a natural topology on Hjs for which the
space is compact and for which Gly(C) acts continuously.)

Now let us assume that a € Glo(C) is an element which has a fixed point on
Hjs and which is not central. Since it lies in a maximal compact subgroup times
C* we see that this element a can be diagonalized

1 a 0 /
a—)goago = 0 ﬁ =a

with a # 8 and |a/8] = 1.
Then it is clear that the fixed point set for a’ is the line

Fix (a’) = {(0,¢) | ¢ € R},

i.e. we do not get an isolated fixed point but a full fixed line.
The element a’ has the two fixed points co, 0 in P}(C), and hence ist defines
the torus Tp(C). Then it is clear that

Fix(a') = {(0,¢) | ¢ > 0} = To(C) - (0,1)

i.e. the fixed point set is an orbit under the action of Ty(C).

1.2.5 Fixed point sets and stabilizers for Gly(Z[i]) =T

If we want to describe the stabilizers up to conjugation, we can focus our atten-
tion on Fj.

If we have an element v € I', 4 not central and if we assume that ~ has fixed
points on Hs, then we know that ~ defines a torus 7', = centralizerg, (v) =
stabilizer of z.,z,, € P*(C). This torus is defined over Q(i), but it is not
necessarily diagonalizable over Q(), it may be that the coordinates of x., z./
lie in a quadratic extension of F'/Q(i). This is the quadratic extension defined
by the eigenvalues of ~.
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We look at the edges of the fundamental domain Fy. We saw that they
consist of connected pieces of the straight lines

141
- 2 }a

and the circles (these circles are euclidean circles and geodesics for the hyperbolic
metric)

Di={(2,0)] 224+ =1,%(2) = Re(2)}, D2 = {(2,0) | 22+ % =1,3(2) = 0},

G ={(=0) 2 =0,G2 = {(5:0) | 2= 51,Gs = {(=.0) |

1
D3 ={(2,¢)| 22+ ¢* =1,Re(z) = 5}
The pair of points (o0, (29,0)) € P}(C) x P(C) has as its stabilizer

re=( )6 56 =0 %)

the straight line {(z9,¢) | ¢ > 0} is an orbit u nder T,,(C) and it consists of

fixed points for
T,.(C)(1) = {({g 20(56— a))

We can easily compute the pointwise stabilizer of G1, G2, G5 in I'. They are

{3 O){6 )

a/ﬁesl}.

o

where in the last case we have to take into account that W € Z|i] for
all v.
Hence modulo the centre Zj these stabilizers are cyclic groups of order 4, 2, 4.

The arcs D; are also pointwise fixed under the action of certain cyclic groups,

namely D, =Fix <((1) é))
porie (1)
b= (1)),

and we check easily that these arcs are geodesics joining the following points in
the boundary

D; runs from Vi to — Vi

D5 runs from i to — 1

1mi

Ds runs frome =¢6 =¢

fuxl
3

to p.
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The corresponding tori are

T =Stab(—1,1) = {(g f)}

Ty =Stab(—Vi,Vi) = {(g f‘)}

Ty =Stab(p, p) = {(5‘55 g) } .

The torus T4 splits over Q(4), the other two tori split over an quadratic extension
of Q(7).

Now it is not difficult anymore to describe the finite stabilizers and the
corresponding fixed point sets. If « € Hs for which the stabilizer is bigger than
Zy, then we can conjugate x into Fy. It is very easy to see that x cannot lie
in the interior of Fj because then we would get an identification of two points
nearby z and hence still in Fy under T.

If 2 is on one of the lines Dy, D5, D3 or on one of the arcs G, G2, G3 but not
on the intersection of two of them, then the stabilizer I'; is equal to Zf times
the cyclic group we attached to the line or the arc earlier. Finally we are left
with the three special points

zr12 =D1NDyNGL = {(07 1)}

T13 =D10D30G3:{<12ﬂ,\g§>}

1 V3
T3 _DQOngGg_{<2,\2[>}

In this case it is clear that the stabilizers are given by

O

1.2.6 Compactification of I'\ X

Our two special low dimensional examples show clearly that the quotient spaces
I'\ X are not compact in general. There exist various constructions to compactify
them.

If, for instance, I' C Sly(Z) is a subgroup of finite index, then the quotient
I'H is a Riemann surface. It can be embedded into a compact Riemann sur-
face by adding a finite number of points. this is a special case of a more general
theorem of Satake and Baily-Borel: If the symmetric space X is actually her-
mitian symmetric (this means it has a complex structure) then we have the
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structure of a quasi-projective variety on I'\X. This is the so-called Baily-Borel
compactification. It exists only under special circumstances.

I will discuss the process of compactification in some more detail for our
special low dimensional examples.

Compactification of Sly(Z)\H by adding points

Let I C Sl2(Z) be any subgroup of finite index. The group I" acts on the rational
projective line P1(Q). We add it to the upper half plane and form

H=HUP'(Q),

and we extend the action of T' to this space. Since the full group Sly(Z) acts

transitively on P*(Q) we find that I' has only finitely many orbits on P*(Q).
Now we introduce a topology on H. We defined a system of neighborhoods

of points £ =r € P}(Q). We define the Farey circles S (c, %) which touch the

real axis in the point 7 = p/q (p,q) = 1 and have the radius ﬁ. For c =1 we
get the picture

am

T ™ T
0 1

~1 _

N=
= A

Let us denote by D (c, %) = U o<er<eS (c’, g) the Farey disks. For ¢ — 0 these

Farey disks D (c, %) define a system of neighborhoods of the point » = p/q. The
Farey disks at oo € P1(Q) are given by the regions

D(T,0) ={2z|3(z) > T}.
It is easy to check that an element v € Sly(Z) which sends co € P1(Q) into the
point r = % sends D(T, 00) to D (%7 %). These Farey disks D(c,r) do not meet

provided we take ¢ < 1. The considerations in 1.6.1 imply that the complement
of the union of Farey disks is relatively compact modulo I', and since I' has
finitely many orbits on P(Q), we see easily that

Yr = I\B

is compact (which means of course also Hausdorff).

It is essential that the set of Farey circles D(c,r) and D (%, oo) is invariant
under the action of I on the one hand and decomposes into several connected
components (which are labeled by the point r € P(Q)) on the other hand.

Hence
\ U D(c,r) = U - \D(e,7;)
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where 7; is a set of representatives for the action of I' on P!(Q) and where T',.,
is the stabilizer of r; in T".

It is now clear that T, \ D(c, r;) is holomorphically equivalent to a punctured
disc and hence the above compactification is obtained by filling the point into
this punctured disc and this makes it clear that Yr is a Riemann surface.

BSC

1.2.7 The Borel-Serre compactification of Sl,(Z)\H

There is another construction of a compactification. We look at the disks D(c, r)
and divide them by the action of I',. For any point y € S(¢/,r) — {r} there
exists a unique geodesic joining r and y, passing orthogonally through S(c/,r)
and hitting the projective line in another point yo, ( = —1/4 in the picture
below)

I T I

0 1

o= 4

If r = oo, then this system of geodesics is given by the vertical lines {y - I + z |
x € R}.. This allows us to write the set

D(c,r) —{r} = Xeor X [c,0)

where X, = P1(R)—{r}. The stabilizer T, acts D(c,r) and on the right hand
side of the identification it acts on the first factor, the quotient I''\ X, is a
circle. Hence we can compactify the quotient

IL'\D(e,r) —{r} = I'\Xe,r X [c,0].

This gives us a second way to compactify I'\H, we apply this process to a finite
set of representatives of P*(Q) mod T
There is a slightly different way of looking at this. We may form the union

HU| X0, =H

and topologize it in such a way that
D(c,7) = Xoop X [¢,0) C Xoor X [c,0] (1.33)

is a local homeomorphism. Then we see that the compactification above is just
the quotient I'\H and the boundary is simply
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OM\H) =T\ |J Xeor (1.34)
reP(Q

This compactification is called the Borel-Serre compactification. Its relation
to the Baily-Borel is such that the latter is obtained by the former by collapsing
the circles at infinity to a point.

It is quite clear that a similar construction applies to the action of a group
I’ C Slx(Z][i]) on the three-dimensional hyperbolic space. The Farey circles will
be substituted by spheres S(c, ) which touch the complex plane {(z,0) | z €
C} C Hj in the point (,0),a € P1(Q(4)) and for o = oo the Farey sphere is
the horizontal plane S(oo, (o) = {(z,(o) | z € C). An element vy € T" which maps
(0,00) to o maps S(00,¢p) to S(c, ), where ¢ = 1/(p. For a given o we may
identify the different spheres if we vary ¢ and for any point a € P}(Q(i)) we
define X o = P1(C) \ {a}. Again we can identify

D(c, ) \{a} = Xoc.a X (0,¢] C D(c, @) \ {a} = O(I\H) = Xoo 0 < [0,¢]

The stabilizer T, acts on D(c, @) \ {a} and again this yields an action on the
first factor. If we choose a = oo then

I = {(g CC_Ll) |¢ root of unity,a € M}

where M, is a free rank 2 module in Z[i]. If { does not assume the value i then
I'oo\ X oo, 00 is a two-dimensional torus, a product of two circles. If ¢ assumes
the value ¢ then I'ao\ Xoo,00 is a two dimensional sphere. If course we get the
same result for an arbitrary a.

Then we get an action of the group I' on Hs = Hs U U D(c,a)\{a}

a€Pl(K)

and the quotient is compact.

The the set of orbits of I' on P*(Q(4)) is finite, these orbits are called the

Cusps.

class

1.2.8 The classical groups and their realisation as split
semi-simple group schemes over Spec(Z)

We will not discuss the general notion of a semi-simple group scheme over a
base S, instead we will discuss the examples of classical groups and explain the
main structure theorems in examples.

The group scheme Sl,,/ Spec(Z)

We consider a free module M of rang n over Spec(Z). We define the group
scheme SI(M)/ Spec(Z): for any Z algebra R we have SI(M)(R) = SI(M ®z R).
This is clearly a semi simple group scheme over Spec(Z) because :

a) The group scheme is smooth over Spec(Z)
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b) For any field k -which is of course a Z-algebra we have
SI(M) X gpec(z) Spec(k) = S(M ®z k)/ Spec(k)

and for any k this group scheme does not contain a normal subgroup scheme,
which is isomorphic to G~/ Spec(k) (hence it is reductive) and its center is a
finite group scheme.

If we fix a basis ey, e, . .., e, then we get a split maximal torus T/ Spec(Z)
this is the sub group scheme which fixes the lines Ze;, with respect to this basis
we have

t1 0 0
0 ty ... O

T(R) ={ | tie R J[ti=1}
00 . 0 ;
0 0 0 t,

With respect to this torus 7'/ Spec(Z) we define root subgroups. This are
smooth subgroup schemes U C G which are isomorphic to the additive group
scheme G,/ Spec(Z) and which are normalized by T'. It is clear that these root
subgroups are given by

Tij - Ga — SI(M)

1 0 0 0
0 1 0 0
Tijix— 10 0 z 0
0 0 0 -0
0 0 O 0 1

where the entry x is placed in the i-th row and j-th collumn. Let us denote
the image by U,,; .
Then we get the relation
trij ()t = 75 ((ti/t;)x)

(If T write such a relation then I always mean that t,z.. are elements in
T(R),Go(R)... for some unspecified Z— algebra R.)

The root system

The characters

CkwiT—)Gm

to0 0
0 i 0 /
Qi . — t;/t;
1o o . o0 !
00 0 ¢,
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are form the set A of simple roots in the character module of the torus. We
may select a subset of positive roots

AY = {ay |i < g}
Then the torus T" and the Us,; with a;; C AT stabilize the flag
F= (O) CZel CZel@ZeQ c---C M.

The stabilizer of the flag is a smooth sub group scheme B/ Spec(Z). It is so-but
not entirely obvious- that B is a maximal solvable sub group scheme. These
maximal subgroup schemes are called Borel subgroups.

It is clear that the morphism

T x H Un;; — B,
a;j,i<j
which is induced by the multiplication is an isomorphism of schemes.
The set AT of positive roots contains the subset 7 C A of simple roots
t;/ti+1. Every positive root can be written as a sum of simple roots with positive
coefficients.

The flag variety

It is not so difficult to see that the flags form a projective scheme Gr/ Spec(Z).
From this it follows:
For any Dedekind ring A and its quotient field K we have

Gr(K) = Gr(4).

If A is even a discrete valuation ring then we can show easily
The group Sl,,(A) acts transitively on Gr(A).

The whole point is, that results of this type are true for arbitrary split semi
simple groups G/ Spec(Z). This is not so easy to explain and also much more
difficult to prove. But we have the series of so called classical groups and for
those these results are again easy to see. ( The main problem in the general
approach is that we have to start from an abstract definition of a semi simple
group and not from a group which is given to us in a rather explicit way like
Sl,, or the classical groups)

The group scheme Sp,/ Spec(Z)

Now we choose again a free Z module M but we assume that we have a non
degenerate alternating pairing

<,>MxM—Z

where non degenerate means: If x € M and < x, M >C aZ with some integer
a > 1, then x = ay with y € M. It is well known and also very easy to prove
that M is of even rank 2g and that we can find a basis

{617"'aegvfga"'af1}
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such that < e;, f; >= — < fi,e; >= 1 and all other values of the pairing on
basis elements are zero.

The automorphism group scheme of G = Aut((M, < . >)) is the symplectic
group Sp,/ Spec(Z). Again it is easy to find out how a maximal torus must
look like. With respect to our basis we can take

hoo 0
0 0
oo 0
T={o o o 4 }
0 .0
0 !

We can say that the torus is the stabilizer of the ordered collection of rank 2
submodules Ze;, Z f;. We can define a Borel subgroup B/Z which is the stabilizer
of the flag

F=0)CZerC---CZer- - @...ZegClLer .. Leg®Lfg C---CM

(A flag starts with isotropic subspaces until we reach half the rank of the
module. But then this lower part of the flag determines the upper half, because
it is given by the orthogonal complements of the members in the lower half).

We can define the root subgroups (with respect to T')

To 1 Gy — U, CG
which are normalized by T'. As before we have the relation
tr(z)t™ = 7(a(t)z),

where o € A C X*(T).

Now it is not quite so easy to write down what these root subgroups are,
we write down the simple positive roots in the the case g = 2: We have the
maximal torus

tt 0 0 0
0 ta 0 0

0 0 t;' 0 }
0 0 0 ¢t

and we want to find one-parameter subgroups U, C G which stabilize the flag.
The one parameter subgroups corresponding to the simple roots are

T={

Taq - T {61 — €1, €2 > €2 +.13€1,f2 — f2,f1 — fl —.Z‘fg}

Tas Y {61 — e1,e9 > ea, fo = fo +yes, f1 — fl}

where a1 (t) = t1/t2, as(t) = t3. The unipotent radical is then

1 =z v U

0 1 y v—uzy
{ 0 0 1 —x }

0 0 O 1
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As before it is not so difficult to show that the flags form a smooth projec-
tive scheme X/ Spec(Z) (see also [book], V.2.4.3). Show that for any discrete
valuation ring A the group G(A) acts transitively on X(A4) = X(K). It is also
easy to verify the statements in 1.1.

The group scheme SO(n,n)/ Spec(Z)

We can play the same game with symmetric forms. Let M together with its
basis as above, we replace g by n. But now we take the quadratic form F

F:M—>Z
which is defined by

F(xlel "'+xnen+y’nfn+ +y1fl) = inyi

and all other values of the pairing on basis elements are zero. We define the
group scheme of isomorphisms but in addition we require the the determinant
is one. Hence

SO(n,n)/ Spec(Z) = Aut(M, F,det = 1).

The maximal torus and the flags look pretty much the same as in the previous
case. But the set of roots looks different. For n = 2 the torus and the unipotent
radical are given by

t7 0 O 0 1 z y —zy

o t 0o o 010 -y
T={o o ' 0 BU={lg 0 1 -2 |"

00 0 ¢t 00 0 1

The system of positive roots consists of two roots ay(t) = t1/ta, aa(t)tits.
This is the Dynkin diagram A; x A1 hence there exists a homomorphism (isogeny)
between group schemes over Spec(Z) :

Sly x Sla — SO(2,2).

It is an amusing exercise to write down this isogeny.
Another even more interesting excercise is the computation of the roots for
the torus (here n = 3)

tt 00 0 0 0

0t 0 0 0 0

0 0 ts 0 0 0

=9 o o 40 0 -
0 0 0 0 t;' 0
00 0 0 o0 ¢t
In this case we have the root subgroups

1 2000 0 1000 0 0
01 000 O 01 2 0 0 0
s |00 100 0 s |00 L0 0 0
Tt g 00010 0f ™" oo o1 —2 0
00001 —=x 0000 1 0
00000 1 0000 0 1
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and
1000 0 0
010z 0 0
. 0010 —z 0
Tas “T7 L0 00001 0 0
0000 1 0
0000 0 1
where

Oll(t) = tl/tg, OéQ(t) = t2/t3, ag(t) = t2t3
Use the result of this computation to show that we have an isogeny
Sly — SO(3,3).

How can we give a linear algebra interpretation of this isogenies.

The group scheme SO(n + 1,n)/ Spec(Z)

Of course we can also consider quadratic forms in an odd number of variables.
We take a free Z-module of rank 2n + 1 with a basis

{er, o osenyhy fuy ooy f1}
On this module we consider the quadratic form

F:M—-Z

FQO) wiei+2h+ Y yifi) = > @iy + 2,

From this quadratic fom we get the bilinear form
B(u,v) = F(u+v) — F(u) — F(v).

We have the relation
Fu) = 2B(u,u),

hence we can reconstruct the quadratic form from the bilinear form if we extend
Z to a larger ring where 2 is invertible.
We consider the automorphism scheme

G/ Spec(Z) = SO(n + 1,n)/ Spec(Z) = Aut(M, F,det = 1)/ Spec(Z)

and I claim that this is indeed a semi simple group scheme over Spec(Z). To
see this I strongly recommend to discuss the case n = 1.
We have of course the maximal torus

t 0 0
T={l0 1 0 |}
0 0 ¢t

It is also the stabilizer of the collection of three subspaces Ze, Zh,Zf, here we
use the determinant condition.
Now one has to discuss the root subgroups with respect to this torus.
From this we can derive that we have an isogeny
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Sl — SO(2, 1)

It is also interesting to look at the case n = 2. In this case we can compare
the root systems of Sp, and SO(3,2) they are isomorphic. Now it is a general
theorem in the theory of split semi simple group schemes that the root system
determines the group scheme up to isogeny. Hence we we should be able to
construct an isogeny between Sp, and SO(3,2). Who can do it?

Dynkin diagrams
1.2.9 k-forms of algebraic groups

Exercise: 1) Consider the following two quadratic forms over Q:
f(l',y,Z) = x2 +y2 _Z2 9 fl(xayvz) = .’E2 +y2 _3Z2'

Prove that the first form is isotropic. This means there exists a vector (a,b,c) € Q3\ {0}
with
Fa,b,e) = 0.

Show that the second form is anisotropic, i.e. it has no such vector.

2) Prove that the two linear algebraic group G/Q = SO(f)/Q and G1/Q =
SO(f1)/Q cannot be isomorphic. (Hint: This is not so easy since we did not define
when two groups are isomorphic.)

Here is some advice: In general we call an element e # u € G(Q) unipotent if it is
unipotent in GL,,(Q) where we consider G/Q < GL,, /Q. It turns out that this notion
of unipotence does not depend on the embedding.

Now it is possible to show that our first group G(Q) = SO(f)(Q) has unipotent
elements, and G1(Q) does not. Hence these two groups cannot be isomorphic.

3) Prove that the two algebraic groups G' xg R and G'; xg R are isomorphic, and
therefore the two groups G(R) and G1(R) are isomorphic.

In this example we see, that we may have two groups G/k, Gy /k which are
not isomorphic but which become isomorphic over some extension L/k. Then
we say that the groups are k-forms of each other. To determine the different
forms of a given group G/k is sometimes difficult one has to use the concepts of
Galois cohomology. For a separable normal extension L/k we have the almost
tautological description

G(k) ={g € G(L)|o(g) = g for all elements in the Galois group Gal(L/k)}.

Now let we can consider the functor Aut(G) : It attaches to any field exten-
sion L/k the group of automorphisms Aut(G)(L) of the algebraic group G xy, L.
We denote this action by g — o(g) = g°. Note that this notation gives us the
rule g(°7) = (¢g7)?. A 1-cocycle of Gal(L/k) with values in Aut(G) is a map
¢: 0 ¢, € Aut(G)(L) which satisfies the cocycle rule

Cor = CoC2 (1.35)

Now we define a new action of Gal(L/k) on G(L): An element o acts by
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-1
g = CUgUCU

We define a new algebraic group G;/k: For any extension E/k we have an
action of Gal(L/k) on E ®;, L and we put

G1(E)={9eGE®L)|g= cggacgl} (1.36)

For the trivial cocycle o +— 1 this gives us back the original group.

It is plausible and in fact not very difficult to show that E — G1(F) is in
fact represented by an algebraic group G1/k. This group is clearly a k-form of
G/k.

We can define an equivalence relation on the set of cocycles, we say that
{ocot~{o—d}
if and only if we can find a @ € G(L) such that

/
CO’

We define H'(L/k, Aut(G)) as the set of 1-cocycles modulo this equivalence
relation. If we have a larger normal separable extension L’ D L D k then we get
an inclusion H(L/k, Aut(G)) — H(L'/k, Aut(QG)). If k is a separable closure
of k we can form the limit over all finite extensions k C L C k, and put

=a " 'cpa” for all o € Gal(L/k)

H*(ks/k, Aut(G)) = li_r)nHl(L/k, Aut(@))

This set is isomorphic to the set of isomorphism classes of k-forms of G/k.

If L/k is a cyclic extension and if o € Gal(/k) is a generator, then a cocycle
c: Gal(L/k) — Aut(G)(L) is determined by its value g = ¢(o) € Aut(G)(L).
But we have to satisfy the cocycle relation. We have a useful little

Lemma 1.2.1. The assigment o — ¢(c) = g provides a 1-cocycle if and only

if
o o_nfl

Norm(g) =g¢° ...g =1d

and
H'( Gal(L/k, Aut(G)(L)) = {g € Aut(G)(L)| Norm(g) = Id}/hgh™7 ~ g}.

Proof. Straightforward calculation O

We may apply the same concepts in a slightly different situation. A k—
algebra D over the field k is called a central simple algebra, if it has a unit
element # 0, if it is finite dimensional over k, if its centre is k (embedded via
the unit element) and if it has no non trivial two sided ideals. It is a classical
theorem, that such an algebra over a separably closed field kg is isomorphic to
a full matrix algebra M, (ks). Hence we can say that over an arbitrary field k
any central simple algebra of dimension n? is a k-forms of M, (k).

For any algebraic group G/k we may consider the adjoint group Ad(G), this
is the quotient of G/k by its center. It can be shown, that this is again an
algebraic group over k. It is clear that we have an embedding

Ad(G) — Aut(G)
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which for any g € Ad(G)(L) is given by
g {z— g ag}.
A k-form Gy /k of a group G/k is called an inner k-form, if it is in the image of
H (ks /k,Ad(G)) — H"(ks/k, Aut(Q)).

We call a semi simple group G/k anisotropic , if it does not contain a non
trivial split torus (See exercise in (1.2.9)) In our example below the group of
elements of norm 1 is always semi simple and anisotropic if and only if D(a,b)
is a field.

I want to give an example, we consider the algebraic group Gly/Q we con-
sider two integers a, b # 0, for simplicity we assume that b is not a square. Then
we have the quadratic extension L = Q(+/b), let ¢ be its non trivial automor-

phism. The element <(1) 8

s ghom (1 )o(16)

of the group Gly, Then o — Ad(((l) g)) and Idgai(z k) = Idaue( iy is @

) defines the inner automorphism

1-cocycle and we get a Q form of our group.
Hence we get a Q form G; = G(a,b)/Q of our group Gly. It is an inner
form.

Now we can see easily that group of rational points of our above group
G(a,b)(Q) is the multiplicative group of a central simple algebra D(a, b)/Q. To
get this algebra we consider the algebra Ms(L) of (2,2)-matrices over L. We
define

D(a,b) = {z € My(L)|z = Ad(((l) B‘))ond((i’ g>)-1}. (1.37)

We have an embedding of the field L into this algebra, which is given by

'_>u0
v 0 u’

Let uj, the image of v/b under this map. We also have the element 1, = (? 8)

in this algebra.
Now I leave it as an exercise to the reader that as a Q vector space

D(a,b) = Q@ Qup ® Qua © Quaup

2
a

We have the relation u> = a, ug = b, ugUp = —UpUg.
Of course we should ask ourselves: When is D(a, b) split, this means isomor-
phic to M2(Q)? To answer this question we consider the norm homomorphism,

which is defined by

THyuptzug+wagup = (THyuptzugHwagup) (T—yup—2zu, —wagtp) = 22 —y?b—22a+w?ab.
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It is easy to see that D(a,b) splits if and only if we can find a non zero element
whose norm is zero.

If we do this over R as base field and if we take a = —1,b = —1 then we get
the Hamiltonian quaternions, which is non split.

We may also look at the p-adic completions @, of our field. Then it is not
difficult to see that D(a,b) splits over Q, if p # 2 and p | ab. Hence it is clear
that there is only a finite number of primes p for which D(a,b) does not split.

If we consider R as completion at the infinite place, and the Q, as the com-
pletions at the finite places, then we have

The algebra D(a,b) splits if and only if it splits at all places. The number of
places where it does not split is always even.

The first assertion is the so called Hasse-Minkowski principle, the second
assertion is essentially equivalent to the quadratic reciprocity law.

Construction of division algebras and anisotropic groups

We give some indication how to construct anisotropic groups over Q ( or even
overn any number field). We choose a cyclic extension L/Q of degree n and we
pick a number a € Q*, let A(a) € Gl,(Q) be the following matrix

o1 0 ... 0
00 1 ... 0

Afa) = S (1.38)
0o 0 ... 0 1

a 0 0 0 O

Let 0 € Gal(L/Q) be a generator then ¢” +— A(a)” mod G,, is a homomor-
phism from Gal(L/Q) to PGL,(Q) and since A(a) € Gl1,(Q) this is also a
1-cocycle ¢: Gal(L/K) — PGL,(Q) := {¢¥ — A(a)"}. It defines a cohomology
class [A(a)] € H'(L/Q, Ad(Gl,,) and hence an inner Q-form G/Q of Gl,/Q. In
Galois cohomology we have the boundary map

6+ H'(L/Q,Ad(Gla) — H*(L/Q,Gr) = Q* /Ny jq(L*)

and it is clear that
§([A(a)]) = a € Q* /Ny (L)

Now it is well known that the Q -form G/Q of Gl,,/Q is anisotropic if and only
if the class a € Q* /Ny, /g(L*) is an element of order n. We know from algebraic
number theory that there are infinitely many primes p which are inert, i.e. p is
unramified in L and the prime ideal (p) stays prime in the ring of integers Op.
Then it easy to see that the order of p € Q* /Ny, o(L*) is n. Hence we see that
the set of isomorphism classes of anisotropic Q forms of Gl,,/Q is abundant.

Obviously the group M, (Q)* = Gl,,((Q) and we also know that any auto-
morphism of M, ((Q)* is inner, hence Aut(M,(Q)) = PGI,(Q) Therefore the
isomorphism classes of (Q-forms of M, (Q) are equal to the set H'(Q,PGl,).
Such a Q-form D/Q is a central simple algebra over Q. The central simple
algebra D defined by the class [A(a)] can be described explicitly:
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It contains the field L/Q as a maximal commutative subalgebra and it is
generated by L and another element a, € D which satisfies the following rela-

tions

1 n

=o(z); al=a

Va € L we have a,za, o

If we modify a, and put a/, = a,y with y € L™ then the first relation still holds
and the second relation becomes (a,)" = aNp g(y). Hence the isomorphism
class of D is determined by the class a € Q* /Ny o(L*). It is easy to see that
for a = 1 the central simple algebra is equal to the endomorphism ring of the
Q vector space L/Q. (This is the linear independence of the elements o” in

End(L/Q).)

1.2.10  Quasisplit Q-forms

We recall that a semi-simple group G/Q is quasisplit, if contains a Borel sub-
group B/Q. This Borel subgroup contains its unipotent radical U/Q and a max-
imal torus T'/Q. Two such maximal tori T'/Q, T} /Q are conjugate by an element
u € U(Q). Let Go/Q by a split group which is a Q-form of G/Q. We pick a max-
imal split torus Tp/Q and a Borel By/Q D Tp/Q. Then we see that the triple
(G,B,T)/Q is a Q-form of (Go, By, Tp)/Q. Hence it can by constructed from a
1-cocycle representing a cohomology class ¢ € H'(Q, Aut(((Go, Bo,Ty))), where
of course Aut(((Go, By, Tp)) is the subgroup of Aut(Gy) which fixes Ty, By. Ob-
viously we have an exact sequence

1 T8 5 Aut(((Go, Bo, To)) — Autext((Go, By, Tp)) — 1, (1.39)

here Autext((Go, Bo,Tp)) is the very ”small” group of automorphisms of the
Dynkin diagram ®. This is also the subgroup of Aut(X*(7p)) which leaves
the set AT of positive roots invariant. We could say Autext((Go, Bo,Ty)) =
Aut(X*(Ty), AT))

It is well known- and easy to see in the examples of classical groups- that
this sequence has a section sg : Autext((Go, Bo, Tp)) — Aut(((Go, By, Tp)) and
this gives us a map in Galois cohomology

58+ HY(Q, Autext((Go, Bo, Tp)) = Hom( Gal(Q/Q), Autext((Go, B, Tp))

— HYQ, Autext((Gy))
(1.40)

Hence we see that the isomorphism classes of quasisplit Q -forms of Go/Q are
given homomorphisms 1 : Gal(Q/Q) — Autext((Go). The maximal torus
T/Q C B/Q is not split (unless G/Q is spilt). Hence there is a finite nor-
mal extension Fy/Q such that T xg Fy splits, we assume that F/Q is min-
imal. ie. Gal(FpQ) C Aut(X*(T xq Fp),AT). We see that a quasisplit
form of Go/Q is given by a finite normal extension Fy/Q and a injection
P Gal(Fp/Q) — Aut(X*(Tp), AT).

In the special case Go/Q = Sl,/Q with Ty/Q, By/Q being the standard
diagonal torus and the standard Borel subgroup of upper triangular matrices
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this looks as follows: We have the element

00 0 .. 1
0 0 ... 1 0

wo = Do € S1,(Q) (1.41)
0 1 ... 0 0

£ 0 0 0 O

this element wy conjugates By into its opposite B the group of lower triangular
matrices. The standard Cartan involution © : g —* ¢g~! does the same and
therefore the composition Ad(wg) o © is an automorphism of Go/Q which fixes
By, Tp. It is an outer automorphism if n > 3 and gives us the non trivial element
of Autext(Gp). Hence we get a 1-cocycle if choose a quadratic extension L/Q
and send the non trivial element in Gal(L/Q) to Ad(wyg) o O.

We leave it an exercise to the reader to show the the Q form obtained from
this cocycle (cohomology class) is isomorphic to the above group SU(h1)/Q.

An important class of quasi split groups is given by the groups G/Q =
Rp,/0(Go) where I5/Q is a finite extension of Q and Go/Fyp is a split group. If
Bo/Fy C Gy is a Borel subgroup then B = Rp,,o(Bo) is a Borel subgroup in
G/Q. Let F D Fy be a normal closure of Fj then

GxoF= ][ Goxm.F (1.42)
v:Fo—F

where ¢ runs over the set ¥ of maps from Fj to F. The Galois group acts on the
product via the action on 3.

1.2.11 The Borel-Serre compactification, reduction theory
of arithmetic groups

This section could be skipped in a first reading. For the particular groups Sla/Q
or Sly(Z[v/—d) this compactification has been discussed in detail in the previous
sections. A reader who is interested in the specific applications to number theory
which will be discussed in the following chapters 2-5 only needs the results from
section 1.2.7.

The Borel-Serre compactification works in complete generality for any semi-
simple or reductive group G/Q. To explain it, we need the notion of a parabolic
subgroup of G/Q.

A subgroup P/Q — G/Q is parabolic if the quotient variety in the sense of
algebraic geometry is a projective variety. We mentioned already earlier that
for the group Glo/Q we have an action of Gly on the projective line P* and
the stabilizers B, of the points x € P(Q) are the so-called Borel subgroups of
Gly/Q. They are maximal solvable subgroups and

Gly/B, = P,

hence they are also parabolic.
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More generally we get parabolic subgroups of Gl,,/Q, if we choose a flag on
the vector space V = Q" = Qe; @ --- ® Qe,,. This is an increasing sequence of

subspaces
F:(0)={0)}=VycWVhcWhcC...CV,=V.

The stabilizer P of such a flag is always a parabolic subgroup; the quotient
space
G /P = Variety of all flags of the given type,

where the type of the flag is the sequence of the dimensions n; = dim V;.
These flag varieties (the Grassmannians ) are smooth projective schemes
over Spec(Z) and this implies that any flag F is induced by a flag

]:Z:(O):{(O)}:LOCLlCLQC...CLk:L:Zn (143)

where L; = V; N L, and of course L; ® Q = V;. This is the elementary fact which
will be used later.

If our group G/Q is the orthogonal group of a quadratic form

n
flay, ... x,) = Zaixf
i=1

with a; € K*. Then we have to replace the flags by sequences of subspaces
F:0CW, CWsy... cWtcwicv,

where the W; are isotropic spaces for the form f,i.e. f| W; =0, and where the
Wit are the orthogonal complements of the subspaces. Again the stabilizers of
these flags are the parabolic subgroups defined over Q.

Especially, if the form f is anisotropic over Q, i.e. there is no non-zero
vector z € K™ with f(z) = 0, then the group G/Q does not have any parabolic
subgroup over Q. This equivalent to the fact that G(Q) does not have unipotent
elements.

These parabolic subgroups always have a unipotent radical Up which is
always the subgroup which acts trivially on the successive quotients of the flag.
The unipotent radical is a normal subgroup, the quotient P/Up = M is a
reductive group again, it is called the Levi-quotient of P.

We go back to the group Gl,,/Q. It contains the standard maximal torus
whose R valued points are

t1 O .0
T R 3! (1.44)
To(R) ={t= t; € R 1.44
0 0 .0
0 O 0 t,

It is a subgroup of the Borel subgroup (maximal solvable subgroup or minimal
parabolic subgroup) whose R-valued points are

tl uy,2 e Ul,n
0 tg e U2.n
Bo(R) = {b= , | tie R} (1.45)
0 0 v Upn—1n
0 0 0 tn
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and its unipotent radical Uy consists of those b € By where all the t; = 1. This
unipotent radical contains the one dimensional root subgroups

10 ... 0 O
0 1 0 0
Ui’j :{ 0 0 z 0 },{,C €R (146)
0 0 O 0
0 0 O 0 1

where ¢ < j, these one dimensional subgroups are isomorphic to the one di-
mensional additive group G,. They are normalized by the torus, for an element
t e T(R) and z; ; € U; j(R) = R we have

U?i,jfl =t;/tjz; ;. (1.47)

Fori=1,...,n,j=1,...,n,4# j (resp. ¢ < J ) the characters «; ;(t) =
t;/t; are called the roots (resp. positive roots) of Ty in Gl,,. We denote these
systems of roots by AG (resp)A?". The one dimensional subgroups U; ;,i # j
are called the root subgroups.

Inside the set of positive roots we have the set of simple roots

™= 7TG1" = {alﬁg,...7ai’i+17...,an,1’n} (148)

If we pass to the semi-simple subgroup Sl,,/Q then the torus and the Borel-
subgroup has to be replaced by Tél), B(()l), where we have [], t; = 1. The system

of roots does not change, we have 7 = 76l = 7SI
We change the notation slightly, for i = 1,...,n — 1 we define a; := ;41
then for ¢ < j we get o j = a; +...j—1, and 7 = {ag,09,...,an_1}

The Borel subgroup By is the stabilizer of the ”complete” flag
{0} C Qe1 C Qeq B Qez C -+ C Qe ®Qea @ - - - B Qey, (1.49)
the parabolic subgroups Py D By are the stabilizers of ”partial” flags

{0} CQe1® - -®Qep, CQe1 @---®Qep, ®Qepy41®--- B Qepyyn, C--- CQ™
(1.50)

The parabolic subgroup P, also acts on the direct sum of the successive quotients

(Qel DD Qenl) @(Qen1+l S---D Qen1+n2) @ cee (151)

and this yields a homomorphism
TPy : Py — My = Glnl X Gan X ... (152)

hence My is the Levi quotient of Fy. By definition the unipotent radical Up, of

Py is the kernel of rg. The semi-simole component will be Mél) = S, X8, x. ..
A parabolic subgroups Py D By defines a subset

AP ={a; ;€ A" | U C Py}



1.2.  ARITHMETIC GROUPS 49

and the set decomposes int two sets
AMo = Lo, ; | U and U;,; € AP AVro = APo\ AMo, (1.53)
Intersecting this decomposition with the set 76! yields a disjoint decomposition
7Sl = gMo y 7V (1.54)
where 7V = {an,, Qny 1nys - - -, }- In turn any such decomposition of 7G yields
a well defined parabolic Py D By. We define the index of a parabolic subgroup

this is the number d(P) = #7Y . The proper maximal parabolic subgroups are
the ones with d(P) = 1.

If we choose another maximal split torus 77 and a Borel subgroup B; D T}
then this amounts to the choice of a second ordered basis vq,va,...,v, the v;
are given up to a non zero scalar factor. We can find a g € Gl,(Q) which maps
€1,€2,...,€, tO v1,Va,...,v,, and hence we can conjugate the pair (Byp,Tp) to
(B1,T1) and hence the parabolic subgroups containing By into the parabolic
subgroups containing B;. The conjugating element ¢ also identifies

Z'T07B()7T17B1 : X*(TO) - X*(Tl)

and this identification does not depend on the choice of the conjugating element
g. This allows us to identify the two set of positive simple roots 7C» C X*(Tp)
and m C X*(T1). Eventually we can speak of the set 7 of simple roots of Gl,,.
Hence we have the fundamental fact

The Gl,,(Q) conjugacy classes of parabolic subgroups P/Q are in one to one
correspondence with the subsets ©' = ™. Then number of elements in 7\ n’ =
7V is called the rank of P, the set ©' is called the type of P.

We will denote the unipotent radical of P by Up and the the reductive
quotient of P by Up will be denoted by Mp = P/Up. Then 7’ = 77, We will
also use a slightly different notation: If P is given then we we also use U(= Up)
for the unipotent radical and M = P/U for the reductive quotient.

We formulated this result for Gl,/Q but we can replace Q by any field k
and Gl,, by any reductive group G/k. We have to define the system of relative
simple positive roots 7¢ for any G/k (See [B-T]).

The group G/k itself is also a parabolic subgroup it corresponds to 7’ = 7.
We decide that we do not like it and hence we consider only proper parabolic
subgroups P # G, i.e. ' # (. We can define the Grassmann variety Grl™T of
parabolic subgroups of type 7’ This is a smooth projective variety and Grl™] (Q)
is the set of parabolic subgroups of type 7'.

There is always a unique minimal conjugacy class it corresponds to 7’ = ().
(In our examples this minimal class is given by the maximal flags, i.e. those
flags where the dimension of the subspaces increases by one at each step (until
we reach a maximal isotropic space in the case of an orthogonal group)). The
(proper) maximal parabolic subgroups are those for which 7’ = 7\ {a;}, ie.
VP = {a;}

For any parabolic subgroup P/Q C G/Q we counsider the character module
X*(P) := Hom(P/Q,G,,). Since we do not have any non trivial homomor-
phisms from the unipotent Up to G, we have Hom(P/Q,G,,) = Hom(Mp,G,,).
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The reductive quotient Mp = M 1(,1) - Cp where Cp is the central torus und
M }(,1) the semi-simple part ( the derived group). The quotient Mp/M ;,1) =Cp
is a torus and Cp — C% is an isogeny. Hence we have

Hom(P/Q,G,,) ® Q = Hom(Mp,G,,) ® Q = Hom(Cp,G,,) ® Q = Hom(Cp,G,,) @ Q
(1.55)

For a maximal parabolic subgroup P of type ' = {«;} we consider the mod-
ule Hom(P, G,,)@Q C X*(T)®Q. Of course it always contains the determinant
and

Hom(P,G,) ® Q = Qy; ® Qdet

where «; is

Yi(t) = (f[ t,) det(t)~/. (1.56)

These ~; are called the dominant fundamental weights.

If our maximal parabolic subgroup is P/Q is defined as the stabilizer of a
flag 0 ¢ W C V = Q", then the unipotent radical is U = Hom(V/W,W).
An element y € P(Q) induces linear maps yw, yy,w and hence Ad(y) on U =
Hom(V/W,W). We get a character yp(y) = det(Ad(y)) € Hom(P,G,,) which
is called the sum of the positive roots. An easy computation shows that

nY =p (1.57)

We add points at infinity to our symmetric space: We consider the disjoint
union Uyrg Grl™ ](Q) and form the space

X=xu J (.
7' 20
This is the analogue of or H U P*(Q) in our first example, it is now more
complicated because we have several Grassmannians, and we also have maps

rmyﬂzGr[”l](Q) — Gr[“]((@) if mg C 7.

Our first aim is to put a topology on this space such that I'\X becomes a
compact Hausdorff space.

In our first example we interpreted the Farey circle D (c, %) with0<e<1
as an open subset of points in H, which are close to the point %, but far away
from any other point in P*(Q).

The point of reduction theory is that for any parabolic P € Grl™] (Q) (here
we also allow P = () we will define open sets

XP(QTH’T(QW’)) cX (158)

which depend on certain parameters c,,,7(c)» The points in X (c,,7(c,/))
should be viewed as the points, which are ”very close” to the parabolic subgroup
P (controlled by ¢,/) but "keep a certain distance” (controlled by r(c,/)) to the
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parabolic subgroups @ p P. They are the analogues of the Farey circles. We
will see:

a)This system of open sets is invariant under the action Gl,,(Z)

b) For P = G the set X% (), ) is relatively compact modulo the action of
Gl,(Z).

¢) Any subgroup I' C Gl,,(Z) has only finitely many orbits on any Grl™] (Q)

d) For a suitable choice of the the parameters c_,, and r(c,/) we have :

Z5B)

X =JXP(cprlea) =X, m0)U | XP(cpr(cn))
P P:Pproper

and if P and P; are conjugate and P # P; then X P (c_.,7(c,,))NXT1 (c,.,7(c,/)) =
0.

Let us assume that we have constructed such a system of open sets, then c)
and d) impliy that for a given type 7’ we have

N U XPrle) =JTr\X " (crr,r(cr))

P:type(n’)=m

where {..., P;,...} = S(x,T) is a set of representatives of Gr™!(Q) modulo the
action of I" and I'p, = I' N P;(Q).

This tells us that we have a covering

NX =D\X°W,r)u | U TPX" (e r(en) (1.59)

' #) PeX(n’,T)

The philosophy of reduction theory is that T\X% (0, 7o) is relatively compact
and that we have an explicit description of the sets Tp\XF (c,,,r(c./)) as fiber
bundles with nil manifolds as fiber over the locally symmetric spaces T p\X™M.

We give the definition of the sets X (c,.,,7(c,/)). We stick to the case that
G =Gl,/Q and T' C Ty = Gl,(Z) is a (congruence) subgroup of finite index.
We defined the positive definite bilinear form (See 1.22)
~ 1
13@)z = _7B®a: COR X OR —R
2n
and we have the identification gg = Tf’ (R), and hence we get a euclidian metric
on the tangent space TE’ ®) at the identity e. This extends to a left invariant

Riemannian metric on G(R), we denote it by dg,s?. Hence we get a volume
form d9% on any closed subgroup H(R) C G(R).

VOIH

For any point € X and any parabolic subgroup P/Q with unipotent radical
U/Q) we define

pp(P,z) = voly®= (g N U(R))\U(R)) (1.60)
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_ For the Arakelow-Chevalley scheme (Gl,,/Z,00) See(1.1.4) we have that
Be,(E; ;) = 1. We have by construction

Ui ;(Z)\U; ;(R) =R/Z (1.61)

and under this identification E; ; maps to 8%' Hence we get

oS (Ui (Z)\Uij(R)) =1

VOlUi,j
and from this we get immediately

Proposition 1.2.1. For any parabolic subgroup Py containing the torus Ty we
have
pp(Po,00) = 1.

Let (L, <, >,) be an Arakelow vector bundle and (Gl,,, ©,) the correspond-
ing Arakelow group scheme (of type Gl,, ) let

fzi(O):{(O)}ZL()CLlCLQC...CLk:L:Zn

be a flag and P/Z the corresponding parabolic subgroup. Then we have the
homomorphism

i=k
rp : P/ Spec(Z) — M/Z = [ [ GI(Li/Li-1) (1.62)

i=1

with kernel Up/Z. The metric <, >, on L ® R yields an orthogonal decompo-
sition

i=k

LoR=EPLi/Li1®R

i=1
and hence an Arakelow bundle structure (L;/L;_1,(0,);) for all i, and therefore
an Arakelow group scheme structure on M/Z.

Hence we get

Proposition 1.2.2. If (Gl,, ©) is an Arakelow group scheme then © induces
an Arakelow group scheme structure ©M on any reductive quotient M = P/U.

Definition : A pair (Gl,/Z,0) is called stable (resp. semi stable) if for
any proper parabolic subgroup P/Q C Gl,,/Q we have

pp(P,©) > 1 (1.63)

In our example in (1.2.6) the stable points are those outside the union of the
closed Farey circles.

To get a better understanding of these numbers we have to do some com-
putations with roots and weights. Let us start from an Arakelow vector bundle
(L=17% <, >) and let us assume that L is equipped with a complete flag

Fo = {0)} =Ly CLi1C---CLgq1ClLy (164)
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which defines a Borel subgroup B/Z. The quotients (L;/L;,—1,< , >;) are
Arakelow line bundles over Z or in a less sophisticated language they are free
modules of rank one and the generating vector €; has a length /< €;,€; >;. This
length is of course also the volume of (L;/L;—1 @ R)/(L;/L;_1).
The unipotent radical U/Z C B/Z has afiltration {(0)} C V1 C ..., Vyn-1)/2-1 C

Va(n-1)/2 = U by normal subgroups, the successive quotients are isomorphic to

G, and the torus T = B/U acts by a positive root «; ; and this is a one to

one correspondence between the subquotients and the positive roots. Then it is
clear: If v corresponds to (i,7) then

(VV/VV+17@V) = (Li/Li—la <, >i) (9 (Lj/Lj_l, <, >j)_1. (165)
Moreover the quotients (V,,/V,,11,0,) depend only on the conformal class

of <, > and hence only on the resulting Cartan involution ©.

The unipotent subgroup U/Z contains the one parameter subgroup U; ;/Z
and this one parameter subgroup maps isomorphically to (V,,/V,11). Hence our
construction defines the Arakelow line bundle (U; ;, 9, ;).

If we now define n,, ;(B,z) = vole, ;(U; ;(R)/U; ;(Z)) then it is clear that
pe(B,z) = Hnam‘ (B, ) (1.66)
i<j
If P O B then its unipotent radical Up C U and we defined the set AU? as
the set of positive roots for which U; ; C Up. Then we have
pp(Bx)= [ 7a.,(B ) (1.67)
(i.5)eavr

Here it is important to notice the right hand side does not depend on the choice
of BC P.

We follow a convention and put 2pp = Z(m)eAup o ; so that pp is the half
sum of positive roots in in the unipotent radical. Formula (1.57) tells us that
for any maximal parabolic subgroup F;,

2pp,, = Z QG = NYi- (1.68)

1<ip,j>20+1

For any v = " zja; i+1 € X*(T) ® C we define the homomorphism

A s T@®) = C < 7] < ¢ = [ s (8

(1.69)

Since the numbers n,, ; (B, ) are positive real numbers we define for any

n—1
ny(B,z) = [[ naw, (B, 2)™. (1.70)
=1

Here we see that the second argument is a Borel-subgroup B. But if the above
character v : B(R) — RZ, extends to a character v : P(R) — RZ, then we can
define

ny (P, z) :=n, (B, z)
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and this number only depends on P and not on the Borel subgroup B C P.
The characters in v € X*(T) for which |y| extend to P(R)are exactly the lin-
ear combinations (See (1.72) below) v = > v ;7. The characters yp =
ZaiEﬂ'U r;7y; where the r; > 0 are rational numbers. Let P; be the maximal
parabolic subgroup of type 7 \ {«;} containing P then the above formula im-
plies that

pr(Px)= [ nv(Poo)™ = ] pr(Pio)™ (1.71)

a;enV a;enl

This tells us
The Arakelow scheme (Gl,/Z,©) is stable if for all mazimal parabolic sub-
groups pp,(P;, ©) = n,, (P, ©)" > 1.

We need a few more formulas relating roots and weights. For any parabolic
subgroup we have the division of the set of simple roots into two parts

r=rMun¥r.
This induces a splitting of the character module
X*TeQ= P Qe P v (1.72)
a;emM a;enUP

where 7; is the dominant fundamental weight attached to «; (See (1.56)).
If now a; € 7Y then we can project a; to the second component, this
projection

azP =o; + Z CivQy (173)

a,exM
Here an elementary - but not completely trivial - computation shows that
¢ >0 (1.74)

Since ol € ® D.,crvr Qi these characters extend to P(R) and hence n,r (P, )
is defined. /

We state the two fundamental theorems of reduction theory

Theorem 1.2.1. For any Arakelow group scheme (Gl,,,0,) we can find a Borel
subgroup B C Gl,, for which

2
N, (B,0z) =g, (B,x) < — foralli=1,...,n—1
(B.6,) = o, (B.) < = f

Theorem 1.2.2. For any Arakelow group scheme (Gl,,®) we can find a a
unique parabolic subgroup P such that for all a; € TP we have

nor(P,0) < 1 and he reductive quotient (M,0) is semi stable.
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The first theorem is due to Minkowski, the second theorem is proved in [Stu],
[Gray].

This parabolic subgroup is called the canonical destabilizing group. We
denote it by P(z), if (G,z) is semi stable then P(x) = G. This gives us a
dissection of X into the subsets

X = U XPl={zeX|P(z)=P} (1.75)
P: parabolic subgroups of G/Q

Clearly v X [Pl = X[VPV_ll, if we divide by the group I' the we get

nx= |[J rpx® (1.76)
PePar(T")

where Par (T') is a set of representatives of T' conjugacy classes of parabolic
subgroups of Gl,,/Q. This is a decomposition of '\ X into a disjoint union of
subsets. The subset I'\ X [Gln] i compact, it is the set of semi stable pairs
(z,Gl,), the subsets I'p\X¥) for P # G are in a certain sense "open in some
directions” and ”closed in some other direction”. Therefore this decomposition
is not so useful for the study of cohomology groups.

Do remedy this we introduce larger subsets. For a real number r,0 < r <1

we define
XC(r) = {z € X|n,, (P(x),z) >r, for all @ € nVF@), (1.77)
It contains the set of semi-stable (Gl,, ) If we choose r < 1 but close to one
then some of the elements in X! (1) may be unstable but only a "little bit ”.
Together with the first theorem this has a consequence

Proposition 1.2.3. The quotient XSG (r) = T\X G (r) is relatively compact
open subset of T\ X, It contains the set of semi-stable (Gl,, ).

We start from a parabolic subgroup P and let M = P/Up be its Levi-
quotient. Our considerations above also apply to M/Q. The group P(R) acts
transitively on X and we put (See (1.62))

XM = Up(R)\X and let gp; : X — XM be the projection ,
here XM = M(R)/KY where K is the image of P(R) N K in M(R). Let
S C M be the maximal split torus in the center of M then we define
XMY = MR)/KM . SO(R) (1.78)

where of course S(9 (R) is the connected component of the identity of S(R), For
a simple roots a € 7, a Borel subgroup B C M/Q and a point M = g (x)
we can define the numbers n, (B, ™) essentially in the same way as before and
clearly

na(Ba x]W) = na(B, )

if B is the inverse image of B.

We have to be a little bit careful with the numbers pQ(Q, M) because the
for the inverse image @ the unipotent radical Ug, is larger than Ug. Therefore
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we have to look at the dominant fundamental weights M € arentr Qai, and

M in terms of these v :

formulate the stability condition for x
The point 2™ is stable, if for all a; € T the inequality Ty M (P, M) > 1
holds. Again we denote the destabilizing group by P(x™).

Hence we see that for a number 73; < 1 we can define regions

XM(rp) = {xM|n7£u_ (P, 2™) > rjr whenever P,, D P(2™)} (1.79)

We choose numbers 0 < ¢p < 1, furthermore we choose a number r(cp) < 1
and define

*XP(cp,r(cp)) = {z| nor(P,z) < cp for all a € 7V7;2M € XM (r(cp))}
(1.80)

Proposition 1.2.4. For a given r(cp) < 1 we can find numbers cp such that
that for any = € *XF (cp,r(cp)) the destabilising parabolic subgroup P(z) C P.
The same is true in the other direction: For a given 0 < cp < 1 we can findr < 1
such that for x € *X % (cp,r)) the destabilising parabolic subgroup P(x) C P.

To see this we have to look at the destabilising subgroup Q C (M, zy/). Its
inverse image () C P is a parabolic subgroup of Gl,. The reductive quotient
(M, z57) of Q is semi- stable. We want to show that @ is the destabilising
parabolic of (Gl,,z). We have to show that

Nee(Q,z) <1V aerle =xUrynle.

For o € 7Y@ this is true by definition. For a € 77 we have

o =a+ Z a5 and o = a + Z Ay, 5B,

BenM B et

where a, 5 > 0. The roots 3 € mU@ can be expressed in terms of the BR =p9 .

BU=5+ > asup (1.81)
Bleﬂ-M
and hence
a®=a"- 3" a.pB+ > capB. (1.82)
ﬁeﬂ‘ué ,3/6771\2

The last sum is zero because a®,a’’, 39 are orthogonal to the module D Zp .
We get the relation

02 (Q,7) =ngr(Px,) - [ npe(Qz) ", (1.83)
,BG‘H'UQ
Now it comes down to show that
Nar (P, x) < o, ¥V a € TVP and nge(Q,x) >r, V8 € Fie)

(1.84)
= nee(Pr)<1;Vaecalr
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This is certainly true if either the ¢, are small enough or if r is sufficiently close
to one. In this case we say that (cp,r) is well chosen.
Therefore we define

XP(cp,r(cp)) = {z € *X"(cp,r(cp))|P(zx) C P}
we have XP(cp,r(cp)) = * X (cp,r(cp)), if (cp,r(cp)) is well chosen.
We claim that we can find a family of parameters

(' ) (Cp, T(CP)); s )P: parabolic over Q

where (cp,r(cp)) only depend on the type of P, such that we get a covering
COV

X = JxP(cp,r(cp))) (1.85)
P
and hence
N\X =T \X"(cp,r(cp) = |J Tr\X"(cp,r(cp))
P PecPar(T")

We change the notation slightly, since these numbers only depend on the type
7/ = M = t(P) we replace cp by ¢, and r(cp) by r(c).

To prove the claim we choose a number 0 < ¢y < 1. In this case rg = r(cp)
can be any number. Then we choose a number 0 < r; < ¢g. For any m; = {a;}
we choose a ¢, < 1 such that (cg,,r1) is well chosen. We continue and chose
0 < rg < ¢, for all ¢ and for any two element subset J C m we choose numbers
0 < ¢y < 1 such that (cy,72) is well chosen. This goes until we reach top
parabolic.

Now we get a covering of X by the open sets X (c.,7(r)). To see this we
pick a point x € X, we have to show that it lies in at least one of the sets
XP(cp,r(cp)). If it is not in X! (r,_;) then we find a maximal parabolic P;
such that nq, (P, ) < ¢p\({a,}- We project = to the point aMi ¢ XM If this
point is in XM (r,,_3) then z € X' (¢ a;},"n—2) and we are done. If not we
apply our argument above to ™ and ' = 7\ {a;}. We continue the same
reasoning and at latest it stops for 7’ = ().

We have a very explicit description of these sets Tp\ X% (cr/,7(crr)). We
consider the evaluation map

n™r :Tp\XF (cor,r(cnr)) — Haeﬁup (0, cq)

(1.86)
= (o ner (P), .. )aeny,
Of course we also have the homomorphism
la™r | P(R) = {...,|a”],... Yaery, (1.87)

and the multiplication by an element y € P(R) induces an isomorphisms of
the fibers
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(n™r) " (ey) = (n™Ur) " (ey) if |a™VP|(y) -1 = co

where the multiplication is taken componentwise. This identification depends
on the choice of y.

To get a canonical identification we use the geodesic action which is intro-
duced in the paper by Borel and Serre. We define an action of A = (Haeﬂ\ﬂ, RZ,)
on X. This action depends on P and we denote it by

(a,z) »aex (1.88)

A point z € X defines a Cartan involution 6, and then the parabolic sub-
group P®+ of G x R is opposite to P x R and P x RN P® = M, is a Levi
factor, the projection P — M induces an isomorphism

¢y M xR =5 M,. (1.89)
The character o™ induces an isomorphism
sp: A5 S, (R)©

where S, is the maximal Hence we S, (R)(?) is the connected component of the
identity of the center M, (R) N S, (R) and we put

aex =s,(a)x

We have to verify that this is indeed an action. This is clear because for the
Cartan-involution ©,,,; we obviously have

POz — pOaes

It is also clear that this action commutes with the action of P(R) on X
because
ysz(a)r = sy (a)yz for all y € P(R),z € X.

It follows from the construction that the semigroup A_ ={... a,,...}- where
0 < a, <1 - acts via the geodesic action on X (¢, r(c,,)) and that for a € A_
we get an isomorphism

(™ ") o) 5 (07Vr) M ae).

This yields a decomposition

XP(ear,r(ep) = (077 ) Heo) x T (0scal

acmw’

where ¢g is an arbitrary point in the product.
Since we know that |a™ | is trivial on I'p and since the action of P commutes
with the geodesic action we conclude

Lp\XP (cor,7(c,))) = Fp\(n”/)*l(co) X H (0, cq) (1.90)

aemn’
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Let PO(R) = ker(Ja™r|) then the fiber (n™ )~!(co) is a homogenous space
under P(l)(R). We have the symmetric space X™ attached to M, to be precise
this is

XM = M(R)/K
We have the projection map pp s : X — XM where XM is the space of Cartan
involutions on the reductive quotient M. Hence we get a map

Ppy =DPpy XNTUP 0 X — XM H (0, co] (1.91)

acm’

The geodesic action only acts on the second factor of the product XM x
[Iocx(0,cal , the map pp ,, commutes with the geodesic action.

The group Up(R) acts simply transitively on the fibers of this projection,
and hence

qpar: TR\X " (cry(ep)) = Ta\X M (r(cp)) x [T (0,ca] (1.92)

acm’

is a fiber bundle with fiber isomorphic I';/\U (R). If we pick a point T\ XM (r(cp)) x
[Ioc(0,cq] then the identification of q;,lM() with Ty \U(R) depends on the
choice of a point # € X ¥ (c,s,7(c,/)) which maps to .

This can now be compactified, we define the closure

overlinel p\ X (cq1,7(cp) := Fp\(n”UP)_l(co) X H [0, car], (1.93)

aemg\T

and

OTpP\XF (crr, V) = Tp\X P (crr, Q) \ TP\ X (€1, Q) (1.94)

this is equal to

O pP\XP (car,1(cp) = Tp\(n™ ") "H(eo) x O T] [0,ex])

verg\m

where of course ([ ], e\ [0, ¢r]) C I e\ [0s cx] is the subset where at least
one of the coordinates is equal to zero.

We form the disjoint union of of these boundaries over the = and set of
representatives of I conjugacy classes, this is a compact space. Now there is
still a minor technical point. If we have two parabolic subgroups Q C P then
the intersection X (cp,7(cp) N XQ(QQ7 7(cq)) # 0. If we now have points

z € O p\XP(cr,r(cp),y € OLQ\X(cr,(cpr)

then we identify these two points if we have a sequence of points {x,, }neny Which
lies in the intersection X (c.,7(cp))NX?(crr,7(cps)) and which converges to =
in Tp\X P (¢, r(cp) and to y in T\ XQ(cqr,7(cps). A careful inspection shows
that this provides an equivalence relation ~, and we define
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or\x) = ) AKXl i) ~ (1.95)
! ,PePar(T")

and the Borel-Serre compactification will be the manifold with corners

NX=N\(Xu |J XPlerr(cp))- (1.96)
P:Pproper

We define a ”tubular” neighborhood of the boundary we put

NOVX) =T\ | XPleorlep) (1.97)

P:Pproper

and then we define the ”punctured tubular” neighborhood as

NOX) =T\ |J XPleprlep) = T\X NN(T\X) (1.98)

P:Pproper

Eventually we want to use the above covering as a tool to understand co-
homology (See section8.1.9) ) For this it is also necessary to understand the
intersections
NN---NXP(er,r(c,)) (1.99)

xh (Caysr(c [

=

Our proposition 1.2.4 implies that for any point = in the intersection the desta-
bilizing parabolic subgroup P(z) C Py N---N Py. Hence we see that the above
intersection can only be non empty if QQ = P, N---N P is a parabolic subgroup.
Then 7Y@ = Uk_ 7YPv . Let M be the reductive quotient of Q.

Now we look at the product Haeﬂ'UQ RZ,, here it seems to be helpful to

identify it - using the logarithm - with R9e:
log: [ RZ, >R (1.100)
aer?Q
We consider the map

N@: XPl(CTrlar(QTrl)) n--- OXPk(CTrmT(Qﬂ-k)) — Rie
(1.101)
N®:z e (.., —log(nee (Q,)),.. .)QQEWUQ

Consider a point € X™ (¢x,,7(c, )), for a € V7 we have
—log(ngr. (P, x)) = —log(cx, )

We can express — log(ng,r. (P, z)) as a linear combination of the —log(n,e (Q, x),
with a € 7Y@, This means that the root a € 7Y% defines a half space H, ()
in R% and N@9(z) C H} (a) in Rée.

Now we assume that z is in the intersection (1.99). For the roots a € 7\ 7
we have the condition (1.79). For the roots o € 7Y@ \ 7% this yields

Up,

—log(nn (Py, ) < — log(r(m,)).
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Therefore we see that the image of N? is contained in the intersection of a
finite number of half spaces, which are obtained from a finite family of hyper-
planes. These hyperplanes depend on the parameters c,, , (), let us call this
intersection C(c,r), it is a convex -possibly empty- subset of R,

We investigate the restriction

N9 X (en,,r(ce ) N N X (Cry s r(es,)) = Cler)

We observe that the unipotent radical Ug(R) acts by left translations on the
intersection, we get a diagram

X (e, r(er,)) N N X (eny,7(er,)) = Clor)

=T

L pm (1.102)
XM x Rie N Re
Now it is clear from the definitions that the image of pys is a set
Im(par) = QY (c,r) x Cle,1)

where QM (c,7) € XM is a subset containing the set X™-** of semi stable points
and is described by certain inequalities as in (1.77). This subset is I'js invariant
and '3/ \QM (¢, r) is relatively compact.

Hence we see that we have essentially the same situation as in (1.92). The
map

qm xXh (Cwl,’f‘(gﬂl)) n---nXxM (Cﬂk?r(gﬂ-k)) — FM\QM(QK) X O(Q,ﬂ)
(1.103)

is a fiber bundle with fiber isomorphic to I'y, \Ug(R).

In the following we refer to the book of S. Helgason [49].

We mention an important property of the sets X¥(c/,r(cp)). We assume
that our symmetric space X is connected, then it is well known that it is convex,
any two points p,q € X can be joined by a unique geodesic [p, q]. We say that
a subset U C X is convex if for any two points p,q € U also the the geodesic

[p,ql CU.

Proposition 1.2.5. Let Q c QM (¢,r) be a convex subset. Then the inverse im-
age pyf (2xC(c, 1)) is a convex subset of Xt (¢, , (ce, )N NX P (i r(cy, )

Proof. The assertion is easily reduced to the following:

Let P be a maximal parabolic subgroup, let M be its reductive quotient, let
a be the simple root not in 7 and Q C XMY  Then the set for any choice
of We choose a ¢, > 0 and claim that X (c,,Q) = {z € X | nor(P,z) <
Co ;qum(x) € Q} is convex .

To see this we pick a point © € X¥(c,, ), let T:X be the tangent space at
x. The action of G(R) on X gives us a surjective map D, : gr — T and this
induces an isomorphism D, : gg /€, — Tf , here of course ¢, is the Lie-algebra
of K,. We get the well known Cartan decomposition of the Lie-algebra

gr =€, B p, where p, ={V egr | 0,(V) =-V} (1.104)
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and we get the isomorphism D, : p, — T.X. Starting from our parabolic
subgroup P we get a finer decomposition of p,.

Let Pr be the the Lie algebra of P xR. The intersection PxR N O, (PxR) =
M, and we get for the Lie algebras m, = m(® @ a and this gives the finer
decoposition m, = £ @ p(M: @ a and then

pe =p M) @a@{V-0,(V)}veu (1.105)

where V € ug and a = RY4. We normalise Y4 such that da”(Y4) = 1.Then we
can write a tangent vector T;X as image of

Y=Yy+aYs+ (V — Q(V)),

We know that there is a unique geodesic ¢ : R — X starting at « with ¢/(¢) =Y
The theorem 3.3 in Chapter IV in [49] says that this geodesic is ¢(t) = exp(tY) -
x. A tedious computation using the Iwasawa decomposition and the Campell-
Hausdorft formula shows that

—log(ngr (exp(tY) - ) = —log(n.r(x)) + at — a®q(Ya, V)t? (1.106)

where ¢(Y4,,V) is a positive definite form in V.
If now #; € X% (cq,Q) is a second point, We find a tangent vector ¥ =
Yy + aYa + (V — 6(V)) such that ¢ — exp(tY) - « is the geodesic joining x

and 1 = exp(Y) - z. If we project these two points to XM then the images

Z,21 € Q and exp(t(Yar)Z is the geodesic in XM " and hence for ¢ € [0,1] we
have exp(t(Yas)Z. But now

—log(ngr(x)) > —log(cy); —log(ngr (exp(Y)-x) = —log((ngr(z1) > —log(ca)-

Since the second derivative is always > 0 (see(1.106) it follows that — log(n,r (exp(tY)-
x) > —log(cq) VYt €]0,1].
O

We formulated the main theorems of reduction theory only for Gl,/Q be-
cause we did not want to much from the theory of reductive groups ( for instance
[9] ). But actually these results extend to general reductive groups, basically in
the same formulation. Especially we get

Theorem 1.2.3. (Borel-Harish-Chandra): If G/Q is an anisotropic reductive
group and I' C G(Q) is an arithmetic subgroup then

I\X = I\G(R)/Kw

is compact.



Chapter 2

The Cohomology groups

2.1 Cohomology of arithmetic groups as coho-
mology of sheaves on I'\ X.

We are now in the position to unify — for the special case of arithmetic groups
— the two cohomology theories from our chapter II and chapter IV in [37].

We start from a semi simple group G/Q and we choose an arithmetic con-
gruence subgroup I' C G(Q). Let X = G(R)/K as before. A second datum will
be a I'- module M, in principle this can be any I'- module.

Let M is a T-module then we can attach a sheaf M on T\ X to it, this sheaf
has values in the category of abelian groups. To do this we have to define for any
open subset U C X the group of sections /\;l(U ). We start from the projection

m: X —DI\X

and define
MU) ={f: 771 (U) - M| f is locally constant f(yu) =~f(u)}.  (2.1)

This is clearly a sheaf. For any point z € I'\X we can find a neighborhood
V, with the following property: We choose a point & € 7~ !(x), then 7 has a
convex ['z-invariant neighbourhood Uz, for which yUz; N Uz # 0 < ~ &€ 'z
and then we put V,, = I'z\Uz. We call such a neighbourhood V, an orbiconvex
neighbourhood. It is clear that

M(V,) = Mz,

Since x has a cofinal system of neighbourhoods of this kind, we see that we get
an isomorphism ~ B

gzt M(Vy) = Myp—M"=,
The last isomorphism depends on the choice of z. If we are in the special case
that T has no fixed points then we can cover I'\ X by open sets U so that M /U
is isomorphic to a constant sheaf M;;. These sheaves are called local systems.
If we have fixed points we call them orbilocal systems.

63
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We will denote the functor, which sends M to M by
shr : Modr — SI‘\Xa

occasionally we will write shr(M) instead of M, especially in situations where
we work with several discrete subgroups.
For the following we refer to [37] Chapter 2

The motivations for these constructions are

1) The spaces I'\X are interesting examples of so-called locally symmetric
spaces (provided T' has no torsion). Hence they are of interest for differential
geometers and analysts.

2) If we have some understanding of the geometry of the quotient space I'\ X
we gain some insight into the structure of I'. This will become clear when we
discuss the examples in ...x.y.z.

3) The cohomology groups H*(I', M) are closely related and in many cases
even isomorphic to the sheaf cohomology groups H*(T'\ X, M) Again the ge-
ometry provides tools to compute these cohomology groups in some cases (see
X.y.2.).

4) If the I'-module M is a C-vector space and obtained from a rational
representation of G/Q, then we can apply analytic tools to get insight (de Rham
cohomology, Hodge theory).

2.1.1 The relation between H*(I', M) and H*(T'\ X, M)

In this section we assume that X is connected.
The functor }
M — HY(T\X, M) = M".

is a functor from the category of I'— modules to the category Ab of abelian
groups. We can write our functor M — M' as a composition of

shp : M — M and H° : M — H(I\ X, M).

We want to apply the composition rule from [37] 4.6.4.
In a first step we have to convince ourselves that shr sends injective I'-
modules to acyclic sheaves.

In [37], 2.2.4. we constructed the induced I' -module Indgl}M, for any I'
module M.This is the module of all functions f : I' = M and ~; € " acts on

this module by (v1f)(y) = f(y71). The map
M f = {7 ) (2.2

is an injective I'— module homomorphism.
In a first step we prove that for any such induced module the sheaf shr ( Indlfl}M).
is acyclic.

We have a little
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Lemma 2.1.1. Let us consider the projection m : X — I'\X and the constant
sheaf M on X. Then we have a canonical isomorphism of sheaves

(M) Indjj, M.

Proof. This is rather obvious. Let us consider a small neighborhood U, of a
point z, such that 7=1(U,) is the disjoint union of small contractible neigh-
borhoods Uz for & € m~*(x). Then for all points # we have My (Uz) = M
and
(M)W = [ M
zer—1(x)
On the other hand

—_~—

Indl}, M(U,) = {h ;7 (U,) = Ind{y, M | B is locally constant h(yu) = vh(u)}

For u € m~1(U,) the element h(u) itself is a map
h(u) : T — M,

and (yh(u))(v1) = h(u)(y17y) (here 71 € T is the variable.)

Hence we know the function u — h(u) from 7=1(U,) to Indlfl}M if we know
its value h(u)(1) and this value can be prescribed on the connected components
of 771(U,). On these connected components it is constant, we may take its
value at  and hence

h— (..., h(Z)(1),... ):EEﬂ’l(ac)
yields the desired isomorphism.

Now acyclicity is clear.. We apply example d) in [37], 4.6.3 to this situation.
The fibre of 7 is a discrete space and hence

—_~—

T (Mx) = Ind£1}M

and R(m,)(Mx) = 0 for ¢ > 0. Therefore the spectral sequence yields

HI(X,My) = HIT\X,m.(My)) = H? (F\X, Indfl}/\/l) :
and since X is a cell, we see that this is zero for ¢ > 1. O

We apply this to the case that M = 7 is an injective I'-module. Clearly we
can always embed Z — Indgl}I. But this is now a direct summand; hence it

follows from the acyclicity of Ind?l}I that also Z must be acyclic.

Hence we can apply the composition rule and get spectral sequence with Fo
term

HP(I'\X, Ri(shr)(M)) = H*(T', M).

The edge homomorphism yields a homomorphism

H™T\X, shp(M)) — H™(T, M) (2.3)
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which in general is neither injective nor surjective.

We have seen in section (1.2.2) that -under our assumption that G/Q is
semisimple- the stabilisers I';, are finite. This implies hat the stalks R?(shr)(M), =
H1(Tz, M) for ¢ > 0 are torsion groups actually they are anniihilated by #T ..
This implies that the edge homomorphism has finite kernel and kokernel.

In this book we are mainly interested in the cohomology groups H™(I'\ X, shr(M))
and not so much in the group cohomology H*(T', M).

Functorial properties of cohomology

We investigate the functorial properties of the cohomology with respect to the
change of T". If IV C T is a subgroup of finite index, then we have, of course, the
functor

MOdp — 1\/[0(21{‘/7

which is obtained by restricting the I'-module structure to I'V. Since for any
I-module M we have M" — M!" | we obtain a homomorphism

res : H'(D, M) — H'(T', M).

We give an interpretation of this homomorphism in terms of sheaf cohomology.
We have the diagram

X

o N\ T
T =Trr: FI\X — F\X

and a T-module M produces sheaves shp(M) = M and shr (M)=M’ on I"\ X
and I\ X respectively. It is clear that we have a homomorphism

THM) — M.

To get this homomorphism we observe that for y; € I'\X we have 7f(M),, =
Mz (y1), and this is

{f 7 m(y) = M| F(73) = 7f(§) for all y € T, € 7 (m(yn))}

and

My, ={fg: (@) y) = M| f('5) = f(§) for all y € I, 5 € (7) " (y1)},
and if we pick a point § € (7')"(y1) € 71 (m1(y1)) then
TE M)y, = MEn c Ml = Mo
Hence we get (or define) our restriction homomorphism as (see I, ....)

HY(T\X,shp(M)) — HY(I'\X, 7} (shp(M)) — H'(I"\ X, shp (M)).

There is also a map in the opposite direction.
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Since the fibres of m; are discrete we have
HY(I'\X, M)~ H T\ X, 711 . (M)).

But the same reasoning as in the previous section yields an isomorphism

71,0 (M)— Indf, M.

Hence we get an isomorphism

HY(T'\X, M)~ H(T'\ X, Indj, M) (2.4)

which is well known as Shapiro’s lemma. But we have a I'-module homomor-
phism
e: Indp M — M

which sends an f: ' — M, in f € IndE,M to the sum

tr(f) =Y _ 7 ()

where the v; are representatives for the classes of IY\I". This homomorphism
induces a map in the cohomology. We get a compositon

T1e: H(T'\X, M) — H I\ X, M).
It is not difficult to check that

meom =[[:T'].

2.1.2 How to compute the cohomology groups H'(I'\ X, M)?
The Cech complex of an orbiconvex Covering

We consider a point € X and an open neighbourhood U; C X. We say that
U; is an orbiconvex neighborhood of Z if

a) The set Ui, is convex, i.e. for any two points in Z,,Zo € U;g the geodesic
joining 1 and 2 lies in Uj;.
irgendwo frither was zu Geoditen sagen, )

~ b) We have 'yU_i N U,; = ) unless vZ = Z and in this case we even have
’YUj = U;c.

A family of orbiconvex neighborhoods {Ufi}izlw,r of points Z1,...,Z, will
be called an orbiconvex covering, if

U U Vs, = X. (2.5)
i=1~er

We will show later that we can always find a finite orbiconvex covering of X.

If now {Uf }i=1,....r is an orbiconvex covering we put U, = w([j@.), and then
we get finite covering by open sets

Uuv. =1\x
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We call Ul = {U,,} an orbiconvex covering of I'\ X.

We will see further down that the intersections U; = Uggi1 N Uggi2 n---N Umiq
are acyclic, i.e. H*(U;, M) =0 for k > 0.

This implies that the Czech complex (See [37], Chap. 4)

CU U M) =0 PMU,) 2 @MU, NUL,) — (2.6)
i€l i<j
computes the cohomology.
For the implementation on a computer we need to resolve the definition of

the spaces of sections and the definition of the boundary maps. (By this I mean
that we have to write explicitly

M(Uz) = @ M,

where 1 runs through an index set and M, are explicit subspaces of M and
then we have to write down certain explicit linear maps M, — M,.)

To be more precise: We have to write U; = UU,, as the union of its connected
components, we have to choose a connected component (~]7, in 71'_1(U,7) for each
value of 7, and then the evaluation of a section m € /\;I(Ui) on these Un yields
an isomorphism

®evy, MU;) = @MF”.
n

If we replace U',, by 'yUn then we get for m € /\;l(w(ﬁ,,)) the equality
vevg, (m) = v, (2.7)
Especially the choice of the Z; yields an identification

evy, : M(Uy,,) = MFa (2.8)

z

this gives us the first term in the complex.

The computation the second term is a little bit more delicate. The point is
that the intersections U, N U;; may not be connected. To get these connected
components we have to find the elements v € I" for which

It is clear that this gives us a finite set G; ; of elements v € I'/T;,. We have a
little lemma

Lemma 2.1.2. The images ©(Ugz, N 'y(Ug;J)) are the connected components of
Up, NUy,, two elements v,v1 give the same connected component if and only if
S inyl“xj.

Let F;; C G;; be a set of representatives for the action of I';, on G, ;
this set can be identified to the set of connected components. Of course the
set Ugz, N 'y(f]f,gj) may have a non trivial stabilizer I'; ; , and then we get an
identification

Drer,, V0, g, P MUz, NUL,) = @ MU (2.10)
) ! YEF; ;
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This is now an explicit (i.e. digestible for a computer) description of the second
term in our complex above. We still need to give the explicit formula for dy in
the complex

0 PM= P P Mmoo (2.11)

el 1<j vEF;,;

Looking at the definition it is clear that this map is given by

(coosmy, oo ,my, )= (oo my —ymy,. ) (2.12)

Here we have to observe that v € T'/I';; but this does not matter since m; €

MY%5 . So we have an explicit description of the beginning of the Cech complex.
A little reasoning shows of course that a different choice F; ; of the repre-
sentatives provides an isomorphic complex.

Now it is clear, how to proceed. At first we have to understand the combi-
natorics of the covering 4 = {U,, }ic1.
We consider sets

Gi={v= (&7, +7g) |V € T/Tu;; Uzo O -+~ N 70Uz N YUz, # 0}

on these sets we have an action of I';, by multiplication from the left. Again
let F; be a system of representatives modulo the action of I'y,.
We abbreviate

Ui:l =Uz, N--- ﬂ’Yiﬁ:v”i m’YqUiqa

let T'; , be the stabilizer of Ull

The images 7(U; ) under the projection map 7 are the connected compo-

nents 7(Ui,y) = Uiy C Ui = Uy, N---NUy, N... Uy, . On the other hand each

fEiO
set U; ~ is a connected component in 7! (U; ). We get an isomorphism

P evs,  MU) = MU, 00Uy, N U, ) = @ M2 (213)

leFi leFi

We need to give explicit formulas for the boundary maps

P Moy 5 @ my.

IE ielatl

Abstractly this boundary operator is defined as follows: We look at pairs i €
I‘”l,z(”) € 19 where ;'(”) is obtained from ¢ by deleting the v-th entry. Then we
have U; C U;») and from this we get the resulting restriction homomorphism

Rz‘(u),l‘ : ./\N/[(Ul‘(u)) — M(Ul) Then

q
dq = Z Z(_l)yRﬂ"%z

7 v=0

and hence we have to give an explicit description of R;u) ; with respect to the
isomorphism in the diagram (2.13).
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We pick two connected components m(U; ) C U;) and W(Ui@)’,y, C Usoy,
then we know that N

[NJLZ - Ui(uwl <= dn,, €I such that 77%7/%2 =y, for all p #v

and then the restriction of R;w) ; to these two components is given by

€V
Yi) 41

\I/ R@(V)&‘ ~|/ My, (2'14)

M(7(Uiy)) i MEin

Here the two horizontal maps are isomorphisms, we observe that 7, is unique

up to an element in Fz’“’%w’ and hence the vertical arrow 7,/ is well defined.

Hence we conclude:

Once we have found a a finite orbiconver covering of T\ X, we can write
down an explicit complex, which computes the cohomology groups H® (T\ X, M).

We may also look at this situation from a different point of view: If x € X
is any point and I',, C T its stabilizer, then we define the induced I" module

IndFJZ :={f:T — Z| f has finite support and f(ay) = f(v), Va € T'y,y € T'}
(2.15)

If V, is an open neighbourhood of = which satisfies b) an ¢) then we have
7 Y w(Vy)) = UweF/FI ~V, and

T (M)( U YV,) = Hom( IndIEIZ,M).

’YEF/Fw

We have the covering

= ~O 5 =X
i,’yGF/I‘,—Ei
of the symmetric space. The Czech-complex C* (&L, 7*(M)) computes the coho-

mology groups H?(X,n*(M)) which are trivial for ¢ > 0. Our considerations
above yield

C* (U, 75 (M) =0 — ED Hom( Indy, Z, M) LR ED Hom( Indp. Z, M) L
i=1 i<§,Ei 7

Now it is easy see that the boundary maps are induced by maps between the
induced modules

5 P mdh, 25 @ mdf, z o,

i<j,:i7‘,“7‘ i=1



2.1. COHOMOLOGY OF ARITHMETIC GROUPS AS COHOMOLOGY OF SHEAVES ONT\ X.71

where for f € @ IndII:iJZ, in degree v and w € C*~1({l, 7*(M)) the relation
w(8”(f)) = d~1(w)(f) defines §”. We get an augmented complex

P® == @ IndgiJZ e @ Indgi‘

i

T
r
L~ Indp, Z 70
Zg Tij i=1

(2.16)

and since C*® (fl, w*(M)) is acyclic in degree > 0, we get that P*® is an acyclic
resolution of the trivial module Z.

Let N = [],#I'z, and R := Z[+] then the R[I'] module Indgz ® R is a
direct summand in R[I'] and hence a projective R[I'] module. This implies of
course that

P*oR== P Indf, R~ =P Indy, R~ Indr, R=R—0
g Tq, 5 i=1

(2.17)

is indeed a projective resolution of the trivial I' -module R. Therefore we know
that

H*(T,Mpg)=H*0— Homp(@ Indll:ii R,Mpg) — @ Homp( Indgii,j R, Mpg) =)
i=1 ’L‘<j,fi‘j
(2.18)

where now on the left hand side we have the group cohomology.
If we do not tensor by R then the Czech-complex

0 — @ Homp(Indr, Z, M) - P Homp(IndfaiijZ,M) — ... (219
i=1 1<Ji,j

is isomorphic to the Czech complex (2.6) and it computes the sheaf cohomology
H*(T\X, M).

It follows from reduction theory that

Theorem 2.1.1. We can construct a finite covering I'\X = |J;cp Uz, = U by
orbiconvex sets.

Proof. This is rather clear. We start from the covering by the sets XZ'(c.,r(c.)).)
The set of ”almost stable” points X (r) C X is relatively compact modulo T
For any point £ € X we look at the minimum distance

d(#) = min d(&,~i).
(@) o, (Z,77)

since the action of T" is properly discontinuous this minimum distance d(z) > 0.
Let D(,d(%)/2) := {y|d(g,%) < d(&)/2}, (-the Dirichlet-ball around Z- ) then
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D(%,d(z)/2) is an orbiconvex neighborhood of Z. Then we can find finitely many
points Z1,...,Z, such that

s

U U D@ d(@:)/2)) > XE(r).

1=1~el

We have to find a covering for the X (cp,r(cp))). We recall the fibration
(See (1.91))

Piar s X (enr,1(enr)) = XM (r(en)) x TT (0, cal.

aecmn’

We apply our previous argument and find a finite covering

U U D@ d(@)/2) > XM (r(cl)).

i=1~€l

We pick a point ¢y € [, (0, ¢a] then the inverse image (pp, )~ (D (95, d(5:)/2)) %
¢ is relatively compact and we can find an orbiconvex covering {U{Vz, } of this
set. Then the products Vz, x [[,c (0,ca] provide an orbiconvex covering of

XP(cp,r(c,)). Of course these sets are not (relatively) compact anymore.
O

This of course implies the following theorem of Raghunathan

Theorem 2.1.2. If R is any commutative ring with identity and if M is a
finitely generated R — I'— module then the total cohomology

P HU(T\X, shr(M))

q€eN

is a finitely generated R-module

We think that it is a very important problem to have computer programs
which compute the cohomology effectively. One way to get such a software
would be to write a procedure which effectively finds an orbiconvex covering for
which the sets Uz, are big, so that we need only few of them.

A first step would be to find effectively an optimal orbiconvex covering {Us;, }
of the set X (r) of almost stable points. The covering sets must not necessar-
ily be Dirichlet balls. We could proceed and apply this also to the different
XM(r(c,,)) and find orbiconvex covers {Vﬂj\f } for them. Then we may con-

sider the inverse images (pp, )~ (Vi X [Taer (0,¢a]) = XZJIZI This family of

~ M
sets {{7Uz,},.-.»m Voo } provide a covering of X by open sets, hence the
images under the projection provide a covering

W= (Wikier = {{Us,}oo o (VMY )

of '\ X, here the index set I is the union of the 2)7,, ... M Y,
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Of course we have a problem: The sets fo are not acyclic anymore, so

we can not use the Czech complex of this covering for the computation of the
cohomology. But we know that

(7 M M
VM = VM < TT (0,0l

aemn’

is a fiber bundle with fiber U(Z)\U(R), Since the base V;;]X[ X [Toen (0,ca] is
acyclic we know that

H* (V') = H*(U(Z)\U(R), M) (2.20)

and we have a good understanding of the cohomology on the right. If for instance
we tensor by the rationals the Theorem of Kostant (See section 8.1.9) gives us
a complete description of the cohomology H*(U(Z)\U(R), M ® Q).

For i € IP*! we put 20, = W;, N W,;, N--- N Wi, Now we follow [37], 4.6.6,
for any ¢ > 0 write the Czech complexe

C*(W, HY) == [ HW)— ] HW) (2.21)

jelptl jelpt2
and then we know that we get a spectral sequence

HP(C*(W,H?)) = B! — HPTID\X, M) (2.22)

2.1.3 Special examples in low dimensions.

We consider the group I = Sl»(Z)/{£Id} and its action on the upper half plane
H. We want to investigate the cohomology groups H*(I'\H, M) for any module
I-module M. Let p : H — T'\H be the projection. We have the two special
points ¢ and p in H they are up to conjugation by I' the only points which
have a non trivial stabilizer. We construct two nice orbiconvex neighborhoods
of these two points. The stabilizers I';, resp. I', are cyclic and generated by the

two elements
0 1 1 -1
s=(% o) =1 )

respectively.

We begin with i. We consider the strip V; = {z| — 1/2 < R(2) < 1/2}, the
element S maps the two vertical boundary lines R(z) = £1 into geodesic circles
starting from 0 and ending in £2. Then the intersection Ul =V;,NnS(V;) is an
orbiconvex neighbourhood of .

Let us look at p. We consider the strip V, = {z | — 0 < R(z) < 1} and now
we define U, = V, N R(V,) N R%(V,). This is a nice orbiconvex neighbourhood
of p.

Now it is clear that these two sets provide an orbiconvex covering of H, if

U;, = p(f]i), U, =p(U,) then

MN\H=U,UU,. (2.23)
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We have M(U;) = shp(M)(U;) = M, M(U,) = M"» and hence the cohomol-
ogy groups are given by the cohomology of the complex

0= MigoMy 5 M—0 (2.24)

Then HO(T'\H, M) = M = M QM . Since this is true for any ' module
we easily conclude that I' is generated by I';,I',. And we get

HY(Sly(Z)\H, Mz) = M/(M5> ¢ M<F>), (2.25)

and the cohomology vanishes in higher degrees.

Exercise 1: Let IV C T' = Sly(Z)/=£Id be a subgroup of finite index. Prove
ii) We have (Shapiros lemma)

HY(T'\H, Z) = H*("'\H, Indy.,Z).
These cohomology groups are free of rank
L:I—n;—n,+1

where n; (resp. m,) is the number of orbits of I'; (resp. T',) on T'\L'. If I is torsion
free then

1
rank(H'T\H, Indp.,Z) = sl ' +1
The Euler-characteristic of T"\H is %[F IV,

Exercise 2: Let M,, be the Sl5(Z)-module of homogenous polynomials in the two
variables X, Y and coefficients in Z. (See 1.2.2). We have the usual action of Sl3(Z) on
this module by

<i Z) P(X,Y) = P(aX + ¢Y,bX +dY).

these modules define a sheann on T\H, and we want to investigate their cohomology
groups.

Prove:

i) If n is odd, then M,, = 0.
Hence we assume n > 2 and n even from now on.

ii) Forn > 0 we have H*(T\H, M,1) = 0.

iii) If we tensorize by Q , then HY(T\H, M,, ® Q) is a vector space of rank
n—1-2[3] -2[3].
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Hint: Diagonalise the action of I'; and I', on M,, ® Q separately and look at the

. o = . . 0 -1
eigenspaces. To say it differently: Over Q we can conjugate the matrices <1 0 >

-1 0
sition of M, into weight spaces.

1 1 t 0
< > into the diagonal maximal torus (O t_1> , and then look at the decompo-

iv) Investigate the torsion in H'(T'\H, M,,). (Start from the sequence 0 — M,, —
My = My /tM, —0.)
0

v) Now we consider I' = Sla(Z). The two matrices S = <1 01) and R =

-1 0
We take for our module M the cyclic group Z/127, consider the spectral sequence

-1 1 .. . .
< ) are generators of the stabilisers of © and p respectively.

HP(T\H, R?(shr)(Z/127Z)).
Show that HO(I'\H, R*(shr)(Z/12Z) = Z/127Z. Show that the differential
H°(T\H, R*(shr)(Z/12Z)) — H*(T'\H, shr(Z/127))

vanishes and conclude

HY(T,7Z/127) = 7./127.
???7H(T(N), )

The group I' = Sly(Z[i])

A similar computation can be made up to compute the cohomology in the case
of I' = Gly(0). We have the three special points 12,213 and za3 (See(1.2.5),
and we choose closed sets A;; containing these points which just leave out a
small open strip containing the opposite face. If flij is a component of the
inverse image of A;; in Hs, then

Aij = Tij\ Ay
The intersections A;; N Ay o = A, are closed sets. They are of the form
A, =T,\A,

where I',, is the stabilizer of the arc joining x;; and x; ;. The restrictions of
our sheaves M to the A;; and A, and to A = A5 N Asg N Ay are acyclic and
hence we get a complex

0— M-— @PMa, — P Ma, — Ma—0
(4.9)
where the M- are the restrictions of M to ??? and then extended to the space
again.
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Hence we find that our cohomology groups are equal to the cohomology
groups of the complex

1 2
0— PM L PM L M—0
(4,4) v
with boundary maps

d' :(mi2, mig, mag) — (M1a — M1z, Ma3 — M1z, M1z — Ma3)

d2 :(ml,mg,mg) — m1 + Mo + ms.

If we take for instance M = Z then we get H*(T'\Hs, Z) = Z and H*(T'\Hs, Z) =
0 for 7 > 0 as it should be.

Homology, Cohomology with compact support and Poincaré duality.

Here we have to use the theory of compactifications. For any locally symmetric
space we can embed I'\ X into its Borel-Serre compactification

i F\X — F\YBs,

and this process was explained in detail for our low dimensional examples. Espe-
cially we give an explicit description of a neighborhood of a point 2 € (I'\ X gg).
If we have a sheaf M on '\ X, we can extend it to the compactification by using
the functor i.. We get a sheaf

Z*(.A;l) on F\Ygs,

it is clear from the description of a neighborhood of a point in the boundary,
that 7, is exact. ( This is not true for the Baily-Borel compactification.)

Our construction M — M can be extended to the action of I' on X gg and
clearly

iv(M) = result of the construction M — M on I'\ X gg.
Hence we get from our general results in Chapter I, ..... that
H*(D\X, M) = H*(I'\X ps, i(M)).

But we have another construction of extending the sheaf M from T'\X to
I\ Xps. This is the so called extension by zero. We define the sheaf (M)
on M\ X g by giving the stalks. For « € T\ X gg we put

e M i ze\X
“(M)x_{o if rgT\X’

It is clear that iy is an exact functor sending sheaves on I'\X to sheaves on
M\ X g, and we have for an arbitrary sheaf

H(M\X ps,i1(F)) = HJ(T\X, F)
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where HO(T'\ X, F) is the abelian group of those sections s € H°(I'\ X, F) for
which the support

supp (s) = {z | sz # 0}

is compact.
Hence we define the cohomology with compact supports as

HI(T\X,F) = H(T\X g, i1.F)).

If M is a sheaf on I'\ X which is obtained from a I-module M, then it is quite
clear that
HY(T\X, M) =0,

provided our quotient I'\ X is not compact.

The cohomology with compact supports is actually related to the homology
of the group: I want to indicate that we have a natural isomorphism

Hy(T, M) ~ H}{(I\ X, M)

under the assumption that X is connected and the orders of the stabilizers are
invertible in R.

This is the analogous statement to the theorem .... which we discussed when
we introduced cohomology.

Our starting point is the fact that the projective I'-modules have analogous
vanishing properties as the induced modules.

Lemma: Let us assume that I' acts on the connected symmetric space X.
If P if a projective module then

0 if i#dimX
H(T\X,P) =
Pr if i=dimX.
Let us believe this lemma. Then it is quite clear that

Hl(FaM) = Hg_Z(F\Xa P)a

because both sides can be computed from a projective resolution.

2.1.4 The homology as singular homology

We have still another description of the homology. We form the singular chain
complex
= Ci(X) = Cic1(X) = ... = Cp(X) — 0.

This is a complex of I'-modules, and we can form the tensor product with M.
We get a complex of I'-modules

T XYM 25 C (X)) M — ...



78 CHAPTER 2. THE COHOMOLOGY GROUPS

We define the chain complex
C- (F\X7 M) )

simply as the resulting complex of I'-coinvariants. The homology groups are
defined as

The cosheaves

The symbol M should be interpreted as the cosheaf attached to our I'-module,
this is an object which is dual to the sheaf M. For a point Z € I'\ X costalk M,
is given as follows: As in (2.1) we consider the projection 7p : X — I'\X and
maps with finite support

C(z, M) :={f: Wlfl(:i) — M}. (2.27)
On this module we have an action of I' which is given by
(V) (@) = (f (v ). (2:28)
Then our costalk is given by the coinvariants
M, = C(#, M)r = (&, M)/{f —7f,y € T, f € C(@, M)} (2.29)

We have the homomorphism [ : Mz — M which is given by summation f

ZIEFr_l(i) f(z) and this induces an isomorphism

/ . C(z, M)r <5 M, (2.30)

—T

We pick a point z € Wl?l(f) and an open neighborhood U, of x such that
~U, N U, # ( implies v € T';.. We consider the space C(Z, 2, M) of those maps,
which are supported in in the point x. This space is of course equal to M and
the composition

0z : C(Z, 2, M) = C(Z, M) = M

induces an isomorphism
bz Mp, — M, (2.31)

If we pick a second point § € 7p(U,) and a y € Wfl(y) N U, then clearly
I'y c I';, and therefore we get a specialization map

rg,z My — M. (2.32)

Now it becomes clear why these objects are called cosheaves. For the sheaf M
we get in the corresponding situation a map in the opposite direction

as a specialization map between the stalks of M. An element J* € M; can be
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represented as an array
=),  leer@ (2.34)
where f(z) € (Mg)r, and f(yz) = ~7f(z).

Now we can give a different description of the group of i-chains C; (IT'\ X, M) :
An i-chain with values in the cosheaf M is of the form oc® f where o : A" — T\ X
is a continuous (differentiable) map from the i dimensional simplex A’ to I'\ X
and where f is a section in the cosheaf, i.e. f, € Ma(m) and where f, varies
continuously. (This means: If o(y) specializes to o(x) then 74y o(2)(fy) = fz-)

Then C;(T'\ X, M) is the free abelian group generated by these i chains with
values in M). Then the boundary maps d; are defined in the usual way and we
get a slightly different description of the homology groups H,(I'\ X, M).

But we may choose for our module M simply the group ring. Then
(C.(X) ® Z[)r ~ C.(X),
and hence we have, since X is a cell, that
H;(T\X,Z[I')) =0 for i>0.
On the other hand we have
Ho(I\X, M) = Mr.
This follows directly from looking at the complex
(C1(X) @ M)r — (Co(X) @ M)r.
First of all we observe that 0-cycles
T R®M—x0@®mMm
are boundaries since X is pathwise connected. On the other hand we have that
To @m —yxg @ ym € Co(X) @ M

becomes zero if we go to the coinvatiants and this implies the assertion.
If we have in addition that the orders of the stabilizers are invertible in R
than it is clear that a short exact sequence of R-I'-modules

0o—M —-M-—M'—0
leads to an exact sequence of complexes
0— C.(I\X, M) — C,(I\X, M) — C,(I\X,M") — 0,
and hence to a long exact cohomology sequence
H,M\X,M') — H,T\X,M) — H;,(T\X,M") — H; (T\X, M").
Now it is clear that

H;(I,M) ~ H;(T\X, M) ~ HH(T\ X, M).

fundex
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2.1.5 The fundamental exact sequence

By construction we have the exact sequence

0 = iy(M) = i (M) = iy (M) /i(M) =0

of sheaves and clearly i.(M)/i;(M) is simply the restriction of i.(M) to the
boundary extended by zero to the entire space. This yields the fundamental
exact sequence

— HI7L(9(T\X), M) = HY(T\X, M) = HY(T\X, M) - HI(O(I\X),M) — ...

We define the “inner cohomology”

HY(T\X, M) := Im(HY(T\ X, M) — HIT\X, M)) = kerHY(T'\ X, M) - HY(J(I'\X), M)
(2.35)

( This a little bit misleading because these groups are not honest cohomology
groups, they are not the cohomology groups of a space with coefficients in a
sheaf. An exact sequence of sheaves 0 - M’ — M — M” — 0 does not
provide an exact sequence for these H) groups. )

In the special case that the underlying group G/Q is anisotropic the funda-
mental exact sequence becomes trivial, in this case the quotient I'\ X is compact
and we have

H*(P\X, M) = H(I\X, M) = H ([\X, M).

Many authors prefer to consider the case of a compact quotient I'\ X, but I think
we loose some very interesting phenomena if we concentrate on this case. On
the other hand we do not need to read the next subsection. Also readers who
are more interested in the low dimensional cases and the more specific results
in these cases may well skip reading the next subsection.

The cohomology of the boundary
We want to have a slightly different look at this sequence. We recall the covering
(See 1.97,1.98)
NX =N\X(r)UN (T\X)=T\X(r)U U Ip\XP(c./,r(c,,)) (2.36)
P:Pproper

where the union runs over I' conjugacy classes of parabolic subgroups over Q

and A (T'\X) is a punctured tubular neighborhood of oo, i.e. the boundary of
the Borel-Serre compactification.

It is well known (See for instance [book] vol I, 4.5 ) that from a covering
NX =, Vi we get a Czech complex and a spectral sequence with E{"?- term

II =M (2.37)

i={i0,i1.vip}
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where V; = V;; N--- NV, . The boundary in the Czech complex gives us the
differential

& I HUWVLM) — 11 HY(V;, M) (2.38)

i={i0,i1...,ip} J={josJ1-dp+1}

Here we work with the alternating Czech complex, we also assume that we have
an ordering on the set of simple positive roots. If such a V; is non empty then
it of the form I'o\X%(C(2)).

We return to the diagram (2.39), on the left hand side we can divide by I'¢.
We have the map which maps a Cartan involution on X to a Cartan-involution
on M. Then we get a diagram

fT:X9C@) —  XM(r) x Cuy (o)
1 pg L pm (2.39)
[:TQ\X“(C(@) — Tu\XM(r)x Cu,(©)

where the bottom line is a fibration. To describe the fiber in a point  we
pick a point z € (py, o fT)~1. Then Ug(R) acts simply transitively on the fiber
(Y (f1(2) hence Ug(R) = (1) (f(x)). Then pg : Ug(R) — Ty \Uo(R)
yields the identification i, : Iy, \Ug(R) — f~!(&). If we replace = by y& = x1
with v € T'y,, then we get iy, = Ad(7)oi, where for u € Uy, Ad(vy)(u) = yuy™*
where for u € Ug(R), under this action of I'g.

We have the spectral sequence

HP (DA \XM (), R f(M)) = HPHI(TQ\XV(Cleg,s -+ ¢r,))s M)
and clearly RYf, (/\;l) is a locally constant sheaf. This sheaf is easy to determine.
Under the above identification we get an isomorphism

iy H*(Ly,\Ug(R), M)) — R*(M);.

The adjoint action Ad : I'q — Aut(I'y,\Ug(R)) induces an action of I'q

on the cohomology H*((I'y, \Uq(R)), M). Since the functor cohomology is the
derived functor of taking I'y, invariants it follows that the restriction of Ad to
Iy, acts trivially on H*(I'y, \Uq(R), M). Consequently H*® (T, \Ug(R)), M)
is a I'yy— module. We get

—_~—

R*f.(M) == H*(Ty,\Ug(R), M)

and hence our spectral sequence becomes

HP(Pp\X ™M (r), H* (Tu, \Ug(R), M)) = HPTI(TQ\X?(C(2), M)~ (2.40)

We can take the composition rg o f. Then it is obvious that for any point
co € Cy,(€)) the restriction map

H*(X9(C(2), M) = H*(X((rq o /)" (c0), M) (2.41)
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is an isomorphism. On the other hand it is clear that we may vary our parameter
¢ we may assume that the Cy,(¢) go to infinity. Then we may enlarge the
parameter r without violating the assumptions in proposition 1.2.3. Hence
we get that the inclusion I'o\X®@(C(g)) C I'o\X© induces an isomorphism in
cohomology

H*(Dg\X(C(@), M) = H*(Tg\X, M) (2.42)

We choose a total ordering on the set of I' conjugacy classes of parabolic
subgroups, i.e. we enumerate them by a finite interval of integers [1, N]. We also
enumerate the set of simple roots {aq,...,a4) in our special case o; = @ i41.
For any conjugacy class [P] we define the type of P to be t(P) = 7U? the
subset of unipotent simple roots and d(P) = #7U? the cardinality of this set.
If P,,..., P, are maximal, 4 < i2--- < %4, and if P, N,--- NP =@ is a
parabolic subgroup then we require that t(P;,) < --- < t(P;,).

The indexing set Par(T") of our covering is the I' conjugacy classes of parabolic
subgroups over Q. If we have a finite set [P;,], [P;,],. .., [P ] of conjugacy classes
then we say [Q] € [P, ], [Pi,],---,1 z,,} if we can ﬁnd representatives P; € [P;,]
and Q' € [Q] such that Q' = P/ N---N P’p

Hence we see that the E7'? complex in our spectral sequence (2.38) is given
by

HHq (Do, \ X9 (C( =] II H@Te\X"(C@),M) -
i<j [RIE[@:N(Q;]
(2.43)

this obtained from our covering (1.98). Now we replace our covering by a sim-
plicial space, i.e. we consider the diagram of maps between spaces

%
Pav := HFQ \X o H [T Te\X— (2.44)
TG [RI€[Q:i]NQ;] —
this yields a spectral sequence with E}'? term
~ d(O) R 1 4
[[E T\ X M) =T [] H@TRX M) (2.45)
i 1<j [R]€[P;]N[Pj]

Our covering also yields a simplicial space which is a subspace of ( 2.44) we get
a map from (2.38) to (2.45 ) and this map is an isomorphism of complexes.

We replace Par by another simplicial complex

p1 —
%
Parmay := H 'p\X ,, H o\ X<+— (2.46)
[Pld(P)=1 (Ql:d(Q)=2 —

We have an obvious projection II : Par — Parmar which induces a homo-
morphism
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- 4(® ~ 4
[ H1(To\X, M) — ILic; igerpynp) HITRAXTM) —
) T
~ 4 R\ d
[p :d(P)=1 HYTp\X, M) — Iz :d(R)=2 HY(Tp\X", M) -
[P] [R]:d(R)
(2.47)

and an easy argument in homological algebra shows that this induces an iso-
morphism in cohomology or in other words an isomorphism of the EL'? terms
of the two spectral sequences.

We had the covering
N = | TeAXP(er(en) (2.48)

P:Pproper
which gives us the spectral sequence converging to H*(N (I'\X), M) with

E'= D D HYTQ\X?(crr, (e ), M) (249)

i<ty <--<ip [Q]G[Pio]ﬂ[Pil]m'“ﬁ[Pip]

Our covering of ./;/' (T\X) gives us a simplicial space QUU(/(f)F\X) and we
have maps

Cov(N (T\ X)) — Par — Parmar. (2.50)
We saw that the resulting maps induced an isomorphism in the EY'? terms of
the spectral sequences. Hence we see that Parmay yields a spectral sequence
EPI= P HITP\X,M)= HI(N (T\X), M)) (2.51)
[Pl:d(P)=p+1

At this point we want to raise an interesting question
Does this spectral sequence degenerate at EY? level?

The author of this book is hoping that the answer to this question is no!
And this is so for interesting reasons! We come back to this question when we
discuss the Eisenstein cohomology.

The complement of N (I'\X) is a relatively compact open set V' C T'\ X,
this set contains the stable points. We define M}, = iy, (M) then we get an
exact sequence

0= My = M= M/M, =0 (2.52)

and M /M, is obviously the extension of the restriction of M to A" (I'\X) and
the extended by zero to I'\ X. We claim (easy proof later) that

H?(D\X, M) = H*(D\X, A1) (2.53)
and this gives us again the fundamental exact sequence

HO YN (T\X), M) — HYT\X, ML) — HIUT\X, M) — HIN (T\X), M) —
(2.54)
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2.1.6 How to compute the cohomology groups H¢(I'\ X, M)

We apply the considerations in 4.8 from the [book]. Again we cover I'\X by
orbiconvex open neighborhoods U,,, and now we define

My = (iz)iiz (M),

These sheaves have properties, which are dual to those of the sheaves M&
If x = (z1,...,2) and if we add another point ' = (21,...,2s, Ts41) then
we have the restriction M, — M, , which were used to construct the Cech
resolution.

Now let d = dim(X). For the ! sheaves we get (See [book] , loc. cit.) get a
morphism M, — M..Forz = (z1,...,z,) we define the degree d(z) = d+1—s.
Then we construct the Cech-coresolution (See [book], 4.8.3)

— H My == H M;i,mjg)HM;i*)i!(M)*)o.

z:d(z)=q (wi,xj) Ti

Now we have a dual statement to the proposition with label acyc
Proposition: (acyc!)If d = dim(X) then

o ) = {02

Hence the above complex of sheaves provides a complex of modules

i CrE, M) = i ]
= [aate)y—g H Uz, My) = -+ — | (P HY Uy, 2y, My, o) = T, H'(Us,, My,) — 0.
(2.55)

Now it is clear that

HY(T\X,ii(M)) = H}(T\X, M) = HY(C} (4, M)).

Now let us assume that M is a finitely generated module over some commutative
noetherian ring R with identity. Then clearly all our cohomology groups will be
R-modules.

Our Theorem A above implies

Theorem (Raghunathan) Under our general assumptions all the coho-
mology groups HI(T\X, M), HI(T\X, M), H{(T\X, M), H1(Q(T\X), M) are
finitely generated R modules.

2.1.7 Modified cohomology groups

Most of the time our module M will be a finitely generated Z module and
the theorem of Raghunathan says that the cohomology groups are also finitely
generated Z modules. Sometimes we replace Z ring of integers O of a finite
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extension F/Q and then we will even invert some finite numbers of primes.
Hence we our coefficient modules will be finitely generated R-modules where
Or C R C F. In any case these rings R will be Dedekind rings.

Starting from the fundamental exact sequence we have introduced the mod-
ified cohomology groups Hy( ). There is a second process of modification: If

H*( ) is any of these cohomology groups then
H*( )int:=H*( )/Tors=Im(H*( )= H*( )®Q) (2.56)
We have to discuss a minor problem: These two processes of modification
do not quite commute. This is due to the fact that the resulting sequence
— HTY((T\X), MR) int = HIT\X, Mg) iny = HIT\X, Mp) i — HYA(T\X), Mg) ins
is not necessarily exact anymore. Clearly we have H/(T\X, Mg) ins = Im(j)
and if we now define H9T'\ X, Mg) int1 := ker(r) then we have
HY(T\X, MR) it € HIT\X, MR) int1 (2.57)

but this inclusion may be proper. The following proposition is an elementary

exercise in homological algebra. | supgbd

Proposition 2.1.1. The quotient HY(I\X, MRg) i)/ H}(T\X, MR) ins 45 fi-
nite and isomorphic to a subquotient of H1(d(I'\X), Mg)

We will discuss an example in section 3.3.1

This may be a good place to introduce some terminology. If X is a torsion
free, finitely generated R -module and we have a direct sum of submodules
X D @,X, then we say that this direct sum is a decomposition up to isogeny if
the quotient X D /@, X, is a torsion module and if for v the quotient X/X, is
torsion free. Sometimes we also call this a saturated decomposition (see section
6.3.7).

2.1.8 The case I' = Sl,(Z)

In this book we study intensively the special case I' = Slo(Z). In this case we
can formulate and prove some very specific results, especially we understand
the denominators of the Eisenstein classes (Theorem 3.84).

In the following M can be any I'-module. We investigate the fundamental
exact sequence for this special group.

Of course we start again from our covering I'\H = U; UU,. The cohomology
with compact supports is the cohomology of the complex (see 2.55)

0— H*(U; N U, M; ) — H*(U; ,M}) & HA(U,, M) — 0.

Now we have H?(U; N Uy, M} ) = M, H*(U; \M}) = My, = M/(Id —
S)M,H*(U, 7/\;l!p) = Mr, = M/(Id — R)M and hence we get the complex

0= M— Mp, ®Mr, =0
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and from this we obtain

HY(T\H,i;(M)) = ker(M — (M/(Id — S)M & M/(Id — R)M))

and

HO(D\HL (M) = 0, H2(T\H, (M) = M.

We discuss the fundamental exact sequence in this special case. To do this

we have to understand the cohomology of the boundary H*(O(T'\H), M). We
discussed the Borel-Serre compactification and saw that in this case we get this
compactification if we add a circle at infinity to our picture of the quotient. But
we may as well cut the cylinder at any level ¢ > 1, i.e. we consider the level
line H(c) = {z = = + ic|z € H} and divide this level line by the action of the
translation group

ry={(} "Ymezy=((5 ") meze==1}/{=1a}.
0 1 0 e
But this quotient is homotopy equivalent to the cylinder

FU\H ~ FU\H(C)

We apply our general consideration on cohomology of arithmetic groups to
this situation and find

H'(@(F\H>7M) = H.(FU\Ha ShFU (M)) = H.(FU\H(C)7ShFU (M))

This cohomology is easy to compute. The group I'y is generated by the

element T = ((1) 1) . It is rather clear that

H°(Ty\H, shr, (M)) = M HY(T'y\H, shp,, (M)) = Mr, = M/(Id — T)M.

Then our fundamental exact sequence becomes (See( 2.25))

0— M' = MV - ker(M — (M/(Id — S)M & M/(Id — R)M)) —»

MJ(MEi @ MEe) 5 M/(Id = T)M — Mp — 0
(2.58)

Now it may come as a little surprise to the readers, that we can formulate a
little exercise which is not entirely trivial

Exercise: Write down explicitly all the arrows in the above fundamental sequence

We give the answer without proof. I change notation slightly and work with

the matrices
0 -1 1 -1
s=(1 0)m=(0 %)
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1 1
nsor- (1)

Then I' =< S >,I', =< R > . The map

and we have the relation

MM @ M<F>) 5 M/(1d — T)M

is given by
m—m—Sm

We have to show that this map is well defined: If m € M<5> then m — 0. If
m € M<E> then

m—Sm=m—SR 'm=m—Tm

and this is zero in M/(Id — T)M.
The map

ker(M — (M/(Id — S)M & M/(Id — R)M)) = M/(M<5> & M<F>)

is a little bit delicate. We pick an element m in the kernel, hence we can write
it as
m=my —Smy =ms — R 'msy

and send m — m; — mo (Here we have to use the orientation). If we modify
mi,mg to my = my + ny, mhy = ms + ny then mj — m, gives the same element
in M/(M<S> D M<R>).

This answer can only be right if m; — mo goes to zero under the map r, i.e.
we have to show that

mi1 — Mg — S(m1 - mg) € (Id — T)M
We compute
mi —mg — S(my —mg) = m—mg+Smy =m—my+ R mo— R my+ Smy =

—R_lmg + Sme = —T_lSmg + Smoy € (Id — T)M

Finally we claim that the map M<T> — ker(M — (M/(Id—S)M & M /(Id —
R)M)) is given by m +— m — Sm =m — R~'T"'m =m — R~ 'm.

There is still another element of structure. The map ¢: z — —Z induces an
(differentiable) involution of H. We put S; = (01 (1)> then yez = ¢SS 2
and therefore ¢ induces an involution on I'\H. We get an isomorphism of coho-

mology groups

D HYT\H, M) =5 HY(T\H, c.(M)) (2.59)

The direct image sheaf c. (M) is by definition the sheaf attached to the I module
M) This module is equal to M as an abstract module, but the action is

twisted by a conjugation by the above matrix S, i.e.

yxm = S1vS;'m (2.60)
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Now we assume that M is actually a Glz(Z) module. Then the map m — Sym
provides an isomorphism M 1) =5 M and hence we get in involution on the
cohomology groups

¢®: H*(T'\H, M) — H*(T'\H, M) (2.61)

We have the explicit description of the cohomology groups H*(I'\H, M) and
we can compute this involution in terms of this description. We observe that the
matrix S5; fixes the two points i, p and hence the two open sets U;, U, of the
covering. Hence it also fixes M and M'» and therefore the map m + SS;m
induces an involution on M/M i & MT» = HY(I\H, M) and this is our map
M,

The cohomology has a + and a — eigen submodule under this involution,
and

HY(T\H, M) > H'(T\H, M), & H'(T'\H, M)_, (2.62)

the sum of the two eigen modules has finite index which is a power of 2.

Poincare’ duality

We assume that our I' module M is a finitely generated and locally free module
over R , where R is a Dedekind ring or a field. We assume % € R. In section 6.3.9
we discuss Poincare duality in greater generality, here we consider the pairing
(see 6.71)

HYNT\H, M) i x HY(T\H, M) inss — HZ(T\H, R) = R (2.63)

It is clear that the involution ¢ induces multiplication by —1 on HZ(T'\H, R).
On the other hand we have the decompositions of the above cohomology groups
into + eigen modules. The pairings of the 4, + parts and the —, — give zero
and then we get pairings

HNT\H, M) ins 1+ x H (T\H,M") ine1— — R

3 3 (2.64)
Hl(F\HvM) int,!,+ X H!l(F\Ha Mv) int,— — R
both of them are partially non degenerate.
If we have M = M"Y then we get
rank(H} (D\H, M) 1nt,+) = rank(H(T\H, M) i) (2.65)

Final remark: The reader may get the impression that - at least in the case
I’ = Slp(Z)-it is easy to compute the cohomology, but the contrary is true. In the
case I' = Sl(Z)/£1d we found formulae for the rank of the cohomology groups,
this seems to be a satisfactory answer, but it is not. The point is that in the
next section we will introduce the Hecke operators, these Hecke operators form
an algebra of endomorphisms of the cohomology groups. It is a fundamental
question (see further down) to understand the cohomology as a module under
the action of this Hecke algebra. It is difficult to write down the effect of a
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Hecke operator on a module like M /(M + M), We will discuss an explicit
example in section 3.3.

The situation is even worse if we consider the case I' = Glo(Z[i])/{(3"1d)}.
First of all we notice that it is not possible to read off the dimensions of the
individual groups H*(I'\Hjs, M) from the complex in 2.1.3 ) . Of course we can
compute them in any given case, but our method does not give any kind of
theoretical insight.

We will see later that we can prove vanishing theorems H i(f\Hg}, MC) for
certain coefficient systems Mc by transcendental means. These results can not
be obtained by our elementary methods.
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Chapter 3

Hecke Operators

3.1 The construction of Hecke operators

We mentioned already that the cohomology and homology groups of an arith-
metic group has an additional structure. We have the action of the so-called
Hecke algebra. The following description of the Hecke algebra is somewhat pro-
visorial, we get a richer Hecke algebra, if we work in the adelic context (See
Chapter 6 ). But the desription here is more intuitive.

We start from the arithmetic group I' C G(Q) and an arbitrary I'-module
M. The module M is also a module over a ring R which in the beginning
may be simply Z. More generally is R may the ring of integers in an algebraic
number field, where we also inverted a finite number of primes.

At this point it is better to have a notation for this action

I x M — M, (y,m) — r(y)(m)

where now 7 : T' = Autg(M).
We assume that M is a module over a ring R in which we can invert the
orders of the stabilizers of fixed points of elements Do we need this? v € T.
If we have a subgroup I' C T of finite index, then we constructed maps

v HO(T\X, M) — H*(I"\X, M)
Trre :H(T\X, M) — H*(I"\ X, M)

(see 2.1.1).
We pick an element oo € G(Q). The group

I'a™)=a 'TanT
is a subgroup of finite index in I" and the conjugation by « induces an isomor-
phism
inn(a) : T'(a™ ') — T'(a).
We get an isomorphism

jla) : T(a ' NX — T(a)\X

91
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which is induced by the map x — ax on the space X. This yields an isomor-
phism of cohomology groups

jle)®: H*(D(a™N\X, M) — H*(D(a)\X, j(a).(M)).
~ We compute the sheaf j().(M). For a point z € I'()\ X we have j(a).(M), =
Mg where j(a)(z') = X. We have the projection mp(a-1y : X — T'(a™')\X,
and the definition yields

(M), = {s : wlf(la,l)(x’) — M | s(ym) = ys(m) for all v € F(a_l}

-1
I(a—1)
terms of this fibre we can describe the stalk at z as

The map z — «z provides an identification 7 (') = ﬂ;(la) (z) in in

j(a). (M), = {5 : 7r1?(1 (z) = M | s(yv) = a tyas(v) for all vy € F(a)}.

a)

Hence we see: We may use a to define a new I'(a)-module M(®): The
underlying abelian group of M(®) is M but the operation of T'(a) is given by

(v,m) — (a”ya)m = v o m.
Then the sheaf j(a).(M) is equal to M(®). Hence we see that every element

o € Homp(qy) (M@ M)

defines a map i, : j(a).(M) — M. Now we get a commuting diagram
HA (o NX M) Y ([(@)\X, (@) (M) =5 HA(D(a)\ X, M)

[ |

H*(T\X, M) ) H*(T\X, M)
(3.1)

where the operator on the bottom line is the Hecke operator. It depends on two
data:
a) the element o € G(Q),

b) the choice of u, € Homp () (M@, M).

It is not difficult to show that the operator T'(«, u,) only depends on the
double coset I' a I', provided we adapt the choice of u,. To be more precise if

a1 ="man2 7,72 €71
then we have an obious bijection
0+ Homp(o) (M, M) — Homr(q,)(M™), M)

which is given by
Dy, 7o (Ua) = Uay = Y1UTY2-
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The reader will verify without difficulties that
T(a,uq) =T (01, Uq, ).
(Verify this for H° and then use some kind of resolution (See next section) )

The choice of u, may be delicate in some situations. There is are cases
where we have also a canonical choice of u,,.

The first case is that our I'-module M is of arithmetic origin. In this case
G(Q) acts upon Mg = M @ Q. Then the canonical choice of an

U0 ./\/l((@a) — My,

which is given by m +— am. Hence we can speak of a Hecke-opertor T'(«) :
H*(I\ X, Mg) — H*(T\ X, Mg).

But this morphism wu, g will not necessarily map the lattice M@ into M.
Clearly we can find a rational number d(a)) > 0 for which

d(@) - ta,g : M@ — M and d(@) - ua,g(M®) ¢ bM for any integer b > 1.

Then u, = d(a) - uq,g is called the normalised choice, and then T'(cv, uy) will
be the normalised Hecke operator.

The canonical choice defines endomorphisms on the rational cohomology, i.e.
the cohomology with coefficients in MQ whereas the normalised Hecke operators
induce endomorphism of the integral cohomology. The normalised choice and
the canonical choice differ only by a scalar factor.

We will resume this theme in section 6.3.2.

In the second case we assume that I' = G(Z), let T'(V) C T' be the full
congruence subgroup mod N. Now we assume that M is a I'/T'(N) module.
Then we can pick an element v € G(Z[47]) where M is any integer prime to N.
Since we have the homomorphism Z[+;] — Z/NZ and our module M is also a
G(Z[4;]) module. Therefore we can simply choose uq := m — am. Perhaps it
is reasonable to call such a module a module of finite type. Hence we see that we
have an essentially canonical way to define Hecke operators on tensor products

of modules obtained by a rational representation and modules of finite type.

We see that we can construct many endomorphisms T'(v, u,) : H®(I'\ X, M) =
H*(T\X, M). These endomorphisms will generate an algebra

Hp o © End(H*(T\X, M)). (3.2)

This is the so-called Hecke algebra. We can also define endomorphisms T'(«, u,)
on the cohomology with compact supports, on the inner cohomology and the
cohomology of the boundary. Since the operators are compatible with all the
arrows in the fundamental exact sequence we denote them by the same symbol.

We now assume that M is a finitely generated R module where R is the
ring of integers in an algebraic number field K/Q. Then our cohomology groups
H1(T'\ X, M) are finitely generated R-modules with an action of the algebra #
on it. The Hecke algebra also acts on the inner cohomology H'(T'\ X, M) If we
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tensorize our coefficient system with any number field L D K , then we write
My, =M ® L.

We state without proof the following fundamental theorem :

Theorem 3.1.1. Let M be a module of arithmetic origin. For any extension
L/K/Q the Hr ® L module H!(T\X, M) is semi simple, i.e. a direct sum of
irreducible Hr modules.

The proof of this theorem will be discussed in Chapter 8 ( section 8.1.8) it
requires some input from analysis. We give a brief sketch. We tensorize our
coefficient system by C, i.e. we consider M ®j C = M. Let us assume that T’
is torsion free. First of all start from the well known fact, that the cohomology
H*(I'\X, Mc) can be computed from the de-Rham-complex

H*(D\X, M¢) = H*(Q* @ Mc(D\X)).

We introduces some specific positive definite hermitian form on Mc and this
allows us to define a hermitian scalar product between two M -valued p-forms

< W1, Wy >:/ w1 N *wa,
r\X

provided one of the forms is compactly supported.

This will allow us a positive definite scalar product on H{ (I'\H, ./\;ln,c)7 We
apply theorem 8.1.1 , this theorem tells us that we can find representatives
Wi, wh which are harmonic (they satisfy certain differential equations) and then

<[], [wa] >i= / WP Al (3.3)
X

defines a positive definite hermitian scalar product on H{(I'\ X, Mc). Finally
we show that Hr is self adjoint with respect to this scalar product, and then
semi-simplicity follows from the standard argument.

For the groups I' C Sly(Z) and the cohomology groups H{ (I'\H, M,, ® C)
these harmonic representatives are given linear combinations of holomorphic
and antiholomorphic cusp forms of weight n+2 (See 4.1.7). The scalar product
on this space of modular forms is given by the by the scalar product (see section
4.1.8.)

3.1.1 Commuting relations

We want to say some words concerning the structure of the Hecke algebra.

To begin we discuss the action of the Hecke-algebra on HO(I'\ X, M). We
have to do this since we defined the cohomology in terms of injective (or acyclic)
resolutions and therefore the general results concerning the structure of the
Hecke algebra can be reduced to this special case.
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If we have a I'-module M and if we look at the diagram defining the Hecke
operators, then we see that we get in degree 0

MEETD Ly (M@))T@) ey AT ()

T J

MF T(a,ua) Ml"

where the first arrow on the top line is induced by the identity map M —
M@ = M and the second by a map u, € Homap(M, M) which satisfies
uo ((aya™t)m) = yuq(m). Recalling the definition of the vertical arrow on the
right, we find

T(au)w) = 3 7 ualv)

Y€Er/T(a)

We are interested to get formulae for the product of Hecke operators, so, for
instance, we would like to show that under certian assumptions on «, 3 and
certain adjustment of u.,us and uqg we can show

T(o,ue) - T(B,ug) =T(B,ug) - T(o,uq) = T(af, uas).

It is easy to see what the conditions are if we want such a formula to be
true. We look at what happens in H°. For v € M! we get

T(a,uo) - TBus)) = 3 qual Y nus(v))

YET/T(a) ner/T(p)
We assume that the following three conditions hold
(i) for each n we can find an ' € I" such that

!/
7 0 Ua = Ua O,

(ii) The elements 7’ form a system of representatives for I'/T'(a3)

(iil) uaug(v) = ugue(v) = uqg(v).

Then we get

T(ayua)-T(Boug)w) = Y Y uaus(v)= Y Euaplv) =

Y€ET/T(a) n'€T/T(B) £er/T(ap)

T(apB; uap)(v)

We want to explain in a special case that we may have relations like the one
above.

Let S be a finite set of primes, let |S| be the product of these primes. Then we
define I'g = G(Z[‘S‘]) We say that o € G(Q) has support in S if « € G(Z [\SID
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We take the group I" = Sly(Z), and we take two disjoint sets of primes St,
Ss. For the group I' one can prove the so-called strong approximation theorem
which asserts that for any natural number m the map

is surjective. (This special case is actually not so difficult. The theorem holds
for many other arithmetic groups, for instance for simply connected Chevalley
schemes over Spec(Z). )

We consider the case

ay by
ag by
o = . Erslaﬂ: .. 6F527

aq bd

where aglag_1 ...|a; and bg|bg_1|...|b1. It is clear that we can find integers n;
and no which are only divisible by the primes in S; and S5 respectively, so that

I(n;) CT(a"),T(ny) CT(B7),

where the I'(n;) are the full congruence subgroups mod n; and ng respectively.
Since we have
Sld(Z/nZ) = Sld(Z/TLlZ) X Sld(Z/HQZ)
we get
P/T(a™'f7") = T/T(a™!) x T/T(B7).

On the right hand side we can chose representatives v for I'/T'(a~!) which satisfy
v = Id mod ny and 5 for I'/T(37!) which satisfy n = Id mod n;. Then the
products yn will form a system of representatives for I'/T'(a~14~1). But then
we clearly have u,n = nu, and we see that (i) and (ii) above are true. Then we
can put uag = UqUg-

We consider the case that our module M is a R-lattice in Mg, where Mg
is a rational G(Q)-module. Then we saw that we can write

Uy = d(a) -«

where d(«) will be a product of powers of the primes p dividing n; and an
analogous statement can be obtained for 8 and ns.

Since we have a8 = S and since clearly d(«)d(8) = d(af) we also get the
commutation relation.

So far we only proved this relation only for the action on HO(I'\X, M). If
we want to prove it for cohomology in higher degrees, we have to choose an
acyclic resolution

0—M—A" Al » =0—M— A°

and compute the cohomology from this resolution. We have to extend the maps
Uq, Ug to this complex

0— M@ — (4@

e

00— M— A
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and we have to prove that the relation
UaNUp = U/Uauﬁ = n/uaﬁ

also holds on the complex. Once we can prove this, it becomes clear that the
commutation rule also holds in higher degrees.

We choose the special resolution

0= M= Ind*(M) =
(3.4)
0 — M — Ind{;;M — Ind{};( Ind{;;M/M) —

It is clear that if suffices to show: If we selected the uq,ug in such a way that
we have the condition (i), (ii) and (iii) above satisfied, then we can choose
extensions uq, ug, Uag to Indlgl}M so that (i), (ii) and (iii) are also satisfied.
Once we have done this we can proceed by induction.

In other words we have the diagram of T'(a))-modules

0— M@ — (IndjM)@

e ]
0— M-—  IndjM,

and we are searching for a suitable vertical arrow 7. The horizontal arrows are
given by (as before see (2.2)) by i : m — f,, : {v — ym}.

We make another assumption concerning our «, 5. We assume that there
exists an automorphism © of G/Q such that O(a) = o= 1,0(8) = 7! and
OI' =T'. This assumption is certainly fulfilled in the case above, we simply take
O(g) =' g71, i.e. transpose inverse.

We choose representatives &1, ...,&, for I'/T(a™1), then ©&,...,0¢, is a
system of representatives for I'/I'(«). To define the vertical arrow ? = ud) we
require

uP(N(0&) = ualf(&) Yr=1,....r

and this yields a unique I'(«)- module isomorphism, for all v € I'(«) we must
have

ul (£)(067) = ua(f(€0 ya) ¥Yr=1,....7.
Iterating this construction gives us the ug), by construction these morphisms
satisfy (i), (ii), (iii). Since the complex H®(I'\X, Ind(M))c computes the co-
homology groups H*(I'\ X, M) the commutation rules hold in all degrees.

HHO

3.1.2 More relations between Hecke operators

We look at the algebra of Hecke operators in the special case that G/Z = Gly/Z,
we consider the action on H'(I'\H, M) where T' = Sly(Z), we assume n even
and M = M[—%]. This has the effect that the centre of G//Z acts trivially on
M and this makes life simpler.
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We attach a Hecke operator to any coset T'al' where a € GIF (Q) (i.e.
det(a) > 0, we want « to act on the upper half plane). Then « and Aa with
A € Q* define the same operator. Hence we may assume that the matrix entries
of a are integers. The theorem of elementary divisors asserts that the double

cosets
T+ M, (Z)aet0 - T C GI3 (Q)

are represented by matrices of the form

(6 )

where b | a. But here we can divide by b, and we are left with the matrix

a 0
a-(o 1) , a€N.

We can attach a Hecke operator to this matrix provided we choose u,. We see
that o induces on the basis vectors

XVyn—v au—n/2 XYY"V
Hence we see that we have the following natural choice for u,
U : P(X.Y) — a™?a- P(X,Y).

(See the general discussion of the Hecke operators)
Hence we get a family of endomorphisms

0

T (g 1>,u W o\ | =T@ (3.5)
0 1

of the cohomology H*(I'\H, M).

We have seen already that we have T,T, = T, if a,b are coprime.

Hence we have to investigate the local algebra H, which is generated by the

T

_ p" 0
Tpr—T <0 1) ,u<pr 0)

0 1

for the special case of the group I' = Sl3(Z) and the coefficient system M =
M, [—=%]. To do this we compute the product

B p" 0 ) p 0
wrr(f o) 7((G )

where the u],» are the canonical choices.

Again we investigate first what happens in degree zero, i.e. on HO(T'\H, I)
here I is any I'-module.
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Let o = (g ?) ,& € HO(T\ X, ) then

T(0" uer) (e ua)e = (Y quar)( S mua)(©)

Yver/I(ar) ner /I (a)

We have the classical system of representatives
o 1 4 . 1 0 0 1 ”
rren= U (o )rer U U (1) (5 o) ren
j  mod p~ j’ mod pr—1
and our product of Hecke operators becomes

0 SN S FD DI (AT (P PP TTD w1 KX (A OIS

7 mod p" 7’ mod pm—1 ji mod p

D SR (R A (R G

j mod p”,j1 modp

CE G e e

j’ mod pr=1,j1 mod p

A% (o 1) (G oo

j mod p”

O D (S e

3’ mod pr—1

Now we have to assume t u,+ satisfy commutation rules

UaqrUq = Ugr+1

L g\ _ (1 5"
tar (0 1) - (0 1 )“0” (3.6)
0 1 0 1\
uar { 1 o)y o = cr(p)ugr—1

where ¢y (p) is a non zero integer. If we exploit the first two commutation relation
then we get as the sum in the first| ... |

1 j+p"h
[Zj mod p”,j1 mod p (0 1

1 0 0 1 3.7
Zj/ mod p™—1,j1 mod p ((j/+pr—1j1)p 1) (_1 0>]uar+1(§)] ( )

= T(pTJrl’ Ugr+1 )(5)
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To compute the contribution of second [ . ] we observe that w = (01 (1)) €

I" and hence we have w& = £.Then the second commutation relation yields for
the sum of the terms in the the second [ . ]

ao X (1) X (5 DG oo 69

j mod p~ 4’ mod pr—1

r—1

We observe that for j =0 mod p we get

(5 2)etemns (b 770t

and in case » > 1 for 5/ =0 mod p"—2

(ﬁp [1)> <_01 é>>uav‘—1<£>=<_01 é))uar-l (3 5?)(@:(_01 3)>uar_1<,g>

here we used again (3.6) and ¢ € HO(I'\ X, I). In other words in the summation
(3.8) the first term only depends on j mod p"~! and the second only on j’
mod p"~2. For r > 1 this yields for the second term (3.8)

e S (o 1) 2 () (8 o) @ =retirer e

j mod pr—1 3’ mod pr—2

If = 1 the value for (3.8 ) is ¢;(p)(p + 1)uqo and hence we get the general
formula

Tpr - Ty = Tpr+1 + (p+ €(p))cr(p) Tpr— (3.10)

where e(r) =0 if r > 1 and €(r) =1 for r = 1.
This formula is valid for all values of r» > 0 if we put T},,-1 = 0.

We want to know what this means for the action on H'(I'\H, M), we start
again from our special resolution. (3.4). A simple calculation gives that the
uqr satisfy the relations (3.6) with caq(p) = p™. Hence we get for the action on

HY(T'\H, M)
Tyr - Ty = Tyrer + p" T Tpes + €(r))p" Tpr—s (3.11)

where e(r) =0 if r > 1 and e(r) =1 for r = 1.

Interlude

We assume that a majority of the readers has seen Hecke operators in the
context of modular forms and has seen formulas for these Hecke operators acting
on spaces of modular forms, which look very similar to the formulas above.
(See [85], [48]) This is of course not accidental, in the following chapter we will
discuss the Eichler-Shimura isomorphism, which provides an injection of the
space of modular forms of weight k into the cohomology H!(I'\H, Mj,_o ® C)).
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(See Thm. 4.1.3). This is a Hecke-module isomorphism and this explains the
relation between the classical Hecke operators and the ”cohomological” Hecke
operators.

There is a slight difference between the formulas here and in (HSO), the
reason is that our T}~ differ slightly from the classical Hecke operators. But we
always have T}, defined as above is equal to T}, in (HSO).

We want to stress that in this text so far -except in the introduction- there
is no mentioning of modular forms, this is intentional.

End Interlude

This can be generalised. We choose an integer N > 1 and we take as our
arithmetic group the full congruence group I' = I'(N). For any prime p | N
the T'(v, uy) with e € G5 (Z[1/p]) form a commutative subalgebra H,, which is
generated by T},. This is the so called unramified Hecke algebra.

For p|N we can also consider the T(a, u,) with a € Gl (Z[1/p]). They will
also generate a local algebra #, of endomorphisms in any of our cohomology
groups, but this algebra will not necessarily be commutative. But if we have two
different primes p,p; then we saw that the H,,H,, commute with each other.
All these algebras H, have an identity element e,, we form the algebra

He = R Hy
p

where the superscript indicates that a tensor hy = ®p hyp € Hr has a a factor e,
for almost all p. (See also further down section 3.2.1) This algebra acts on all our
cohomology groups. We recall that the action of Hr on the inner cohomology
groups is semi-simple (See Thm. 3.1.1). This has important consequences, which
we discuss after a brief recapitulation of the theory of semi simple modules.

3.2 Some results on semi-simple A- modules

We fix a field L and its algebraic closure L, for simplicity we assume that the
characteristic of L is zero, or that L is perfect. We consider an L-algebras A, not
necessarily commutative but with identity. We need a few results and concepts
from the theory on finite dimensional vector spaces V/L with an action of A ,
i.e equipped with a homomorphism A4 — End (V).

Such an A module V is called irreducible if it does not contain an .4 invariant
proper submodule W C V, i.e {0} # W # V. It is called absolutely irreducible if
A ® L module V ® L is irreducible. We say that V is indecomposable if it can
not be written as the direct sum of two non zero submodules. An irreducible
module is also indecomposable.

We say that the action of A on V is semi-simple, if the action of A ® L
on V ® L is semi simple and this means that any A submodule W C V & L
has a complement, i.e. we can find an A-submodule W+ C V ® L such that
VeoL=WaWw.

Then it is clear that we get a decomposition indexed by a finite set E

V®E=@Wi
el
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where the W; are (absolutely) irreducible submodules. In general this decom-
position will not be unique. For any two W;, W; of these submodules we have (
Schur’s lemma)

L if they are isomorphic as A -modules

Hom. (W, W) = {0 else

We decompose the indexing set F = E; U Fs U .. U E} according to isomor-
phism types. For any F, we choose an A module W[, of this given isomorphism
type. Then by definition

L ifjekb,
HomA(W[,,], W]) = { .
0 else
Now we define Hj,; = Hom4(W},},V ® L) we get an inclusion Hy,; @ W, —
V ® L. The image X, will be an A submodule, which is a direct sum of copies
of W},j, it is the unique such submodule.

We get a direct sum decomposition

VaL=FB P w.=px

v i€lE,

then this last decomposition is easily seen to be unique, it is called the isotypical
decomposition.

If V' is a semi simple A module then any submodule W C V also has a
complement ( this is not entirely obvious because by definition only W ®r, L
has a complement in V ®7, L. But a small moment of meditation gives us that
finding such a complement is the same as solving an inhomogeneous system of
linear equations over L. If this system has a solution over L it also has a solution
over L.) Therefore we also can decompose the A module V into irreducibles.
Again we can group the irreducibles according to isomorphism types and we get
the isotypical decomposition

Vv=u =p P U =FHv. (3.12)

icE v i€k,

But of course a summand U; may become reducible if we extend the scalars
to L (See examplple below). Since it is clear that for any two A- modules Vi, V4
we have

Hom 4 (V1,V2) ® L = Hom o7 (Vi ® L, Vo ® L)

we know that we get the isotypical decomposition of V' ® L by taking the iso-
typical decomposition of the Y, ® L and then taking the direct sum over v.

Example: Let Li/L be a finite extension of degree > 1, then we put A = L,
and V' = Ly, the action is given by multiplication. Clearly V' is irreducible, but
V ® L is not. If Ly/L is separable then the module is semisimple, otherwise it
is not.

We have a classical result:
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Proposition 3.2.1. Let V be a semi simple A module. Then the following
assertions are equivalent

i) The A module V is absolutely irreducible

it) The image of A in the ring of endomorphisms is End(V)

iii) The vector space of A endomorphisms Enda(V) = L.

This can be an exercise for an algebra class. Where do we need the assump-
tion that V is semi simple?

Let V' be an irreducible semi-simple A -module, which is not necessarily
absolutely irreducible. Let Iy, be the two sided ideal which annihilates V| i.e.
the kernel of A — Endy (V). Let Cr be the centre of A/Iy. This centre is a
field, because any ¢ € Cr, is either zero or an isomorphism, in other words V' is
a Cy, vector space. The Cp-algebra A/Iy is a central simple algebra. There is
a central division algebra D/Cy, such that A/l — M, (D), this is the algebra
of (r,r) matrices with coefficients in D. This algebra has exactly one -up to
isomorphism- non zero irreducible module, this is the module of column vectors
D", the algebra acts by multiplication from the left. Let us denote this module
by X[A/Iy]

Theorem 3.2.1. The extension Cr/L is separable. Let Li/L be a normal clo-
sure of Cr,. Then we have the isotypical decomposition

VerL = @ V ®c, .0 L1 (3.13)

o:Cr,—L1

The Galois group Gal(L1/L) permutes the summands in a simply transitively.
The A/ly ®c, o L1 module V ®c¢, - L1 is isomorphic to the standard module
X[A/Iy ®c, » L1].

Here M, (D) is the Ly algebra of (r,r) matrices with coefficients in D. This
is essentially the classical Wedderburn theorem.

Proposition 3.2.2. For any semi -simple A module V we can find a finite
extension Lo/L such that the irreducible sub modules in the decomposition into
1rreducibles are absolutely irreducible.

Clear, we have to take an extension which splits D.

If V is any A module- not necessarily semi simple but finite dimensional over
L-then there is a finite extension Ly /L and a filtration

{O)cWVicV,C---CV,o1 CV®L Ly

such that the successive quotients V;/V;_; are absolutely irreducible. A very
elementary argument shows that the set of isomorphism types occurring in this
filtrations does not depend on the filtration, let us denote this set of isomorphism
types by Specy (A ® La).

We say that an A- sub module W C V is complete in V if the two sets
Specy, (A ® L2) and Specyy, (A ® L2) are disjoint. We have the simple
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Proposition 3.2.3. a ) If V is a semi simple A-module and if W C V is
complete in V then we have a canonical splitting V=W @& W',

b) If V is not necessarily semi simple but if A is commutative instead then
any W C V which is complete in V also has a canonical complement W', i.e.
V=weW.

Proof. For the second assertion we observe that an absolutely irreducible A
module U is simply one dimensional over Ly and given by a homomorphism
m: A— Lo, ie. it is an eigenspace for A. O

Let us call such a decomposition a decomposition into complete summands.

Let us now assume that we have two algebras A, B acting on V, let us
assume that these two operations commute i.e. for A € A,B € B,v € V we
have A(Bv) = B(Av). This structure is the same as having a A ®y, B structure
on V. Let us assume that A acts semi simply on V' and let us assume that the
irreducible A submodules of V' are absolutely irreducible. Then it is clear that
the isotypical summands Y, = @ W; are invariant under the action B. Now we
pick an index i then the evaluation maps gives us a homomorpism

Wi, ® Hom 4 (W,,,Y,) = Y,.

Under our assumptions this is an isomorphism. Then we see that we get
V=W, ® Homa(Wi,,Y,)
v

where i, is any element in F,, and where A acts upon the first factor and B acts
upon the second factor via the action of B on Y,,.

3.2.1 Excursion: Finite dimensional H—modules and rep-
resentations.

In the following we start from a a flat group scheme G/Z, we assume that the
generic fiber G/Q is reductive. Let Ky = Hp K. be an open compact subgroup
in ® G(Qp) this means that for almost all primes p we have K, = G(Z,) and
K, C G(Qp) is open for all primes p. For any prime p let C.(G(Q,)//Kp)
the space of Q valued functions h on G(Qp) which have compact support and
which are biinvariant under K, i.e. h(ki1gk2) = h(g). These functions form an
algebra under convolution (See 6.3) and the characteristic function e, of K, is
the identity element.
The Hecke algebra is the restricted tensor product

H=Q Hy =@ CCQ)//K,)

As the notation indicates we take the tensor product over all finite primes.
This tensor product has to be taken in a restricted sense: for an element of the
form hy = ®h, the local factor h,, is equal to the identity element e, for almost
all primes p (here e, is the characteristic function of K,). All other elements are



3.2.  SOME RESULTS ON SEMI-SIMPLE A- MODULES 105

finite linear combinations of elements of the form above. We have the obvious
embedding

Hy, — H we simply send hy = ®...epy @hp ey, . ... (3.14)

The subalgebras H,, commute with each other.

We say that prime p is unramified ( with respect to Ky ) if G xzZ,, is reductive
and K, = G(Z,), At unramified primes the local factor H, is commutative, its
exact structure is given by the Satake isomorphism (See 6.3.3).

We define the ideal I}Q to be the kernel of the action on H (ng,/\;lA,Q),
then H /I }(f = A is a finite dimensional algebra. It is known- and will be proved
later (8.1.8)- that H,‘(ng,./\;lx@) is a semi simple module.

A central subalgebra

Let > be the set of ramified primes. For p ¢ X the algebra H, is finitely
generated, integral and commutative.
The subalgebra

/

HE) = ®pngP (3.15)

is commutative and lies in the centre, and therefore its image A c A lies in
the center of A. Since H!'(SIG(f,MA,Q) is semi simple A®™) is a direct sum of

fields and hence we have orthogonal system of idempotents {e;} such that

A®) — @A(E)ei

gives a decomposition of A into a direct sum of fields. Hence we get a
decomposition into isotypical modules

HY (SF,, Mxg) = D eiH! (S, Mag) (3.16)

We can decompose further, if I C Q is a finite normal extension which ” contains

” the field A®e; then

eH(SE, Mar)= @ eH (S, Mir)ol. (3.17)

o AP e; - F

The composition 7*)(e;,0) : A& — ;A% 25 F is a homomorphism

A ﬂ F and
e H? (SE,, My p)lo] = H? (SF,, M r) (7™ (e;,0))

is the eigenspace with eigenvalue 7(*) = W(E)(ei, 0).. Hence we can rewrite the
decomposition (3.17) as

HP (S, Mar) = P H? (SE,, Map) (=) (3.18)

7(2)
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where now the set of {7(*)} = {n(e;,0)}. We have seen earlier that 7(*) =
[,¢x mp, Where 7, : H, — F.

We change our notation slightly instead of SpeCH<:>(H!’(SIC§f,M>\7Q)) we
define the set

Coh{™ (8§, Mxg) = {--. i }, (3.19)

this is the set of isomorphism classes of irreducible A®) modules which occur
non trivially in Hp? (ng, M, g), and

Coh{™ (8§, My g) = {...,7™,. ..} (3.20)

this is the set of isomorphism classes of absolutely irreducible A®) modules
which occur non trivially in H, 1.(81% , M, g)- We have the projection map

Coh{™(8F,, M, g) — Coh{™(SE,, Mig): (es,0) e, (3.21)

the fibers of this map are the orbits of the action of the Galois group Gal(Q/Q)
on Cohl(z) (ng‘f ) ./\;IA’@).

We have a canonical way to realise an isomorphism type 7, resp. Tp-
We consider the subfield F resp.F[p|Q which is generated by the values of
7 resp. mp. Then H = = F and A®) acts on F via 7). Since F is a
field we have a canonical generator, this is given by the element 1 € F. We may
do the same for 7, and define H;, this by definition is a one dimension vector
space over F[p|. But if we remember that m, is the local components of ()
then we modify our definition and define H,, = Hy, @pp F.

Then we can say that H_(x) is the restricted tensor product

!
Hy = X) Hr,. (3.22)
PES
Here on the right hand side we only allow tensors ®a, ® --- ® ay ® ... where

for almost all p* the local factor a,- = 1.

Most of the time we are only interested in the unramified part of the ac-
tion of the Hecke algebra. But of course we may also consider the action of
the entire Hecke-algebra H. We define H(x) = HpeZ H,, this algebra acts on
H? (ng,./\;lA7F) and respects the decomposition (3.18). Hence we have to look
at the action of H(x) on H (ng , My p) (7). We denote the analogous of the
ideals I}(f by J, C H, and put A, = H,/I,. Then an absolutely irreducible
module for Hyx) is of the form ®p€Z Vi, where V. is an absolutely irreducible
A,- module. The structure of these modules has been described in the previous
section, they are standard irreducible modules over full matrix algebras with
entries in an extension L;/Q. These matrix algebras are quotients of A, ® Lq
by a two sided ideal.

The finite dimensional H ® L1 modules form a category Modygr,, this
is not a set. We can define the set [Mod,,; | of isomorphism classes. The
elements in this set will be denoted by 7. We introduce the same notation
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for the elements 7, in the set [Mody,gr,] . If H, is commutative and m, is
absolutely irreducible then 7, is a homomorphism 7, : H, — L;. In general
mp is a quotient H, ® L1/J(mp), where J(m,) is a two sided ideal such that
Hp/J(mp) = M,-(L1), and 7, is the standard absolutely irreducible module over
Hp/J(mp). If we denote an ( absolutely irreducible) H, ® L; -module by Hr,
then this means that the isomorphism class of this module is 7. If we have an
absolutely irreducible # ® L; module which occurs in H? (S$ f,M A7) then its

isomorphism type is
Ty = H?Tp x (> =H7rp
peEX P

On the cohomology H (SIG{f , M) we still have the action of the group mo(G(R)),
this action commutes with the action of the Hecke algebra. (See (6.3.7) This
is an elementary abelian 2- group and we may decompose further according to
characters € : mo(G(R)) — {£1}. Hence we get finally that after choosing a
suitable finite (normal) extension F'/Q we have an isotypical decomposition

H? (SR, M r) = @D H? (SR, Mar)(e x mp) (3.23)

EXTf

As before we denote by Cohy (ng M x,0) the set of isomorphism classes of abso-
lutely irreducible H modules. On this set we have an action of the Galois group
Gal(Q, /Q), this action factors over Gal(F/Q). On the other hand Gal(F/Q)
acts upom H!’(SIG(f,/\;lNF) via the action on F' and clearly for o € Gal(F/Q)
we have

o(HP (SR, Mup)(e x mp)) = Hf (SE |, Map)(a(e) x o(mp)) (3.24)

3.2.2 Representations and Hecke modules

For p € ¥ the category of finite dimensional modules is complicated, since the
Hecke algebra will not be commutative in general.

Let F be a field of characteristic zero, let V be an F-vector space. An
admissible representation of the group G(Q,) is an action of G(Q,) on V which
has the following two properties

(i) For any open compact subgroup K, C G(Q,) the space VEr of K,
invariant vectors is finite dimensional.

(ii) For any vector v € V we can find an open compact subgroup K, so that
v € VE» in other words V = limg, VE»,

An admissible G(Q,) -module V is irreducible if it does not contain an
invariant proper submodule.
It is clear that the vector spaces VX» are modules for the Hecke algebra
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Proposition 3.2.4. If V # (0) is a irreducible G(Qp) modules, and if K, is
an open compact subgroup with VE» £ (0). Then VE» is an irreducible Hr,-
module.

Proof. To see this we take the identity element ey, in our Hecke algebra, it
induces a projector on V and a decomposition

V=vVraV =eg Ve (l—ek,)V.

Let assume we have a proper H g -invariant submodule W C VE» Now we con-

vince ourselves that the G(Q))-invariant subspace W generated by the elements
gw is a proper subspace. We compute the integral

/ kgwdk‘ = / k’lgkﬁzwdk‘gdk’l.
K, K, xK,

The first integral gives us the projection to VX», the second integral is the
Hecke operator, hence the result is in W. We conclude that e, W C W and tis

shows that (0) # W # V. O

Now it is not hard to see, that the assignment
V- Ve

from irreducible admissble G(Q,)-modules with V¢ = (0) to finite dimen-
sional irreducible Hf -modules induces an bijection between the isomorphism
classes of the respective types of modules. If we start from V57 we can recon-
struct V' by an appropriate form of induction.

The dual module

Let us assume that V is a finite dimensional F-vector space with an action of
the Hecke algebra #H (we fix the level). We have an involution on the Hecke
algebra which is defined by

"h(zys) = h(z}")

a simple calculation shows that ‘hy * thy =t (hg * hy).
This allows us to introduce a Hecke-module structure on VY = Homp(V, F)
we for ¢ € VVwe simply put

Tn(9)(v) = &(Ten(v))

for all v € V.

Unitary and essentially unitary representations

Here it seems to be a good moment to recall the notion of unitary Hecke mod-
ules and unitary representations. In this book we make the convention that a
character is a continuous homomorphism from a topological group H — C*, we
do not require that its values have absolute value one. If this is the case we call
the character unitary. Our ground field will now be F' = C, let V' be a C vector
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space. We pick a prime p. We call a representation p : G(Q,) — GI(V') unitary
if there is given a positive definite hermitian scalar product <, >V xV — C
which is invariant under the action of G(Q,).

If our representation is irreducible then it has a central character ¢, : C(Q,) —
C*. In this case the scalar product is unique up to a scalar. A necessary con-
dition for the existence of such a scalar product is that |(,| = 1, in other words
(p is unitary.

If this is not the case then our representation may still be essentially uni-
tary: We have a unique homomorphism [(| : C'(Q,) — RZ, whose restriction
to C(Qp) under do (see 1.1) is equal to |(y|. Then we may form the twisted
representation p* = p ® |[(¥[~'. Then the central character of p* is unitary. We
say that o is called essentially unitary if p* is unitary.

If our representation is not irreducible we still can define the notion of being
essential unitary. This means that there exists a homomorphism |(}| : C"(Q,) —
R%,, such that the twisted representation p* = p ® |C;‘|’1 is unitary.

The same notions apply to modules for the Hecke algebra. A (finite dimen-
sional) C vector space V with an action 7, : H, — End(V) is called unitary, if
there is given a positive definite scalar product <, >: V x V — C such that

<Tp(v),w >=<v,Tep(w) > (3.25)

Recall that we always assume that our functions h € H,, take values in QQ, hence
we do not need a complex conjugation bar in the expression on the right.

The restriction of m, to C(Q,) in induces a homomorphism ¢, : C(Q,) —
C*. We call m, isobaric if this action of the center is semi simple - and therefore
a direct sum of characters (r, = > C" - and if all these characters have the
same absolute values [(7 | = |C,Tp| This means that we can find |Cx, | as above.
Then we call 7, essentially unitary if the Hecke module 7y = 7, ® | C;p|_
unitary.

These boring considerations will be needed later, we will see that for an
irreducible coefficient system M the H, 1‘(51% , M) ®C is essentially unitary (see
8.1.7).

Abelian representations

Let us assume that the derived group G(Y)(Q,) has non proper normal sub-
group of finite index (this is true in most of the cases, for instance for G =
Gl,,/Qp, then it is easy to see that a finite dimensional, admissible and abso-
lutely irreducible representation is one dimensional and given by a character

G(Q,)/GM(Q,) — C*.

3.2.3 Explicit formulas for the Hecke operators, a general
strategy.

In the following section we discuss the Hecke operators and for numerical ex-
periments it is useful to have an explicit procedure to compute them in a given
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case. The main obstruction to get such an explicit procedure is to find an ex-
plicit way to compute the arrow j°®(«) in the top line of the diagram (3.1). (we
change notation j(«a) to m(a)).

Let us assume that we have computed the cohomology groups on both sides
by means of orbiconvex coverings U : Use V,, = D(a™ ")\ X and U : Uje, Uy, =
P(a)\X.

The map m(a) is an isomorphism between spaces and hence m(«)(%0) is an
acyclic covering of T'(«)\X. This induces an identification

C* (B, M) = C* (m(a) (W), M)

and the complex on the right hand side computes H®(T'(a)\ X, M(®). But this
cohomology is also computable from the complex C'(EL./\;I(O‘)). We take the
disjoint union of the two indexing sets IU.J and look at the covering mq () ULl.
(To be precise: We consider the disjoint union I = I U J and define a covering
20; indexed by I. If i € I then W; = m(a)(V,,) and if i € J then we put
W; = U,,. We get a diagram of Czech complexes

- 69261‘1 M(Q)(Wi) - @1‘61“1 M(a)(Wg) —
T T

- @g‘eiq M(a)(Wi) - @geiqﬂ M(a)(Wi) - (3.26)
{ 1

= Dica MWy — Dic o M@ (W) —

The sets I°®, J® are subsets of I* and the up- and down-arrows are the resulting
projection maps. We know that these up- and down-arrows induce isomorphisms
in cohomology.

Hence we can start from a cohomology class ¢ € H9I(I'(a)\X, M), we

represent it by a cocycle
ce € @MWy
iela

Then we can find a cocycle ¢¢ € @Zelq M@ (W, (W;) which maps to c¢ under
the uparrow. To get this cocycle we have to do the following: our cocycle c¢ is
an array with components c¢ (i) for i € I9. We have d4(ce) = 0. To get ¢ we
have to give the values & (i) for all i € 19\ 19. We must have

dyée = 0.

this yields a system of linear equations for the remaining entries. We know that
this system of equations has a solution -this is then our ¢ - and this solution is
unique up to a boundary dq_1(§’). Then we apply the downarrow to ¢¢ and get
a cocycle cz, which represents the same class £ but this class is now represented

by a cocycle with respect to the covering 4. We apply the map @ : M@ — M
to this cocycle and then we get a cocycle which represents the image of our class
& under T,.

In the following section we discuss the explicit computation of a Hecke op-
erator in a very specific situation. We start from our computation in section
(2.1.3) and write down some H*(I'\ X, M) explicitly. On these modules we give
explicit procedures to compute a Hecke operator. We get some supply of data
and we look for some interesting laws or we try to verify some conjectures (see
(3.84)).
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3.3 Hecke operators for Gls:

For the rest of this chapter we discuss a very specific case. The algebraic group
scheme will be Gly/Z. The symmetric space will be

t 0
0 )

Then the space X is the union of an upper and a lower half plane. We choose
I' = Gl5(Z), then

X = Gly(R)/K+ where Ko, = SO(2) x {( ) |t € R* ¢ > 0}.

where I' = Sl3(Z) and H is the upper half plane. Earlier we defined the T'-
modules M,,[m] (Seel.2.2 ), in the following we put M = M,,[0].

We refer to Chapter 2 2.1.3. We have the two open sets Ui, resp. Up C H,

they are fixed under
0 -1 1 -1
S_(l 0)andR—(1 0)7

respectively. We also will use the elements

11 _ -1 1
T, = (0 1), St=T_8ST"'= (_2 1) cTI(2)

1 0 _ _ -1 2 _
T:(1 1>7SI:T+ST+1=<_1 1>EF0(2)

The elements S;” and S; are elements of order four, i.e. (S)% = (S7)? = —1d,

the corresponding fixed points are % and i+ 1 respectively. Hence S] fixes

the sets aU i1 and Ui+1, this is the only occurrence of a non trivial stabilizer.
2

3.3.1 The boundary cohomology

It is easier to compute the action of the Hecke operator T, on the cohomology
of the boundary, i. e. to compute the endomorphism

T, : HY(O(T'\H), M) — H'(d(T'\H), M).

We know (see 2.58) that H'(3(T'\H), M) = M/(1 T, )M, we collect some
easy facts concerning this module. For n > k > 0 we define the submodules

MB) =7 xkyn—k g7 xktlyn—k-1q4. . . o7 x"

for k = O(resp. k = n) we have M© = M(resp. M = Z X"). These
modules are invariant under the action of T, we have (1 — T, )M®*) c ME+D)
and M®) / ME+HD) =5 7 The map (1 — T ) induces a map

ak . M(k)/M(k+1) _ M(k+1)/M(k+2)
which is given by multiplication with n — k. Hence it is clear that

M/Q=TIM =2y & MDD /1 -T )M
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and the second summand is a ﬁnite module. The filtration of M by the
M®) induces a filtration HY(O(T\H), M), we put
H'(9(P\H), M)*) := Im(H" (O(P\H), M*)) — H'(O(T\H), M)  (3.27)
Then
Proposition 3.3.1. For k > 0 the quotient
H' (O(M\H), M)®) /H (9(T\H), M)*+D 5 7/ (n — k + 1)Z

The Hecke operator Ty, acts on H*(Q(T\H), M)®) / H' (9(T\H), M)*+D) by maul-
tiplication with p* + p"~*+1. Especially we have

LIY" =@ + )Y

Proof. We introduce the polynomials
Y
(X Y) = XM (1) -+ 1) = X TEEN G - = ke (T) =

XYy —X) .. (Y = (k—1)X) = X"FYF 4. 4 (=1)FEIX"
Obviously these €;(X,Y") form a basis of M. Pascal’s rule for binomial coefficient

says (X+1) = (%) + (,El) and this yields

Toen(X,Y) = (X, X +Y) = ex(X,Y) + kep_1(X,Y)

and from this we get

0
M/Q=TOM =Ze,(X,Y) & @ (Z/(k+1)Z)ex(X,Y) (3.28)
k=n—1
this is the first assertion.
We pick a prime p and investigate the action of T}, on H'(9(I'\H), M). We
recall the definition of the Hecke operator, we start from the matrix o = ‘g (1)

and we consider the diagram (3.1) adapted to our situation

~ ; (1) ~
J(a
(o)

Hl(a(F(Tfl)\H),M) 15[1(3@(04)\11%1),J’(Oé)*(/\/i))@> Hl(a(Fl(a)\H%M
M (1)

HI(T\X, M) e H(9(T\H, M)
(3.29)
The group I'(a™1!) = { “ Z lc=0 mod p}, it acts on P}(Q) and has two

orbits which can be represented by oo and 0. The stabilisers of these two cusps
are I'oo = {£Id T%} and I'y = {£Id T""} respectively. Hence we get

HY (O (a YHY\H), M) = M/(Id = T )M & M/1d — TP )M (3.30)
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We identify H*(8(D\H, M) = M/(Id — T )M =% M/(Id — T_)M where the

last arrow is induced by the map m — woem with wg = _01 (1) . Then

p—1
1 0
M (m) = (m, ZO <j 1) wom) (3.31)
j=
For the composition
uMoj(@) : M/(1d-T)MBM/1d-TP )M — M/(1d-T?)MSM/(1d~T-)M

is given by uld 0 j(a@) M (mss, mg) — (mee, amy). and (1) ((Moos M0)) = Moo +

wong. This yields
p—1 1
T,(m) = am + woawg ! Z (0 {) m
j=0

On M®) /MEHD the element <(1) {) acts as identity, « is multiplication by

p* and woawy ! is multiplication p™~*. O

Here we encounter a situation where the quotient H*(I'\H, M) ing,1/H{ (T\H, M) in
may become non trivial and interesting (see(2.56)). We have to consider the
exact sequence

0 — H}(T\H, M) - HY(T\H, M) - HY(9(T'\H), M) (3.32)

Our cohomology groups may have some torsion 77 C H 1(I‘\H,M),T2 C
H'(d(T'\H), M) and the map r maps the torsion 77 to a submodule r(7;) C Ty.
But it will happen that r(r~=!(73)) is strictly larger than r(77) this means that
some non torsion elements are mapped to torsion elements under r. By definition
HY(T\H, M) inty = 7~ '(72) and therefore

H'(D\H, M) et /H (T\H, M) i = 7(r~(T2))/ T (3.33)
This has been investigated extensively by Taiwang Deng in [20].

Let 7y : H — I'\H be the projection. We get a covering I'\H = 71 (U;) U
m1(Upy) = Uy NU,. From this covering we get the Czech complex

0 - MU)eMU,) — MUNU,) —0
Levg & evg, + VgD, (3.34)
M<S> g M<BR> M —0

and this gives us our formula for the first cohomology

HY(T\H, M) = M/(M<5> @& M<F>) (3.35)
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We want to discuss the Hecke operator 7. To do this we pass to the sub-
groups

re@={(* ")le=0 mod2}
) e (3.36)
I'y(2)={ c d |b=0 mod 2}

we form the two quotients and introduce the projection maps 71'5E :H —
I'E(2)\H. We have an isomorphism between the spaces

T3 (2)\H = Iy (2)\H

which is induced from the map ms : z — <(2) (1)> z = 2z. This map induces an

isomorphism

ad : HY(TT (2)\H, M) = HY(Ty (2)\H, M). (3.37)

We also have the map between sheaves us : m — g ?) m and the com-

position with this map induces a homomorphism in cohomology

. .
Uy Oy

HYTT(2)\H, M) 2= HY(Ty (2)\H, M). (3.38)

This is the homomorphism we need for the computation of the Hecke operator;
it is easy to define but it may be difficult in practice to compute it.

Each of the spaces T'g (2)\H, Ty (2)\H has two cusps which can be rep-
resented by the points co,0 € P!(Q). The stabilizers of these two cusps in
'y (2) resp. Ty (2) are

< Ty > x{+Id} and < T? > x{+Id} c T$(2)
resp.
<T? > x{£Id} and <T_ > x{£Id} C I';(2)
the factor {£Id} can be ignored. Then we get
We know that
HY 8T (2)\H), M) = M/(d — T )M & M/(1d — T?) M
HY (0T (2)\H), M) =5 M/(Id — T )M & M/(1d — T_) M.

But now it is obvious that a maps the cusp oo to oo and 0 to 0 and then it is
also clear that for the boundary cohomology the map

a3 M/Id - TH)M e M/1d - T* )M — M/(1d - T )M & M/(1d — T_)M

is simply the map which is induced by us : M — M. If we ignore torsion then
the individual summands are infinite cyclic.

Our module M is the module of homogenous polynomials of degree n in 2
variables X, Y with integer coefficients. Then the classes [Y"], [X"] of the poly-
nomials Y™ (resp.) X™ are generators of (M /(Id—T%)M)/tors resp. (M/(Id—
TY)M)/tors where v = 1 resp. 2. Then we get for the homomorphism o3

aj : [Y' = [Y7],as : [X"] — 2" [X"]. (3.39)
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3.3.2 The explicit description of the cohomology

We give the explicit description of the cohomology H'(I'{ (2)\H, M) We intro-
duce the projections

oy Ty
H -2 Tf (2)\H; H -2 T (2)\H
and get the covering i,

I @\H = 7 (0) Uy (T-03) U (0,) = nf (03) Umd (Tus) U (D)

where we put T_U; = ﬁ# Our set {z,} of indexing points is i, i1 we put
Ut =n3 (Us,). Note T_ ¢ T§(2), Ty € IT§(2).

Again the cohomology is computed by the complex
0= MU & M(T_U;") @ M(US) = MU NUS) & M(T_UF nUS) =0

we have to identify the terms as submodules of some @ M and write down the
boundary map explicitly. We have

MUH & MUL) & MUF) 5 MU U & MUL NUF)

| evg, @ evp_g, @ evy b evgap, © Vg ar-1g, ® €V ging,

M e MSST> @ M o, MoeMaoM
(3.40)

where the vertical arrows are isomorphisms. The boundary map dy in the bot-
tom row is given by

(m1,ma,m3) = (m1 —mg,my — T 'mg, mq —ma) = (2,9, 2)

We may look at the (isomorphic) sub complex where z = z = 0 and m; = ms =
mg then we obtain the complex

0— M<Sl+> - M- 0; mo = Mo — T;lmg
which provides an isomorphism
HY(TE (2)\H, M) =5 M/(Id — Ty HYM=5>, (3.41)

A simple computation shows that the cohomology class represented by the
class (z,y, z) is equal to the class represented by (0, yfx+T_:1,zfz, 0) we write

[(xvyvz)] = [(Ovy_x+TJ:12_Zvo)] (342)
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3.3.3 The map to the boundary cohomology

We have the restriction map for the cohomology of the boundary
HY(TE\H,M) M/(d = Ty HYM=<5>
i) rter | (3.43)
H' QT (2)\H),M) = M/(Id-T )Mo M/1d - T?)M

we give a formula for the second vertical arrow. We represent a class [m] by
an element m € M and send m to its class in in each the two summands,
respectively. This is well defined, for r* it is obvious, while for r~ we observe
that if m = 2 — T 'z and Sfz = 2 then m =z — T 7 'Sz = 2 — T?x.

Restriction and Corestriction

Now we have to give explicit formulas for the two maps 7*, 7, in the big diagram
on p. 50 in Chap2.pdf. Here we should change notation: The map 7 in Chap.2
will now be denoted by :

F:TH2)\H — I\H (3.44)

We have the two complexes which compute the cohomology H HTE(2)\H, M)
and H'(T'\H, M), and we have defined arrows between them. We realized these
two complexes explicitly in (3.40) resp. (3.34) and we have

MUD) & MUL) & MUF) = MU U & MU nU)

(@)@ 1 L (@) (@Ot | (@) (3.45)

o, MU;NU,)

M(Uz) D ./\;l(Up)

and in terms of our explicit realization in diagram (3.40 ) this gives

do

MOMSH>p M 2% MaeMaeM

(@)1 L (@3)) (@)1 L (w3 (3.46)

D,

M<S> EBM<R> M

Looking at the definitions we find
(w;)(O) : (m17m2) — (mlaT7m17m2)
(3.47)
(@) o) : (M1, ma,m3) — (M1 + Smq + T-"ma, (1 + R+ R*)ms)

and we check easily that the composition (" ))° (wwq ) is the multiplication
by 3 as it should be, since this is the index of I'¢(2)" in I.
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For the two arrows in degree one we find

() :m = (m, Sm, T_m)

(3.48)
(WSF)(l) : (my1, ma,mg) — (mq + Smg + lemg)
We apply equation (3.42) and we see that (w5 )" (m) is represented by
(@)D (m)] = [0, Sm + T "T_m —m — T_m, 0] (3.49)

We do the same calculation for I'; (2). As before we start from a covering

L5 (\H = 75 (U3) Uy (T4 Us) Uy (Up) = m (Uh) Uy (Uign) Uy ()
and as before we put U, = W;(Uy) In this case Ujyq = T4 U; is fixed by

ST = (:} ?) €Iy (2) and we get a diagram for the Czech complex

MUY MU ) @ MU;) 2 MU nUy) @ MU, NU;)

1

evg, @ evg,,, | Bevg, Vgnd, D Vginr-1a, + Vg, o,

M@ MSST> g M o, MoeMae M
(3.50)

Again we can modify this complex and get
HY(Ty (2)\H, M) —5 M/(Id — T-H)M=%1 >, (3.51)
We compute the arrows (w, )*, (wy )« in degree one

(wy )M 2 m = (m, Sm, Tym),
(3.52)
(w5>(1) : (m17m2,m3) — (m1 + Smo + T;1m3)

The computation of a3.

We recall our isomorphism a between the spaces and the resulting isomorphism
(3.37). The identity map of the module M and the isomorphism « on the space
identifies the two complexes

MU & MUEL) & MU o, MU nUF) & MU, NUY)
M (a(UH) & MO (a(U) & M@ (aU) -2 M@ (U NUF)) & M@ (aU, NUS))
(3.53)

and if we consider their explicit realization then this identification is given by
the equality of Z modules M = M(® . This equality of complexes expresses
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the identification (3.37). We can compute the cohomology H*(T'y (2)\H, M(®))
from any of the two coverings

Ty (2)\H = (U ) Ua(U, ) U(US) = Uy, UU,, U U,
2
and (3.54)
Lo @Q\H=U; U, 0U; =Us, UUy, UUy.
We have to pick a class ¢ € H (T (2)\H, M(®)) and represent it by a cocycle

e @ MO, NU,)

1<i<j<3

(The cocycle condition is empty since U, N Uy, NU,, = 0.)
Then we have to produce a cocycle

e @ MU, NUL)

4<i<j<6

which represents the same class.
To get this cocycle we write down the three complexes

Dicicjcs MO (Us, NUL,) — 0
T

Dicici<o MU, NU,,) — Dicicjcr<s MU, N UL, NU,) (3.55)
1

Di<icj<s MU, N Us;) — 0

for our cocycle c¢ we find a cocycle cz in the complex in the middle which maps to
c¢ under the upwards arrow and this cocycle is unique up to a coboundary. Then
we project it down by the downwards arrow, i.e. we only take its 4 <¢< 75 <6

components, and this is our cocycle S

We write down these complexes explicitly. For any pair ¢ = (4,5),¢ < j of

indices we have to compute the set ;. We drew some pictures and from these
pictures we get (modulo errors) the following list (of lists):

Fia=10 Fizg={1d,77°} Fra={ld} Fi;={1d,T;?*}
Fre:={Id,T°"  Fsz={1d} Fou={Id,T}  Fos={Id}
Foe = {Id} Faa=1{1d, 72}  Fys={1d}  F36={1d, S}
Fus=10 Fue={1d, 7'}  Fs56={1d}
(3.56)

Now we have to follow the rules in the first section and we can write down
an explicit version of the diagram ( 3.55) . Here we have to be very careful,
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because the sets Ug,, Uz, have the non-trivial stabilizer < S; > and we have
to keep track of the action of 'z, ; : the set F;; C I'z,\I'/T'z,. Therefore we
have to replace the group elements v € F; ; by sets I'z;7I'z,. In the list above
we have taken representatives.

Dicicics GBWEFM (MENFisy 0
1)

@1§i<j§6 @veﬁj (M@)lig @1§i<j<k§6 @A,Efi,]_ak (M@)isky
1

DBicicj<c Drer., (MENTFigy 0

(3.57)

Here we have to interpret this diagram. The module M(®) is equal to M as
an abstract module, but an element v € I'; (2) acts by the twisted action (See
Chapll, 2.2)

mn—>7*am:a*17a*m

here the * denotes the original action. Hence we have to take the invariants
(./\/l(a))rivij with respect to this twisted action. In our special situation this has
very little effect since almost all the I'; ; , are trivial, except for the intersection
Oé(UH»Tl) N U; in which case T'; ;, =< S > . Hence

(M(a))<51_> _ M<Sl+>.

Each of the complexes in (3.57) compute the cohomology group H'(I'y (2)\H, M)
and the diagram gives us a formula for the isomorphism in (3.37). To get u® in
(3.37) we apply the multiplication mq:m +— am to the complex in the middle
and the bottom. Then the cocycle ¢ is now an element in @/\;1(“) and acg

represents the cohomology class u8(£) € H'(Ty (2)\H, M).

Now it is clear how we can compute the Hecke operator

To=Try o\ M/(M7 @ M) 5 M/(M> @ M<H)
o)
We pick a representative m € M of the cohomology class. We apply (w2+ )(1) in
the diagram (3.46) to it and this gives the element (Sm, m,T_m) = c.. We apply

the above process to compute céa). Then acéo‘) = (m1, ma, mg) is an element in

MU N Uu,) EB./\;I(Ui_+1 NU, ) and this module is identified with M & M & M
by the vertical arrow in (3.50). To this element we apply the trace

(@5 )1y (ma, ma, m3) = my +mo + T} 'mg
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and the latter element in M represents the class Tz ([m]).

We have written a computer program which for a given M = M,,, i.e. for
a given even positive integer n, computes the module H!(I' \H,M) and the
endomorphism 75 on it.

Looking our data we discovered the following (surprising?) fact: We consider
the isomorphism in equation (3.37). We have the explicit description of the
cohomology in (3.41)

HY(TF (2)\H, M) ™ M/(1d —~ T7HM<S>

and
HY Ty (2)\H, M) =5 M/(Id — T-H)(M(@))<5i>

We know that we may represent any cohomology class by a cocycle

ce = (0,¢¢,0) € M (my (a(Up)Na(U,)) DM (5 (a(U)Na(T U, ) )M (m (a(Ussa )Na(T11U,))

so it is non zero only in the middle component and then it is simply an element

(@)

in M. If we now look at our data, then it seems to by so that ¢, is also non

zero only in the middle, hence
s € (0,¢,0) € 00 M@ (5 (U; NT=U,)) @0
hence it is also in M(®) and then our data seem to suggest that
e =ce
Hence we see that the homomorphism in equation (3.38) is simply given by
XYY"V s 2V XYYV,

Is there a kind of homotopy argument (- 2 moves continuously to 1)-, which
explains this?

We get an explicit formula for the Hecke operator T3 : We pick an element

m € M representing the class [m]. We send it by (w3 )™ to HY(T'§ (2)\H, M),
i.e.

(wf )Y - m — (m, Sm, T_m) (3.58)

We modify it so that the first and the third entry become zero see( 3.42)

[(m, Sm,T_m)] = [(0,Sm —m + T 'T_m — T_m,0)] (3.59)
. . 20 _
To the entry in the middle we apply Mo = (0 1) and then apply (@, )(1) and

get
To(m]) = [S - Ma(Sm —m + T ' T_m — T_m)] (3.60)

Eisn
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3.3.4 The first interesting example

We give an explicit formula for the cohomology in the case of M = Myy. We
define the sub-module

5
Mtr — @Zylo—uxl/
v=0
and we have the truncation operator

y10-v xv if v < 5,

trunc : YOV XY
{(_1)u+1YVX10—y else,

which identifies the quotient module M/M<5> to M. To get the cohomology
we have to divide by the relations coming from M<%> ie. we have to divide
by the submodule trunc(M<f>) The module of these relations is generated by

Ry =10Y°X + 20Y7X3 +Y5X5
Ry, = 9Y8X2 —36Y7X3 + 14Y8X* — 455 X5
Rs =8Y7X?3 +10Y°X°
and then

=

HY(T\H, M) = ézyw—uxy/{m, Ry, Rs} (3.61)

v=0

We simplify the notation and put e, = Y X" 7. Using R; we can eliminate
es5 = —10eg — 20e7; and then

v=>6
H'(T\H, M) = P Ze, /{~50ey + 9es — 96e7 + 14eg, —100eq — 1927}

v=10

(3.62)

introduce a new basis { f10, fo, fs, f7, f6, f5} of the Z module M :

f10 = e10; fs = —2es — 3eq; fo = es + 1deg

(3.63)

fo = —12e9 — 23e7; f7 = 2beg + 48e7; f5 = 10eg + 20e7 + e5

and hence in the quotient we get f5 = 0 and 2f; = fs and therefore

H'(D\H, M) = Zfi0 & Zfo & Zfs © Z/(4) f- (3.64)

(If we invert the primes < 12 then we we can work with ejg,eg,es and in
cohomology eg = —%68,65 = {5€9,67 = —Z—é’eg.)

If we can apply the above procedure to compute the action of T3 on coho-
mology we get the following matrix for 75 :

2049 68040 0 O
0 24 0 0

L=1 o 0 24 0 (3.65)
2

0 0 0
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Hence we see that T5 is non trivial on the torsion subgroup. If we divide by the
torsion then the matrix reduces to a (3,3)-matrix and this matrix gives us the
endomorphism on the ”integral” cohomology which is defined in generality by

HS (D\X, M) = H*(\ X, M)/tors C H*(T\ X, Mg). (3.66)

Here we should be careful: the functor H* — HS, is not exact. In our case we

get (perhaps up to a little piece of 2-torsion) exact sequences of Hecke modules

0 — Zfg D ZLfs —Zfo®Zfo ®Lfs — Zfio — 0
I | |
(T\H, M) — HL (D\H, M) = HL (O(T\H),M) = 0

0 —» H! 1
(3.67)

int,!

where Ty(f10) = (2'* + 1) f10. If we tensor by Q then we can find an unique
element (the Eisenstein class) flTO € H},(T\H, M) ® Q which maps to f1o and
which satisfies T5(ff,) = (2" + 1)fJ,. This element is not necessarily integral,
in our case an easy computation shows that fT ¢ H (T\H, M). but 691f7 €
H (C\H, M). This means that 691 is the denominator of f];, i.e. 691 is the
denominator of the Eisenstein class fITO.

Hence we see that
Hiyo (D\H, M) D Hye (T\H, M) & Z691f1

the quotient of these modules is isomorphic to Z/691Z.

The exact sequence Xjp in (3.67) is an exact sequence of modules for the
Hecke algebra H D Z[T3] and hence it yields an element

[X10] € Ext) (Zf10, Hiy ,(T\H, M)), (3.68)

and an easy calculation shows that this Ext! group is cyclic of order 691 and
that it is generated by Xjg.

We look at the action of the full Hecke algebra H on these cohomology
groups. It turns out that for any prime p the Hecke operator T}, acts by the
eigenvalue p'! +1 on fig(see proposition 3.3.1). We will also see that a sim-
ple argument using Poincare duality and and the self adjointness of the Hecke
operators shows that T, acts by multiplication by a scalar 7(p) on the inner
cohomology Hy, (T'\H, M). Then we can conclude

For all primes p we have

7(p) = p** +1 mod 691

Interlude: Ramanujan’s A(z)

We want to stress that the previous considerations are purely algebraic and
combinatorial, no analysis is involved. In the next chapter we will use analytic
methods -especially we will use the results from the theory modular forms- to
obtain some further insight into the structure of the cohomology groups.
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In his paper [75] Ramunujan introduced the function

o

A(Z) — g2miz H(l _ e27rinz)24

n=1
this is the unique (up to a non zero scalar ) cusp form of weight 12 for Sly(Z),
(See [85]). We can expand
A(Z) _ eZTriz _ 246471'1'2 + 25266771’2 N an€2nﬂ'iz NI
The coefficients satisfy (conjectured by Ramanujan) the following recursions

Gnyng = Gn,An, if mM1,n9 are coprime;
(3.69)
_ 11 . . .
apr = ApGyr—1 + p a2 if pis a prime and r > 2

These recursion formulas for the coefficients of the expansion were proved
by Mordell [68] (essentially by using Hecke operators) and later by Hecke in a
more general framework.

In the next section we discuss the Eichler-Shimura isomorphism (see 4.1.7)
which in this special case it implies that for any prime p we have a, = 7(p).
Therefore we define the Ramanujan 7 function by 7(n) = a,. With this defini-
tion of 7(n) Ramanujan proved the famous congruence 7(p) = p't +1 mod 691.

Ramanujan also made the famous conjecture saying that for all primes p we
have the inequality .
T(p)<2p=

This inequality implies of course that for all primes p (and especially for
p=2) 7(p) # p'* + 1 and this implies that any Hecke operator T}, provides a

canonical splitting into eigenspaces H* (I'\H, M®Q) = H} (T\H, MRQ)®Qf10.
This is the simplest instance where the Manin-Drinfeld principle works.
Other congruences

It is easy to check that H'(I'\H, M) and H2(T'\H, M) do not have 5 or 7
torsion. Therefore we have we have (Prop. 3.3.1, see )

Z/10Zeo(X,Y) D Z/5Zes(X,Y) @ Z)TZes(X,Y) Cr(r ' (T2))/T1  (3.70)
and this implies the well known congruences
m(p)=p+p=p°+p° mod5; 7(p)=p” +p° mod7 (3.71)

[94] [20] These congruences are called congruences of local origin whereas the
congruence mod 691 is a congruence of global origin.
End of interlude

We can go one step further and reduce mod 691. Since there is at most 2
torsion we get an exact sequence of Hecke-modules

0— Hb (O\H, M ®Feo1) >HL (I\H,M @ Fo91) — HL (A(T\H), M ® Fgg;)
(3.72)

—0.
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The matrix giving the Hecke operator mod 691 becomes

667 369 0
h=| 0 667 0 (3.73)
0 0 667

This implies that the extension class [X1g ® Feg1] is a element of order 691,
and hence 691 divides the order of [Xjo] and hence divides the order of the
denominator of the Eisenstein class.

Of course we may also consider the Hecke operator T}, then the corresponding
matrix will be

pit @) 0
T, = 0 7(p) O (3.74)
0 0 7(p)

and we know that (p'! + 1 — 7(p))z = t(P) has no solution with € Zgg;). But
then it may happen that the above sequence (3.72) splits as T,-module sequence,
this happens exactly when we have t(») =0 mod 691. But this implies that we
have the stronger congruence

pt4+1—7(p)=0 mod 6912 (3.75)

On the other hand it is clear that the sequence splits as T}, module sequence if
and only of this stronger congruence holds. For the curious reader we mention
that this happens for p = 3559 and for the first ten thousand primes it happens
13 times and 13 is roughly equal to 10000/691.

Later we will discuss the action of the Galois group on H. (T'\H, M ® Fgo1)
and analyse the consequences of this fact for this action of Gal(Q/Q).

Before we discuss the general case we recall a simple fact from the theory of
finitely generated modules.

3.3.5 The general case

Now we describe the general case M = M,, where n is an even integer. We
define M as above, if n/2 is even, then we leave out the summand xn/2yn/2
we get

Mtr _ M/M<S>-

This gives us for the cohomology and the restriction to the boundary coho-
mology

HYT\H,M) = M /Rel
i } (3.76)

~

HY((T\H),M) = M/(Id - T)M.
We have the basis

Yn/2X"/2 /2 odd

en = trunc(Y™), e,_1 = trunc(Y" 1 X),..., {0 X
else
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for M"Y, Let us put no = n/2 or n/2 — 1. Then the algorithm Smithnormalform
provides a second basis f,, = en, fn—1,. .., fn, such that the module of relations
becomes

dnfn = 07dn—lfn—1 = Oa"'7dtft = 07' --7dn2fn2 =0

where d,|dp, 1] .. |dn. We have d,, = dp, 1 = -+ = d;,_25 = 0 where 25 + 1 =
dim HY(T'\H, M) ® Q and d,,_2s_1 # 0.

Now we have written a computer program which for a given n gives us an
explicit matrix for T, it is of the form

Jj=n2

To(f) =Yt (3.77)

j=n

where we have (the numeration of the rows and columns is downwards from n
to ng)

t$2) = 0 for v < n and tg?j) € Hom(Z/(d;),Z(d;))

3.78
andtfj):0f0ri2n—2s,j<n—2s ( )

If we divide by the torsion we get for the restriction map to the boundary
cohomology

n—2s
HY(D\H, M) = €D Zf, - H'(O(D\H), M), = ZY™" (3.79)

where f, — Y™ and To(Y"™) = (2! + 1)Y". Now we will find that the en-

domorphism T — (2" 4 1)Id of H}! (F\H,/\;l)im is injective (Manin-Drinfeld
principle see below and section 4.1.7) and this implies that we can find a vector

v=n—2s
Eis,, = f,, + Z zyfy, T, €Q (3.80)
v=n—1
which is an eigenvector for T5 i.e.
Ty( Eis,) = (2" 4 1) Eis,,. (3.81)

The least common multiple A(n) of the denominators of the z, is the de-
nominator of the Eisenstein class, it is the smallest positive integer for which

A(n)Eis, € HY(T\H, M)ins. (3.82)

This denominator is of great interest and our computer program allows us
to compute it for any given not to large n. We simply have to compute the z,.

We know that T5(f,) = (2"t +1)f, + “i":2s t2) £ and then the x, are the
p=n—1 e
unique solution of

v=n—2s
S (@ + D)y — t)m =t {p=n—1,...,n— 2s} (3.83)

v=n—1
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With the help of H. Gangl we carried the computation of the z, and hence
the A(n) and we found for some not too large values of n (roughly n < 150)
that

A(n) = numerator(¢(—1 — n)). (3.84)

Here of course ((s) is the Riemann ¢ function, it is well known that for any odd
positive integer m the value {(—m) is a rational number, hence it makes sense
to speak of the numerator.

Actually this is a theorem, we will give a proof in Chapter V (Theorem
5.1.2).

The reader might argue, why do you make such efforts to find out some
experimental evidence for something you know to be true?

There a several reasons for doing this but the main motivation is the fol-
lowing. The Theorem 5.1.2 is hopefully a special case of a much more general
assertion. The problem to determine (estimate) denominators of Eisenstein
classes is ubiquitous in the cohomology of arithmetic groups. And we have
many cases where we have conjectures relating these denominators to special
values of L-functions. (See [40]) But in many of these cases the methods to prove
theorems like Theorem 5.1.2 seem to fail. Therefore it seems to be of interest
to develop algorithms which compute the cohomology and the action of Hecke
operators explicitly in given cases. A general strategy for such an algorithm has
been outlined in section 3.2.3 and H. Gangl and I wrote a toy model program
in the above case.

We are aware that these algorithms may become very slow for more general
reductive groups, and it is very likely that we need clever new ideas to achieve
this task. On the other hand it seems to be very important to collect some ex-
perimental data in order to verify or falsify these conjectures. (See also Chapter
9).

3.3.6 Localisation at a prime /

We will see later the we should not consider the denominator of the Eisenstein
class as a number but rather as an ideal. Hence we are only interested in the
decomposition into prime ideals, i.e. for a prime ¢ we want to know the exact
power of £ which divides A(n). To achieve this we replace in the considerations
above the coefficient system M by M(l) =M ® Zyy, here Zy C Q is the local
ring at £. Then our cohomology modules will be finitely generated Z,)-modules
H*(P\H, M)

{ -ordinary endomorphisms

In this subsection we fix a prime ¢ we consider finitely generated modules over
the local ring Zy C Q. We consider such a module together with an endomor-
phism ® : M — M. Then
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Proposition 3.3.2. We have a canonical decomposition into ® submodules

M =M org ® Myt such that ® : M org — M org and () @* (M) = {0}
k
(3.85)

We call M ,;q the ordinary part with respect to ® and ¢ and we call M 44
an f-ordinary ® module. Of course the functor M — M .4 is exact. Since the
functor X — X iyt is not exact the surjectivity in (3.79) is problematic, because
H2(T\H, M) # 0. But if we consider our fundamental long exact sequence

H}(T\H, M) — H (T\H, M) — H'(O(T'\H), M) — Hf(a(F\H)a/z;l(l)))
3.86

and choose for ® the Hecke operator T} then it follows from our computations
in section 3.3.1 that T} acts nilpotently on HZ(O(I'\H), M), and therefore

H? ,.q(0(T\H), M(l)) = 0 and we get the exact sequence
H, ora(D\HL, M) = H g (T\H, M) = H o,q(O(T\H), M(y) = 0 (3.87)
and H!  (9(T\H), /\;l(l)) = Z)Y". Now we can replace the sequence (3.79) by

this sequence if we want to study the power of £ in A(n).
The Glz/Z module M,, contains the submodule

M, ={>a, (Z) XYX" | a, € Z} (3.88)

('see 4.1.1) , this is actually the smallest submodule of M,, which contains X™.
Then we consider the cohomology H*(I'"\H, /\;l';) and again we can ask for the
denominator of the Eisenstein class. Here the method of localising at £ provides
a simple answer. We consider the exact sequence of coefficients

0— ./\;l,bI ®Q Ly — My ® Lyy) — ./\;ln/./\;l,bl ® Zyy) — 0.

Now it follows easily from the definition that the Hecke operator T} acts nilpo-
tently on the the cohomology modules H*(I'\H, — M,,/M? ® Z ) and hence
we see that

Hlord,?(F\Ha M';z oY Z(f)) ;> Hlord,?(F\Ha Mn 02y Z(f)) (389>

is an isomorphism. This implies that the denominator of the Eisenstein class
does not depend on the choice of the coefficient system.

3.3.7 Computing mod /

Of course the coefficients t,(f,)t become very large if n becomes larger, hence we

can verify (3.84) only in a very small range of degrees n. Here we can reduce
the computational complexity if we consider the reduction mod ¢. We look at
the two exact sequences

= HY  (O\H, M, ® Zy)) — HL J(D\H, M, @ Z)) — HL (OT\H), M, @ Z¢p)) —
il i i
= HL  (O\H, M, ®F,) — H, (O\HM,®F) — H. (0T\H), M, @F,)

(3.90)

%
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We have ¢|A(n) if the sequence above does not split as modules for the Hecke
algebra for instance for the endomorphism 75. But this is certainly the case if
the sequence mod ¢ does not split. But this is easier to check, we apply the

above algorithm to the computation of the cohomology mod ¢, Then the tl(,2L

and tSL are elements in Fy and these are definitely easier to compute than the
corresponding coefficients in characteristic zero. Hence we can verify ¢|A(n) if
we show that

v=n—2s
> (@ + 1)y — tP))w, =), mod £ (3.91)
v=n—1

has no solution.

Of course we have to be careful, it may very well happen that the equation
in characteristic zero has no solution but the equation mod £ is solvable. For
instance this happens if tﬁfl =0 mod /. But then it may be still less expensive
to replace the Hecke operator by T3,75,...,T},.... We apply the above con-
siderations to Hecke operator T}, and get an expression for the matrix 7, (see
(3.77)

Z t(p)f] : Yn) _ (pn+1 + 1)yn (392)

but of course the computation of t i ) becomes very expensive if p becomes larger.
Then we have to look whether for some small value of p the equation

v=n—2s

S (@M + 16, — tP)z, = tP), mod ¢ (3.93)

ey
v=n—1

has no solution and we have verified that ¢|A(n).

Higher powers of /¢

This reasoning can also be applied if we look at higher powers of p dividing a
numerator¢(—1 — n). Let us assume that p°»() numerator((—1 —n). We have
to show that p® (") divides the lem of the denominators of the z, in equation
(3.83 ). This follows if we show that the equation

(" +1)8,, — 1)), = ™12,

mod p?» (™) (3.94)

has no solution. This in turn means that the class
(X, ® Z/p*»MZ] € Exty, (Z/p*™Z)(—1 - n), Hy, ,(D\H, M & (Z/p* " 7))

has exact order p% ("),
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Interesting cases to check are p = 37,59,67,101... then we have

¢(=31)=0 mod 37; ¢(—283) =0 mod 37% ¢(—37579) =0 mod 37%; ((—1072543) =0 mod 37%;...

¢(—43) =0 mod 59; ((—913) =0 mod 592

Here our computations have a surprising outcome. For ((—283) resp. ¢(—913)
it has been checked that the order of the extension class is 37 resp. 59 so it
is smaller than expected. This is not in conflict with the assertion that the
denominator is of order 372, 592. In fact it turns out that the determinant of the
matrix on the left hand side in (3.94) is (373)? = 375 where the denominator only
predicts 374. Is this always so and is this also true for other Hecke operators?

3.3.8 The denominator and the congruences

For the following we assume that (3.84) is correct. We discuss the denominator
of the Eisenstein class in this special case. In [Talk-Lille] this is discussed in
a more abstract way, so here we treat basically the simplest example of 4.3 in
[Talk-Lille]. Remember that in this section M = M?” i.e. we have fixed an
even positive integer n.

We have the fundamental exact sequence

0 - Hilrlt,!(F\HvM) — H&qt(r\Ha M) —> Hlji’lt( (F\H)7M) = Zen - 0
(3.95)

and we know that Th(e,) = (2"! + 1)e,,. We get a submodule
Hio (T\H, M) & Zé,, C Hp (T\H, M) (3.96)

where &, is primitive and T»é, = (2"*! + 1)é,. We have r(é,) = A(n)e, and

Hio (T\H, M) /(Hie ) (D\H, M) & Z&,,) = Z/A(n)Z (3.97)
Any m € Z/A(n)Z can be written as
. Yy +mé,
m= (7A(n) ) (3.98)

and this yields an inclusion Z/A(n)Z < H}

int,!

(T\H, M) ® Z/A(n)Z.
Hence

Theorem 3.3.1. The Hecke module H. (T\H, M)®Z/A(n)Z contains a cyclic
submodule Z/A(n)Z(—1 — n) on which for all primes p the Hecke operator T,
acts by the eigenvalue p"* +1 mod A(n)

This theorem has interesting consequences which will be discussed in the
following.

In section (4.1.9) we will review the famous multiplicity one theorem which
follows from the theory of automorphic forms. This theorem implies that we

can find a finite normal field extension F'/Q such that
mt '(F\H M ® F= @Hmt ! F\H M ® F)[ﬂ-f} (399)

T
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where 7 runs over a finite set of homomorphisms 7y : H — Op, and where
H'..[rf] is the rank 2 eigenspace for ;. We also have the action of the com-
plex conjugation on the cohomology (See sect. how) and under this action
each eigenspace decomposes into a one dimensional + and a one dimensional
- eigenspace, i.e. H'.[my] = H}.[rs] & HL.[my]. Let us denote the set of
7wy + H — Oy which occur with positive multiplicity (then 2) in the above
decomposition by Coh!(”).

Our considerations at the beginning of this section imply that we also have
a decomposition of

HYT\H,M)® F = H{(I'\H, M) ® F @ Fe,

where Tye, = (p"T + 1)e,. Let W?is : H — 7 be the homomorphism w?is :
T, —p"t+1.
This decomposition induces a Jordan-Holder filtration on the integral coho-

mology

(0) € THWHL, (D\H, Mo,) € THP Hy (T\H, Mo,.) C --- € TH Hi, (D\H, Mo,
(3.100)

where the subquotients a locally free O modules of rank 2 and after tensoring
with F' they become isomorphic to the different eigenspaces.

We choose a prime p which divides A(n), let p%»(™||A(n). Let p be a prime
in Of which lies above p. If e, is the ramification index then we have

{0} € Op/per?™ (=1 —n) C Hy, (D\H, Mo,.) ® O /p™  (3.101)

The above Jordan-Holder filtration induces a Jordan-Holder filtration on the
cohomology mod p¢»% (™) we have

{0} ¢ THWHL, (D\H, Mo,) ® Op /p ™) — gHE . (3.102)

where again the subquotients are free Op /p°»% (™) modules of rank 2. A simple
argument shows

Theorem 3.3.2. We can find m¢1,7¢2...,7f, in the above decomposition and
numbers f1 > 0, fa > 0,..., fr > 0 such that > f; = e,d,(n) and we have the
congruence

m5i(T)) =M +1 mod p’t (3.103)
for all primes £.

In the following section we look at this theorem from a slightly different
point of view.
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p-adic coefficients

In the previous section we decomposed the inner cohomology into eigenspaces
under the action of the Hecke algebra. In our special situation - the underlying
group G = Glsy- this is also valid for the full cohomology. But our main object
of interest is the cohomology with integral coefficients and our example above
shows that the cohomology with integral coefficients does not split.

To investigate the structure of the cohomology groups H '(F\H,M) we
choose a prime p. This prime will be fixed throughout this section, let Z,) C Q
be the local ring at p. We are interested in the structure of the cohomology
groups H*(T\H, M ® Z(y)) as modules under the Hecke algebra. But now it is
convenient to go still one step further, we tensorize our coefficient systems by
Z,, the ring of p-adic integers. We want to simplify the notation: In this section
we denote by M,, the Z,-module M ®Z, where A = ny+d det where the value
of d is irrelevant it just has to have the right parity. (Comment? Z,) — Z,, is
flat hence it does preserve Ext! groups. )

Let M be any finitely generated Z,-module, let T}, : M — M be an endo-
morphism. Of course X is a topological module, the open neighborhoods of 0
are the modules p” M. Following Hida we define two submodules

Mog = () ToM; Mynpe = {z € M|T}z — 0} (3.104)
r—00

A simple compactness argument shows that
M =M gq @ Mnilpt (3105)

and it is also clear that M — M ,.q is an exact functor.
We apply this to our cohomology groups, and we assume that I' = Sly(Z).
We start from the exact sequence of I' modules

0— M, =B M, - M, oF, = 0. (3.106)

Here we want to assume that p > 3 then we get the resulting exact sequence of
sheaves and hence a long exact sequence of cohomology groups

0= (M) ora =5 (ML) qra = (M @F,) ora —

(T\H, M,,) =% H _(D\H, M,) — H. (T'\H, M, ® F,) = 0

- Hl ord
(3.107)

ord

and we can break this sequence into pieces

0= (MD) ord — 2 (MB) ord = (My @ Fp) g — Hsg (D\H, M) [p] — 0
(3.108)

and

0— H 4 (D\H, M,)[p] = H.,4(T\H, M,,) =% H' (P\H, M,,) — H' ,(T\H, M,, @ F,) = 0

ord

(3.109)

where of course ... [p] means kernel of the multiplication by p and the far most
0 on the right is the vanishing of H?2.
We analyze these two sequences and get
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Theorem 3.3.3. The cohomology H', ,(I\H, M,,) is torsion free unless we
have n >0 and n =0 mod p(p—1). The cohomology groups H! , ,(T\H, M)

are always torsion free and Hf’ org(T\H, M,,) =0

Proof. We consider the polynomial ring in two variables F,,[X,Y]. On this ring
we have the action of Sl(Z). It is an old theorem of L.E. Dickson that the ring
of invariants is generated by the two polynomials

Xp271 _ Yp271

S 2 xl-p (p—1)(p—1)yp-1
X1y =X + X Y +...

(3.110)

fi=XPY — XYP and fo =

r

. . a £b
orq 18 @ sum of monomials f{ f; where a(p +

Now every element in (M,, @ F))
1) + bp(p — 1) = n. We see that

Ui 0 = g : M - M,
6

multiplies f; with a multiple of p and hence we see that all the monomials with
a > 0 are multiplied by a multiple of p. This means that (M, ® ]Fp)F #0if

ord
and only if n = bp(p — 1). If n = 0 we the map ML = Z, - (M, @ F,)I is
surjective if n > 0 we have MY = 0 and hence the theorem.

For the assertions concerning the compactly supported cohomology we have
to recall that H2(I'\H, M,,) = (M,,)r = M,,/Ir M, [book vol I, section 2 and
4.8.5 ). We check easily that X", Y™ € It M,, and the assertion is clear. O

We write n = ng + (p — 1)a where we assume 0 < ng < p — 1, we know that

H J(O\H,M,)@Z/p"7 = H. ((T\H,M,, @ Z/p") (3.111)

ord ord

we have a second theorem
interpol

Theorem 3.3.4. If n = ng+ (p — Da,n’ = ng+ (p — 1)a’ and a =
mod p"~1, (i.e. n =n' mod (p— 1)p"~!) then we have a canonical Hecke in-
variant isomorphism

d(n,n'), : HY ,(T\H,M, @ Z/p") = H' (T\H,M,, @ Z/p"). (3.112)
This system of isomorphisms is consistent with change of the parameter o, o' and r.
Proof. See paper on interpolation. O

We find a finite extension F/Q, such that we have a decomposition into
eigenspaces

H',y(D\H, M, ® F) = ) H',,4(T\H, M,, ® F)[rs] ® Fe, (3.113)
s

where the first summation goes over those 7; € Coh!™ for which 74(T}) is a
unit in Oy, the ring of integers in F. Let us denote this set by Coh!(gd. Then

the full summation goes over the set Cohgg = COhl(z)rd U {w?is}. Intersecting
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this decomposition with H*  (I\H, M,, ® O,) gives us a submodule of finite
index

H'o o (D\H, My, ® Op) D @D H g (T\H, My, @ Op)[ms] © Open, (3.114)

Tf

and this also gives us a Jordan-Hoélder filtration as in (3.100).
We consider the reduction maps

H!l, ord(F\H7 MTL ® OF’) - H'l, ord(F\Hv Mn ® ]F(p))
! ! (3.115)
Hlord(F\H’ Mn ® OP) - H ord(F\Ha Mn ® F(p))

the right hand sides do not depend on . Any 75 € Coh™ rd we get a non zero
homomorphism 7y = m¢ xF(p) : H — F(p). The map 7y — 7¢ is not necessarily
injective: we say that 7 5 and 7o ¢ are congruent mod p if w1 ¢(Ty) = mo ¢ (T0)
mod p for all primes ¢, or in other words 71y = 72 ;. For a given ny let {7/}
be the set of all m; ; which are congruent to the given 7.

H oy (T\HL My @ F(p)){7s} = {2 € H oq(T\H, My, @ F(p))|(T; — ﬁf(Te()3)J\if6)= 0}

provided N >> 0. Then it is easy to see that (See for instance [book,II], 7.2 )
that

ord (F\H M ® F @ H ord F\H? Mn ® F(p)){ﬁf} (3117)

The kernel mz, of 7y is a maximal ideal, let Hmﬁf be the local ring at mz .
Then the above decomposition can be written as

H,\(T\H, M,, @ F(p EDH ord (D\HL My, @ F(p)) @ Hn,, /Y, (3.118)

Now we recall that we still have the action of complex conjugation (See
sect.2.1.6) on the cohomology and it is clear (SEE(??)) that it commutes with
the action of the Hecke algebra. Hence we see that the summands in the above
decompose into a + and a - summand, i.e.

ord(F\H M ® F( )) ® Hm‘?rf /mﬁf @ H ord F\]HL Mn ® F(p)) ® Hmﬁf /mf?vf [:l:]
(3.119)

Now we encounter some difficult questions. The first one asks whether we
have some kind of multiplicity one theorem mod p. This question can be for-
mulated as follows:

1
Are the summands H",,

(T\H, M,,  F(p)) ® Hn, /m%; [£] cyclic, i.e. are
they - as Hm;{f /mﬁf modules - generated by one element ?
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To formulate the second question we regroup the decomposition (3.113)

Hy(M\H M, ® F) = @ H\Wu\H,M, @ F)[rs])  (3.120)

my mpe{ms}
and define

Hlord(F\Hv Mn ® OP){ﬁf} =

(3.121)
(@’ﬂ'fG{ﬂ‘f} Hord(P\H M ® F)[’]rf]) N Hord(F\H7Mn ® OP)
and then we get a second variant of (3.119)
@ Hord F\H M ® Op){ﬂf} Hord(F\IHL Mn ® Op) (3122)

Now we are interested in the structure of the direct summands H* ,(I'\H, M,,®
Op){7¢}. It is clear that this is a free O, module of rank

(7)) = {2#{@} if {77} # {7[F*} (3.123)

28 {7} -+ 1 if {7} = {7F"}

Again we get a submodule

@ Hord F\]HL Mn oY OP)[Wf] - Hlord(F\H’ M’ﬂ Y OP){ﬁ-f} (3124)

mpe{ms}

Our second question is

What can we say about the structure of the quotient
ord(F\H M ® OP){ﬂ-f}/ @ H ord F\]HL MTL ® OP)[Wf] ?
mre{7s}

For instance we may ask: Is this quotient non trivial if the cardinality of {7y}
is greater than 1 ?

For a subset ¥ C {7} we define in analogy with (3.121)

ord(r\]HI M”L & OP){E} -
(3.125)
(D ex Hora(\H, My @ F)[ms]) 0VH G (D\HL My, @ Op) {7y}

and we call ¥ a block if

H g (D\HL My, @ Op){7is} = (3.126)
H g (D\H, M, @ Op){Z} & H q(T\H, My, ® Op){{7f} \ B} (3.127)

Then a slightly stronger version of our question above asks

Can {7} contain non trivial blocks?



3.3. HECKE OPERATORS FOR GLj: 135

These two questions are closely related. We will come back later to these
issues in this book. In the following we outline the general philosophy:

The structure of the cohomology as module under the Hecke-algebra is influ-
enced by divisibility of special values of certain L functions which are attached
to the my.

We have some partial results. ( For this see Herbrand -Ribet , Hida.. ).
If we consider the special case of {ﬁ?is}. Our theorem 3.3.2 implies

plC(=1-n) = {77"} > 1,

this has been proved by Ribet in [77], he also proves the converse using a theorem
of Herbrand [ ]. Our theorem 3.3.2 is stronger, because it implies higher con-
gruences if ((—1—n) is divisible by a higher power of p. Moreover the existence
of congruences do not imply anything about the denominator.

Of course the next question is: If we have p | ((—1 — n), what is the size of
{ﬁ?is} can it be > 27 Let us pick a 7y € {ﬁ?is} which is not W?is. To this 7y we
attach the so called symmetric square L-function L(ms, Sym?, s). (See ...). This
L function evaluated at a suitable ”critical” point and divided by a carefully
chosen period gives us a number

L(rs, Sym?) € Op,

here Fy is a global field whose completion at p is our F' above. Now a theorem
Hida says (cum grano salis)

#mFS > 2 > p| L(rg, Sym?) (3.128)

(See later) If we accept these two results then we get

Theorem 3.3.5. If p’»(") | ((—1—n) and if L(7}, Sym?) & p, then the number
r in theorem 3.53.2 is equal to one, i.e. {ﬁ?is} = {Wf,ﬂjl?is) and we have the

congruence
m1(Ty) =" +1 mod p® ™ Y primes ¢

Finally we get w¢(Ty) € Zy for all primes ¢ and hence we may take Op = Z,,.
We can find a basis fo, f1, f3 of H,, ,(T\H, M) where
a) f1, f2 form a basis of Hﬂ} ora(T\H, M)
b)The complex conjugation c acts by c(f;) = (—1)"F1f;
and
c) the matriz T,°" with respect to this basis satisfies

| 0 1
T, = 0 S, | 0 mod p°# (™)
0 0 |

Proof. Clear O
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If we drop the assumption L(rs, Sym?) & p then the situation becomes defi-
nitely more complicated. In this case we we have {7"%} = {77, w1 f,..., 7 1}
where now r > 1. We apply theorem 3.3.2 to this situation where we replace the
subscript 1in, by ora- We have the filtration which is analogous to (3.100) but
now the last quotient is of rank one and isomorphic to the cohomology of the

boundary. We find a basis fy, f1,e1, f2,€2,..., fr, e, adapted to this filtration

and where ¢(f;) = —fi,c(e;) = e1 Then we get a matrix (we consider the case
r=2)
AR 0 1 0 1
0 Tf1 (Tg) 0 u 0
T,° = 0 0 m1(Ty) 0 v (3.129)
0 0 0 7Tf,2(Tg) 0
0 0 0 0 7Tf72(Tg)

where u, v are units in Z, and where the diagonal entries satisfy some congru-
ences 7, 1(T;) = ("1 +1 mod p™ where ny +ng = epdp(n). We come back to
this later.

3.3.9 The p-adic (-function

We return to section 3.3.7. We are interested in the case that p is an irregular
prime, i.e. p | ((—1 — ng). We also assume that also L(ms, Sym?) & p. We
consider ((—1 —n) = {(—1 —ng — a(p — 1)) as function in the variable & € N
and we want to find values n = —1—ng—a(p—1) such that {(—1—n) is divisible
by higher powers of p. We know that that there exist a p-adic (— function and
tells us - provided ng > 0— that

C(=1—=n)=C((~=1—ng—a(p—1)) = {(~1—ng) + a(ng, ap + a(ng, 2)ap? . ..
(3.130)

where the coefficients a(ng,v) € Z,. Now several things can happen.

A) Our prime p does not divide the second coefficient a(ng,2). Then we can
apply Newton‘s method and we find a converging sequence ay, as, ... such that

a, =,y modp” and ((—1—ng —a,(p—1)) =0 mod p*™  (3.131)

If now n, = ng + a,(p — 1) then we can form the system of Hecke-modules
(A Hida family) H', ,(T\H, M, )({7}*}) and theorem 3.3.4 gives us Hecke-
module morphisms

H J(D\H, M, 1 ®Z/p""'Z) 25 H' (T\H,M,, @ Z/p’Z)  (3.132)

ord

The sequence n, converges to an p-adic integer n,, we can form the projective
limit and define

H. J(T\H, M, )= lim 1 (T\H, M,,, ® Z/p"Z) (3.133)

ord ord



3.3. HECKE OPERATORS FOR GLj: 137

Under our assumptions this is a free Z,-module of rank 3. The Hecke operators
T, acts on HL  (T'\H, M,,, ®Z/p"Z) by a matrix of the shape as in theorem
3.3.5, and the eigenvalues on the diagonal are

gl 4 = grot(e=Dev 4 1 g p”

For ¢ # p we write £P~1 = 1+ 6({)p,5(¢) € N and then ¢mot(P—Dav — gro(q 4
§(€)p)* and hence it follows that lim, . £ = ("> exists. Hence we see that
T,°"4 acts on HY  (T'\H, M,,__) by the matrix

(et 0 1
T,° = 0 | 0
0 0 gretl 41

B) We have p | ((—=1 —no);p? f¢(—=1—ng) and p | a(ng, 1). In this case we
can not increase the p power dividing {(—1 — n).

C) We have p | (=1 —no); p|a(no,1) and p }a(no,2)
We rewrite (3.130)

((=1=n) _ ((=1=no) , alno, 1)

o o ) o+ a(ng,2)a® mod p (3.134)

Now we get two numbers a, B such that

C(—1—np—ax(p—1)=0;¢(-1—-ng— Po(p—1)) =0

but these numbers are not necessarily in Z,, they lie in a quadratic extension
O, of Z, hence they are not necessarily approximable by (positive ) integers.
If we want to interpret these zeros in terms of cohomology modules with an
action of the Hecke algebra we have to extend the range of coefficient systems.
In [Ha-Int] we define ”coeflicient systems” MILO_Q where now is any element in
Oc, - (These coefficient systems are denoted Py in [Ha-Int]).

These coefficient systems are infinite dimensional Oc,— modules, we can
define the ordinary cohomology H%  (I\H, M}, ). On these (ordinary) coho-
mology modules we have an action of the Hecke algebra and they satisfy the
same interpolation properties as the previous ones, especially we have an exten-
sion of theorem 3.3.4 for these cohomology modules.

If @ = a is a positive integer then we have a natural homomorphism

v, : MnOJra(p,l) — MT

no,x
and this map induces an isomorphism on the ordinary part of the cohomology

\Il(l) : Hlord (F\H’ Mnnga(pfl)) ;> Hlord (F\H’ Mlg,a) (3135>
We now allow any a € O, our coefficient system will then be a system of O,
modules and the cohomology modules will be O, modules. Of course we still
have our fundamental exact sequence (3.95) of O, modules.
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— HY 4 (O\H, M, ) — H. JO\H,M! )" H J(O(T\H), M! )= 0Openy.a =0

ord,c no,o ord no,o no,o
(3.136)
This is an exact sequence of Hecke-modules and we still have
T,°"(en) = (L™ (P71 4 1)eng a (3.137)

Let p = (wp), we define 6,(a) by

@y @N¢(=1 —ng —a(p - 1)).

In a forthcoming paper with Mahnkopf we will (hopefully) show that we can
construct a section

Eisq : Og,enga ® Qp = HY g (T\H, M/, ) ®Q, (3.138)

(@) is the exact denomi-

which is defined by analytic continuation and that wi”
nator of Kis,.

If this turns out to be true then we can extend the results for ordinary coho-
mology modules H*  (T'\H, Mo 4+(p—1)a)) to the extended class of cohomology
modules H! ,(I'\H, MILO,Q). Especially if we look at our roots a, S and as-
sume that they are different then we get a theorem analogous to the theorem
3.3.5 for both of them. If these two roots are the same the situation is not clear

to me.

3.3.10 The Wieferich dilemma

We are still assuming that our group I' = Slo(Z). We get a clean statement if
we are in case A), i.e.

p ‘ C(_l - nO) D /Ya(noa 1) vp /i/ﬁ(ﬂf,sme)

At the present moment we do not know of any prime p| {(—1 — ng) which does
not satisfy A). This is is not surprising: The primes p | {(—1 — ng) are called
the irregular primes and they start with

37 ¢(=1—130),59 | ((—1—42)...

It is believable that for a prime p | ((—1—ng) the numbers a(ng, 1) and L(r¢, Sym?)
are "unrelated” and or in other words the residue classes a(ng, 1) mod p and L(m¢, Sym?)
mod p are randomly distributed. Hence we expect that the primes p | {(—1—nyg)
which do not satisfy A) is a ”sparsely distributed” see [13].

But this does not say that this never happens, actually depending on the
probabilistic argument you prefer, it should happen eventually. But perhaps we
will never find such a prime.

On the other hand

The Wieferich dilemma: We do not know whether the set of primes which
satisfy A) is infinite.



3.3. HECKE OPERATORS FOR GLj: 139

We drop our assumption that I' = Sl3(Z) and replace it by a normal con-
gruence subgroup of finite index. We choose a free Z— module of finite rank V
with an action of I'y /T, i.e. we have a representation

py : To/T — GI(V)

we assume that the matrix —Id acts by a scalar wy,(—Id) = £1. We look at the
I-modules M,,®V, we assume that V(—Id) =n mod 2, These modules provide

sheaves M,, ® V and we can study the cohomology groups and especially we can
study the fundamental exact sequence

— HY g J(D\HL M, ® V) — HY ((D\H, M,, @ V) > H.,(9(T\H), M,, ® V)
(3.139)

We have to compute H!  (9(I'\H), M,, ® V) as a module under the Hecke al-
gebra and we can ask the denominator question again, provided this boundary
cohomology is not trivial.

We may for instance choose a positive integer N and we consider the congru-

ence subgroup T'o(N) = {(i Z) € Sly(Z)|c =0 mod N}. Let I'y (N) C T'p(V)

be the subgroup where a = d =1 mod N then I'o(N)/T'1(N) = (Z/NZ)* We
choose a character x : I'o(N)/T'1(N) — C* and consider the representation
V= Indll:0 (v)X- In this case the denominator is essentially given by L values
L(x,—1 —n) and these values will be divisible by smaller primes (compared to
37) and our chances to encounter cases of B) and or C) are much better.
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Chapter 4

Representation Theory,
Eichler-Shimura
Isomorphism

4.1 Harish-Chandra modules with cohomology

In Chapter 8 we will give a general discussion of the tools from representation
theory and analysis which help us to understand the cohomology of arithmetic
groups. Especially in Chapter 8 section 9.5 we will recall the results of Vogan-
Zuckerman on the cohomology of Harish-Chandra modules.

Here we specialize these results to the specific cases G = Glz(R) (case A))
and G = Gly(C) (case B)). For the general definition of Harish-Chandra modules
and for the definition of (g, K ) cohomology we refer to (8.1.2)

4.1.1 The finite rank highest weight modules

We consider the case A), in this case our group G/R is the base extension of the
the reductive group scheme G = Gly/ Spec(Z). In principle this a pretentious
language. At this point it simply means that we can speak of G(R) for any
commutative ring R with identity and that G(R) depends functorially on R.

141
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( Sometimes in the following we will replace Spec(Z) by Z.) Then GV /7Z is
the kernel of the determinant map det : G/Z — Gy, /Z. We have the standard
maximal torus 7 /Z and choose the Borel subgroup B/Z O T /Z to be the group
of upper triangular matrices. Let X*(7) = X*(T x C) be the the character
module This character module is Ze; @ Zes where

€ : (0 t2) =t (4.1)

Any character can be written as A = ny+ddet where y = 2522 (¢ X*(T) !),det =
e1+eo and where n € Z,d € %Z and n = 2d mod 2. We assume that \ is dom-
inant, i.e. n > 0.

To any such character A = ny + ddet we want to attach a highest weight
module M. We consider the Z— module of polynomials

n
M, ={P(X,Y)| P(X,Y) = ZavX"Y"*V,aV €7}
v=0

To a polynomial P € M,, we attach the regular function (see 1.1.1)

ol V) = Playen( (V) “2)

u v
then

t1 w x Y\\ _ .n _nig T Y\, L —,[(t1 w Ty

(0 (0 =amee e =y (S Y)

(4.3)

where A~ = —n-y+ddet. On this module of regular functions the group scheme

G/Z acts by right translations:

(& o (s U= (5 ) (5 )

This is now the highest weight module M, for the group scheme G/Z. The
highest weight vector is fxn, clearly we have

(s oD =a(G e

In the following we change the notation, instead of fp we will simply write P.

Comment: When we say that M is a module for the group scheme G/Z we
mean nothing more than that for any commutative ring R with identity we have
an action of G(R) on M, ® R, which is given by (4.2 ) and depends functorially
on R. We can 7evaluate” at R = Z and get the I' = Gl3(Z) module M z.
(Actually we should not so much distinguish between the Gla(Z) module M 7
and M) Of course we have have seen these Gly(Z) modules before, they are of
course equal to the modules M,,[d — %] in section 1.2.2.

Remark: There is a slightly more sophisticated interpretation of this module.
We can form the flag manifold B\G = P!/Z and the character \ yields a line
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bundle £,-. The group scheme G is acting on the pair (B\G, L,-) and hence
on H°(B\G, L) which is tautologically equal to M, (Borel-Weil theorem).

We can do essentially the same in the case B). In this case we start from an
imaginary quadratic extension F//Q and let O = Op C F its ring of integers. We
form the group scheme G/Z = Ro,7(Gly/O). Again GV /Z will be the kernel of
det : G/Z — Z/Z = Rp7(Gm). Then G(O) = Glo(O ® O) C Gl2(0) x Glz(O).
The base change of the maximal torus T/Q C G xz Q is the product T} x To/F
where the two factors are the standard maximal tori in the two factors Gly/F.

We get for the character module | CHMsplit

where we have to observe the parity conditions n; = 2d; mod 2,n, = 2ds
mod 2.

Then the same procedure as in case A) provides a free O- module M with
an action of G(Z) on it. To get this module and to see this action we embed
the group G(Z) = Gla(0O) into Gla(O) x Gla(O) by the map g — (g,g) where
g is of course the conjugate. If now our A = nyvy; + di det; +novys + dodety =
A1+ A2 then we have our two Gla(OQ) modules My, 0, M2, 0 and this provides
the Gl2(O) x Gl2(O)- module My, 0 ® My, 0, our My o is is now simply
the restriction of this tensor product module to G(Z). Sometimes we will also
write our character as the sum of the semi simple component and the central
component, i.e.

A= XY 465 = (niy1 + noye) + (dy det +dadet) (4.5)

The relevant term is the semi simple component, the central component is not
important at all, it only serves to fulfill the parity condition. If we restrict the
representation M to g<1>/ Z then the dependence on d disappears. In other
words representations with the same semi simple highest weight component only
differ by a twist, the role played by ¢ is marginal.

At this point we notice that the module M ¢ is only a module over O. We
may also say that My o ® F' is an absolutely irreducible highest weight module
for the group G ®p F = Gly x Gly/F, this representation ”is defined ” over F.
But in the special case that \; = Ay we have an action of the Galois group

Gal(F/Q) : If ¢ is the non trivial element in this Galois group then

(3 X Y )@ (3B, XHT ) = (3 elb,) XPY ) (3 efa,) XY™ )

m

and for g € G(O), m € My we have
c(g)e(m) = c(gm)
and therefore it is clear that the Z module (My)(®) is a module for G/Z.

We return to Gly/Z. Given A\ = A 4§ we define the dual character as
AY = A1) — §. For our finite dimensional modules we have

MY ®@Q " My @Q (4.6)
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If we consider the modules over the integers the above relation is not true.

We define the submodule | duallambda

M, ={P(X,Y)|P(X,Y)=> (") a, X'Y"" a, € Z}. (4.7)

v
v=0

This is a submodule of M,, and the quotient M,, /M’ is finite. It is also

clear that this submodule is invariant under Sly/Z. We introduce some notation

e, = X"Y"" and ¢’ := <”> Xy, (4.8)
14

then the e, (resp. €’) for a basis of M, (resp. M®).
An easy calculation shows that the pairing

<, >um: (ey,ei) = 0y (4.9)

is non degenerate over Z and invariant under Sly/Z. We can also define the the
twisted actions of G/Z Of course we can define the twisted modules MY and
then we get a G/Z invariant non degenerate pairing over Z :

<, >M:Mf\v X My —>7Z
In other words
(My)Y = My
We always consider ./\/lg\ as the above submodule of M.

prinseries

4.1.2 The principal series representations

We consider the two real algebraic groups G = Gly/R( case A) ) and G =
Rc/r(Gl2/C) ( case B). Let T'/R, ( resp. B/R) be the standard diagonal torus
(resp. Borel subgroup of upper triangular matrices). Let us put Z/R = Gy,
(resp. Rc/rG,n). We have the determinant det : G/R — Z/R and moreover
Z/R = center(G/R). If we restrict the determinant to the center then this be-
comes the map z — 22. The kernel of the determinant is denoted by GV /R, of
course GV = Sly, resp. Rc/r(Sl2/C). Let us denote by g,0W ¢, b, 3 the corre-
sponding Lie-algebras.

The Cartan decompositions

In both cases we fix a maximal compact compact subgroup K., C G(l)(R) :

_ _ cos(¢)  sin(¢) _ a B . 3 _
Ko =e(0) = (00 O 0 € Ry and £ = (Y ) laa+ 55 - 1)
(4.10)

We define extensions Ko = Z(R)(© K., where of course Z(R)® is the con-
nected component of the identity. In both cases the group K, is the group of
fixed points under the Cartan involution ©( which is given by

Op:g—tgtresp. gt g e @0((a Z)) = (_dl_) E) . (4.11)

c a
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This involution induces an involution on g we can extend it to an involu-
tion acting on g =3 @ g, we let it act trivially on 3. Then the fixed point Lie
algebra £ = 3@ € C 3 ® gV is the Lie-algebra of K.

Here are some arithmetic considerations, they may not be so relevant, but
further down we make some choices of a basis in some of these algebras, and
these choices can be justified by these considerations.

We can write our group scheme G/R as a base extension of a group scheme
G/Z, ie. G/R =G xz R. For this we simply take G/Z = Glz/Z in case A). In
case B) we take G/Z = Ryj;)/z(Gla/Z[i]). In the case A) this gives a reductive
group scheme over Z, in case B) it is only a flat group scheme, but the base
extension G xzZ[1/2] is reductive. ( This group scheme over Z is not semi-simple
since Z[i] is ramified at the prime 2.)

Now it is clear that ©¢ is actually an automorphism of G/Z and then it
follows that the scheme of fixed points is again a group scheme K/Z. If we
define R = Z[1/2] then K xz R is actually eductive. (If we replace Z[i] by the
ring of integers of another imaginary quadratic extension, we have to modify R
accordingly.)

Consequently we see that the all the above Lie-algebras are defined over R,
hence they actually are free R modules, we denote them by gr and so on.

The Cartan © involution induces an involution on the Lie algebras gg, gg),

the module decomposes into a + and a — eigenspace

gR:ER@pR and gg):ER@pR, (4.12)

The + eigenspaces %ﬁ,ER are the Lie-algebras of K, K, both summands in the
decompositions are K-modules.
The Lie-algebra by is not stable under O, it is clear that the intersection

br N O (br) = tr,
where tg is the Lie-algebra of the standard maximal torus 7 /R C G/R. This
torus is a product (up to isogeny) 7/R = Z - TW/R.
In case A) the torus 7 /R =5 G,,/R and the Cartan involution O, acts

by t ~ t~1. Therefore it acts by —1 on tg). We write

D =R ((1) _01) = RH (4.13)

the generator H is unique up to an element in R*, i.e. up to a sign and a power
of 2.

In case B) the torus 7 /R is (up to isogeny) a product T Tc(l)/R the
Cartan involution ©q acts by ¢ — ¢! on the split component 7'5(1) and by the
identity on Tc(l). The Lie-algebra decomposes accordingly into two summands

of rank one:
) _ 1 0 t 0\ ‘
th —R(O 1) EBR(O z) = RH & RH,;.

In both cases the group scheme K acts on pr by the adjoint action, we can
describe this action explicitly.
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In case A) the group scheme K is the following group of matrices

(@ b\ 2 2
K-{a-(_b a>|a +0v* =1}
this is a torus over R which splits over R[i]. We have

0 1

pR—RH®R(1 0

>—RH€BRV

and Ad(a)(H) = (a® — b*)H — 2abV, Ad(a)(V) = 2abH + (a® — b?)V. Since the
torus splits over Z[i] we can decompose p ® R][i] into weight spaces, we introduce
the basis elements

P, =H-V®i, P..=H+V®icp RJi

then
Ad(a)Py = (a+ bi)?Py, Ad(a)P_ = (a — bi)*P_ (4.14)

Hence we get - in case A) -the decomposition

gg):ER@pRzRGl é)@RP+eBRP_:RY@RP+®RP_ (4.15)

where the generators are unique up to an element in R[i]*.

In case B) the group scheme /R is semi simple, it contains 70 /R as maxi-
mal torus. The two /R modules £r and pg are highest weight modules of rank
3, since 2 is invertible in R they are even isomorphic. Again we can decompose
them into rank one weight spaces and give almost canonical generators for these

weight spaces. | basisfkfp | The Lie algebra

ER_RHiGaR(_Ol é)@R(? é) — RH; ® RY & F,.

We introduce the elements P, =Y — F; ®4i, P._ =Y + F; ® ¢ and then
tr @ R[i] = R[i|H; ® R[i]P.4+ & R[i|P.—. (4.16)
This is the decomposition into weight spaces under the action of 72(1)/ R, the

element o = (I

0 2) acts via the adjoint action

Ad(a)P.y = 2*P.; , Ad(a)H; = H; , Ad(a)P._ =z %P._.

Essentially the same can be done for pr ® RJi]. We define

0 1 . 0 1 .
Pp7+—V—(_i 0>®Z,P,_—V+(_i O>®z

then we get the weight decomposition

pr @ R[i] = R[i|P, 1 & R[i{)H & R[i]P,._ (4.17)
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Rational characters vs continuous characters

Our aim is to to construct certain irreducible (differentiable) representations of
G(R) together with their ”algebraic skeleton” the associated Harish-Chandra
modules.

For any torus T'/R we consider the group of (continuous) characters Hom(7T'(R),C*),
we write this group multiplicatively, i.e. x1 - x2(x) = x1(2)x2(x). We also have
defined the group of (rational) characters X*(T xg C,G,,) (See Chap. 1, 1.5),
and we have the evaluation map

X*(T xg C,G,,) =% Hom(T(R),C*); ev:vy =g ={zy(x)} (4.18)
Since we wrote the group of (rational ) characters additively we have

(71 + 72)r = V1R - V2R

We also introduce the character |y| := {z — |yr(z)|c} where of course
lalc = aa.

4.1.3 The induced representations

We start from a continuous homomorphism (a character) x : T(R) — C*, of
course this can also be seen as a character x : B(R) — C*. This allows us to
define the induced module

Ifx = {f : GR) = C| f € C(G(R)), f(bg) = x(b)f(9), ¥ b € B(R), g E(G(R;)}
4.19

where we require that f should be C,. Then this space of functions is a G(R) -
module, the group G(R) acts by right translations: For f € I§y,g € G(R) we
put

Ry(f)(x) = f(zg)
If modify our character x by a character 6 o det where 6 : Z(R) — C* then the
central character gets multiplied by 2.

We know that G(R) = B(R) - K. This implies that a function f € IS is
determined by its restriction to K.,. In other words we have an identification

of vector spaces
IgX = {f : Koo —-C | f(tck) = X(tc)f(k)7tc € Koo N B(R)ak € Koo} (420)

The center acts by the central character w,, the restriction of x to Z(R).

We put T. = B(R) N K and define x. to be the restriction of x to T..
Then the module on the right in the above equation can be written as I:,I:i"o Xe-
By its very definition Ifc“’ Xc is only a K, module. Inside I;:i‘” X we have the
submodule of vectors of finite type

OI:,I:(CC’C xe:={f¢€ I:,I:i"o Xc | the translates Ry (f) lie in a finite dimensional subspace}
(4.21)
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Here it suffices to consider only the translates Ry (f) for k € K, because
Z(R)(© acts by the character wy . The famous Peter-Weyl theorem tells us that
all irreducible representations (satisfying some continuity condition) are finite

dimensional and occur with finite multiplicity in Ii{i >~ Y. and therefore we get

exe= P V" = @ CIr=xel) (4.22)

V€K oo VEK oo

where K is the set of isomorphism classes of irreducible representations of K,
where Vy is an irreducible module of type 9 and where m(¥) is the multiplicity

of ¥ in OI:,{( Xe- Of course °IT * Y. is a submodule I§x, but this submodule is
not invariant invariant under the operation of G(R), in other words if 0 £ f €

OIJI:?’" Xc and g € G(R) a sufficiently general element then R,(f) ¢ °IK°°

We can differentiate the action of G(R) on I§x. We have the well known
exponential map exp : g = Lie(G/R) — G(R) and for f € I§, X € g we define

and it is well known and also easy to see, that this gives an action of the Lie-
algebra on I§, we have X;(Xaof) — Xa(X1f) = [X1, Xa]f. The Lie-algebra is

a K module under the adjoint action and is obvious that for f € OIﬁ‘x’ Xe[Y]

the element X f lies in @y OITI:?” Xc[?¥'] where ¥ runs over the finitely many
isomorphism types occurring in Vy ® g. Hence

Proposition 4.1.1. The submodule OIQI?C‘”XC C ng is invariant under the
action of g.

The submodule OIII:(C‘” X together with this action of g will now be denoted
by J%x. We should think of this module as the algebraic skeleton of I§ .

Such a module will be called a (g, K ) - module or a Harish-Chandra module
this means that we have an action of the Lie-algebra g, an action of K, and
these two actions satisfy some obvious compatibility conditions.

We also observe that °Iﬁ <X is also invariant under right translation R,
for z € Z(R). Hence we can extend the action of K., to the larger group

Koo = Koo - Z(R). Then 3% x becomes a (g, f(oc) module. Finally observe that
in the case A) the element

c= (01 (1)) ¢ Koo, (4.24)

clearly R induces an involution on J%. We could also say that we can en-
large Ko ( resp. Ko ) to subgroups K7, (resp.K * ) which contain ¢ and contain
Ko resp. Ko as subgroups of index two. Then J§x also becomes a (g, K*.)
module.

These (g, K 00 ) modules ’Jg x are called the principal series modules. We have
the following important
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Theorem 4.1.1. For any irreducible Harish-Chandra module(g, Ko) we can
find a x such that we have an embedding of (g, Koo )-modules

iV 3%y

This is actually a much more general theorem and applies mutatis mutandis
to all reductive groups over R. In the following we will see, that in our situation
we only have a very short list of submodules of the ﬁgx and we get a complete
list of irreducible Harish-Chandra modules.

We denote the restriction of x to the central torus Z = {(é 2)} by wy.

Then Z(R) acts on 3%y by the central character character w,y, i.e. R,(f) =
wy (%) f. Once we fix the central character, then there is no difference between
(9, Ko) and (g, Ko) modules. Hence we always assume that w,, is fixed.

The decomposition into K. -types

We look briefly at the K .-module OI:,I?C‘” Xe- In case A) the group

Ko =500 = {( B O — (o) (4.25

and T, = KL = T(R) N K, is cyclic of order two with generator e(r). Then x.
is given by an integer mod 2, i.e. x.(e(¢)) = (—=1)™. For any n = m mod 2
we define 9, € 3Gy by

Un(e(9))) = e™? (4.26)

and then

Bx= @ Cu (4.27)

k=m mod 2

In the case B) the maximal compact subgroup is

this is the group of real points of the reductive group U(2)/R. The intersection

T KT TR K= {(C ,0 )=

c— Ny — oo — 0 e?m’tpz - 6(?)}
The base change U(2) x C = Gl/C and T, x C becomes the standard maximal
compact torus. The irreducible finite dimensional U(2)-modules are labelled by
dominant highest weights A\, = ny. + ddet € X*(T, x C) (See section ( 4.1.1),
here again n > 0,n € Z,n = 2d mod 2 and ,(e(¢)) = e (?1-¢2)/2 )

We denote these modules by M _ after base change to C they become the
modules M c.
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As a subgroup of G(R) C Gly(C) x G2(C) our torus is

eQTrigol 0 672772’4,01 0 o eQTrigol 0
TC = {( 0 eQﬂ'igag X 0 e—27ritp2 } { 0 6271'1’@2 }
(4.28)

and the restriction of x to T is of the form

Xc(€(¢)) _ eia¢1+ib¢2 _ eaT_b(¢1—¢2)ea'2b(¢1+¢2). (429)

and this character is (a — b)y. + %+ det. Then we know

°I7xe = IEx = D M, (4.30)
MC:k"/C-&-“TH’ det;k=(a—b) mod 2;k>|a—b|

4.1.4 Intertwining operators

Let N(T') the normalizer of T/R, the quotient W = N(T)/T is a finite group
scheme. The in our case the group W (R) is cyclic of order 2 and generated by

(0 1
o= l-1 0
In case A) we have W(R) = W(C) in case B) we have
G XR(C = (GIQ X Glg)/(c, T X]R(C = T1 X T2 ; and W((C) = Z/2 X Z/2,

where the two factors are generated by s1 = (wp,1),s2 = (1,wp). The group
W(R) is the group of real points of the Weyl group, the group W = W(C) is
the Weyl group or the absolute Weyl group.

We introduces the special character

ple: ()
p]R~Ot2

here the absolute value |t| is the usual absolute value if we are in case A)
and |z| = 2Z for z € C, i.e if we are in case B). The group W(R) acts on
T(R) by conjugation and hence it also acts on the group Hom(7T'(R),C*) of
characters, we denote this action by x — x*. We write this group of characters
multiplicatively an we define the twisted action

1
| =12
3

to

w-x = (xlp)”lor|™!
We recall some well known facts

i) We have a non degenerate (g, K,) invariant pairing

3G x x IGx|pl2 — (Cwi given by (f1, f2) — f1(k) fa(k)dk (4.31)
Koo
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We define the dual jg’vx of a Harish-Chandra as a submodule of Hom(c(jg X, C),
it consists of those linear maps which vanish on almost all K, types. It is clear
that this is again a (g, Ko )-module. The above assertion can be reformulated

ii) We have an isomorphism of (g, K, ) modules
IGx(wy o det) Tt = TEX"0 IR (4.32)

The group T(R) = T, x (R%,)? and hence we can write any character x in

the form | char
z1—22 z1t+22

t
X(t) = xe®lr !t = 12277 ftta] 5 (4.33)

where z1,z2 € C. We put z = z1 — 22 and { = z1 + 25 The relevant variable is z.

For f € 3%y, g9 € G(R) we consider the integral
Y (1)) = [ flunug)du (4.34)
U(R)

It is well known and easy to check that these integrals converge absolutely
and locally uniformly for R(z) >> 0 and provide an intertwining operator

T0(x"™, ) : TG |plz — IGxIplRlplR™ (4.35)

oo

it is also not hard to see that they extend to meromorphic functions in the entire
C2. To see this we recall the decomposition into K, types

Gl = €D IE=xel = @ IGAC W)
V€K oo YeK o

and our intertwining operator is a direct sum of linear maps between finite
dimensional vector spaces

c(AE°, 2, 9) : IGx|pla ] — IGx|plR|plg* V]

The finite dimensional vector spaces do not depend on z and the c(Ag°|p|, V)
can be expressed in terms of values of the I'— function. Especially they are
meromorphic functions in the variable z (See sl2neu.pdf, ). For any zg € C
where we have a pole we can find an integer m > 0 such that

(2 — 20)" T2 (X", 2) : IGX™ — IGx|pl3

is a non zero intertwining operator and this is now our regularized operator
loc,re w
T8 (")

iii) The regularized values define non zero intertwining operators

T (¢, 2) < 3 = IEn" ol (436)
These operators span the one dimensional space of intertwining operators

Hom(g,Koc)(ng7 jgwo . X)
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Finally we discuss the question which of these representations are unitary.
This means that we have to find a pairing

Y38y x 3Gy = C (4.37)
which satisfies
a) it is linear in the first and conjugate linear in the second variable
b) It is positive definite, i.e. 1 (f, f) > 0Vf € IGx

c¢) It is invariant under the action of K., and Lie-algebra invariant under
the action of g, i.e. we have

For fi1, fo € jgx and X € g we have (X f1, f2) + ¥ (f1, X f2) = 0.

We are also interested in quasi-unitatry modules. This is notion is perhaps
best explained if and instead of ¢) we require

d) There exists a continuous homomorphism (a character) n : G(R) — R*
such that ¢ (gf1,9f2) = 1(9)¢(f1, f2), Vg € G(R), f1fa € IGx.

It is clear that a non zero pairing % which satisfies a) and c) is the same
thing as a non zero (g, K )-module linear map

iy 35X = (3Gx)Y (4.38)

this means that i, is a conjugate linear map from ﬁgx to (jgx)v. The map iy
and the pairing 1 are related by the formula ¥ (v1, va) = iy (v2)(v1).
Of course we know that (See (4.32))

(3Gx)Y == IGx 0 lpl2oy" (4.39)
and we find such an %, if

X = x“0lplady’ or x*°[pl§ = x*|plRox (4.40)

We write our x in the form (4.33). A necessary condition for the existence of
a hermitian form is of course that all |wy (z)| =1 for z € Z(R) and this means
that R(z; + z2) = 0, hence we write

21:04-1'7'1,2’2:—04-7;7'2 (441)

Then the two conditions in (4.40) simply say
1
(unp) : 0 = 3 or (ung) : 74 = 72 and . = x° (4.42)

In both cases we can write down a pairing which satisfies a) and ¢). We still

have to check b). In the first case, i.e. 0 = % we can take the map iy, = Id and

then we get for f1, fo € 3Gx the formula

U(f1, f2) = J1(k) fa(k)dk (4.43)

Koo
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and this is clearly positive definite. These are the representation of the unitary
principal series.

In the second case we have to use the intertwining operator in (4.36) and
write

U(f1, f2) = T (f2) (fo) (4.44)

Now it is not clear whether this pairing satisfies b). This will depend on the
parameter 0. We can twist by a character n : Z(R) — C* and achieve that
Xe = 1,71 = 79 = 0. We know that for ¢ = % the intertwining operator T.1°¢ is
regular at y and since in addition under these conditions 3%y is irreducible we
see that

T%(x) = a Id with a € RZ (4.45)

o0

Since we now are in case A) and B) at the same time we see that the two pairings
defined by the rule in case (un;) and (uns) differ by a positive real number hence
the pairing defined in (4.44) is positive definite if o = %

But now we can vary o. It is well known that jg X stays irreducible as long
as 0 < o0 < 1 (See next section) and since T.1°°(x)(f)(f) varies continuously we
see that (4.44) defines a positive definite hermitian product on 3% as long as
0 < o < 1. This is the supplementary series. What happens if we leave this
interval will be discussed in the next section.

nontriv

4.1.5 Reducibility and representations with non trivial co-
homology

As usual we denote by p € X*(T) ® Q the half sum of positive roots we have
p=(resp. p=71+72 € X*(T) @ Q) in case A) (resp. B)).

For any character A € X* (T x C) the character Ag provides a homomorphism
B(R) — T(R) and hence we get the Harish-Chandra modules 3§ \g, which
are of special interest for us because these are the only ones with non trivial
cohomology. We just mention the fact that 3% is always irreducible unless
X = Ar for some A. (See sl2neu.pdf, Condition (red)).

We return to the situation discussed in section (4.1.1), especially we rein-
troduce the field F/Q. Then we have X*(T x F) = X*(T x C) and hence
A € X*(T x F). We assume that A\ is dominant, i.e. n > 0 in case A) or
ny,n2 > 0 in case B). Now we realise our modules M) as submodules in the
algebra of regular functions on G/Z : If we look at the definition (See (4.3)) we
see immediately that My ¢ C 3%)&0 and hence we get an exact sequence of

(9, Ko) modules
0— Myc — TGN 5Dy —0 (4.46)

Hence we see that jg)\ﬁo is not irreducible. We can also look at the dual
sequence. Here we recall that we wrote A = ny + ddet. We consider the dual
sequence. Clearly MX’C = Mi_2ddet,c, if we twist the dual sequence by det??
then dual sequence becomes

0 — DY @ detd — (IGAL)Y @ deti — Myc — 0 (4.47)
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Equation (4.32) yields (JGAL°)Y @ deta’ — 3G x|p|2 and our second sequence
becomes

0 — DY @ deti — IGAz|pl2 = Mac — 0, (4.48)

we put Dyv := DY @ det3’.

Now we consider the two middle terms in the two exact sequences (4.46,4.48)
above. The equation (4.36) claims that we have two non zero regularized inter-
twining operators

Toeres () - IGAE = IEhalplh s TL0 5 Ovapl2)  IGARlplE — TGN
(4.49)

If we now look more carefully at our two regularized intertwining operators
above then a simple computation yields (see sl2neu.pdf)

Proposition 4.1.2. The kernel of T,10¢™8(\y°) is My c and this operator
induces an isomorphism

T()\R) : ’D)\ ;) D;\/ ® detid

Remember X\ is dominant.

The kernel of T 8 (\g|p|2) is DY @ detd and it induces an isomorphism
Of MA,([L

The module ng is reducible if T.1°®™8(x) not an isomorphism and this hap-
pens if an only if x = Ar or Ag°|p|2 and X dominant. (There is one exception

to the converse of the above assertion, namely in the case A) and 0 = L+ and

2
Xe° # Xe-)
Unitarity

For us it is of relevance to know whether we have a positive definite hermitian
form on the (g, K )-modules Dy. To discuss this question we treat the cases A)
and B) separately.

We look at the decomposition into K-types. (See ( 4.27)) In case A) (See (
4.27)) it is clear that M ¢ is the direct sum of the K, types Ci; with |I| < n.

Hence

Dy = ) Cyro P  Cop=D; &Df (4.50)
k<—-n—2,k=d(2) k>n+2,k=d(2)

Proposition 4.1.3. The representations ’D;,D;\r are irreducible, these are the
discrete series representations. The element ¢ interchanges D;,D;\“, hence Dy
is an irreducible (g, K*) module.

The operator T(Ag) induces a quasi-unitary structure on the (g, Ko )-module
Dy. The two sets of Koo types occurring in My ¢ and in Dy (resp.) are disjoint.

Proof. Remember that as a vector space DY ® detﬂid = DY, only the way how
K, acts is twisted by detﬁd . Then the form

hy(f1, £2) = T2 (AF") (f2) (1) (4.51)

defines a quasi invariant hermitian form. It is positive definite (for more details
see sl2neu.pdf). O
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A similar argument works in case B).We restrict the Glz(C) x Gl3(C) module
M ¢ to U(2)xU(2) then it becomes the highest weight module M), = My, .®
M, .. (See4.1.1) Under the action of U(2) C U(2) x U(2) it decomposes into

U(2) types according to the Clebsch-Gordan formula

MAC|U(2) = @ M, (4.52)

/LC:]C’YC-"-% det; k=(n1—n2) mod 2; ni+na>k>|ng—na|

Hence we get

D>\C|U(2) = @ Muu (4-53>

,uc:k'yc—&-% det; k=(n1—n2) mod 2; k>nqi+no+2

Again we have

Proposition 4.1.4. The operator T °*8(\g°) induces an isomorphism
T(AR) : Dy = DY ® det??

The (g, K ) modules are irreducible.

The operator T 1°¢*8(\F°) induces the structure of a quasi-unitary module
on Dy if and only if ny = no. This is the only case when we have a quasi-unitary
structure on Dy. The two sets of Koo types occurring in My ¢ and in Dy (resp.)
are disjoint.

The Weyl W group acts on T by conjugation, hence on X*(T x C) and we
define the twisted action by

s-A=sA+p)—p (4.54)

Given a dominant A we may consider the four characters w- A, w € W(C) =
W and the resulting induced modules ng - Ar. We observe (notation from
(4.1.1))

S1 (nyy —+ d1 det +TL2’7 —+ dgﬁ) = (7TL1 — 2)’7 + dl det +n2’_y + dgﬁ)
o o (4.55)
s2 - (n17y + di det +n9¥ + dodet) = nyy + dq det +(—ng — 2)7 + dadet)

Looking closely we see that that the K, types occurring in 3%s;-\ or 3% s5-A
are exactly those which occur in D). This has a simple explanation, we have

exiso

Proposition 4.1.5. For a dominant character \ we have isomorphisms between
the (g, Ko ) modules

Dy 5 3551 - A, Dy — 3555 - A (4.56)

The resulting isomorphism Jgsl A 3’%32)\ is of course given by T'2%(sq - \).
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Interlude: Here we see a fundamental difference between the two cases A)
and B). In the second case the infinite dimensional subquotients of the induced
representations are again induced representations. In the case A) this is not so,
the representations Di[ are not isomorphic to representations induced from the
Borel subgroup.

These representation Df are called discrete series representations and we
want to explain briefly why. Let G be the group of real points of a reductive
group over R for example our G = G(R), here we allow both cases. Let Z be
the center of G, it can be written as Zy(R) - Z. where Z. is maximal compact
and Zy = (RZ)%. Let w® : Zy — R be a character. Then we define the space

Coo(G,wr) == {f €C(GQ) | f(zg) =wO(2)f(g) ;Vz € Zy,g € G} (4.57)

and we define the subspace
Li«1w3w={fecw«1wR>|ﬂ;ﬂw?@ﬂwwww)*dg<cw} (4.58)

where of course dg is a Haar measure. As usual L?(G,wg) will be the Hilbert
space obtained by completion. This Hilbert space only depends in a very mild
way on the choice of w(® we can find a character § : G — RZ, such that

w@§|z, = 1. Then f + f6 provides an isomorphism L?(G,w®) = L2(G/Zy).

We have an action of G x G on L*(G,w®) by left and right translations.
Then Harish-Chandra has investigated the question how this ”decomposes” into
irreducible submodules. Let Gw<0> be the set of isomorphism classes of irre-
ducible unitary representations of G.

Harish-Chandra shows that there exist a positive measure p on éw(m and a
measurable family H¢ of irreducible unitary representations of G such that

(Guwr) = [ He T ulae) (4.59)

( If instead of a semi simple Lie group we take a finite group G then this is
the fundamental theorem of Frobenius that the group ring C[G] = ®pVy @ V)’
where Vjp are the irreducible representations.)

If we are in the case A), the sets consisting of just one point {’Df} have
strictly positive measure, i.e. ,u({Df}) > 0. This means that the irreducible
unitary G x G modules Df ® va occur as direct summand (i.e. discretely in
L3(G).).

Such irreducible direct summands do not exist in the case B), in this case
for any ¢ € G we have p({¢}) = 0.

End Interlude

We return to the sequences (4.46),(4.48). We claim that both sequences
do do not split as sequences of (g, Ko )-modules. Of course it follows from
the above proposition that these sequences split canonically as sequence of K,
modules. But one sees easily that complementary summand is not invariant
under the action of g. This means that the sequences provides a non trivial
classes in EXt%g’KOQ)(D)” M)
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The general principles of homological algebra teach us that we can under-
stand these extension groups in terms of relative Lie-algebra cohomology. Let
€ resp. £ be the Lie-algebras of K, resp. Ko the group K. acts on g,% via the
adjoint action (see 1.1.3)

We start from a (g, f(oo) module ng and a module M ¢. Our first goal
is to compute the cohomology H*®(g, Koo, IG X ® M, ) which is defined as the
cohomology of the complex (See 8.1.2, (8.3))

Hom g (A*(9/€),3%x ® My c). (4.60)

Here we only assume that x : T(R) — C* is any character, we will see that
there is only one x for which we have non trivial cohomology.

There is an obvious condition for the complex to be non zero. The group
Z(R) C K acts trivially on g/¢ and hence we see that the complex is trivial
unless we have

w;l = AR'Z(R)(O) (461)

we assume that this relation holds.

We will derive a formula for these cohomology modules, which is a special
case of a formula of Delorme. which will be discussed in greater generality in
Chapter 9. An element w € Homp (A"(g/¢),IEx ® M, c) attaches to any n

tuple vq, ..., v, of elements in g/E an element
w(vr,. ., v) € TFX @ Mo c (4.62)

such that w(Ad(k)vy, ..., Ad(k)v,) = kw(vy,...,vy,) for all k € Koo.
By construction

Wi, ..., vp) = Zf" ® m,, where f, € jgx,m,, € Myc
and f, is a function in C which is determined by its restriction to Koo ( and
this restriction is K, finite). We can evaluate this function at the identity
ec € G(R) and then
W(Uh v aUN)(eG) = Z fV(e) ®my € (CX ® M)\,(C

The f(oojnvariance (4.62) implies that w is determined by this evaluation at
eg- Let KL = T(R)N Ko = Z(R) - T... Then it is clear that

w* i A{vy, . opt e w(vg, . on)(e) (4.63)
is an element in

w" € Hompgr (A"(g/®),Cx @ My c) (4.64)

and we have: The map w +— w™ is an isomorphism of complexes.

Homy (A®(g/8),I5x © Mxc) = Homgr (A*(g/8),Cx® Myc)  (4.65)
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The Lie algebra g can be written as a sum of ¢ invariant submodules
g=b+t=t+u+t (4.66)

in case B) this sum is not direct, we have b NE=tNt=cand hence we get the
direct sum decomposition into KZ -invariant subspaces

g/t=t/cou (4.67)

We get an isomorphism of complexes

Homg (A*(g/8),35x ® Mac) — Hom RT (A*(t/%),Cx ® Hom(A®(u), My c))
(4.68)

the complex on the left is isomorphic to the total complex of the double complex
on the right. The next step is the computation of the cohomology of the complex
Hom(A*(u), My ¢).

Case A). We have u = QE, where F; = <8 (1)> and our module M g has

a decomposition into weight spaces

v pn=n
Mrg=Pox"v'= P Qe (4.69)
v=0 p=—n,u=n(2)

The torus T = {(é t91>} acts on e, = X" YY" by

t 0
/L\((O tl))eu =tle, (4.70)
We also have the action of the Lie algebra on M g and by definition we get

n—Hu
d(px)(Eq)ey = Eyey = T Gnt2 (4.71)

Now we can write down our complex Hom(A®(u), M, ¢) very explicitly. Let
EY € Hom(u,Q) be the element EY(E,) = 1 then the complex becomes

u=n pn=n
0+ P Q-5 P QB! e —0 (4.72)

p=—n,u=n(2) p=—n,u=n(2)

where d(e,) = “52EY ® e, 42. This gives us a decomposition of our complex
into two sub complexes

Hom(A®(u), My c) = H*(u, My q) @ AC® (4.73)
where AC*® as acyclic (it has no cohomology) and
H* (1, My g) = {0 = Qe, -5 QEY ®e_,, — 0}, (4.74)
where the differential d is zero. Hence we get

H'(u, M)\Q) = H.( Hom(A'(u), M,\’Q)) =H* (Ll7 MA,Q). (4.75)
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We notice that the torus T' acts on H®(u, M g) ( The Borel subgroup B acts
on the complex Hom(A®(u), My q) but since the Lie algebra cohomology is
the derived functor of taking invariants under U (elements annihilated by u) it
follows that this action is trivial on U). Now it is clear that (4.68) yields

H*(g, Koo, IHx ® Mic) — H*(t, K3, Cx © H* (u, M 0)) (4.76)

Hence we see that 7' acts by the character A on Q e, = H%(u, M, g¢) and
by the character A\~ —a = wo- A=A —2pon Q EY ® e_,, = H'(u, M g).
Here we see the simplest example of the famous theorem of Kostant which will
be discussed in Chap. 8 section 8.1.9

Then our cohomology groups H®(t, KL, Cx ® H®(u, My o)) are given as the
cohomology groups of the double complex with entries Hompgr (AP(t/£)Cx ®
H?(u, My q) where p = 0,1,¢ = 0,1 and where the differentials in direction ¢
are zero. We have to compute the cohomology of the complexes

0 — Homyr (A°(t/€), Cx © H(u, M, q)) — Homyr (A'(t/€), Cx ® H(u, My q)) — 0
(4.77)

In this complex we drop the subscript KL then both spaces in the complex are
one dimensional and the differential is up to a non zero factor multiplication
by dx(H) + d(w - \)(H) and hence we have zero cohomology unless we have
dx(H) + d(w - A)(H) = 0. Hence we see (observe that ¢ = l(w))

H* (4, KL, Cx @ HY (1, M 0)) # 0 = x|T(R)® = (w- N)'|IT(R).

(If x is the infinity component of a global character x on the idele class group
then we will say that X is of type w - A\ (see section 4.1.11))

We now reintroduce the subscript K~ . Since clearly K. - T(R)(®) = T(R)
we see that we have non trivial cohomology if and only if x = (w-A)g ! Putting
everything together we see

H ) (u, My g)) AN (4/8)Yif x = (w- A)g"

H'“(w)(g,Koo,ng ® M,\,Q) —
0 else

(4.78)

Now we tensorize the sequence (4.46) with the dual M,v we get an exact se-
quence of (g, K, ) modules and we look at the resulting long exact sequence in
cohomology. We know that H'(g, Koo, M) ® Myv) = 0 and then we look at the
piece

0— H1(97K00a3g>‘w0 ®M)\v) — Hl(gaKooa’D)\ ®MAV) — Hz(gvKoowA/l)\ ®M>\V) -0
(4.79)

We have seen and we know that the two extreme terms are equal to C and then
we get easily

H'(g, Koo, Dy ® Myv) =C @ C (4.80)

and vanishes in all other degrees.
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Of course we can get this last result easily if we look at the complex Hompg_ (A®*(g/t), Da®
M v) which in this situation collapses to

0 — Homg_ (A'(g//t, Dy @ Myv) =0 — .., (4.81)

in section 4.1.11 we give explicit elements wl € Hompg_ (A*(g/t), Dy @ Myv)
which form a basis for this space.

We discuss the case B). Again we want that our group G/R = R /r(Glz/C)
is a base change from a group G/Q denoted by the same letter. We need an
imaginary quadratic extension F/Q and put G/Q = Rp,q(Glz/F'). We choose a
dominant weight A\ = Aj + X2 = nyy; +d;i det; +n2vy2 +dadets and then My p =
M, F @My, r is an irreducible representation of G xg F' = Gl x Glz/F. Now
we have u ® F = FE} & FE?. Then basically the same computation yields:
The cohomology H®(u, My r) is equal the complex
H* (u, My ) = {0 = Fel) @ Felt) -4 FEY @) @it @ FERY @) @ B2V @)
L FEV @) @ B2V @e? -0}

—Nni —n2

(4.82)
where all the differentials are zero. The torus T acts by the weights
A in degree 0, s1 - A, s2- A in degree 1, wq - A in degree 2 (4.83)

and we have a decomposition into one dimensional weight spaces

H*(u,Myp)= @ H (uw,Myp)(w-))
weW (C)

We go back to (4.68) and get a homomorphism of complexes

Hom, (A*(g/t), Cx ® My c) = Hompg ,(A®(t/€), Cx ® H (u, M ¢))
(4.84)

which induces an isomorphism in cohomology so that finally

H*(g, Koo, TG ® M) = H*( Homg__ (A*(t/€),Cx @ H*(u, My ¢))
(4.85)

and combining this with the results above we get

Theorem 4.1.2. If we can find an element w € W(C) such that x~ = w - Ag
then

H.(97Koo7jgx & M/\,C) % Hl(w) (U7M/\’(C)(’w : )‘> 0 A.(t/%)v

If there is no such w then the cohomology is zero.

Proof. Our torus T(R) = ¢ X {( 0 ) ; t € RSy} = ¢ x A. Hence we see that

t
0 t!
1 0

dim+t/¢ = 1, and the element Hy = <O 1

> . Of course we must have that
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X1+ Ar|c is the trivial character. The second factor A does acts on Cy by the
character x(t) = t* and on H'™)(u, M c)(w - \) by t — t™®). Differentiating
we get for the complex

0— H' ™ (u, Myc)(w-A) = C® HY @ H™ (u, Myc)(w-\) =0  (4.86)

where the differential is multiplication by m(w) + z. Hence we see that the
cohomology is trivial unless m(w) + z = 0, but this means y~! = w - Ag. O

4.1.6 The cohomology of the modules M, ¢, D, and the
cohomology of unitary modules

Let Irr(G, K ) be the set of isomorphism classes of irreducible (g, K )-Harish-
Chandra-modules, we are a little bit pedantic, if V is such an irreducible module,
then its isomorphism class is [V]. For any dominant A we define the sets

Coh(\) = {[V] € (G, Koo) | H*(g, Koo, V® M c) # 0} (4.87)

We also define Cohg(A), this are those [V] which in addition are unitary. This
definition makes sense in greater generality (see 8.25). In our special case there
these sets are very small. Remember that we have a fixed central character w.

At first we determine the finite dimensional elements in Coh(A). Of course
M ¢ itself is a Harish-Chandra module and it follows from Wigner‘s lemma
that H*(g, Koo, Mac)) = 0 unless A =0, ie. M ¢ is one dimensional. Then
it follows from Clebsch- Gordan that

Proposition 4.1.6. In case A)

HO%(g, Koo, Mav.c @ My ) = H*(g, Koo, Mav.c ® My c) =C,
(4.88)
H (g, Koo, Mxv.c ® M) =0

In case B)

Ho(gv KooaMAV,(C ® M)\,(C) = HS(gvKOOaM)\V,C ® M)\,(C) = (Ca
(4.89)
H (g, Koo, Myv.c @ My ) = H*(g, Koo, Mav c @ My c) =0

Here we take notice of a point, which plays a role if it comes to questions
concerning orientability. In case A) we can twist the G(R) module Myv ¢ by
the sign character n : g — sgn(det(g)), it has the same central character.
Obviously the twisted module Myv ¢ ® n provides the same (g, K )-module.
But this depends on the choice of K, if we replace K, by the larger group
K, (see section 7?7 ) then the (g, KX ) modules Myv ¢ and My v ¢ ® n are not
isomorphic. If we replace in the above proposition K, by K% and M,v ¢ by
Myv c ®1n, then the cohomology vanishes in all degrees.

Small remark: In general it is sapient to work with a connected K, or Ko
and then keep track of the action of K, on H*(g, K ),V ® My c).

Again we start from a dominant character A\. Then our considerations yield
that in case A)

Coh(\) = {My¢, D}, Dy } (4.90)



162CHAPTER 4. REPRESENTATION THEORY, EICHLER-SHIMURA ISOMORPHISM

we even have D), Dy € Cohy(\Y) and M, ¢ € Cohy(\Y) if and only if AV = 0.
For some reason we call {Dy", Dy } = Coheysp(AY) and { M c} = Cohgis(AY)

in case B) we take the tensor product of the exact sequence (4.46) by Myv ¢
and we get a long exact sequence of (g, K, ) cohomology modules (we insert the
values for H®(g, Koo, My c ® Myv ¢))

0
0= C— H(g, Koo, IGAE° © Miv ) — HO(g, Koo, Dr @ Myv ¢)(= 0)
1
— 0= H'(g, Koo, IEAL° @ Myv ) — H' (g, Koo, Dy ® Myv c) —

2
0— H2(97Koong/\ﬁo & MAV,C) L) Hz(gaKoovDA ®M)\V,<C)

T3

- C—= Hg(g,Koo,jg)\ﬁo ®M)\v,(c) — 0
(4.91)

The homomorphisms r!,72 are isomorphisms and all the H', H? = C. Hence

we see that in this case

COh()\V) = {./\/l,\7(c,D,\} (4.92)
and
i (D) —
Cohp(A¥) = { IMre Dap HEATE=0 (4.93)
{D»} if ny =ng >0

4.1.7 The Eichler-Shimura Isomorphism

We want to apply these facts about representation theory to the study of co-
homology groups H*(I'\X, My c¢) where now I' is a congruence subgroup of
Gl2(Z) or Gl2(0). (Discuss also quaternionic case- perhaps)

We start again from a dominant weight A = ny + ddet € X*(T x C). For
every (g, Ko ) invariant homomorphism ¥ : 3Gw - Ag — Coo (T\G(R)) induces
a homomorphism

Wy Homp (A*(g/t),3Gw - g @ Myv c) — Hompg_ (A*(g/€),Coo(T\G(R)) @ Myv c)
(4.94)

We will show in section 8.1.3 Proposition 8.1.1 that the complex on the right is
isomorphic to the de-Rham complex:

Homy_ (A®(g/F), Coo (M\G(R) @ Myv c) =5 Q*(T\X, Myvc)  (4.95)

This de-Rham complex computes the cohomology and hence we get an homo-

morphism | gkdeR

WS H*(g, Koo, 35w - Mg @ Myv ) — H*(D\X, Myv ) (4.96)
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We denote by w(®) the restriction of the central character of 3Gw - Ag to the
subgroup Zjy. and we introduce the spaces

ECI(N\w,T) =  Homg . )(IGw - A, Coo(T\G(R),w®)
U (4.97)
ED(\w,T) =  Homg k) (3Gw- Az, C(T\G(R),w®)

where the superscript (?) means square integrable.(See 8.14). It is clear from
the results in Chapter 8 that the spaces £() are finite dimensional. We get two
maps in cohomology

(b? : 5?(>‘awa F) & H.(g7Koo7jgw : )\R & M)\V,(C) — H.(F\X7M)\V,C) (498)

Of course the module £®) (X, w,\) = 0 unless 35w - Ag has a non trivial
quotient module which admits a positive definite quasi unitary (g, K, ) invariant
metric. This means that £2)(\,w-\) # 0 implies that in case B) the coefficients

satisfy

ny = ng, i.e.A =n(y1 + y2) + di det +ds det, (4.99)

we will say that A is unitary if this condition is fulfilled. Then the results in
section (4.1.5) yield that these irreducible quasi unitary quotient modules are
Df in case A) and D), in case B) .

Hence it is clear that a ¥y € £2)(\,w - \) must vanish on the finite dimen-
sional submodule M if n > 0 and hence we under this condition

E@D (N w-A) = Homg g (Dy, CH(T\G(R),w®
In the first two cases we know that

We have the fundamental

Theorem 4.1.3. (Fichler-Shimura Isomorphism) Assume A unitary, then in
degree 1 in case A, (resp. degree 1,2 in case B) the map

22 €@ (N w,T) @ H*(g, Koo, Dy @ Myv c) = Hf(T\X,Myvc) (4.100)

18 an isomorphism.

If we are in the third case, i.e. n =0, and if \*|pnz = 1 then Hom(y x_)(C[A], Coo(G(R))
is one dimensional and generated by ®, : 1 — A. The map
CP\ ® H*(g, Koo, C[\] ® C[\]) = H*(T'\ X, Myv c ®C) (4.101)

is an isomorphism in degree zero and zero in all other degrees.

For the case A).we want to relate this to the classical formulation The group
Sl5(R) acts transitively on the upper half plane H = Sl3(R)/SO(2). For g =

(CCL Z) and z € H we put j(g,2) = ¢z + d. To any

® € Homy i) (DY, CP(M\G(R),w®))
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we attach a function fF ,: H — C: We write z = gi with g € Sl(R) and put
holWh

ni2(2) = @(¥nt2)(9)i (g, )"+ (4.102)

An easy calculation shows that f,, , is well defined and holomorphic (slzweineu.pdf)p.25-

26) and for v = (Ccl Z) € Sly(Z) it satisfies

f7?+2(’73) = (cz + d)n+2 7?+2<Z) (4.103)

The condition that ®(t,42)(g) is square integrable implies that f, 2 is a holo-
morphic cusp form of weight n + 2 = k. It is a special case of the theorem of

Gelfand-Graev that this provides an isomorphism | GelfGraev
Homq k) (DY, C2(T\G(R)) = Si(T) (4.104)

where of course Si(T") is the space of holomorphic cusp forms for T

We can do the same thing with D) then we land in the spaces of anti
holomorphic cusp forms, these two spaces are isomorphic under conjugation.
Combining this with our results above gives the classical formulation of the
Eichler-Shimura theorem:

We have a canonical isomorphism

Si(T) @ Si(T) == H!T\H, Myv ) (4.105)

There is an analogous formulation in case where we have to work with
Bianchi modular forms.

4.1.8 Petersson scalar product and semi simplicity

Earlier in chapter 3 we stated a general theorem3.1.1 which in this case says
that H}T'\H, M,v c) is a semi-simple module for the Hecke algebra, we gave
an outline of the proof. In this case the hermitian scalar product is obtained
from the Petersson scalar product on Si(T'). For two cusp forms f,g € Si(T)
this scalar product is given by

—_ dzNdz
< f,g>= f(z)g(z)yn-ﬁ-%i?
T\H Y

For this metric the Hecke operators are self adjoint, and from this it follows that
Sk (I') is semi simple as Hecke module.
We can decompose into eigenspaces

HIT\H, Myv r) = @ H'T\H, Myv ) (r) (4.106)
f

where 7y : H — F' is a homomorphism. In this case we know that each 7y
which occurs actually occurs with multiplicity 2 (it occurs with multiplicity one
in Si(T") and Sk(T) )
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For any embedding ¢ : F' — C we know the Ramanujan-Petersson conjecture,
which says

n+1

For all primes p we have |¢(77(T}))| <2p 2

(4.107)
and again we can conclude that we get a canonical splitting of Hecke-modules
H'T'\H, Myv r) = H'T\H, Myv ) & F Eis,, (4.108)

where T,( Eis,) = (p"™! + 1) Eis,,. ( The eigenvalue of T, on Eis,, is different
from the eigenvalues of T, on H}T\H, Myv r) (Manin-Drinfeld principle) and
then a standard linear argument gives us the splitting.) Of course we could also
say that the Hecke-module H'T\H, Myv ) is complete in H'(T\H, Myv_r).

How do we get such W7 In our special situation we get them from Fourier-
expansions of Whittaker functions and this will be explained next.

4.1.9 Local Whittaker models

We recall some fundamental results from representation theory of groups Gla(Qp).
Let F'/Q be a finite extension Q. An admissible representation of Gl2(Q,) is an

action of Glz(Q,) on a F-vector space V which fulfills the following two addi-

tional requirements

a) For any open subgroup K, C Glz(Z,) the space of fixed vectors VEr ig
finite dimensional.

b) For any v € V we find an open subgroup K,, C Gla(Z,) such that v € VX».

We say that V' is a Gla(Q,) module, we denote the action of Gl(Q,) on V
by (g,v) — gv. In addition we want to assume that our module has a central
character, this means that the center Z(Q,) = Q) acts by a character wy :
Z(Qp) — F*. Such a module is called irreducible if it does not contain a non
trivial invariant submodule.

Again we dispose of a Hecke algebra, given K, we consider the space of
functions

Hi, ={f:Gl(Qy) = F | f(z9) = w;l(z)f(g) ; f has compact support mod Z(Q,)}

this gives as an algebra by convolution and this algebra acts on VX» by

frv= / f(x)zvdx
Gl?(@p)/z(@p)

(See also section 3.2.1.) We normalize the measure dz such that it gives volume
one to K.

We recall - and explain the meaning of - the fundamental fact that each
isomorphism class of admissible irreducible modules has a unique Whittaker
model. We assume that F' C C, then we define the (additive) character

Tia
m

Yp: Qp = C*5 9y, - a/pm»—>e2p

(4.109)
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it is clear that the kernel of v, is Z,. Since we have U(Q,) = Q, we can view
¥p as a character ¢, : U(Qp) — C*. We introduce the space

Cy, (Gl2(Qp)) = {f : Gla(Qp) = C[f (ug) = p(u) f(9)}

where in addition we require that our f is invariant under a suitable open sub-
group Ky C Glz(Z,). The group Gl2(Q,) acts on this space by right translation
the action is not admissible but satisfies the above condition b) .

Now we can state the theorem about existence and uniqueness of the Whit-
taker model

Theorem 4.1.4. For any infinite dimensional, absolutely irreducible admissible
Gl2(Q,) -module V' we find a non trivial ( of course invariant under Gla(Q)))
homomorphism

UV = Cy, (Gl2(Qy)), (4.110)
it is unique up to multiplication by a mon zero scalar.

Proof. We refer to the literature, [53], [26] O

Spherical representations, their Whittaker model and the Euler factor

An absolutely irreducible Gly(Q),) module is called spherical or unramified if for
K, = Gly(Z,) we have VE» =£ {0}. In this case it is known that (Reference)

dimp(VE2@)) = 1. VCGZ) — pp, (4.111)
The Hecke algebra H ¢, is commutative and generated by the two double cosets

T, = Gly(Zp) (g ?) Gly(Zy) and C, = Gly(Zy) (15 2) . (4.112)

The space VE2(Z») is an absolutely irreducible module for A K, hence it is
of rank one, let ¥y be a generator. Our two operators act by scalars on V%,
we write

Tp(ho) = Wv(Tp)hO and Cp(ho) = Wv(cp)ho (4113)
The module V' is completely determined by these two eigenvalues, of course
v (Cp) = wy (Cp).

We can formulate this a little bit differently. Let m, an isomorphism type of

our Gla(Qp) module V. Then our theorem above asserts that there is a unique
Gl2(Qp) -module

W(m,) C Cy, (Gl2(Qp)) (4.114)
with isomorphism-type equal to 7, X C. We call this module the Whittaker

realization of m,. If our isomorphism type is unramified then the resulting ho-
momorphism of H,, to F'is also denoted by .
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We have the spherical vector hgr? € W(ﬂp)GIZ(ZP) which is unique up to a
scalar. Since Gl3(Q,) = U(Q,)T(Q,)Gl2(Z,) this spherical vector is determined
by its restriction to T'(Q,). We have a formula for this restriction. First of all
we observe that

m 0 m n—m )
(% ) = w7y ) (a.115)

We claim that h&‘?)

P

n
(<p0 ?)) = 0 if n < 0. To see this we look at the equalities

o 1) (0 Dh=wen(§ D= 96 )

and we can find an element v € Q,, such that p~"u € Z, and ¢, (u) # 1, this
implies the claim. We exploit the eigenvalue equation Tp(hgr?) = (Tp)hsr?, we

p

write the double coset K, ( 0) K, as union of right K, cosets

0 1

ffo )= U6 )6 w0 )68

TE€ZL/PL

s D Y-l D)
(D (G o) (5 1) =men (™ )

and this implies the recursion formula

B 0) pn+1 0 )
L] n=1 pha, ( ) if n>0
w7 )=y Y
0 ifn<0

(4.116)

Clearly

We can normalize hgl)( (é (1)>) = 1, then the values for n > 0 follow from the

recursion.
There is a more elegant way writing this recursion. For our unramified m,

we define the local Euler factor

L(my.s) = !

L —7p(Tp)p~* + pmp(Cp)p~2

(4.117)

We expand this into a power series in p~® and an elementary calculation shows

that

L(mp,s) =Y hﬁ,‘f}((pg (1)> )pp " (4.118)

n=0
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Whittaker models for Harish-Chandra modules

We also have a theory of Whittacker models for the irreducible Harish-Chandra
modules studied in section 4.1. The unipotent radical U(R) = R resp. U(R) =
C. Again we fix characters 1o, : U(R) — C* we put

—2mix

oo(z) = {e in case A) (4.119)

e~2mi@+2) in case B)
and as in the p-adic case we define
Cyo (GR)) = {f : G(R) = C|f(ug) = Yoo(u)f(9), fi is Coo}
Then we have again | Whittinf

Theorem 4.1.5. For any infinite dimensional, absolutely irreducible admissible
Gl2(R) -module V' we find a non trivial ( of course invariant under Gla(R))
homomorphism

UV = Cy (G(R)), (4.120)

This homomorphism is unique up to a scalar. The image of V' under the homo-
morphism VU will be denoted by V.

Proof. Again we refer to the literature. [26]. O

Hence we can say that for any isomorphism class ms, of irreducible infi-
nite dimensional Harish-Chandra modules we have a unique Whittaker model
W(Ts) C Cy.. (G(R)). In the book of Godement we find explicit formulae for
these Whittaker functions.

Actually it is easy to write down such maps Uy resp. 7 explicitly for our
induced modules, we start from a dominant weight A\ = ny + § (resp. niy; +
nays + & where n > 0,n1,ny > 0. We define

F:352elolf = Cy (G(R))

by the integral
F(f)g) = fwug)pos(—u)du,

U(R)
there is no problem with convergence as long n > 0,n1,ns > 0. If one of these

numbers is zero then there is a tiny difficulty to overcome, we ignore it. In any
case we get an isomorphism

F 35 lplz = 95 Aalolk (4.121)

i.e. we will denote elements or spaces which lie in a Whittaker model by ?%.
We consider the case A). Let n be even. We consider induced module
IGARPE = @D, =0(2) Coa, (See 4.27we have the exact sequence (See seqd

0— D, @Dy — TG gpE — My =0
We have the Whittaker map

F 35203 = Cu(G(R))
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which is defined by

o (i )= [ owtw(s 1) (5 1)eas

We write the Cartan decomposition

t —x t
w((l) f)(é (1)):(07: —1>:(¢m - 2) VAR Ve
bz 0 VT \ Ve Vo
and a straightforward computation gives us that we have to evaluate

t 0 a1 oo e27riz
]'—(Qz’)\,u)((o 1)) =tz /oo (I —|—ti)"/2+”/2+1(l‘ _ ti)n/Q—v/Z—&-l dz

This can be done by the Residue theorem, we integrate from —R << to R
and then from R >> 0 back to —R along the circle in the upper half plane.
Our function has only one pole in the upper half plane, namely for = ti and
therefore

[ee) 1 T ¢ 0 i n ] 4 eZﬂ'im
[m d))\,l/(w (0 1) <0 1) )6 dr =t>2 Rebg;:tl (33 I ti)n/2+u/2+1(l‘ — ti)n/2_y/2+1

If we put z := x — ti then our integral becomes
62772'2

(1 + 27)n/2+u/2—&-1Zn/2—y/2+1

(27:)777,/271//2*11»7”/26727“ ReSz:O z
te

— P)\W(t)ef%rt’

where Py ,(t) is a Laurent polynomial in C[t,¢t~!]. This polynomial is zero if
v > n + 2 and this implies that F maps D;\Q to zero.
Therefore our map F induces an injection

3520/ Dy = Cy(G(R))

this is of course an intertwining operator. The module Dy, C I§Arp2 /DY, it
has ¢ _,—2 as a lowest weight vector. We compute

¢F(¢r,—n—2), then t he nasty factor (1 + 5% )"/2+¥/2*1 is equal to one in this
case and hence we have up to a non zero constant

t 0 a1 on
f(¢>x,—n—2)((0 1>) :C)\terle 2 t.

In the case A) the we the two discrete irreducible series representations
Dj\rv , Dy attached to a dominant weight A. We have their Whittaker model

Fi:DE €y (Gla(R)). (4.122)

The group (Glz(R) has the two connected components Gla(R) ™, Glo(R) ™, ( det >
0,det < 0) and we have

F.(D) = DI is supported on Gly(R)™, Dy is supported on Glg(i)l’%)
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Under the isomorphism . the elements Y (ny2) (See (4.26) ) are mapped to
functions @i(,H_Q). We can normalize \ili such that

t 0 tztle 2™ if ¢t >0
Wasal(o 1)){ (1121)

0 else

and T _, _, is given by the corresponding formula.
We discuss the same issue for the group Glz(C) later in section 4.1.11

Global Whittaker models, Fourier expansions and multiplicity one

We also have global Whittaker models. To define them we recall some results
from Tate’s thesis ([95]). We introduce the ring of adeles A = Ag, we write it
as a product A = Qo X Ay = R x Ay. The ring of finite adeles contains the

compact subring 7= ]_[p Z,, of integral adeles.
We define a global character ¢ : U(A)/U(Q) = A/Q — C* as the product

(Toos -3 Ty ) = Voo (o0) [ [ () (4.125)

where the local components v, are as above, we have to check that ¥ is trivial on
U(Q). (See [95], "note the minus sign”) For any a € Q we define ¢%(z) = ¥ (ax),
so ¢ = . In ([95]) it is shown that the map

Q — Hom(A/Q,C*); a s 1l (4.126)

is an isomorphism between Q and the character group of A/Q. Hence we know
that for any reasonable function h : A/Q — C we have a Fourier expansion

h(w) = h(a)p(au) (4.127)

a€cQ

where h(a) = fA/Q h(w)Y(—au)du, and where volg,(A/Q) = 1. Then we put

Cy(Gla(R)xGla(Af)/Ky)) = {f : Gla(R)xGla(As)/ K — C[f(ug) = ¥ (w)f(g)}

this is a module for Glo(R) x @' H,

Let us start from the Harish-Chandra module 7, = D:\" and a homo-
morphism 7y = ®'m, : @H, — F from the unramified Hecke algebra to F.
Here F/Q is a finite extension of Q. We assume it comes with an embedding
t: F— C,ie. we also may it consider as a subfield of C.

We still assume for simplicity that K = Gly(Z).

The results on Whittaker-models imply that we have a unique Whittaker-
model

W(m) = W(Trao) ® ChlY) C Cy(Gla(R) x Gla(Af)/Ky) (4.128)
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for our isomorphism class m = 7, x m¢. Here of course hSTOf) = ®h7(r(;).

We return to Theorem 4.1.3. On the space C) (T\G(R),w®)) we have the
action of the unramified Hecke algebra. To see this action we start from the
observation that the map Glo(Q) — Glz(Af)/Ky (Chap. IIT, 1.5) is surjective
and hence

Cla(Z)\Gla(R) =5 Gla(Q)\Cla(R) x Gla(As) /K (4.129)
and hence
CP(Gly(2)\Gly(R)) = C? (Cla(Q)\Gla(R) x Cly(Af)/Ky) (4.130)

and the space on the right is a Gly(R) x @' H,, module. Now we consider the
T = T X Ty isotypical submodule Cg)(Glg((@)\Glg(R) x Glo(Afp)/Ky)(m) C

C2 (Gl (Q)\Gly(R) x Gly(A)/Ky).
We have the famous Theorem which in the case I' = Sly(Z) is due to Hecke

Theorem 4.1.6. If C2(Gl(Q)\Gly(R) x Gly(Af)/Kf)(7) # 0 then have a
canonical isomorphism

F:W(r) =5 ¢ (G1y(Q)\Gla(R) x Gla(Ay)/Ky)(n) (4.131)
especially we know that m occurs with multiplicity one.

Proof. We give the inverse of F. Given a function
h € C&(Gl2(Q)\Gla(R) x Cla(Af)/K) ()

we define

W ((grg )= [ hlugila)du (4132
U@QN\U(A)
it is clear that h'(goo, g f) € W(r). It follows from the theory of automorphic

forms that h is actually in the space of cusp forms, this means that the con-
stant Fourier coefficient fU(Q)\U( A) h(ug)du = 0 and hence our Fourier expansion

yields ((4.127), evaluated at u = 0)

— U a] (1) duw .
h(g) g&éww@me<wd (4.133)

The measure du is invariant under multiplication by a € Q* and hence a indi-
vidual term in the summation is

/U<A>/U(@)h(<é 11‘>g)¢(<(1) “f))du:/[]m)/rj(@)h((é a_llu) 9)#}((3 §L>)du
(4.134)
(= O

Now
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Since h is invariant under the action of G(Q) from the left we find

w ol (wWdu = (¢ Y gy (@0 .
/UW/U(@)h(J)w (1) h(<0 1>)g°°)hf(f) (0 1) (90, 9,)) (4.135)

We evaluate at g = (goo, €) then

(5 ) e =1(( o () @

For a fixed go, the function g, ~ hT(gocngf) is up to a factor equal to
hgg) = ®;, hgr(;) and hence we find

w5 1) e =nt((5 )amen@(y 1) s

Qfo

The recursion formulae ( 4.116),(4.118) imply that h,(%) (( 0 1

a € 7.
We restrict our functions to Glj (R), i.e. we take goo € Glp(R)* and we
remember that our representationm, is D/J{V. Then we know that for ho, € D;‘V

the value h( (aoo 0> Joos€) = 0 if as < 0 and hence

)) = 0 unless

0 1
i fa 0 _ /{0 O ap 0V, _

h (<O 1) (goos€)) = h (( 0 1) Joos <O 1 ) =0 unless a > 0,a € Z,
and our Fourier expansion (4.127) becomes

h<g>im<(g D) (1) (4.138)

a=1
O

We notice that there is never any problem with convergence. The Whit-
taker functions hf_ always decay very rapidly at infinity. We write goo =

1 w\/(t O . .
(0 1) (O 1) k with k € K, then it is easy to see

t 0 o
el(§ 7)ol < Pl

where P(t) is a polynomial in ¢. This implies that the series is really very rapidly
converging (See remark below).

Now we choose for the component at infinity the function hl = 1/~)n+2 and
we compute the corresponding holomorphic cusp form h® under the Eichler-
Shimura isomorphism. We have the formula (4.102)

hq)(z)th)(x—kiy):h((w y_é>)1(<y2 g>’i)n+2:h(<y2 i))ygl
0wy 0 y 0 y 2

<
Wl

S



4.1. HARISH-CHANDRA MODULES WITH COHOMOLOGY 173

and hence our Fourier expansion (4.138) becomes
Cnive - ay ax a 0
he(z) =y 3 121%“((01/ 1))@2)((0 1)) (4.139)
We have the formula (4.124) for ¢, and then this becomes

(oo}
o _ 24150 (@ 0 2miza
h (z)—z_:lcﬂ h,rf(<0 1))6 (4.140)
This is now the classical Fourier expansion of a holomorphic cusp eigenform of
weight k& = n + 2, ([48]). The numbers ¢(7f,a) = a%“hSPf)( 8 (1)
Fourier coefficients and they also the eigenvalues of the operator T, -defined in
by Hecke in [48]- on A®. If we apply the the Eichler-Shimura isomorphism and
interpret h? as a cohomology class then it is an eigenclass in H{ (I'\H, M,, ® C)
and for any prime p the number ¢(|pif, p) is the eigenvalue of the operator T,
defined in 3.1.2.

We briefly come back to the question of convergence. Hecke proves in [48]

that

) are the

le(mp,a)] < Ca™tite (4.141)

and with this estimate the convergence becomes obvious.
Actually there is a much better estimate, which will be discussed in the

”probably removed” section.

4.1.10 The L-functions

We still assume that K ; = Gly(Z) or what amounts to the same that T' = Sla(Z).
We start from an eigenspace H'(D\H, M ® F)(n;), now 7 is simply a homo-
morphism 7y : Hx, — Op. To this homomorphism we attach the cohomological
L-function

1
LM (s, 5) = ‘ , (4.142)
! 1;[ L—my(Tp)p=> + ptHn=2
here T}, is the Hecke operator deﬁned’ in 3.1.2, it differs from the Hecke operator
defined by convolution by a factor p? in front. If we expand this product over
all primes we get

(oo}
LM (s, 8) = Z C(WJS’ %) (4.143)

a=1
and this is exactly the L-function Hecke attaches to the cusp form provided by
m¢. But we want to stress that this cohomological L-function is defined in purely

combinatorial terms (See section 3.2.3, and Chapter 7).

At this moment this L function is a formal expression, it is a formal Dirichlet
series with coefficients in our field F', which is simply a finite extension of Q. If
we assume that F' C C. then we may interpret s as a complex variable and the



174ACHAPTER 4. REPRESENTATION THEORY, EICHLER-SHIMURA ISOMORPHISM

above estimate of the size of the coefficients implies that this series converges
absolutely and locally uniformly for R(s) > n+2 and hence gives a holomorphic
function in this halfspace. But something much better is true. We define the
completed L function

AP (7p,8) = LS)Lcoh(ﬁf,s), (4.144)

(2m)®
for this completed L-function Hecke proved

Theorem 4.1.7. The function A"(ry,s) has holomorphic continuation into
the entire complex plane and satisfies the functional equation

ACOh(ﬂ'f, s) = (—1)%'*'1Amh(7rf7 n+2—s)

Proof. We could refer to Hecke, but for some reason we give an outline of the
argument. We have the integral representation (Mellin-transform)

o d o0 d
A g = [ clmpare oy = [T gy
(| — Y 0 Y

of course here we have to be courageous ( or stupid ) enough to exchange
integration and summation. But since e 2% goes rapidly to zero if y — oo
there is no problem with the upper integration limit co. If R(s) >> 0 the y*
also tends to zero fast enough, so that we do not have a problem with the lower
integration limit. But now we can split the integration into two parts

fooo o clmy, a)eizﬂayys% =

fol ZZO C(ﬂ'f, a>€—27rayyso:ll7y + floo ZZO C(7Tf, a)e—Qﬂ'any%

the second integration is converging for all values of s. To handle the first integral
we observe that h®(—1) = 2"*2h®(z), Hence we can substitute y — % in the
first integral and get

AR (g, 5) =

3 4.145)
(-1)z+t c(ns.a) (
(27-()n+275 ant2-s F(n +2- S, 27T(L)) .

S (er)s C(”js’ V1 (s, 27a) +

Here I'(, ) is the incomplete I function, which defined by I'(s, A) = [° e_yys%y,
it has the virtue that for any given value of s it decays rapidly if A goes to infinity.

Therefore we see that A" (7, s) can be written as a sum of two infinite
series which are convergent very rapidly, hence it follows that A°®(m,s) is
holomorphic in the entire s plane and the functional equation also becomes
obvious. O

We included the proof of the above theorem, because the above formula also
gives us a very effective procedure to compute the numerical value of A" (7, sg)
with high accuracy. We will come back to this issue in section 5.6.
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4.1.11 The Periods
Together with the map F comes the map
F=ld® F®Id: Homg_(A(g/t), W(r) ® My) —
Homy (A° e (g/8),Coo(Gla(Q)\(Glo(R) x Gla(Af)/Ky) @ M)

The purpose of the following computations is to fix a specific choice of basis
elements wl, € Homy_ (Al(g/t),Dav'@M,) (in case A) WIQ € Homg (A“?*(g/®), DlL®
M ») (in case B)) These ”canonical” generators serve us to define the periods.

In case A) we have

oo~ 1 0 0 1
9/€—>Q(0 1) @Q(l 0) =QH®QV =p (4.146)
Ifweput P=H+V®i,P=H-V ®iecg/toQ(i)
Notation abklaeren V = E auf S. 123 ?) then

g/t®Q(i) = Q)P & Q)P and e(¢)Pe(—¢) = ™ P;e(¢) Pe(—¢) = e ™4 P
(4.147)

Let PV, PV € Hom(g/¢,Q(i)) be the dual basis. Then we check easily that

PY(H) = PY(H) = % and PY(V) = — L pY(v) =1 (4.148)

The module M, ®Q(i) decomposes under the action of K. into eigenspaces
under K,

My @Q(i) =P QX +Y @i)" (X - Y i) (4.149)

where
(D) (X +Y Q)" V(X -Y®i)") =" (X 4+ Y @)X -Y ®i).
Then we define the basis elements

W =PV @@ (X -Y )" 0l =PV Q@¢_pa® (X +Y ®i)" (4.150)

We still have our involution ¢ € K7 ( See (4.24)) and clearly we have cw! = i"&t
( Remember n =0 mod 2. )

Now we put
wi = %(wT +i"oh) ; wl = 2 (Wl = i"ah) (4.151)
then these elements
wTi = %(wJr +i"wh) € Homy (Al(g/?),ﬁx Q@ My)x
and they are generators of these one dimensional spaces. The choice of these

generators seems to be somewhat arbitrary, in [?] we give some motivation for
this choice.
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There is an alternative way to select wl. If we evaluate wl on the element

H € g/t =p then
1
WL(H) = 1,0 (X -Y @i +i"@!, ,© (X +Y ®i)") € Dy & My

These are functions on Gly(R) with values in M. We pair these functions
with an M ® C valued function, more precisely we consider the function g —<
wl(Ad(g)H)(g), pA(9) XY > .

We restrict these scalar valued functions to the real points of the split torus

<aktm((§ onc(f O)xrrrr =

< i(¢l+z(<é ?)) X -Y®i)"+ z‘”anQ((é ?)) @ (X +Y ®)"), XUy > t—3+v

Now let € be a variable which can take the values 4, —, then ¢ = +1,—1. Our
formula (4.9) gives us < (X — €Y ®4)", X*Y" ¥ >= (—ei)" ¥ and combing this

with the explicit formula (?? ) for the values of w:(nJrQ)( <8 (1)>) we get

t 0 t 0 _ (i) vtz tle 2mt—34v for t >0
T vyn—v . _
<wE(H)((0 1))%((0 1>)XY g {Gi"_”(—t)g+162”t(—t)_3+” fort <0

(Here we use that n is even, but with suitable minor modifications we can also
treat the case n odd.) Then a straight forward computation yields

Fraey < Pon((§ §)xewn—r s s -

i’ 0 ) 4.152
L Hmn) e (1) 5 = sg(e) (4.152)
210 else

For each choice of the sign € = £1 one of these equation determines the generator
wl. This formula will be of importance when we discuss the special values of
L-functions.

In case B) we do basically the same, in some sense it is even simpler because
Ko is maximal compact in this case, i.e. Ko = K} . But on the other hand
we need some very explicit information about the theory of irreducible repre-
sentations of K, and also about the decomposition of tensor products of these
representations. We will also use some explicit formulas for Bessel functions.

Probably removed paragraph

The quotient g /E is a three-dimensional vector space over Q the group Ko
acts by the adjoint representation and this gives us the standard three dimen-
sional representation of K., = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2v.. We must have
A=n(y+7)+ .., if we want E® (X, w,T') # 0, and then the formulae 4.1.6 and
4.53 imply that for e = 1,2

dime Hompg__ (A*(g/8), DL, @ Myv) =1 (4.153)
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] module on all the

Now we recall that we have defined a structure of a R = Z[%

modules on the stage, hence we see that

Homp_ (A®(g/t), Dav @ Myv) = Hompg_ (A*(g/€)r, Dav g @ Mavg) @ C,
(4.154)

here we are a little bit sloppy: The first subscript K, is the compact group and
the second subscript is a smooth groups scheme over R. For both choices of e
the second term in the above equation is a free R module of rank 1. We choose
generators

wh® e Hompg_ (A®*(g/€)r, Dav g @ Mivg).

These generators wi!, w!? are well defined up to an element in R*.
End of removed paragraph

The quotient g/ t is a three-dimensional vector space over Q the group K,
acts by the adjoint representation and this gives us the standard three dimen-
sional representation of K., = U(2), which in addition is trivial on the center.
(See 4.1.2). This module is given by the highest weight 2v.. We must have
A =n(y+7)+ .., if we want £ (), w,T) # 0, and then the formulae 4.1.6 and
4.53 imply that for e = 1,2

dime Homg_ (A*(g/), Dl @ Myv) =1 (4.155)

We fix these generators by prescribing values of certain Mellin transforms. To do
this we need a little bit of representation theory. Of course we may replace K,
by SU(2) because the action of the center on the different modules cancels out.
The modules g/t ® C,D;v and M)v ® C extend naturally to Sly(C) modules
and hence we have to find an explicit generator in

Homgy, () (8/¢ ® C, DYy @ Myy @ Mas).

We have an explicit basis for g/€ ® C (See (4.17), our module Mv = ./\/l';w ®
M?W ®e C is given explicitly to us.

Our module DI, € IGAgp2, and this last module decomposes into SU(2)
-types (See( 4.30). These SU(2) modules canonically extend to Slz(C)-modules,
we have

350t = D Moy = D IGAepE(20)
v=0 v=0
and
(3GArpz(2(n + 1)))T = D{, (2(n + 1))

Now it is clear that we have the problem to select a specific generator in
Homgy, () (/¢ ® C, D, (2(n + 1)) © M’ @ M), ® C).

The modules g/t ® C, M Mi’w come with an explicit basis (See 777), if we

n'ya
want to write down a specific generator wh® we have to write down a basis of
D, (2(n+1)).

Again we start from our exact sequence

0— Dy — 3§ = My —0 (4.156)
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we apply the map F to it and get an exact sequence of Whittaker modules
0— DL, = 35T — My —0 (4.157)
To get such a basis we start from a basis element ®) € Jg)\ugpﬂi(()). We

recall the definition of ’Jg/\RpD% as an induced representation, the space of K,
invariant vectors is spanned by the spherical function

a

t1 u a b
a0 (bk) = ¥ o(0k)({ 5 o)) = Arpr(0).
0 t b
We map the induced representation to its Whittaker model by

F:p—{g— /z/J(w <(1) . _; zy) 9)e*™ dxdy} (4.158)

our basis element will be qﬁT/\ o = F(¥x0)- A straightforward computation yields

t 0 t 0 OO tn+2 TLX
Aol(o D =Fona(y )= | sty

o0

The educated reader knows that this function in the variable ¢ is well known,
we have

7.(.n+2
‘1),\((6 (1)>) = %ﬁ@zﬂ(%ﬂ

where K, (27t) is the modified Bessel function. Of course @, is a function on
G(R) = Glz(C), it is right invariant under K, and of course

1 ) 0 ; 0
ol(p 1) (0 D) =emmatu(h )

hence it is defined by its restriction to 7%(R)~.

Starting from this function we construct the desired basis of D;v (2(n+1)).
The Lie-algebra g acts on 3% \gp2, we restrict this action to p and it is clear
that under this action

p© IGARPR(20) = TEARPR (20 + 2) © TFARPR(20) © TG ARPR(2V — 2)
and if we extend this action to the tensor algebra we get a map

n+1
o - pP0HY @ 3G A2 02(0) — €D TG AepR (20). (4.159)
v=0

here we may replace n + 1 by any positive integer k.

The group K acts on p®(+1) by the adjoint action and the above map
is of course a K., homomorphism. On the right hand side we can project to
the highest Ko, type JGArp2(2n +2) = D;v (2(n+1)), i.e. we get a surjective
homomorphism

41 p®0H) @ 3G ARp2 (0) — DL, (2(n + 1)), (4.160)
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again we may replace n + 1 by any positive integer k.

We have the standard surjective homomorphism p®(*+1) — Sym" ! (p), let
us denote its kernel by I,,11. For any f € 3§Agp2 and X', X € p we have

(X/X// _ X//X/’)f — [X/7X/,]f.

Since the Lie bracket [X7, X5] € ¢ it follows easily that II,; vanishes on the
kernel I,, 1. Hence our homomorphism II, 7 factors over the quotient, i.e.

M1 : Sym™ ! (p) = DL (2(n + 1)),

We change our notation for the basis of p ® C (see 4.17) and put

Xlzg((o 1>—i®(0i i));onk((l O>)
SRR AN

We have the following proposition

Proposition 4.1.7. The 2n + 3 elements
(X7 Xo X7, X XX Ly, XY

form a basis of a Ko invariant subspace of Sym™ ' (p) ® C. This subspace is
irreducible, it is isomorphic to Moy, 2. These basis elements are the weight
eigenvectors for the action of T,.

Proof. The representation of the algebraic group K., on p extends to a repre-
sentation of the algebraic group Slo/C on p ® C. As such it is isomorphic to
the symmetric square Sym?(C?) of the tautological representation, i.e. to the
module My of polynomials aU? +bUV + cV?2. We get an isomorphism My —
p ® C by sending U? — X1,UV — X, V? — X;.. Now Sym*"™%(M,) C
Sym™ ! (Sym?(C?)) = Sym™ ™' (p ® C) is an invariant submodule. It has the
basis U?"t2=¥V* and clearly

Untmryy = Xptr XV if v < n 41 and XgT X
and this implies the assertion. O

This implies that the elements

{1 (X768 ), it (X0 X70L o) - -y gt (X5 X100 ),

. (4.162)
Hn+1(X(7)l+1a ¢;70)7 Hn+1(XO X—1¢T,\,o)a s aHn-&-l(Xf—lHﬁbi\’o)}

form a basis of DI, (2(n + 1)).

We change our notation slightly. For m < 0 we put X7* := X" and for
0<v<2n+2wepuwt [v]=vifv<n+land py]=2n+2—-vifv>n+1.
Then our above basis can be written as

(o Mt (XX 7600 0 Yoo mnies (4.163)
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these are the weight vectors of weight 2(n + 1 — ). We introduce the notation
T —II X[V]Xn-‘rl—l/ T
¢,\,n+1—y i= Il ( 0 <1 ¢,\,0)

These functions qb; ., are Whittaker functions they satisfy

Aul(o 1Y) 0= ol lo)

They are not K, invariant, but they are weight vectors for the torus, we have

2mip 0

ula (g T)=ermeatto (4.164)

and more generally ¢;’V(gk‘) =2, alw(k)cﬁi’ﬂ (g9) where the a, , (k) are the
matrix coefficients of Ms, 2. (above proposition).

We consider the restriction of the functions ¢! to the maximal torus T'(R).
Since 3GArp2(2v) has a central character, it suffices to consider the restriction

o a5 D))

we write z = te2™¢. This means that we map the module JGA\gp3 to its Kiril-
low realisation jg’”/\Rpﬁ C Coo(C™). (See [26] , S 2 5.), especially this map is
injective.

We express the restriction of these functions qﬁi ., to the torus T*4(R)sg in
terms of Bessel functions. We introduce the notation

k
IG(2k] := @D 3G Ampi (2v) (4.165)
v=0
For any Whittaker function ¢f € J%[2k]" we have

Hk-i—l(de)T)((é (1)>) _ qﬁT((f) ?) exp(eX1)) — qﬁT((é ?))

We write X = ;((8 g + <8 20Z> + <(1) _01> + <(Z) _OZ)) the last two

matrices are in € so they preserve the K., type and

o'y §)emtec(g o)+ (0 0)m-

srenie((y o)+ (o ap (o Dh=or(s T -
emegt((o =ot((§ ) Paie)

oy §) =25 7))

€

and hence
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2mip )
If ¢t is a weight vector, i.e. QST((te 0 (1)>) = 62”’““"¢T(<8 (1))) then X;o¢f
is also a weight vector with weight e27i(#+2)¢,
This gives us

t 0 n t 0 227z+37r2n+3 N
(5 T =005 1)) = gyt Kem
(4.166)

Since this function is of weight 2n 4 2 we can forget the projection II, 1.

We have recursion formulas for the Bessel functions

LKL (t) = —2(Kn-1(t) + Kny1(1))

. 4.167
Knpr(t) = Kna(t) + 22K, (t) (4.167)
A straightforward calculation yields
d
t—t'K,(2nt) = (u — v)t' K, (27t) — 2nt" T K, (27t) (4.168)

dt
t 0 V] yntl—v t 0
Then ¢;7n+1_y(<0 1)) = Hn+1(X([) ]Xl +1 ¢;7n+1( (0 1) )). We get

n+l—v t 0 (27r)”+2+‘”+1*”\ 1
5o )0 = gyt K2

To this we apply X([)V]. The operator Xy is t%, then the above formula gives

22n+3,ﬂ.2n+3
I'(n+2)

t 0

T, (XX 0l ( (O 1) ) =Mppa(--- + " K g1 (2t))

(4.169)

where the dots - - - are a sum of those terms which are in the image of TJCB:’F”)\R p3[2n]
hence they vanish under II,, 1. and consequently

t O 22n+3 2n+3 " ¢ 0
Al 1) ="y R ) @

where p runs from n 41 to —n — 1 and of course K, = K_,.

Decompositions of tensor products

If A1 = n1v, A2 = noy are two highest weights and if we consider the highest
weight modules My, g, M2, @ then it is a classical theorem that

M0 ® Mx,0 = Mny+12)%,0 @ Mni4n2-2)7,0 @ - & My —ny)yQ- - -

where we assume n; > no, we put n = ny + ne. Our next aim is to give an
explicit homomorphism

Jrams My gnayy < Miy @ M,

niy n27y

(4.171)
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in other words we want to write explicit tensors for the images of e‘l’t,u =
ny + no,n1 +ns — 2,...,—ny — na. Of course we send the the highest weight
vector €}, .+ ’eil ® /’6127 this vector is the highest weight vector in the

direct summand M'E7L1+n2)%@ C Mnytna)y0 @ - ® Mn, —np)y,0- In terms of
the explicit realisation of these modules we can say

Xmitne YT g 1 e (4.172)

Now we apply the matrix <1 (1)> to it, here we may think of ¢ as an in deter-

minant. Then we see
(X +ty)mtm2 s (X +t'Y)" @ ("X +t"Y)" (4.173)
We expand on both sides and find

n1+N2 (Mi+n2\1u yni+ns—py p
Zu:O ( " )t X YHe

+ —_ —_ —
221:0"2 tﬂ(zm,m:mﬂu:u (Zi)’X"l YR e (Zz)HXM MR IXTTIRY )
(4.174)

b

J73

We remember the definition of the basis elements €
us

the formula above gives

: b 1 b m_b
Jnim © €, F Z e, @, (4.175)
Hitpe=p

We apply this to the SU(2) -module
(8/6)F ® My @p Mas,

this module contains a unique copy of M5, 12- We write

g/E]}/ = Foez EBF Oe% ®F 06'12? Mnl’Y7F = @FeZN an%F = @FEEQ
M1 H2
(4.176)

where of course p; run from n; to —n; and p; = n; mod 2. Then our copy of
Mo, 425 comes with the basis

b Z ob b b
€p = €10 ® € ® €1z
Hot+H1+H2=H

We have the invariant pairing (4.9) and this tells us that we can choose as our
generator

nit+n2+2

. b b b
whe =} ¢;7# ® ( > O, @€, ®E,) (4.177)
pn=0 Ho+p1t+pe=n+1—p

This generator is only determined up to a scalar, it is fixed once we choose
a generator cnqﬁz il
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The ”canonical” choice of the generator

Again we can fix the generator by requiring that certain Mellin transforms have
a prescribed value at certain prescribed arguments.

We do essentially the same as in the case A). We can interpret w'! as a
differential 1- form on G(R) with values in M3 ®C. We can restrict this 1-form to

the torus T2 (R)~q = {<é (1)> [t > 0}. We have the "cycles” e, ®e,, € MY).

We evaluate w’!(X() on these "cycles” and get

. t 0 t 0
<wh (Xo), €y ®epy > <(0 1)) - Qsi,nmuz((o 1))t”1+“2 =
(4.178)

/ 2
Cntn+ +p1tp Kn_ﬂl s (27Tt)

Later -when we study the special values of L-functions- we need to know the
value

/o <°”7'(X°)’e*‘1®6“2><<o 1>> ~d, / R, L, (2r) S

t ¢
(4.179)
We also will need formulas for the Mellin transforms of these Bessel functions.

Here we quote [1] .p.331,334 and recall two of them (the second one for later
use)

I Ky (2mt)ts 2t = 2572(2) S T(552)T(2£2)

foo Ku(Qﬂ't)Ky(Qﬂ't)té% _ 25—3(277)—31—\(87,;71/)F(S*,LH*V)F(S+,U«7V)F(S+lé+l‘«)

0 2 2
(4.180)
the first one gives us
/OO tn+2+#1+,u.2K (27_‘_15)@ — F(Tl + 1) F(ILL + 1) (4 181)
0 nTH T t 47 miutl ’

We observe that the first factor in front does not depend on pq, 2. So we
renormalise our generator and for p = —n — 1, —n,...,n+ 1 we now put

47

o\ (D) = Tt D)

n+2
—— K1) (4.182)

and with this choice of ¢;’V the w’! (4.177) is now our canonical generator.
Now our formula (4.178) becomes

< wTv (X0)7eu1 ® 6#2 > ((0 1)) = ﬁ (4183)
Hence we may just choose p1 = pz = 0 to nail down w*, it is not clear to
me whether or not it is a ”miracle” that the above relation holds for all values

of pu1, pa.
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The definition of the periods

The inner cohomology with rational coefficients is a semi-simple module under
the action of the Hecke algebra (See Theorem ??). We find a finite Galois-
extension F/Q such that

HP (T\H, My ® F) = @5 H ('\H, My @ F)(ry) (4.184)

We assume that I' = Gly(Z), hence the 7y are homomorphisms 7y : H — Op.
(See 777) In the case A) such an isotypical piece is a direct sum

HY (T\H, My ® F)(ry) = H (T\H, M) ® F)(r;)+ & H'(T\H, M\ ® F)(my)_
(4.185)
where both summands are of dimension one over F.
In case B) we get

HP (D\H, My @ F)(rs) = H'(T\H, My ® F)(r) @ H}(T\H, M) ® F)((wf) |
4.186

and again the summands are one dimensional.

We have defined the module of integral classes H{ i (C\H, M3 @ OF) C
HYT\H, M5 ® F) (See 2.56) and we consider the intersection

HY 1 (D\H, M3, ® Op) (mp)e = HP (D\H, My ® F)(my)e N H}! 1 (D\H, M3 © OF)

is alocally free O -module of rank 1, here e = 4+, = 1( resp. e = 1,8 € {1,2}).
We assume for simplicity that it is actually free, otherwise the formulation of
the following becomes slightly more complicated. (See below). On the set of 7y
which occur in this decomposition we have an action of the Galois group (See
(3.24)) and the Galois action yields canonical isomorphisms

Bor i HY i (\H, M3, ® Op)(Tmp)e = HY 1 (T\H, M5, © Op)(Tmy).
(4.187)

We choose generators “e? (7y) and a simple argument using Hilbert theorem 90
shows that we can assume the consistency condition

Dor(e2(7p)) = 2 (Tr) (4.188)
We get isomorphisms
F(wl) : W(mp) @p C =5 H(D\H, M) (°my) @F C (4.189)
which are defined by
Fo(wl) t hor, = [F(w!l X hor,), (4.190)

here F(w! x hoy ;) is viewed as a closed M ® C valued differential via the the
identification 4.95, and [...] is its class in cohomology.
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Since we assume that 7y is unramified everywhere WW(7 ;) we have the canon-
ical basis element h;o) =11, h<(1072p where hSO,Ep is defined by the equality 4.118.
Then we have obviously J(hgs,)) = hS(Qp.

Then we define the periods by the relation

T (p0y — e .
F(wh)(hor,) = Q% (e x mp,))e* (€ x my) (4.191)
These periods depend of course on our choice of the ”canonical” generator wi.
We see that the numbers Q°(77y, €) are well defined up to an element in Oj.

If HyY ot (D\H, M5 @ OFp)(7)c is not a free O module, then we can find a

covering by two open subsets Uy, Uz of Spec(Op) such that H? ; (I'\H, /\?l& ®
®O0Fp(U;))(e x my) is free. We can apply the above procedure and we get
periods Qq(e X 7y, ), Qa2(e x 7y), they are well defined up to an element in
Or(U1)*,0p(Us)* respectively. The ratio of these periods is an element in
Opr(Ui NUy)*.

Perhaps at this point we should introduce the sheaf P of periods over F.
For any open subset U C Spec(Op) we put Pr(U) := C*/Op(U)*, this is a
Zariski preasheaf on Spec(OFp), the associated sheaf is our sheaf of periods Pp.

Now we can interpret the generators e®(e x ms) as (the unique) section in
the sheaf of generators modulo O and then the equation (4.191) makes sense
without the assumption on the class number.

These considerations will play a role in the following chapter.

Some little subtleties

We should notice that these periods are defined with respect to the ”small”
sheaves Mg\ We have Mi;\ C M and therefore the map

HY 1 (D\HL M3, @ Op)(7f)e = HY 1y (D\H, My © OF)(my). (4.192)

may not be surjective. (The reader should not be puzzled by the fact that
Mg\ ® F = M) ® F.) Therefore, if we would work with M instead and define
the periods Q.’#(Uﬂ'f, €) by the same procedure. Then we will get a relation

Q.’#(Uﬂ'f, €) =d(ms,e)Q*(“mys,€)

where d(7 ,€) is a non zero factor in Op. The primes in these factors are the
divisors of the binomial coeflicients.

But we could also with the module H'(F\H,/\;l'; ® OF) int1(7f)e and de-
fine the periods with respect to this module. Again these periods will integral
multiples of the periods Q°(7¢,€).

In the following Chapter V we will discuss the rationality results (Manin
and Shimura) which relate these periods to special values of the L— function
(see section 5.6). But we also want to discuss this method not only for cuspidal
classes but also for the Eisenstein cohomology classes, therefore we close this
Chapter with a brief account of these Eisenstein classes.
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4.1.12 The Eisenstein cohomology class

In section 3.3.5 we claimed the existence of the specific cohomology class Eis,, €
H'(T\H, M_,,). In this section we give s construction of this class on transcen-
dental level, i.e. we construct a cohomology class Eis(w,,) € H*(I'\H, M,, ® C)
whose restriction to the boundary H!(9(T'\H), M,, ® C) is a given class w,,. For
the general theory of Eisenstein cohomology we refer to Chapter 9.

We start from our highest weight module M and we observe that by defi-
nition we have an inclusion

io : IGAL — Coo TL\GT(R))
where
rt = {<t01 Z) |m e Z ;t; = £1}.
Therefore we get an isomorphism
HY (g, Koo, JGAE° @ My, ® C) = H' (L \M,, ® C) = HY(9(T'\H), M, ® C)

The inclusion iy sends the module jg)\ﬁ‘g" into a space of functions which are
' invariant under left translations. Therefore we get a homomorphism

Eis : IGAE° — Coo (T\SL2(R))
if we make it invariant by summation, i.e. for f € IGAR° we define

Eis(f)(@)= Y f(yz) (4.193)

rL\Sk(z)

Of course we have to discuss the convergence of this infinite series. We could
quote H. Jacquet: ”Let us speak about convergence later”, but here is a short
interlude discussing this issue.

Interlude: Here is the point: We twist our module, for any complex number
z € C we consider the induced module

IEAR Pl C Coo(TE\SL(R))
and again we write down the Eisenstein series. Now it an elementary exercise

to show that the map
a b
<c d) — (¢, d)

provides a bijection

I'H\SL(Z) = {(c,d) € Z x Z | (c,d) coprime }/{+1} = P (Q).

An element z € Sly(R) can be written as x = <é tz

> k with k € K. Then
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for f € IGAR°|p|*

flyw, 2) =
a b\ ([t wu
f((c d) <O t_l) k,Z) =
212 1+ (e —1\2y-1/2 %
f((( s T)dt ") (02t2+(cv+dt_1)2)1/2>)f(k(vg)k’z) =

(82 + (cv +dt™1)2) 7" 272 f(k(vg)k).-

Since |f(k(7)k)| is bounded the series

Eis(f,2)(x) = Y f(yx,2)

L\ (Z)

is converging if $(z) >> 0 and then it is also holomorphic in z. Selberg and
others showed that it can be extended to a meromorphic function in the entire
complex plane, it is now a special case of a theorem of Langlands [64]. If now
the function = — Eis(f, z)(x) is holomorphic at z = 0 then we do not care
about convergence and we simply define

Eis(f)(z) = Y f(yx) = Eis(f,0)().
rL\slz(2)

In our special case it is easy to see that the series is convergent at z = provided
we have n > 0 and this is the only case where we will apply this construction.
End interlude

This provides a homomorphism
Eis® : H'(g, Koo, I\ @ My ® C)) — HY(T\H, M) @ C) (4.194)

In ??? we wrote down a distinguished generator w,, € H*(g, Koo, IGAR" ®
M, ® C) and we define
Eis,, = Eis(wy)

Proposition 4.1.8. The restriction of Eis, to H'(9(T'\H), M, ® C) is the
class [Y"]



188CHAPTER 4. REPRESENTATION THEORY, EICHLER-SHIMURA ISOMORPHISM



Chapter 5

Application to Number
Theory

5.1 Modular symbols, L-values and
denominators of Eisenstein classes.

In this chapter we want to restrict to the case I' = Sly(Z) or I' = Sl (O) where O
is the ring of integers of an imaginary quadratic extension. We refer to section
4.1.1 then this means that ' = G(Z). Our coefficient systems will be obtained
from the modules M. We assume that we have d = 0 and hence n = 0 mod 2
in case A), and d; = dy = 0, n; = n; in case B). This has the effect that
AV =

We want to study the pairing

HYD\X, M%) x H\(D\X,d(T'\X),M,) — Z, (5.1)

5.1.1 Modular symbols attached to a torus in Gls.

In a first step we construct ( relative) cycles in C1 (I'\ X, M, ), C1(I'\ X, 9(T'\ X), M, ).
Our starting point is a maximal torus T/Q C G/Q and we assume that it is
split over a real quadratic extension F'/Q. Then the group of real points

T(R) = R* x R*

act on H and H and it has two fixed points r,s € PY(F). There is a unique
geodesic (half) circle ¢ s C H joining these two points. Then T'(R) acts tran-
sitively on C,. s = C. 5 \ {r, s}. We have two cases:

a) The torus 7'/Q is split. Then the two points r, s € P1(Q). Here for instance
we can take r = 0,5 = oo, then the geodesic circle is the line {iy,y > 0} and
the torus is the standard diagonal split torus.

b) Here {r, s} € P}(F)\P!(Q), then r, s are Galois-conjugates of each other.
Our torus T'/Q is given by a suitable embedding

189
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In case a) we can choose any reasonable homeomorphism [0, 1] — [0, co] -
for instance x — x/(1 — x)— and then we get a one chain

0:[0,1] = Crs =R U {0} U{c0},0(0) =r,0(1) = s € 9(H),

and for any m € M we can consider the image of o ® m € Cy(H) ® M in
Cy(T\H, 9(T'\H), M). By definition this is a cycle and hence we get a (relative)
homology class

[Cr,s ® m] € Hl (F\Hv 8(F\H)7M)\)a (52)

it is easy to see that it does not depend on the choice of o.

In case b) we have T(Q) — F*. Then the group T(Q) NT is a subgroup of
finite index in the group of units O = {eo} x {£1}, where € is a fundamental
unit. Hence

FT = T(Q) NI= {GT} X QT (53)

where er is an element of infinite order and p7 is trivial or {£1}. This element
er induces a translation on C, ;. The quotient C, ,/T'r is a circle. If we pick
any point x € C, s then [z,erx] C C,, is an interval and as above we can
find a o : [0,1] = [z,erx],0(0) = z,0(1) = erx, As before we can consider
the 1-chain 0 ® m € Cy(H) ® M. Its boundary boundary is the zero chain
{z} @ m — {epz} @ m. If we look at the images in Co(I'"\H, M) then

O(c@m)=0(0)®(m—erm) =1 ® (m — erm) (5.4)

Hence we see that o ®@m is a 1 -cycle if and only if m = ezm and hence m € M7,
We have constructed homology classes

[Cr.s @m] € Hy(T\H, M,) for all m € M5 = M7 (5.5)

5.1.2 Evaluation of cuspidal classes on modular symbols

The following issue will also be discussed in greater generality and more sys-
tematically in chapter 8.2.1.

We start from a highest weight A = n~y for simplicity we assume n to be even
and d = 0. Then A = \V, we consider the two modules M and Mg\ Then we
have the pairings -

HY(D\H, M) x Hy(T\H, M,) - Z
(5.6)
HYT\H, M%) x Hy(T\H, 9(T'\H), M,) = Z

These two pairings are non degenerate if we invert 6 and divide by the torsion
on both sides. (See [book]).
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We have the surjective homomorphism H}(I'\H, ./\;lg) — H}((T\H, MbA) and
over a suitably large finite extension F//Q we have the isotypical decomposition

H ((T\H, M} ® F) = @ H!("\H, M}, ® F)(ry) (5.7)

where the 7y are absolutely irreducible. (See Theorem 5.7, of course here it
does not matter whether we work with My or MK) . We choose an embedding
t: F — C, in section 4.1.11 we constructed the isomorphism

FL(wl) : W(ns) ©r, C — H (D\H, M} @ F)(‘ny) (5-8)

The space W(my) is a very explicit space. Since we want to stick to the case

Ky=K ](CO) it is of dimension one and is generated by the element
hir’]? = HhL’O € HW(?TI,) where h;;o(e) =1 (5.9)
p P

Now we want to compute the value
< FHH(RE), Cr s @m) > . (5.10)

here we assume that the torus is split, i.e. 7, s € P}(Q). Then this expression is
problematic. The argument C;. ; on the left lives in the relative homology group,
hence the argument on the right should be in H}(I'\H, M,, ® C). Of course we
can lift the class F7} (wz)(h;ﬁ?) to a class

e~

Flwh)(hky) € H(T\H, M,, © C).

Then

< Flw! x ht?), ¢ @ m >

makes sense, but the result may depend on the lift. We have

Proposition 5.1.1. Ifd(C,. ,@m) gives the trivial class in Ho(d(T\H), M&C)

then < FHwi)(hE?),Crs @ m > does not depend on the lift, i.e. the value
< ]:11 (wi)(h;[rfo)v Crs ®m > is well defined.

Proof. This is rather clear, we refer to the systematic discussion in 6.3.9. O

Now we compute the value of the pairing. We realised the relative homol-
ogy class by a M valued 1-chain ¢ @ m. The cohomology class F{ (w!)(h1?)

is represented by Fl(w! x h;rr’fo ). (See 4.95.,8.4). We consider the pullback

o* (FU(w! x hjr;))), since F!(w! x h;&?) is rapidly decaying if ¢ — 0 or z — 1
this gives us a 1-form with values in My ® C on the closed interval [0, 1].
We claim - under the assumption [9(C,. s ® m)] = 0-that

1
< FL(wh(RE)), Cr s @ m >= /0 < o*(FHw! x hE0),m > . (5.11)
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We have to be a little bit careful at this point. Of course our assumption
implies that the integral class [0(C). s@m)] € Ho(O(T'\H), M) is a torsion class,
Let 6, s(m) be the order of this torsion class, hence we can write

8r.5s(m)0C,. s @ m = dc,. s with ¢, s € C1(9(T\H, My). (5.12)

This 1-chain lies in the boundary of the Borel-Serre compactification (see sec-
tion 1.2.7). We consider the special case that T is the standard split diagonal
torus, this means that {r,s} = {0,00}. We can pull the cycle 6, s(m)C, s ®
m — ¢ s into the interior I'\H by a simple homotopy, this means we replace it
by 6,(m)[iyy ", iye] ® m — 3,.(m)(yo) where yo >> 1 and 8, 5(m)(yo) is the
1-chain ¢, s on the level yg. Then

0r,s(m) < FL(WD)(RL)), Crs @ m >=< FLWI)(RLY), 6,5 (m)iyg ' iyo] @ m — ¢ s (yo) > -
(5.13)

where now the value on the right hand side is an integral over the truncated
cycle. Since the differential form F} (WD(hir,?) is rapidly decreasing if yy — oo we

get s (m) < J %(WI)(hIrfo)a Crs@m >= li_r>n <Fi (wz)(hir7?)76T73(m)[iyal7iy0]®
Yo o0
m>.

We use the above identification [0,1] = [0, 00] and our 1- chain is given by
the map

J:[O,oo]%H:tr—)((t) ?)itiGH, (5.14)

especially 0(0) = 0 and o(c0) = ¢oo. The group T(R) acts transitively on the
open part Cp jo. This action can be used to trivialize the tangent bundle. The
tangent space at ¢ € H is identified to the subspace p C g (see 4.1.11) and %
is a generator of the tangent space of Cp i at one. Using the translations by
T(R) we get an invariant vector field on Cp jo0. If we identify Cp ;00 = Rso, an
easy calculation shows that this vector field is t% = D*.

Now an easy calculation (See 8.4) shows that ( here ey is the identity element

in G(Ay))

el Qen=nm((’y rean () V) e

and our integral in the formula above becomes

> 78 0\ 1, i Hy oy [t 0O dt
[T <oy Pty 1) enms o 6
Our formulas in 4.1.11 give

WL(g) = é(%m®(X—Y®i)”ii_n_2®(X+Y®z‘)" (5.16)

this is an element in DF ® M. We apply F* to wl (1) x hi:?) and evaluate at

((é (1)) ,er). Applying F' means that we have to sum over a € Q* but since
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hi;)?) is the Whittaker function attached to the unramified spherical function
only the terms with a € Z can be non zero. Hence get

1 at 0 ~ at 0
3 (v )@ (X =Y @d)" £ ¢ af )® (X +Y ®4)"h0(a)
8 ZZ w2l ( 1) 2 (0 1)

We have seen that inﬁ((%t ?)) = 0 if at < 0 and 1/~)n+2((_(;lt (1)>) =

1;_”_2( (%t (1)>) and therefore our Fourier expansion becomes

% Zzﬁnm((%t ?)) (X -Y@i)"+i"(X+Y ®i)")hi%a)  (5.18)

pal (t; (1)>)((X Y @)X +Y ®6i)") =
(5.19)

n

Z (n)tg’—l/Xuyn—V(in-i-l/ + 7;_”)7
v

v=0

we remember that n is even, then the last factor is equal to i =*((—1)2 ¥ £ 1).
and this is 7" times 2 or 0 or -2, depending on the choices of signs and the
parity of § and v. The elements e, = X”Y" ™" form the dual basis to the basis
(n V) X" ”Y” of M)\, this implies: If we choose m = e, _, in our expression

above then

< m((tg1 ?))((X Y @i)"+i"X +Y @i)"),m>=t3"Y({"V £i )

(5.20)
and hence we have to compute
e R e 0\, n_ dt
/ Z¢n+2 ( 1>)t YR (a) (5.21)
v t 0 241 —27t :
We remember 1, 12( 01 ) = tztle , we exchange summation and
integration and after some innocent substitutions we get
‘n4-v + v o) tnfqul dt oo hir a CL%
: : / Y iy (@)a® (5.22)
8 0 (27T)"_V+1 t a?

a=1
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We refer to the discussion of the L -function attached to 7y and get

o yn—v+l gy o0 h;fr v(a)a% .
| G T e =AM mnt1-p) (5.23)
0 a=1
Of course some question concerning convergence have to be discussed, for
this we refer to the proof of Theorem 4.1.7.

In the case that v # 0,n we know that 0(Cp o ® X" ¥Y") is a torsion
element in H°(9(T'\H, M) and therefore the value of the integral is also the
evaluation of the cohomology class Fi (w!)(h1:?) on a integral homology class.
we get

Y Y

< FHw (M1, Cp oo @ XYY ™7Y) >= <

coh
o) A(mn+1-v) (5.24)
In the factor in front on the right side we have e = +1, this factor is zero unless
we have e = (—1)2 7" (see 4.152) and then it is simply +1.
If the class number of Op is one we defined the periods Q(ex ), (see 4.1.11)
we then know that

1 14 -
— hi0) e HY(D\H 2
Q(EXﬂ'f)J:l(we)( ﬂ'f)e ( \ 7M®OF) (5 5)
and hence we can conclude for v # 0,n
do 00(611) ;
AR 1-— o 5.26
e x 1) (myn+ v) e Op (5.26)

If the class number is not one we have to interpret Q(e x 7) as section in the
sheaf of periods and Op has to be replaced by the monoid of integral ideals in
Op. Notice that the term dg oo (e,) has only prime factors < n. We will improve
this term after the following discussion of the cases v = 0,v = n.

This argument fails for v = 0,n because 9(Cpco ® X™) =00 @ (X" —Y") is
not a torsion class in Ho(I\H, M) (See section 3.2.3). We apply the Manin-
Drinfeld principle to show that the rationality statement also holds for v = 0,n
but we will get a denominator.

We pick a prime p then we know that the class [0(Cp,.c®X™)] is an eigenclass
modulo torsion for T, i.e.

T,([0(Co .00 @ X™) = (p" T + 1)[0(Co.00 @ X™)] (5.27)

This implies that (T}, ([Co,c0 ® X™]) — (p" T +1)[(Co,00 ® X™])) is a torsion
class, hence we can apply proposition 5.1.1 and get that the value of the pairing
is equal to the integral against the modular symbol. If we exploit the adjointness
formula for the Hecke operator then we get

< Tp([Co00 ® X™]) = (0" + D[(Co,00 ® X)), Fi (] @ hED) >
= [,7(< Cooo @ X", Fi (W] @ Tp(har,)T0) > (5.28)

(P 1) < Cooo @ X™, Fl(w]) @ ((h10) >)) %
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We have T, p(h};’?) = aphir’f where a, € Op and hence we get

< Tp([Cooo ® X™]) — (0" + 1)[(Co00 ® X™]), Fl(wl @ hE0) >
(5.29)
= (ap — (P + 1)A(mp,n + 1)

It is again the Manin-Drinfeld principle that tells us that for almost all primes
p the number a, — (p" ' + 1) # 0. Let (Z(n)) be the the ideal in O generated
by these numbers. of these numbers. We will see (Theorem 5.1.2) that

(numerator({(—1 —n))) C (Z(n)) (5.30)

Ribet gives an argument in [77] that yields even equality.

Now we can conclude: Forv =0,n+1
Z(n)

coh o
er g A mn+1- 1) €O (5.31)

We want to have an estimate of the denominator ideal of
Qe x mp) AP (m,n +1—v)

for all values of v. For v = 0,v = n we have the estimate Z(n). For the
other values of v we have the Jpoo(e,), but we can do much better. No-
tice that this denominator ideal is an ideal in Op. We pick a prime p < n
which then may divide o0 (e,). We work locally at p and replace Z by Z,
the local ring at p. It follows from proposition 3.3.1 that for 0 < v < n the
torsion element [0(Co oo ® e, )) is annihilated by a sufficiently high power of
the Hecke operator 7. Hence we see that 7,""(c) can be lifted to an element

—~—

T(c) € Hl(a(f‘\ﬂ-ﬂ),/\;l"A ® Z(p)). Hence we can lift T;"(Co o ® €,)) to an
element T77*(Cp,o0 @ €))) € Hy(D\H, M} ® Z(;)). We know that
< FHwhH(rL), T (Co.0o @ €))) € Op @ Zy. (5.32)

Again we can use the adjointness property of T}, and we get

m , 7Tf(jj )m co
7y (Tp)™ < Fll(wi)(hjr;)v (Coo ®ey))) >= Q(TPW)A Mmn+1—v)€Op ®Zg)

(5.33)

We consider the ideal n(p, v, 7s) = (d0,00(€v), 75 (1Tp)™) C OF ® Z(y,). This ideal
may be much larger than (do,oc (€,). We put n(v,7¢) =[], n(p, v, 7¢) for v # 0,n
and for convenience n(n) = n(0) = Z(n)

Then we get the final result:

Theorem 5.1.1. For any m¢ which occurs in (5.7) and any v =0...n the ideal

n(V7 7Tf) coh Tn — v
Aer o (m,n+1— 1)) (5.34)

is an integral ideal in Op. The primes p dividing n(v,7y) a lie over primes p < n.
Furthermore these primes are not ordinary for my, i.e if p divides n(v,7y) then
m¢(Tp) =0 mod p.
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These rationality results go back to Manin and Shimura, In principle we may
say that also the integrality assertion goes back to these authors, but here we
have to take into account the fine tuning of the periods. (Deligne conjecture?
Later if we speak about motives)

It is clear that this compatible with the action of the Galois group Gal(F/Q),
for o € Gal(F/Q) we have

1

1
U(Q(e X Tf)

coh _ _
A (mn+1—-v)) 7@(6)(7’[']")

A (T n+1—v))  (5.35)
There is still a slightly different way to look at the theorem above. For each
choice of € = + we can look at the array of numbers

(AP (m,n+1—v)),... (5.36)

}V:O,...n;(fl)%fuze
Since we may assume that n > 10 it is easy to see that not all of the entries
entries can be zero, hence we can project the arrays to a point A(e, 7y) in the
projective space P4en) (C). Then a slightly weakened form of our results asserts

Ale,mp) € PUE(F) = PUm(Op) and o(A(e, 7)) = A(a(e,75)))  (5.37)

In this formulation we do not see the period. But now we can fix the period
as a section in the period sheaf: We require that the arrays of ideals

11(1/, 7Tf)

coh .
Q(exwf)A (myn+1—-v),...}

L. (5.38)

u:O,...n;(fl)%fl':e

is an ideal of integral and coprime ideals. This period is not necessarily equal
to our period we defined earlier, but they may only differ at primes p dividing
‘ﬂ(l/, 7Tf).

We pay so much attention to the careful choice of the periods because we
conjecture that the factorisation of the numbers gr2"tx ((:Xﬁff)ACOh(ﬂ n+1-v)) has
influence on the structure of the integral cohomology of some other groups. We
expect that prime ideals p C O which divide an ideal & - ((”X“ff)ACOh(W n+1-v))
will also divide the denominator of an Eisenstein class on the symplectic group.
A prototype of such an assertion has been discussed in [40]. We will resume this

discussion in section 8.3.5.

In the following section we discuss another ( simpler ) example,, where we
see the relationship between divisibility of certain L-values and denominators
of Eisenstein classes.

5.1.3 Evaluation of Eisenstein classes on capped modular
symbols

In the following we consider cohomology with coefficients in M,,. We have seen

that

H'(P\H, M3 ® Q) = H} ([\H, M} ® Q) ® QEis, (5.39)
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where Eis,, is defined by the two conditions
r(Eis,) = [Y"] and T, (Eis,) = (p"** + 1)Eis,, (5.40)

for all Hecke operators T}, in our special situation it suffices to check the second
condition for p = 2. In section 7?7 we raised the question to determine the
denominator of the class Eis,, i.e. we want to determine the smallest integer
A(n) > 0 such that A(n)Eis, becomes an integral class.

To achieve this goal we compute the evaluation of Eis, on the first homology
group, i.e we compute the value < ¢, Eis, > for ¢ € H;(I'\H, M, ). We have the
exact sequence

Hy (0(P\H), M) — Hy (T\H, M,) — Hy(D\H, d(T\H), M, ) — Hy(8(T\H), M,)

(5.41)

It follows from the construction of Eis, that < ¢, Eis,, >€ Z for all the elements
the image of j. Therefore we only have to compute the values < ¢,,Eis, >,
where ¢, are lifts of a system of generators {c,} of ker(¢).

In our special case the elements Cj o ® e,, where v =0,1...,n form a set
of generators of Hy(T'\H, 9(T'\H), M ). (Diploma thesis Gebertz). We observe:

The boundary of the element Cp oo ® €, (= £Co.oo @ €y) is an element of
infinite order in H°(O(T\H), MbA)’

The boundary of an elements Cp oo ® ¢ with 0 < v < n are torsion elements
in HO(9(I'\H), M?), This implies
Proposition 5.1.2. The elements Cy @ m € Hy(I'\H, 0(I'\H), ./\;lg) with
0(Co,00 ® m) =0 are of the form

CZCO’OO(X)(

v=n-—1
aye)); witha, €7

—

v

Now it seems to be tempting to choose for our generators above the Cj o ®e,/,
but this is not possible because for §(Cp o ®e,/) is not necessarily zero, it is only
a torsion element. So we see that it is not clear how to find a suitable system
of generators.

To overcome this difficulty we use the Hecke operators. If we want to de-
termine the denominator A(n) we can localize, i.e. for each prime p we have
to determine the highest power p®(™P) which divides A(n). As usual we write
d(n,p) = ordy(A(n)). We replace the ring Z by its localization Z,) and re-
place all our cohomology and homology groups by he localized groups. In other
words we have to check we have to find a set of generators {...,é, ...}, C
Hy(9(D\H), M5, @ Zp) and compute the denominator < é,, Eis, >€ Z).

It follows from proposition 3.3.1 that for 0 < v < n the torsion element
d(c) = 0(Co.oo @ (/="' a,eY)) is annihilated by a sufficiently high power of

v=1
the Hecke operator 7" and hence we see that 7" (c) can be lifted to an element

—_~—

T (c) € Hy(O(T\H), M ® Z(,)). Now

—_~—

m : o m . _ n+1 m :
<Ty(c), Eis, >=< ¢, T,"( Eis,) >= (p""" +1)" < ¢, Eis, > (5.42)
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—~

and hence ord,(< T} (c), Eis, >) = ord,(< ¢, Eis, >). Hence we get

Proposition 5.1.3. If v runs from 1 ton —1 and if T;*(Co,c @ €) is any lift
of T (ey) then

d(n,p) = — min(min( ord,(< T];"(C/’O—’:QO ey), Bis, >)),0)

Proof. This is now obvious. O

5.1.4 The capped modular symbol

Therefore we have to compute < 7"(Co o ® €,), Eis, >). At this point some
meditation is in order. Our cohomology class FEis, is represented by a closed
differential form Eis(w,) (See (??7)) and this differential form lives on I'\H
a hence provides a cohomology class in T'\H. But we know that the inclusion
provides an isomorphism

HY(T\H, M%) — H*(T\H, M})

and since T (Co 00 ® €,) € Hy(I'\H, M, ) we can evaluate the cohomology class

Eis(wn) on the cycle. But we want get this value < 7" (Co o0 ® €,), Eis, > by
integration of the differential form against the cycle. This is problematic because
the cycle has non trivial support in J(I'\H), and on this circle at infinity the
differential form is not really defined.

There are certainly several ways out of this dilemma. The Borel-Serre bound-

ary is a circle I'oo\R where I'no = {£Id} x {72} and T = <(1) 1) The cycle

is the sum of two 1-chains:
T;"(C/o,\oo/@) ey) = Cooo @My, + [i00, Taoioo] @ P,
(recall definition of Borel-Serre construction from earlier chapters) where
0(Cooo ®@my) =00® (My —wmy) +00® (1 —Teo)P, =0

—_~—

One possibility is to deform the cycle T;"(Cp o ® €,) and "pull” it into the

0 1
RZ, to H to a map from [0, o0] — H. We choose a sufficiently large tq € RZ,
and restrict Cp oo to [tal, to] we get the one chain Cj  (to) @ m,. The boundary
of this 1-chain is 9(Co,c0(to) @ my,) = to ® (M, — wm,, ). Now we can do at this
level the same thing as what we do at infinity we get a 1-cycle

. . . . . t .
interior I'\H. Recall that Cy  is the continuous extension of ¢ — ( 0) 1 from

CO,oo(tO) Qmy, = CO,oo(tO) @ my + [t07 TootO] ® P,

This 1-cycle clearly defines the same class as T"(Cp o ® €,) and since it is a
cycle in C1(T'\H, M) we get

—_~—

< T];”(C(),oo ®e,), Eis, >= Eis,, (5.43)

/Co,oo(to)®mu+[t07Tto]®Pu



5.1. MODULAR SYMBOLS, L-VALUES ANDDENOMINATORS OF EISENSTEIN CLASSES.199

The value of this integral does not depend on ty and we check easily that for

both summands the limit for ¢y — oo exists. We find that

—_~—

< T;;W(C(]’oo ® 6},/)7 Eis(wn) >=

1
I < T (Co,00 @ ey), Eis, > a4 tlim < [ito,ito + ] @ P, Eis,, > dz

0 00— 00 0
(5.44)

For the first integral we have
> m v . dt n+1lym > 4 i dt
< T (Come ®ey), ElSn>?=(1+p ) < Cpoo®e,, ElSn>7
0 0

and (handwritten notes page 49)

((=v)¢(v=n)

Ty (5.45)

/ < Co.0o ®e), Eis, > a _
O ’ t
remember this holds for 0 < v < n.

For the second term we have to observe that it depends on the choice of
P,. We can replace P, by P, +V where VI = V. (This means of course that
V =aX") Then [V] € H°((I'\H), M) and

1 1

lim < [itg,ito+x]®(P,+V), Eis, > dx = lim < [itg,ito+x]@P,, Eis, > dz+ < V,w, > .

to—00 0 to—00 0

Therefore the second term is only defined up to a number in Z,) but this is ok
because we are interested in the p-denominator in (5.44).

We have to evaluate the expression < [itg, ito+ 2| ® (P, + V), Eis,, > . Using
the formula (8.4) we find

< [ito, ity + 2] ® (P, + V), Bis, >=< (tg gf) Py, EiS(wn)(E”((t(;) f) ”

(5.46)

We know that for ¢ty >> 1 the Eisenstein series is approximated by its constant
term, i.e.

Eis(w,) (B, )( <t§ f)) = 13"V + O(e 1) (5.47)

On the other hand we can write P, (X,Y) = Zp,(f)X"_“Y“ with pLV) € Z.
Then

t V) wvn
(8 "’1”) P, =tpl) X" 4. (5.48)

and

<(§ e mseaEa(§ D)=l voen G
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and hence we see that the limit exists and we get

1
lim | < it ity + 2] ® (P, + V), Eis, > dao =p{”) = P,(1,0)  (5.50)

to—o0 0
and hence we have the final formula

< Ty (Coe @ ), Eis, >= W

Therefore we have to compute P, (1,0) mod Z,). Recall that for any v, v #
0,n we have to choose a very large m > 0 such that the zero chain 7" (e, ) is
homologous to

+ Py(l, O) mod Z(p). (551)

Tm(eu) ~ {OO} ®L,= {OO} ® (1 - T)QV (5'52)

p

with @, € M,,. Then we find P, = Q, £ Qpny1—0-
Hence we have to compute T;”(el,). A straightforward but lengthy compu-
tation yields

Z(p) if(p—l)*y-i-l
1

p:?i + Z(p) else

Q.(1,0) € { (5.53)

Now we are ready to compute d(n,p) , it is the maximum over all v

C(_V)C(V - n) + (QU(17 0) + Qn—u(L O)) mod Z(p)).

d(n,p,v) = — ordp(w .
5.5

We analyse this expression. We exploit the old theorems of Kummer and
of von Staudt-Clausen. For an odd positive integer m the number ((—m) is a
rational number. The theorem of von Staudt-Clausen asserts

{q7mez@ ifp—1//m+1

¢(—m) + pmﬁ € Zp) ifp—1m+1 (5.55)
p—1

We distinguish cases.

I) We have (p — 1) fn+2, then ord,(¢(—1—n)) = ord,(Numerator{(—1—
n)), and p — 1 can divide at most one of the two numbers v +1orn+1—v.

Ta) Let us assume it divides neither of them. Then in (5.54)

d(n,p,v) = — ordp((C(=¥)C(v = n)) + ordp(¢((~1 —n)) (5.56)

a—1

Ib) Alternatively we assume that p — 1|v + 1 we write v + 1 = p®~ iy,
with p®~1||v + 1. Then the p-denominator of ((—v) is p® and v —n = —n — 1
mod (p — 1)p®~t. The Kummer congruences imply

C(v—n)=C((-n—1)+p*Z(v,n); with Z(v,n) € Z, (5.57)
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and then mod Z(p)

S 4 (Qu(1,0) + Qny(1,0)) =
(5.58)

C(=)(1+p* 241 + Qu(1,0) = ((—w)p Ak
This implies that
d(n,p,v) = ord,(Numerator(¢(—1 —n)) — ord,(Z(v,n),

the factor in front is a unit.

IT) We have p — 1jn + 2. Then p does not divide Numerator({(—1 — n))
and hence we have to prove d(n,p,v) = 0 for all v. This is obvious if p —
1 does not divide nu + 1 and hence also does not divide n + 1 — v.

Therefore assume p — 1|v + 1. We write v+ 1= (p— D)ap®tn+1—-v =
(p — V)yp®~! with @ > 0,b > 0 and z,y prime to p. We assume a < b and
compute

C(1—(p—Dap* 1)1 = (p—Dyp*")
C(1—(p—1)pr=Y(x + ypb~))

For a value ((1 —m) with p — 1|m we write m = (p — 1)xp*~! with (z,p) = 1.
We apply again the von Staudt-Clausen theorem
1
Cl=m)=C1—(p—Dap' = o + Z(x) where Z(x) € Z)

In our case this gives -let us assume a < b - for our expression above

—Gpr 2@~ + Z() (@ +yp" ) (5 + 0" Z(2)) (5 + Z())

*m + Z(z +ypb=a) 1 +p*(x + yp*=*) Z(x + p>—y)
(5.60)

The denominator is a unit, we need to know it modulo p®, the numerator is a
sum of eight terms we can forget all the terms in Z,). Then the above expression
simplifies

i 1 pa—sz(I)

w e T (5.61)
1+ paZ(z +yp*=*)

1

We want this to be equal to ﬁ Hence we have to verify the equality

Tp®”
1 1 p*~lxZ(z) 1 1 b
-+ 4 = (= 4+ 14 p*zZ(z+yp’~* 5.62
L (R R ER I S Y

and this comes down to

7 7 b—a
a=v? y(x) _ b ?Z@ ) —Z/yp ) mmod 2, (5.63)

p
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and this means
Z(x)=Z(x +yp"*) mod p*~*

and this congruence is easy to verify.
Basically the same argument works if « = b. Then it can happen that x4y =
0 mod p. Then we have to write z + y = p°2. Then (5.60) changes into

(—r + Z@)(—55 + Z() 2L+ 9 2(2)) (5 + Z(y))
7ﬁ +Z(2)) T 1+ patezZ(z) . (5.64)

We ignore the denominator then the only non integral term is

(z+ )1 1 1 1
€T —_ =
Y ryp*  xp®  yp®

We see that in case p — 1 | n + 2 the prime p does not divide the numerator
of ((—1 — n) and that the prime p does not divide the denominator A(n).

If p—1 fn+ 2 then p must be an irregular prime. We look at the maxi-
mal value of d(n,p,v) in (5.54), this means we look for the minimum value of
ord,((((=v)¢(v —n)) for v = 1,3,... 5. We claim that this minimum value
is actually equal to zero. Now it is extremely likely that this is true, because
simply too many random integers have to be divisible by p. But as always it is
not easy to prove.

For our given prime p the index of irregularity of p is the number of even
numbers k with 2 < k < p — 3 such that p|¢(1 — k) = %, it is denoted by i(p).
Probabilistic considerations suggest that i(p) = O(log(p)/loglog(p)), but this
can not be proved at the present time. (Again a Wieferich dilemma). Therefore
it seems to be very plausible that always i(p) < %. Then not all of the %
numbers {(—v)((v —n) can be divisible by p. The above assertion that i(p) < %
is certainly true for all primes p < 163577833. (See [13]). In the same paper
the authors assert that for the the above set of primes the largest the index of
irregularity i(p) < 7 and (32012327) = 7.

There is a way out of this dilemma. In his paper [14] L. Carlitz proves a
very crude estimate for the index of irregularity. This estimate says that

p+3 log(2)p—1
4 log(p) 4

i(p) < (5.65)

and this implies that i(p) < % — 2 provided p > 100.

If we now assume assume n > p then we see that not all the % numbers

¢(=v)¢(v —n) can be divisible by p and hence we proved d(n, p) = ord,(¢(—1—
n) and hence the theorem below under this assumption.

denomEis

Theorem 5.1.2. IfI" = Sk(Z) then the denominator of the Eisenstein class in
HY(T\H, M&) is the numerator of {(—1 —n).
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Proof. We have to remove the assumption p < n. We use Hida’s method of
p-adic interpolation, we refer to the approach in [39]. In section 3.3.10 we
explain how the fact p°||A(n) is reflected in the structure of the Hecke-module
Hlord(F\H,./\/l"A ® Z/p°Z). In [39] we prove that we have an isomorphism of
Hecke modules
H oy (C\BL M}, © Z/p°Z) == H g (T\H, M, ® Z/p°Z)

provided we have A = X mod p° i.e. n =n' mod p°. Hence we can replace n
by an n’ > p and apply the previous argument. O

Referenz auf Haberland

I consider this theorem as one of the main results in this book. I hope
that it is an avatar of a class of more general results which establish a con-
nection between the prime factorisation of certain special values of L-functions
to denominators of Eisenstein classes. These assertions are mostly conjectural.
Examples for these conjectural statements will be discussed in Chapter 9.

Of course we can generalise the above theorem if we pass to congruence
subgroups of Gly(Z), then the special values of the (— function have to be
replaced by special values of Dirichlet L functions.

Another generalisation where the above method might lead to some success
is the case of Hilbert modular varieties, i.e. G/Q = Rp/g(Gl2/F) and F/Q a
totally real field.

The Deligne-Eichler-Shimura theorem

In this section the material is not presented in a satisfactory form. One reason is
that it this point we should start using the language of adeles, but there are also
other drawbacks. So in a final version of these notes this section will probably
be removed.

Begin of probably removed section

In this section I try to explain very briefly some results which are specific
for Gly and a few other low dimensional algebraic groups. These results con-
cern representations of the Galois group Gal(Q/Q) which can be attached to
irreducible constituents Il in the cohomology. These results are very deep and
reaching a better understanding and more general versions of these results is
a fundamental task of the subject treated in these notes. The first cases have
been tackled by Eichler and Shimura, then Thara made some contributions and
finally Deligne proved a general result for Gly/Q.

We start from the group G = Gly/Q, this is now only a reductive group
and its centre is isomorphic to G,,/Q. Its group of real points is Gl(R) and
the centre G,,(R) considered as a topological group has two components, the
connected component of the identity is G,,(R)(®) = RX,. Now we enlarge the
maximal compact connected subgroup SO(2) C Glz(R) to the group Ko, =
SO(2) - G,,(R)(®). The resulting symmetric space X = Gly(R)/K is now a
union of a upper and a lower half plane: We write X = H, U H_.

We choose a positive integer N > 2 and consider the congruence subgroup
I'(N) C Gl2(Q)). We modify our symmetric space: This modification may look
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a little bit artificial at this point, it will be justified in the next chapter and is in
fact very natural. (At this point I want to avoid to use the language of adeles.)
We replace the symmetric space by

X = (Hy UH_) x Gl4(Z/NZ).

On this space we have an action of I' = Gly(Z), on the second factor it
acts via the homomorphism Gly(Z) — Glz2(Z/NZ) by translations from the left.
Again we look at the quotient of this space by the action of Glp(Z). This quotient
space will have several connected components. The group Glz(Z) contains the
group Sla(Z) as a subgroup of index two, because the determinant of an element
is £1. The element ((1) 01) interchanges the upper and the lower half plane
and hence we see

Gla(Z)\X = Gly(Z)\((Hy UHL) x Gly(Z/NZ)) = Sla(Z)\(H; x Glo(Z/NZ)),

the connected components of (H; x Glz(Z/NZ)) are indexed by elements g €
Gl3(Z/NZ). The stabilizer of such a component is the full congruence subgroup

F(N):{fy:((cl 2) la,d=1 mod N,b,c=0 mod N}

this group is torsion free because we assumed N > 2.

The image of the natural homomorphism Slp(Z) — Gla(Z/NZ) is the sub-
group Sly(Z/NZ) (strong approximation), therefore the quotient is by this sub-
group is (Z/NZ)*.

We choose as system of representatives for the determinant the matrices

to = (8 ?) ,a € (Z/NZ)*. The stabilizer of then we get an isomorphism

Sy = Gly(Z)\(H x Gly(Z/NZ)) == (D(N)\H) x (Z/NZ)*.

To any prime p, which does not divide IV we can again attach Hecke opera-
tors. Again we can attach Hecke operators

T

_ p" 0
T =T (0 1)’“(197“ 0>

0 1

to the double cosets and using strong approximation we can prove the recursion
formulae.

We consider the cohomology groups H®(Sx, My), H*(Sx, M,) and define
H (SN, M.,,) as before. This is a semi simple module for the cohomology.

The theorem 3 extends to this situation without change. We have a small
addendum: If denote by Z(N>X) € Q* the subgroup of those numbers which
are units at the primes dividing N. We have the homomorphism 7 : Z®:-%) —

(Z/NZ)*

On each absolutely irreducible component I1; the Hecke operators T(z,u.)
act by a scalar w(z) € Op and the map z — w(z) factors over r and induces
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a character w(Ily) : (Z/NZ)* — (Or)*. This character is called the central
character of 1.

The following things will be explained in greater detail in the class

Now we exploit the fact, that the Riemann surface I'(N)\X is in fact the
space of complex points of the moduli scheme My — Spec(Z[1/N]). On this
moduli scheme we have the universal elliptic curve with N level structure

&

b
My

On & we have the constant l-adic sheaf Z,. For i = 0,1,2 we can consider
the ¢- adic sheaves R'm.(Z¢) on My. We have the spectral sequence

Hp(MN X Q,Rqﬂ'*(Zg)) = Hn(g X Q,Z@).

We can take the fibered product of the universal elliptic curve
8(n) :(‘:XMN(‘:X XMNgﬂ)MN
where n is the number of factors. This gives us a more general spectral sequence

HP(My x Q, Ry o (Zg)) = H (EM™ x Q, Zy).

The stalk Ri7y (Z¢), ) of the sheaf Rimy .(Z,) in a geometric point y of

My is the g-th cohomology Hq(é'?s"),Zg) and this can be computed using the
Kuenneth formula

Hq(gé”))zz) ; @ Hal(gzﬁzf)®Ha2(gyvzf)"'®HQH(SZHZ[)’

a1,a2...,0n

where the a; = 0, 1,2 and sum up to g. We have H°(&,,Z;) = Z¢(0), H*(&,,Z¢) =
Z¢(—1) and the most interesting factor is H'(E,,Z¢) which is a free Z, module
af rank 2.

This tells us that the sheaf decomposes into a direct sum according to the
type of Kuenneth summands. We also have an action of the symmetric group
S, which is obtained from the permutations of the factors in £ which also
permutes the types. We are mainly interested in the case ¢ = n and then we have
the special summand where a1 = as--+ = a,, = 1. This summand is invariant
under S,, and contains a summand on which S, acts by the signature character
o : S, — {£1}. This defines a unique subsheaf R" 7. ,,(Z;)(0) C R" Ty n(Zy)
and hence we get an inclusion

HY (My x Q, R"Tu o (Z4)(0) = H"HE™ x Q, Zy)

and we can do the same thing for the cohomology with compact supports.
Now I will explain:
A) If we extend the scalars from Q to C then then extension of R"m, ,,(Q)(o)
is isomorphic to the restriction of M,, ® Qy to the etale topology.
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B) The Hecke operators T}, for p fN are coming from algebraic correspon-
dences T, C My x My and induce endomorphisms 7}, : HY(My®Q, R" 7. (Z¢)(7)) —
HY(My ® Q, R"my.n(Z¢)(c)) which commute with the action of Gal(Q/Q) on
the cohomology.

C) This tells us that after extension of the scalars of the coefficient system
we get

H'(My(C), Mn ® Q) — H'(My x Q, R"7..n(Qe)(0))
and this gives us the structure of a Gal(Q/Q) x Hr on H'(My(C), M,, @ Q).
D) The operation of the Galois group on H'(My(C), M,, @ Q) is unram-
ified outside N, therefore we have the conjugacy class @, Lfor all p /N as
endomorphism of HY(My(C), M,, @ Q).

Now we use another fact, Wthh will be explained in Chapter III. We also
can define a Hecke algebra #,, for the primes p|N, and hence we get an action
of a larger Hecke algebra

large ® H

and this algebra commutes with the action of the Galois group.

We now apply our theorem 2 to the cohomology H{' (My(C), M,, @ Qy), as
a module under this large Hecke algebra. Then the isotypical summands will
be invariant under the Galois group.

Theorem 4: a) The multiplicity of an irreducible representation
II; € Coh(Mn(C),M, 1,) is two.
b) This gives a product decomposition

H!l(MN((C)aMn Y L[) ; HHf ® W(Hf)a )

where Hyy, is irreducible of type Iy and where W (IIy) is a two dimensional
Gal(Q/Q) module.
The module W (Ily) is unramified outside N and

tr(®, [W(IL)) = (), det(@, ' [W(I1y)) = p" e (Il;) (p)

This theorem is much deeper than the previous ones. The assertion a) fol-
lows from the theory of automorphic forms on Gly and b) requires some tools
from algebraic geometry. We have to consider the reduction My x Spec(F,)
and to look at the reduction of the Hecke operator 7}, modulo p. I will resume
this discussion in Chap. V.

I want to discuss some applications.
A) To any isotypical component ITy we can attach an ( so called automor-
phic) L function

L(11;, 5) HL (7p, 8

where for p /N we define

1

Lmp,s) = 17 A(mp)p=* + prHiw(Ily) (p)p—2°
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and for p|N we have

if m,, is a Steinberg module

1
L(mp,s) = {117"“&1)(110(?)?5 e

This L-function, which is defined as an infinite product is holomorphic for
R(s) >> 0 it can written as the Mellin transform of a holomorphic cusp form
F of weight n 4+ 2 and this implies that

I'(s)

- 27®

A(IL, ) L(I1¢, s)
has a holomorphic continuation into the entire complex plane and satisfies a
funtional equation

A(TTy,s) = W(ITp)(N(ITy))* ' ="/ 2Ay,n + 2 — s)

Here W (IIy) is the so called root number, it can be computed from the ,
where p|N, its value is £1, the number N(II;) is the conductor of II; it is a
positive integer, whose prime factors are contained in the set of prime divisors
of N.

B) But we also can interpret an isotypic component as a submotive in
H"t1(£() x Q,7Z), this is the so called Scholl motive.

If we apply the results of Deligne in Weil II, which have been proved in the
winter term 2003/4, we get the estimate

|((A(mp))| < 2p" D/

for any embedding ¢ of L into C.
End of probably removed section

2.2.5 The /-adic Galois representation in the first non trivial case
Again we consider the module M = Mj4[—10]. We choose a prime £ and for
some reason let us assume ¢ > 7. Then we can consider the cohomology groups

HY(T\H, M /" M)
and the projective limit

HY (T\H, M ® Z;) = lim A (T\H, M/0"M).

Now it is known that the quotient space is the "moduli space” of elliptic
curves, this is an imprecise and even incorrect statement, but it contains a lot
of truth. What is true is that we can define the moduli stack S/ Spec(Z) of
elliptic curves, this is a smooth stack and it has the universal elliptic curve
& 55 S over it.

We can define etale torsion sheaves (M/ E”/\;l)et on this stack and we know
that

HA (S X spec(zy Q, (M/E"M) o) — HY(T\H, Myo/€" M).
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On these etale cohomology groups we have an action of the Galois group. We
denote this action by

P 2 Gal(Q/Q) — GUH(S X spec(z) Q, (M/E" M)er)). (5.66)

From Galois theory we get a finite normal extension K lﬁ") /Q which is defined
by Gal(Q/K(™) = ker(p™).

Using correspondences we can define Hecke operators T), for all primes p
they induce endomorphism on the etale cohomology and they commute with
the action of the Galois group.

This representation is unramified outside ¢, and this means:

The finite extension K én) /Q is unramified outside £.

By transport of structure we have the same projective system of Hecke x Galois
modules on the right hand side.

We recall our fundamental exact sequence, the Galois groups acts on the
individual terms of this sequence, we get projective systems of Galois-modules
and passing to the limit yields

pr: Gal(Q/Q) — GI(H (I\H, M ® Z;))

and

po: Gal(Q/Q) — Gl(Zeero).

The field K, =, Kén) defines the kernel Gal(Q/K,), the extension K;/Q
is unramified at all primes p # ¢. If p is a prime in Ok, which lies above then
the geometric Frobenius @, is the unique element in Gal(K,/Q) which fixes p
and induces x — P on the residue field O, /p. This element defines a unique
conjugacy class ®, in Gal(K,/Q).

Theorem(Deligne) For any prime p # £ we have

pa(®p) = p''1d

and

det(Id — p(®,)t|H (T\H, M @ Z)) = 1 — 7(p)t + p*'t?

This is a special case of the general theorem stated in the previous section
and it one of the aims of the subject treated in this book to generalize this
theorem to larger groups.

We conclude by giving a few applications.

A) The function z — A(z) is a function on the upper half plane H =
{#z|¥(2) > 0} and it satisfies

az+b
A
(cz +d
and this means that it is a modular form of weight 12. Since it goes to zero
if z =14y — oo it is even a modular cusp form.
For such a modular cusp form we can define the Hecke L-function

) = (cz + d)*A(2)
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o0

N I'(s) <= 7(n I'(s 1
L(A,S) = A(Zy)y Zy = (2;))5 Z ?is) = (2;))5 H 1— T(p)p_s +p11—2s

0 n=1

the product expansion has been discovered by Ramanujan and has been proved
by Mordell and Hecke.
Now it is in any textbook on modular forms that the transformation rule

A=) = 212a(2)

z

implies that L(A, s) defines a holomorphic function in the entire s plane and
satisfies the functional equation

L(A,s) = (=1)'?2L(A,12 — 5) = L(A, 12 — s).

This function L(A,s) is the prototype of an automorphic L-function. The
above theorem shows that it is equal to a "motivic” L-function. We gave some
vague explanations of what this possibly means: We can interpret the projective
system (M /€ M), as the (—adic realization of a motive:

M =Sym"(RY(r: € = 9))

(All this is a translation of Deligne‘s reasoning into a more sophisticated
language.)

It is a general hope that “motivic” L-functions L(M, s) have nice properties
as functions in the variable s (meromorphicity, control of the poles, functional
equation). So far the only cases, in which one could prove such nice properties
are cases where one could identify the "motivic” L-function to an automorphic
L function. The greatest success of this strategy is Wiles* proof of the Shimura-
Taniyama-Weil conjecture, but also the Riemann (-function is a motivic L—
function and Riemann‘s proof of the functional equation follows exactly this
strategy.

B) But we also have a flow of information in the opposite direction. In 1973
Deligne proved the Weil conjectures, which in this case say that the two roots
of the quadratic equation

% — T(p)x + ptt =0

have absolute value p''/2, i.e. they have the same absolute value. This implies
the famous Ramanujan- conjecture

7(p) < 2p"'/?

and for more than 50 years this has been a brain-teaser for mathematicians
working in the field of modular forms.
C) We consider the Galois representation

p: Gal(Q/Q) — GI(H (I\H, M ® Zy))

and and its sub and quotient representations

pr: Gal(Q/Q) — GI(H!(T\H, M ® Z;)), ps : Gal(Q/Q) — Gl(Zseqo).
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The representation py is the /— adic realization of the Tate-motive Z(—11)
(For a slightly more precise explanation I refer to MixMot.pdf on my home-
page). On Z,(—1) = H?(P* xQ, Z;) the Galois group acts by the Tate-character

Gal(Q/Q) — Gal(Q((e=)/Q) -2 Z

where Q(() is the cyclotomic field of all £"-th roots of unity (n — oo0). We
identify Gal(Q((e~)/Q) = Z;, the identification is given by the map z — (¢ —
¢®) and then a(x) = x~!. Hence the first assertion in Delignes theorem simply
says:

pPo = o't

We say a few words concerning

pr: Gal(Q/Q) — GI(H!(T\H, M @ Zy)).

It is easy to see that the cup product provides a non degenerate alternating
pairing

<, > HYT\H,M ® Zs) x H'(T\H, M @ Z;) — Z¢(—11)

and clearly for any o € Gal(Q/Q) we must have

< plo)u, plo)v >= a'(o) < u,v > .

This means we have det(p(0)) = a''(0) and we can ask what is the image
of Gal(Q/Q) in GI(H}!(I'\H, M ® Z;) = Gla(Z¢). We ask a seemingly simpler
question and we want to understand the image of

P mod ¢ Gal(Q/Q) — GI(H}(T\H, M ® Fy) = Gly(F,).

This question is discussed in the paper ” On ¢-adic representations and congru-
ences for coefficients of modular forms,” Springer lecture Notes 350, Modular
Functions of one Variable IIT by H.P.F. Swinnerton-Dyer.

Here we can say that the image of this homomorphism composed with the
determinant will be (F,)'* C F/. It is shown in the above paper that for
£ #£2,3,5,7,23,691 the image of the Galois group will simply be as large as
possible, namely it will be the inverse image of (F; ).

We can apply the Manin-Drinfeld principle and conclude that after tensori-
sation by Q, the representation p ® Q, splits

p® Q= p1 ®Qr® Quero(—11).
In section 2.2.3 we have seen that we have such a splitting also for the integral

cohomology, i.e. for the module H'(I'\H, M Zy) provided £ is not one of the
small primes, which have been inverted and ¢ # 691.
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From now on we choose ¢ = 691 and our coefficient system M. Then we
get a diagram of Hecke-modules

<— O

HO(O(T\H), Mo ® Z/(Z)
!

0 — HYD\H, My ®Z/IZ)
1
0 —  HND\H,My®Z/{Z) — H(T\H, Mo ®Z/IZ) — HY(O(\H), Mo @Z/NZ) — 0
1
0
(5.67)

We learned in the probably removed section that we have an action of Gal(Q/Q)
on this diagram and this action of the Galois group commutes with the action of
the Hecke algebra. The two modules HO(Q(T\H), M1o®Z/¢Z), H* (O(T\H), M1,®
Z/lZ) are isomorphic to Z/¢Z and a Hecke operator T}, acts by the eigenvalue
p'!' +1 mod ¢. The module H!l(F\H,./\;lm ®Z/Z) = Z/VZ ® Z/lZ and the
Hecke operator acts by the eigenvalue 7(p).

The Galois group acts on HO(9(I\H), M10®Z/(Z), resp.H' (O(T\H), M1o®
Z/UZ) by o resp. a; ', here ay is the reduction of the Tate character mod /.
We also know that we have the inclusion

j: L)L) (—11) — HYT\H, M ® Z/(Z), (5.68)

We want to understand the two 3 dimensional Galois modules H,"(T'\H, M ®
7,/0Z) and H*(T'\H, M10®%Z/¢7Z), There is perfect pairing with values in Z/¢Z(—11)
between them, hence we have to study only one of them say Hl(F\H,Mlo ®
ZJlZ), .

From the above considerations it follows that we a basis e, eg,e_1 of this
module such that a o € Gal(Q/Q) acts by the matrix

Oqg(o’)ill ’LL12(O') ulg(d)
plo) = 0 1 ugs (o € B(Z/¢7) (5.69)
0 0 ap(o)~H

We want to describe the image of the Galois group in B(Z/¢Z). Let T (Z/(Z)
be the torus

O O =+
o = O

0
0|:tez/zx (5.70)
t

and let U(Z/¢Z) be the unipotent radical in B(Z/¢Z). Then I claim
The image of the Galois group is T (Z/0Z) x U(Z/{Z)

Here are arguments why this must be the case.
1) If p is a prime where the bottom line exact sequence in (5.69) does not
split under the action of the Hecke operator T}, then u;3(®,) # 0. This follows
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from the congruence relation *®, + ®, = T, and the fact that the corresponding
matrix entry tgg) for T}, is # 0.
2) Let us assume that usz(c) = 0 for all ., then

044(0')711 ’LL12(O') Ulg(U)
o= o 1 0 | eB@in), (5.71)
0 0 ap(o)~ 1t

We look at the subgroup G2 of those o which satisfy ui3(c) = 0, this is either
TONZ/0Z) or TN (ZJEZ) x Uyo(Z/¢Z). Then it becomes clear that the image
Gal(K1,/Q) of the Galois group will be G12 x Z/¢Z. But his implies that K ¢
contains a cyclic extension of Q of degree ¢ which is unramified outside ¢. But
such an extension does not exist.

Hence we conclude that for any 4,j we find elements o with u; j(o) # 0.
Since we can conjugate by elements in T(*)(Z/¢Z) the claim follows.

By definition K él) /Q is the normal extension of Q such that
Gal(K!" Q) = TW(2,/07) « U(Z/0Z), (5.72)

this extension is unramified outside ¢. It contains the field of ¢-th roots
of unity, ie. Q(¢) C K{". The Galois group Gal(K"/Q(¢)) = U(Z/(Z).
This group has a center Ui3(Z/{Z) = Z/¢Z, this is also the center of the
larger group Gal(Kél))/Q). We define the subfield Kél’o) by requiring that
Gal(K"?/Q) = Gal(K" /Q()))/Uss(Z/¢Z). Then K" /Q) is the compos-
ite of two cyclic extensions Kél’!)/(@(g)) and Kél’a)/(@((g)). These two exten-
sions have the faithful two dimensional representations

pr: Gal(K\MY/Q) — GI(HN(T\H, M ® Z,/(Z.))
1 u23(0')
0 —1

o po) = (o)

1

(5.73)
po: Gal(KM? Q) — GIHY(T\H, M ® Z/(Z) 7./ T.e,)
Ckg(J

oo = (1) 00

The extension K| él’!) /Q(¢e)) is unramified, it is the extension which has been
constructed by Ribet in [77].

This unramified extension extension is also discussed in [44]. At the end
of that paper we raise the question for a decomposition law. This means that
for any prime p we want to find a rule to determine the conjugacy class of
p(®,), p1(Pp) ... This clear if p Z 1 mod ¢. in this case the two conjugacy
classes p1(®)), pa(®P,) are semi simple and determined by their eigenvalues. But
ifp=1 mod ¢ then p(®,) is unipotent and here are several possibilities for the
conjugacy class.

Hence we ask the question:

When does p split completely in Kél’!) (or in Kél’a) ?
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Of course we need p =1 mod £. We write

1 uw v
p(@p)=(0 1 w (5.74)
0 0 1
Now we apply again the congruence relation which gives us
0 0 wv-— tgg)
p(®,)* — Tpp(®y) +1d= [0 0 0 =0 (5.75)
0 0 0

The entry t%) € Z/VZ decides whether the horizontal long exact sequence of
Hecke modules 5.67 splits. We come to the conclusion
If p=1 mod ¢ and if the horizontal long exact sequence of Hecke modules

5.67) splits then p splits completely either in the field KM or in the field
¢

K.

If p=1 mod ¢ and if the horizontal long exact sequence of Hecke modules
(5.67) does not split then both fields K,E“)/Q(@)) and the field Kél’a)/(@((g)) are
wnert at the primes above p

At the end of section 3.3.3 we formulated the criterion:
For p=1 mod p the sequence (5.67) splits <= 7(p) = p'' +1 mod /2.

Of course now we can not refrain to state the

Theorem 5.1.3. There are infinitely many primes p for which p =1 mod 691
and 7(p) = p** +1 mod 6912

Proof. This is clear from Tschebotareff, the density of such primes is ﬁ O

Again for the curios reader: The first such prime is p = 3178601. We leave

it as an exercise for the reader to find out whether it splits completely in K él’!)

or in Kél’a).
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Chapter 6

Cohomology in the adelic
language

6.1 The spaces

6.1.1 The (generalized) symmetric spaces

Our basic datum is a connected reductive group G/Q. Let GV /Q be its derived
group and let C/Q its centre. Then G(Y)/Q is semi simple and C/Q is a torus.
The multiplication provides a canonical map

m:CxGY =@, (6.1)

it is is an isogeny, this means that the kernel e = CNG™ of this map is a finite
group scheme of multiplicative type. (A finite group scheme of multiplicative
type is simply a finite abelian group together with an action of the Galois group
Gal(Q/Q) on it.) If we have such an isogeny as in (6.1) we write G = C - G(1).

Let S/Q be the maximal Q -split torus in C/Q. Up to isogeny we have
C = (1 - S where C; is the maximal anisotropic subtorus of C/Q. We also
introduce the group G; = G . C;. We have an exact sequence

156G 5620,

the quotient C” is a torus. The restriction of dc to C' is an isogeny. It is also
called dg : C — C'.

If GV /Q is the simply connected covering of G(!), then we get an isogeny
m:G=GY xC, xS =G (6.2)

Let g, g(", ¢, ¢1,3 be the Lie algebras of G/Q,G /Q,C/Q,C,/Q, S/Q, then
the differential of m, induces an isomorphism

D ig— gV @@ (6.3)

215
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On g we have the Killing form B : g x g — Q it is defined by the rule (See
1.18)

(T1,Ts) — trace(ad(Ty) o ad(T2)) (6.4)

Actually the Killing form is a bilinear form on g*) = g/(¢;®;3) and the restriction
B: g x g - Q is nondegenerate (see chap2 and chap4).

An automorphism © : G xg R — G xg R is called a Cartan involution
if ©2 = Id and if the bilinear form

Be(T1,T2) = B(T1,0(1z)) (6.5)

on g ® R is negative definite.
If © is a Cartan involution then it induces an automorphism -also called ©-
on the Lie algebra gr = g ® R and decomposes it into a + and a — eigenspace

gr=tDdp (6.6)

and then clearly the + eigenspace ¢ is a Lie subalgebra and [p, p] C €. The Killing
form is negative definite on ¢ and positive definite on p. This explains the above
assertion on Bg.

The topological group of real points G(V)(R) is connected (see ref?). Then
we have the classical theorem

Theorem 6.1.1. The fized group K&l)) = é(l)(R)e is a mazimal compact sub-
group and it is also connected. The Cartan involutions are conjugate under the
action of GV(R), and therefore the mazimal compact subgroups of G (R) are
conjugate.

The group Kéi) is obviously the group of real points of a reductive group,

which is also called K éé) /R, so at this point we do distinguish between the group
of R-valued points and the algebraic group.

Later we will also consider maximal torus 77 /R C K 230 /R. The centraliser
of Tf in G/R will be a maximal torus T/R C G/R ( bla...bla ).

We introduce the space XM of Cartan involutions on G xg R, it is a
homogenous space under the action of G (R) by conjugation and if we choose

a © or Kc(xlg) then

X0 =gWRy/ /KD (6.7)
This is the symmetric space attached to GV xg R.

Proposition 6.1.1. The symmetric space X1 = é(l)(R)/Kg) is diffeomor-
phic to R, where d = dimyp, it carries a Riemannian metric which is G(l)(R)
invariant.

We have to be aware that it may happen that © is the identity. Then
GO(R) = KL and our symmetric space is a point.

We extend © to an involution on G x R it will be simply the identity on the
other two factors. Then it also induces an involution, again called © on G x R.
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We return to our reductive group G/Q. We compare it to G via the homo-
morphism m; in (6.2). Let K be the connected component of the identity
of the maximal compact subgroup in C7(R) and let Z’(R)° be the connected
component of the identity of the group of real points a subtorus Z’ C S. Then
we put

Koo =mi(KQ) x K$ x Z'(R)?)

This group K is connected and if we divide by Z’(R)° it is compact, more
precisely we can say that K, /Z’(R)? is the connected component of a maximal
compact subgroup in G(R)/Z’'(R)°. The choice of the subtorus Z’ is arbitrary
and in a certain sense irrelevant. We could choose Z’ = Z then we call K,
saturated , this choice is very convenient but it certain situations it is better to
make a different choice, for instance we may choose Z’ = 1.

To such a pair (G, K ) we attach the (generalized) symmetric space
X =GR)/Kw.

Here are a few comments concerning the structure of this space. (see also
Chap II. 1.3) We observe that by construction K., is connected, hence we
have that K., C G(R)°. So if as usual mo(G(R)) denotes the set of connected
components, then we see that

m0(X) = mo(G(R)).

The connected component of the identity of G(R) maps under mj to the
connected component of he identity of G(R), i.e.

GR) = GM(R) x C1(R)® x S(R)® — G(R)°

and if we divide by K& x KS x Z'(R)%, resp. K., we get a diffeomorphism
with the connected component corresponding to the identity

GOR)/KY x C1(R)/KS x S(R)/Z'(R) =5 X, C X.

We want to describe the other connected components of X. It is well known that
we can find a maximal split torus S; € G x R which is invariant under our
given Cartan involution ©. The homomorphism m; maps G (R) — GM(R).
The fixed group G(l)(R)@ is a compact subgroup whose connected component

of the identity is the image of Kéé) under my. Our torus S; sits as the first
component in the maximal split torus

Sy = Sp x Cfpm x S

Then it is clear that © induces the involution ¢ t=1 on S;. Let Sy be the
image of Sy under m;. We have the following proposition

Proposition 6.1.2. a)The group of 2-division points So[2] normalizes K.
b) We have an exact sequence

— 55[2] = S5[2] = mo(G(R)) = 0

c) If KO is the image of K x K& then KO, - S5[2] is a mazimal compact
subgroup of G(R).
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Proof. Rather obvious, the surjectivity of r requires an argument in Galois
cohomology. (Details later) O

Now we can write down all the connected components. We choose a system
E of representatives for S2[2]/S2[2] and for any £ € = we get a diffeomorphism

GOMR)/KL x Oy (R)/KS x S(R)°/Z'(R) — Xe C X
(6.8)
g g€

We may formulate this differently

Proposition 6.1.3. The multiplication from the left by S2[2] on G(R) induces
an action of S2[2]/52[2] on X and this action is simple transitive on the set of
connected components.

Let x9p = Ko € X. For any other point z € X we find an element g € X
which translates zy to x. Then the derivative of the translation provides an
isomorphism between the tangent spaces

Dy : Toy = p =5 T

This isomorphism depends of course on the choice of g. ( This will play a role
in section (8.1)). But we apply this to the highest exterior power and get an
isomorphism

Dy : A%(p) = AYT,)

which does not depend on the choice of g because the connected group K acts
trivially on A%(p). Hence we can say that we can find a consistent orientation
on X : We chose a generator in A%(p) the D, yields a generator in A%(T}).

If our reductive group is an anisotropic torus 7'/Q, then we have for the
connected component of the identity

TR)® = (R%)* x (51"

Then our maximal compact subgroup K2 is simply the product of the circles
and

Xr=TR)/KL

is nothing else than as disjoint union of copies of R®. The situation is similar
for a split torus but then we have the freedom, to divide out the connected
component of a subtorus.

As a standard example we can take G/Q = Gly/Q, then the connected
component of the real points of the centre is R, and in this case we can take
Ko = S0O(2) - R, C Gly(R)). In this case the symmetric space is the union
of an upper and a lower half plane. It we choose for our split torus S;/R the
standard diagonal torus, then S;[2] is the group of diagonal matrices with entries
+1 and this normalizes K.
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6.1.2 The locally symmetric spaces

Let A be the ring of adeles, we decompose it into its finite and its infinite
part: A =R x Ay. We have the group of adeles G(A) = G(R) x G(Ay). We
denote elements in the adele group by underlined letters ¢g,h... and so on. If
we decompose an element ¢ into its finite and its infinite part then we denote
this by goo X g, Let Ky be a (variable) open compact subgroup of G(Ay). We
always assume that this group is a product of local groups Ky = Hp K.

To get such subgroups we choose an integral structure (explain at some other
place) G/ Spec(Z). Then we know that we have K, = G(Z,) for almost all p.
Furthermore we know that G x Spec(Z,)/ Spec(Z,) is a reductive group scheme
for almost all primes p.

If G/ Spec(Z) and K are given, then we select a finite set ¥ of finite primes
which contains the primes p where G/Z, is not reductive and those where K,
is not equal to G(Z,). This set X will be called the set of ramified primes.

The general agreement will be that we use letters G, T,U,... for group
schemes over the integers, or over Z, and then their general fiber will be
G, T,U,....

Readers who are not so familiar with this language may think of the simple
example where G/Q = GSp,,/Q is the group of symplectic similitudes on V =
Q™ =Qe1 ® - ®Qe, ® Qf1 @ --- ® Qf,, with the standard symplectic form
which is given by < e;, f; >= 1 for all i and where all other products zero.
The vector space contains the lattice L =Z?" =Ze1 ®--- D Ze, BLZf 1D -
Zf,. This lattice defines a unique integral structure G/Z on G/Q for which
G(Zy) = {9 € G(Qp)|lg(L ® Z) = (L ® Zp)}. In this case the group scheme
is reductive over Spec(Z). This integral structure gives us a privileged choice
of an open maximal compact subgroup: Within the ring Ay of finite adeles

we have the ring Z = lim Z/mZ of integral finite adeles and we can consider
—

KJ? =G(2) = [1,6(Z,). This is a very specific choice. In this case the set
% =0, we say that Ky = K} is unramified.

Starting from there we can define new subgroups Ky by imposing some
congruence conditions at a finite set ¥ of primes. These congruence conditions
then define congruence subgroups K, C KS. This set X of places where we
impose congruence condition will then be the set of ramified primes.(See the
example further down.) Then we define the level subgroup

Kp=]] Kp x [] 9(Zp). (6.9)

pEX pgE

The space (G(R)/K) x (G(Af)/Ky) can be seen as a product of the sym-
metric space and an infinite discrete set, on this space G(Q) acts properly dis-
continuously (see below) and the quotients

SE, = GQ\ (G(R)/Kx x G(Ay)/Ky)

are the locally symmetric spaces whose topological properties we want to study.
We denote by

m: G(R)/ Koo x G(Ap) /Ky = SF, = G(Q) \ (G(R)/Ku x G(Af)/Ky),

the projection map.
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To get an idea of how this space looks like we consider the action of G(Q)
on the discrete space G(Ay)/Ky. It follows from classical finiteness results that

this quotient is finite, let us pick representatives {g?)}iﬂ_m. We look at the
stabilizer of the coset ggf)Kf/Kf in G(Q). This stabilizer is obviously equal to
ey — G(Q)N ggf)Kf(gSf))_l which is an arithmetic subgroup of G(Q). This
subgroup acts properly discontinuously on X (See Chap. II, 1.6).

Now we call the level subgroup K neat, if all the subgroups FQ?) are torsion

free. It is not hard to see, that for any choice of Ky we can pass to a subgroup
of finite index K }, which is neat. Then we have

conncomp

Proposition 6.1.4. For any subgroup Ky the space S[C;'f is a finite union of

quotient spaces re)’ \ X where X = G(R)/Ko and the T'; = % are varying
arithmetic congruence subgroups. If Ky is neat, these spaces are locally sym-
metric spaces. If Ky is not neat then we may pass to a neat subgroup K} which
1s even normal in Ky: We get a covering SG} — ng which induces cover-

ings I\ X — I';\X, where the I'; are torsion free and normal in I';. So we see
that in general the quotients are orbifold locally symmetric spaces. For any point
Yy E ng we can find a neighborhood Vy, such that w=*(V,) is the disjoint union of

connected components Wy, x = (moo,gf) e 1 Hy), and V, = ]."ggoo\ng7 where

Ty is the stabilizer of xo intersected with s,

We will consider the special case where G/Q is the generic fibre of a split
reductive scheme G/Z. In that case we can choose K¢ =[], G(Z;), this is then
a maximal compact subgroup in G(Ay). Then K is unramified we will also say
that the space SIG(f is unramified. If in addition the derived group GW /Q is
simply connected, then it is not difficult to see, that G(Q) acts transitively on
G(Ay)/Ky and hence we get

SE, = G(L)\X.

The homomorphism G(Z) — mo(C’(R)) is surjective we can conclude that
G(Z) acts transitively on mo(X) and if Ty is the stabilizer of a connected com-
ponent X° of X then we find

Si, = To\X?

especially we see that the quotient is connected. We discuss an example.

We start from the group G/ Spec(Z) = Gl,,/ Spec(Z) then we may choose
Ko = 80(n) x R, C Gl,(R). and X = Gl,(R)/K is the disjoint union of
two copies of the space X of positive definite symmetric (n x n) matrices up to
homothetie by a positive scalar (or what amounts to the same with determinant
one). If we choose Ky as above then we find

Si, = Slu(Z)\X.

We have another special case. Let us assume that G/Q is semi simple and
simply connected. The group G X R is a product of simple groups over R and we
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assume in addition that there is at least one non compact factor. Then we have
the strong approximation theorem ([61],[74])) which says that for any choice of
Ky the map from G(Q) to G(Ay)/Ky is surjective, i.e. any g9, € G(Ay) can be
written as 9, = aky,a € G(Q),k; € Ky. This clearly implies that then

S, =T\G(R)/Kx (6.10)
where I' = Ky N G(Q).

There is a contrasting case, this is the case when G/Q is still semi simple
and simply connected, but where G(R) is compact. In this case our symmetric
space X is simply a point * and

SK, = GQ\(x x G(Ay)/Ky).

This means that our topological space is simply a discrete set of points, hence
it looks as if this is an entirely uninteresting and trivial case. But this is not so.
To determine the finite set and the stabilizers is a highly non trivial task. Later
we will construct sheaves and discuss the action of the Hecke algebra on the
cohomology of these sheaves. Then it turns out that that it is not only the set
of points and the stabilizers that is of interest but also the ”interaction” among
these points is of interest. Then it turns out that this case is as difficult as the
case where I'\ X becomes an honest space.

We give a few examples of such spaces

In the choice of our group K, a subtorus Z’ C S enters. The choice of this
subtorus has very little influence on the structure of our locally symmetric space
ng. Remember that the isogeny m in (6.1) induces an isogeny C' — C’ and
this isogeny yields an isogeny from S to the maximal split subtorus S’ C C’.
This homomorphism induces an isomorphism S(R)? — S'(R). If G;(R) is the
inverse image of the the group of 2-division points S’[2] then we get from this
isomorphism that G(R) = G1(R) x S(R). If we now consider the two spaces
ng and (SIG(f)T, the first one defined with an arbitrary torus Z’ the second one
with Z/ = S then the arguments above imply that

S§, = (S§,)T < (S[R)°/Z'(R)") (6.11)

the second factor on the right hand side is isomorphic to R® and since we are
interested in the cohomology group of this space, ihe second factor is irrelevant.

In certain situations we encounter cases where it is natural to choose a
subgroup K., which is slightly larger and not connected. If this is the case we
denote the connected component Ké};) and we get two locally symmetric spaces
and a finite map

G@\ (GER)/KY x Gag)/Ky) = GQ)\ (GR)/ K x Glhy)/K)
(6.12)

This map is a covering if K is neat and the space on the right is a quotient
of the space on the left by an action of the finite elementary abelian [2]-group

Koo/ K.
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In accordance with the terminology in number theory we call the space ng

narrow if K&l;) = K, and in general we call the space on the left the narrow
cover of G(R)/Ko x G(Ay)/Kjy.

6.1.3 The group of connected components, the structure
of o0 (S[G(f)

If we keep our assumptions that G/Q is reductive and G)/Q is simply con-
nected and satisfies strong approximation. We choose a level subgroup Ky C

G(Ay) and we put der (Koo x Kf) = K x KJ({W. Then we claim that under

these conditions

~ ’
MSE,) 7 T0(Sr )

(6.13)
To see this we need a theorem of Tate which says that the map C'(Q) —
7o(C'(R) is surjective. This implies that mo(S¢ (KO = C”((@)(())\C”(Af)/KJ?v ,
¢

Kg

where C'(Q)(® C C'(Q) are the elements whose image lies in C(R)(?). Now we
need a little argument from Galois cohomology. The map G(Ay) — C'(Ay) is
surjective because for all primes p H'(Q,, GM) consist of the trivial class only.
(Kneser and Bruhat-Tits ([?]). ) This implies the surjectivity: For the injec-
tivity assume z,y € C’(A;) and there is an element a € C(Q)©) with az = y.
Then we need to find a lift of a to an element b € G(Q). Again we invoke the
standard argument from Galois cohomology. We have the exact sequence

G(Q) = C'(Q) % HY(Q,GW)

the obstruction to find b is an element §(a) € H'(Q, G™M). We have the Hasse
principle H'(Q,GM) = HY(R,GM) ([?]) but since a € C'(Q)©® it follows
that the image of d(a) € H'(R,G() is trivial, hence §(a) is trivial.

We have seen in the previous section that we can choose a consistent orien-
tation on X = G(R)/K provided K, is narrow. Then it clear this induces
also a consistent orientation on S[Céf.

6.1.4 The Borel-Serre compactification

In general the space SIG(f is not compact. Recall that in the definition of this
quotient the choice of a subtorus Z’/Q of S/Q enters. This If Z’/ # S then the
quotient will never be compact. But this kind of non compactness is ”uninter-
esting”. In the following we assume that Z’ = S.

In this case we have the criterion of Borel - Harish-Chandra which says

The quotient space ng is compact if and only if the group G/Q has no
proper parabolic subgroup over Q.

If we have a non trivial parabolic subgroup P/Q then we add a boundary
part 8p81§f to SI% it will depend only the G(Q)-conjugacy class of P. We will
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describe this boundary piece later. We define the Borel-Serre boundary
a(SIC(th) = UapSIG(fa
P

where P runs over the set of G(Q) conjugacy classes of parabolic subgroups.
We will put a topology on this space and if ) C P then 8Q81§f will be in the

closure of 8p8§§f. Then
S§, = 8§, UA(SE,)

will be a compact Hausdorff-space.

We describe the construction of this compactification in more detail. In
chap4.pdf 2.7.1 Ref korrigieren we studied the group Hom(P,G,,) and have
seen that

Hom(P,G,,) ® Q = Hom(Sp,G,,) @ Q.

For any character v € Hom(P,G,,) we get a homomorphism v4 : P(A) —
G (A) = Ig, the group of ideles. We have the idele norm | | : z — |z| from the
idele group to RZ, and then we get by composing

7] : P(A) = RZ,.

It is obvious that we can extend this definition to characters v € Hom(P,G,,)®
Q, for such a v we find a positive non zero integer m such that my € Hom(P,G,,)
and then we define .

] = (lmal)>

Later we will even extend this to a homomorphism Hom(P, G,,)®C — Hom(P(A),C*)

by the rule

YRz |y? (6.14)

If we have a parabolic subgroup P/Q and a point (x,gf) € X xG(Ay)/Ky
then we attach to it a (strictly positive) number

p(P,(2,9,)) = vola,u(U(Q) Ng, Krg "\UR)). (6.15)

This needs explanation. The group U(Q) N ngngjl = FU,gf is a cocompact
discrete lattice in U(R), we can describe it as the group of elements v € U(Q)
which fix g fK ¢, so it can be viewed as a lattice of integral elements where
integrality is determined by g,. The point x defines a positive definite bilinear
form Bg, on the Lie algebra g ® R, and this bilinear form can be restricted
to the Lie-algebra up ® R and this provides a volume form d,u on U(R) the
above number is the volume of the nilmanifold FU,gf\U (R) with respect to this
measure.

If we are in the special case that G = Sly/Q and K; = Sly(Z) then a
parabolic subgroup P is a point r = £ € PY(Q) (or co) and then p(P, (z,1)) is

small if z lies in a small Farey circle, i.e. it is close to 7.

These numbers have some obvious properties
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a) They are invariant under conjugation by an element a € G(Q), this means
we have

p(a~!Pa, (x’ﬂf)) =p(P, a(:lc,gf))
b) If p € P(A) then we have

p(PaB(xan)) :p(Pv ('r’gf))|pP|2

The G(Q) conjugacy classes of parabolic are in one to one correspondence
with the subsets 7’ of the set relative simple roots mg :The minimal parabolic
corresponds to the empty set, the non proper parabolic subgroup G/Q corre-
sponds to mg itself. In general 7’ is the set of relative simple roots of the semi
simple part of the reductive quotient of the parabolic subgroup. For a parabolic
subgroup P’ corresponding to 7’ we put d(P’) = #(ng \ 7). For any i € 7g \ 7’
we have a fundamental character

Yi : P — Gy
We have the Borel-Serre compactification
.. QG QG
7 SKf — SKf
The compactification is a manifold with corners, the boundary is stratified

0(8%,) =Jor(S%,)
P

where P runs over the G(Q) conjugacy classes of parabolic subgroups. If P C @
then the stratum Jg (SIG(f) C Op (S}C(;f).

Locally at a point x € Jp (ng) we find neighborhoods of z in ng which
are of the form

Ua; = Ww X {...7ui7...}i€ﬂc\ﬂ-/;ogui<e (616)

where W, is a neighborhood of x in the orbifold 8p(5§f). The intersection

U,=U,N SIG(f consists of those elements where all the u; > 0.

6.1.5 The easiest but very important example

If we take for instance G/Z = Gly/Z and if we pick an integer N then we can
define the congruence subgroup K;(N) = [[, K,(N) C G(Z). It is defined by
the condition that at all primes p dividing N the subgroup

Ky(N)={y€G(Z)}ly=1d mod p"}

where of course p™r is the exact power of p dividing N. At the other primes we
take the full group of integral points. For the discussion of the example we put
K¢(N) = Kjy.

If we consider the action of G(Q) on G(Af)/K then the determinant gives
us a map

Gla(Q\GL2(Af)/ Ky = Gm(Af)/Q Uy
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where Uy is the group of unit ideles in Iy y = G, (Af) which satisfy u, =1
mod p™». This map is a bijection as one can easily see from strong approxima-
tion in Sly, and the right hand side is equal to (Z/NZ)*/{+1}. At the infinite
place we have that our symmetric space has two connected components, we have

X = GL(R)/SO(2) = C\R = H, UH_

where H4 are the upper and lower half plane, respectively. We have a complex
structure on X which is invariant under the action of Glo(R). The connected
components of this quotient correspond (one to one)to the elements in

Gm(A)/Gm(Q)(Gm(R)O X L[N) = IQ/Q*R;OLIN - (Z/NZ)*
We put I'(N) = G(Q) N K7 and then the components are

roon (5 )i x (Y ) worms

where t runs through a set of representatives of Ip/Q*R%Un = (Z/NZ)*.
These connected components are Riemann surfaces which are not compact.
They can be compactified by adding a finite number of points, the so called
cusps. These are in one to one correspondence with the orbits of I'(/V) on
PY(Q) (see reduction theory).
(Compare to Borel-Serre)

6.2 The sheaves and their cohomology

6.2.1 Basic data and simple properties
Let Mg be a finite dimensional Q-vector space, let
r:G/Q — Gl(Mg)
a rational representation. This representation r provides a sheaf M on ng
whose sections on an open subset V C SIG(f are given by
Mo(V) = {s: 771 (V) = Mgls locally constant and s(yv) = 7(v)s(v),7 € G(Q)}.

We call this the right module description of MQ.

We can describe the stalk of the sheaf in a point y € S§ ;o we choose a point
z = (Jcoo,gf) in 77!(y) and we choose a neighborhood V,, as in 1.2.1. Then
we can evaluate an element s € M@(Vy) at 2 and this must be an element in
MTz | this means we get an isomorphism

- N o
ezt (Ma)y — Mg™.
By definition we have ey, = ves.

In our previous example such a representation r is of the following form: We
take the homogeneous polynomials P(X,Y") of degree n in two variables and



226 CHAPTER 6. COHOMOLOGY IN THE ADELIC LANGUAGE

with coefficients in Q. This is a Q-vector space of dimension n + 1, we choose
another integer m and now we define an action of Gla/Q on this vector space

(2 2) ety = Plax v v v vyt 8

This Gly module will be called M,,[m]g and it yields sheaves M, [m]g on our
space ng.

Integral coeflicient systems

We assume again that we have a rational representation of our group G/Q, the
following considerations easily generalize to the case of an arbitrary number field
as base field. We want to define a subsheaf Mz C Mg. To do this we embed
the field Q < Ay and we consider the resulting sheaf of A j-modules Mo A £
We consider the diagram

G(R)/ Koo x (G(Af)/ Ky

=
G(R)/Koo x G(Ay)
&

GQ\GR)/Koo x G(Ay

G
Sk,

)
%
)
(6.17)

this means that the division by the action by K; on the right and by G(Q)
on the left (this gives II) is divided into two steps: In the lower diagram the
projection II is division by the action of G(Q) and then IIy gives the division
by the action of Ky on the right.

The sheaf Mg ®q Ay can be rewritten. For any open subset V C ng we

consider W = II"1(V) and by definition

Mo @ Ap(V) = {s : TI7H (W) = Mq ®q Asls(v(2ee, g k) = 1(s(20:9,)),

where these sections s are locally constant in the variable z,,. For any s €
M@ Af(V) we define a map §: W — M ® Ay by the formula

§($007gf) = g;ls(xoovgfﬁf)v

this makes sense because M ® Ay is a G(A;)— module. For v € G(Q) we
have é(y(xoo,gf)) = §((xoo,gf)) hence we can view § as a map

§: G(Q)\G(R)/Koo x G(As) = M ®g As.

We consider the projection
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I : GQ\G(R) /Ko x GlAf) — GQ\G(R)/Kn x G(Ag)/Kf = SE,

and then it becomes clear that M @ A ¢ can be described as

MSAHV) = {5: (I71(V) = M @g Ajl
§ locally constant in z., and §((xoo,gfkf)) = E;lé((:roo,gf))}.

Hence we have identified the sheaf M ®g A ; which is defined in terms of the

action of G(Q) on M to the sheaf M ®q Ay which is defined in terms of the
action of Ky on M ®q Ay.

Now we assume that our group scheme G/Q is the generic fiber of a flat
group scheme G/ Spec(Z) (See 1.2). We choose our maximal compact subgroup
K;= Hp K, such that K, C G(Z,) and with equality for all primes outside a
finite set ¥. We can extend the vector space M to a free Z module My of the
same rank which provides a representation G/ Spec(Z) — Gl(Mz).

As usual Z will be the ring of integral adeles. Then it is clear that My, ®7Z C
M ®q Ay is invariant under Ky and hence we can define the sub sheaf

Mz®7 C Mog Ay,

this is the sheave where the sections § have values in My @ Z. We put

./\;lz =Mz® Z n M,
of course it depends on our choice of Mz C M. We get two exact sequences
of sheaves

—~—

0 - Mz — M - M®(Q/Z)—0
4 4 4

0 - M®Z — Megh;y — M®(AF/Z) =0
The far most vertical arrow to the right is an isomorphism, the inclusions
Z — Z and Q — Ay are flat. Writing down the resulting long exact sequences
provides a diagram

° = Jo ° -
S OHNSE M) S HASEM) -
Viz {ig
— H*(S{, M®Z) 5 HYSE, Meghy) —
The above remarks imply that the vertical arrows are injective, the horizontal
arrows in the middle have the same kernel and kokernel. This implies

Proposition 6.2.1. The integral cohomology
H*(S§,, Mz)

consists of those elements in H® (S,G(f,./\/l ® Z) which under ja go to an element
in the image under ig or in brief

H*(SF,, Mz) = j; " (im(ig))
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Highest weight modules

We assume that G/Q is a quasisplit group over Q. This generalizes to the case
where we have a representation r : G x F' — Gl(M) where M is a vector space
over F. If our group scheme is an extension of a flat group scheme G/ Spec(OF)
then can find a lattice M, which yields a representation of G — Gl(Mp,.).
Then we can define the sheaf Me » and define the cohomology groups

H.(ng,MoF)

Sheaves with support conditions

We can extend the sheaves to the Borel-Serre compactification. We have the
inclusion

. G ;G

7 SKf — SKf
and we can extend the sheaf by the direct image functor i,(M). It follows easily
from the description of the neighborhood of a point in the boundary (see 6.16)
that R%,(M) = 0 for ¢ = 0 and hence we get that the restriction map

H*(SF,,i(M)) = H*(SF,, M)

is an isomorphism.
We may also extend the sheaf by zero (See [Vol I], 4.7.1), this yields the
sheaf i/(M) whose stalk at = € ng is equal to M, and whose stalk ist zero in

points x € 881%. Then we have by definition
HC.(SIG<f7M) = H.(ng’Z'(M))
this is the cohomology with compact supports.

We are interested in the integral cohomology modules H*® (SIG(f , My), H? (ng , Mz).

We introduced the boundary dS$  of the Borel-Serre compactification then we
have a first general theorem, which is due to Raghunathan.

Raghunathan

Theorem 6.2.1. (i) The cohomology groups Hi(SIG(f,J\;lZ), Hi(ﬁng,/\;lz) and
Hé(Slcéf,/\;lz) are finitely generated.

(i) We have the well known fundamental long exact sequence in co-
homology

_ Hifl(asgf,/\;lz) _ Hé(g%ﬁﬂ?@) — Hi(SIG(f,./\;lz) AN Hi(aSIG(f,/\;lZ) —.

We introduce the notation H7(Sf§f,/\;lz) meaning that for 7 = blank we
take the cohomology without support, for 7 = ¢ we take the cohomology with
compact support and for 7 = 0 we take cohomology of the boundary of the
Borel-Serre compactification. Later on we will also allow ? =! this denotes the
inner cohomology. The above proposition 6.2.1 holds for all choices of ?.

Let ¥ = {Py,..., Ps} be a finite set of parabolic subgroups, we assume that
none of them is a subgroup of another parabolic subgroup in this set. The union
of the closures of the strata

U U 0e(s%,) = 0s(5%,)

i QCP;
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is closed . We have the inclusions
. G oG G \ 2. 3G oG SG
js : Si, = S, \05(SE,). 57 - 8§, \ 0s(SE,) — SE, -
The inclusion ¢ : ng — S[G(f is the composition i = j* o jy we define the
intermediate extension
int(M) = 0 ju.. (M), (6.18)

this means that the stalk ix . (M), at a point y € 82(51%) is zero. Now we
can define the cohomology with supports H'(ng,iz’*’g(ﬂ;l)). If ¥ = 0 then
H(Z,%,1(M),) = H'(S[Céf,/\;l) and if ¥ is the set of all maximal parabolic
subgroups then H*(X, x,|(M),) = H‘(CSIG(f,./\;l).

For these cohomology groups coefficients in sheaves with intermediate sup-
port conditions we can also formulate assertion like the one in the above theorem.
Hence we get filtrations on the cohomology

WoH®(S§,, M) = H? (S§,, M) C Wi H*(SF , M) C --- C H*(SF , M)
(6.19)

on the cohomology, the bottom of this filtration will be the inner cohomology
and the filtration steps will the images cohomology with intermediate supports.

Functorial properties

The groups have some functorial properties if we vary the level subgroup Kjy.
If we pass to a smaller open subgroup K } C K¢ then we get a surjective map

ﬂKf,K}. : SI%} — S]G(f,
whose fibers are finite. This induces maps between cohomology groups
iy xc,y - HE(SE,, Mz) — HI (SE,  Mz),
for 7 = ¢ we exploit the fact that the fibers are finite.
We construct homomorphisms in the opposite direction. We exploit the

finiteness a second time and find that the direct image functor (’/TK}7 Ky)« 18
exact and hence

H;(Sg}aMZ) = H?.(SI%, (WK},Kf)*(MZ))-

We define a trace homomorphism (ﬂ’K}’Kf)*(./\;lz) — Mgz: A section s €
(WK},Kf)*(/\;lz)(V) is a map §: II"1(V) — M, ® Z such that

§(7(xoo,gfk})) = (k})_lé((xoo,gf)) for all £ € K.

This is a section of My, if and only if the corresponding section s takes values
in M. Then we define
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éfGKf/K}

0 g )= D & 5(rwrg))

and this now satisfies
tf(g)(“/(%mgfkf)) = k;1§((:coo,gf)) for all ky € K.

and since the corresponding section tr(s) takes values in M we see that tr(8) €
Mz (V).

Remark: It may happen that this trace map is not the optimal choice, it can
be the integral multiple of another homomorphism between these two sheaves.
This happens the intersection C'(Q) N K is non trivial.

Then the homomorphism between the sheaves induces

TK' K

. ~ . ~ fe . ~
HI (S, Mz) = H(SS, . (rxc, 1,)-(Mz) ' HE(SE,. (Mz)).

Later on our maps between the spaces will be denoted 7, m,... and the
notation simplifies accordingly.

6.2.2 Rational systems of coefficients

We will decompose the cohomology into smaller pieces under the action of the
Hecke-algebra. For this we have to pass to finite normal extension F'/Q. Then
we should require that the G-modules M should be absolutely irreducible., but
we also want them to be Q-vector spaces. There is no problem to construct
such modules if the semi simple component GV /Q is split and the central
torus satisfies a very mild condition. But we will show that we may also work
with absolutely irreducible modules M which are defined over F/Q, and if we
keep track of the Galois- conjugate modules “ M then we still can formulate
rationality statements over Q.

We start again from a quasisplit reductive group scheme G/Q, let B/Q a
Borel subgroup and 7/Q C B/Q a maximal torus. Then we find a normal ex-
tension Fy/Q such that T'x g Fy is split If we choose Fy minimal then Gal(Fy/Q)
acts faithfully on X*(T xqg Fp), it acts by permutations on the set of positive
roots. To any dominant A € X*(T xg Fy) we can define the absolutely irre-
ducible highest weight representation M. This representation is defined over
the field Fy[A], where Gal(Fy/Fp[A]) is the stabiliser of A\. This means that M
is an Fy-vector space and the representation is a representation of G xg Fy[A].
For any 0 € Gal(Fy/Q) we can consider this highest weight A and the re-
sulting highest weight module M, = M. ,. It follows from the construction
of these modules that there is an obvious o-linear map ¢, : My =7 M. The
map P, is a o linear isomorphism between the modules, we have

For g € G(Fy[A],m € My we have ®,(gm) = o(g)P,(m). (6.20)
These semi-linear maps satisfy the cocycle relation

P, 0D, = Dy, (6.21)
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Then we will call the collection

{. oy, Moy, Dp,s }UE Gal(Fo/Q)

a rational system of representations (see also [38], 6.2.8).

From this rational system of representations we also get a rational system of
sheaves {..., Mox, &, ... Yoe Gal(Fy/0) and from this we get a rational system
of cohomology groups

(- HI (SR, Men), ®5, - Yoe cal(ro/0)-

We can construct a flat extension G/Z, which is semi simple outside the set
of primes which ramify in Fy. For any A € X*(T xqg Fy) we can construct a
locally free, finitely generated Op y) X G xz O, module M \,0r,, such that
after tensoring with Fy[A] we get M. This module is unique if we invert some
finitely many primes. Then we can arrange these data such that the maps @,
induce isomorphism @, : M o, = M- 2,05, - The we may call the collection

{' . 7M“>\,OF07(I)07 oo }06 Gal(Fy/Q)

an integral rational system of representations .

6.3 The action of the Hecke-algebra

6.3.1 The action on rational cohomology

In this section we assume that our coefficient systems are obtained from rational
representations of a reductive group scheme G/Q hence they are Q vector spaces.
We consider the rational cohomology groups

H?i(SIG{vaQ) = Hci<SIG<f’MQ)’ Hi(SIG{pMQ)a Hi(8<SIG{f)vMQ)7

These cohomology groups are finite dimensional QQ-vector spaces and they are
related exact fundamental sequence. We can pass to the direct limit

Hi(S% Mg) = lim Hi(SF,, Mg).
f
GAF

Proposition 6.3.1. On these limits we have an action of the group mo(G(R)) x
G(Ay). We recover the cohomology with fized level Ky by taking the inva,under
this action, i.e. we have

H{(8% Mo)™+ = Hi(SE,, Mg)
To define this action we represent an element in 7(G(R)) by an element

ko in the in the normalizer of K. in G(R). An element x = (koo,z;) €
G(R)xG(Ay)) defines by multiplication from the right an isomorphism of spaces

my 1 GQ\X x G(A)/Kp — GQ\X x G(Af)/zp Ky
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It is clear from the definition that m, yields a bijection between the fibers
m1g),5 € GQ\X x G(Ay)/Kj andiw_l(mg)(g) and since the sheaf is de-
scribed in terms of the left action by G(Q) we get m, (M) = M. Passing to the
limit gives us the action on Hi(S%, Mg. The second assertion is obvious, but
here we need that our coefficients are Q vector spaces, we need to take averages.

We introduce the notation G(A) := m(G(R)) x G(Ay) and then we denote
this action by

Pirg : GUA) x HI(SE,, Mq) — HI(SE,, Mq).

The interesting component of this representation is of course the action of the
finite component G(Ay), it is simply the action which is induced by the right
translation action of G(As) on S.

Now we fix a level Ky C G(Ay) The Hecke algebra Hg, consists of the
compactly supported functions h : G(Ay) — Q, which are biinvariant under the
action of Ky, we also write Hx, = C.(G(Ay)//Kf, Q). An element h € H, is
simply a finite linear combination of characteristic functions h = > Ca;XKfa, K;
with rational coefficients c, . The algebra structure is given by convolution
with respect to the Haar measure on G(Ay) which gives volume 1 to K. This
convolution is given by

mhaly,) = [ L Il halay g )z,
f

With this choice of the measure it is clear that the characteristic function of Ky
is the identity element of this algebra.

The action of the group G(Ay) induces an action of Hx, on the coho-
mology with fixed level Hé(SIG(f,/\;lQ),Hi(SIG(f,/\;l@), --+: For an element v €

Hi(S%, Mg) we define
Th(v) = / h(z )z vdzy,
Glap) '

where the measure is still the one that gives volume 1 to K. Clearly we have
Thyshy = ThyTh,-

(Actually the integral is a finite sum: We find an open subgroup K} C Ky
such that v is fixed by K } and then it is clear that

1
Tnl) :/ M)z vdey = meter Ca,XKpa, k) (€ )€ 0.
G(Af) f f f [Kf N K}-] ;ffec%)/K} Qf fff f) 7f 7f

This makes it clear why we need rational coefficients .)

It is clear that 7}, (v) € Hi (ng , M) and hence T}, gives us an endomorphism
of H%(ng,/\;l) We will show later that we also get endomorphisms on the
cohomology of the boundary and therefore H also acts on the fundamental long
exact sequence (Seq) .

If our function h is the characteristic function of a double coset K x fK ¥
then we change notation and write 7}, = ch(z;). We give another definition
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of the Hecke operator ch(z f) in terms of sheaf cohomology. We imitate the

construction of the Hecke operators in Chapter 3, 3.1. We put Kj(%f - K¢N
T K f@}l and consider the diagram

8
&
D

)

-
=

(6.22)
S%,

where my ; is induced by the multiplication by z; from the right. This yields
in cohomology

Mg p,x

H-(sgf,M@)LH-(sIG(@f),M@) - H-(SIC;‘(E;I),%M(M@)) (6.23)
f £

Since we described the sheaf by the action of G(Q) from the left and the map
My, by multiplication from the right we have mgﬁ*(/\/l@) = M, this yields an
isomorphism 4, . Since 79 is finite we have the trace homomorphism

Mq) = H*(S%,, Mq)

(@p)~1>

T2 H'(S’G
K

and the composition is our Hecke operator

a0 0y, 0my, « o7} = ch(zy) : H'(SE,, Mg) = H*(SE,, Mg).

This is simpler than the construction Chap.II 2.2. because we do not need
the intermediate homomorphism u,. But we we do not get Hecke operators on
the integral cohomology.

6.3.2 The integral cohomology as a module under the Hecke
algebra

We resume the discussion of the integral Hecke algebra acting on H3 (S ;o MZ)
from Chapter 3. Inside the Hecke algebra we may also look at the sub algebra
of Z -valued functions. This is in principle the algebra which is generated by the
characteristic functions ch(z ) of double cosets Kz ;K. These characteristic
functions act by convolution on the cohomology H '(ng,/\;l@) but this does
not induce an action on the integral cohomology. Our next aim is to define
a fractional ideal n(z;) C Q or more generally n(z;) C F such that for any
a € n(z;) we can define an endomorphism

a-ch(zy): H* (S, , Mz) — H*(S§,, My )

and if we send this to the rational cohomology then on H*® (S]G;f,MQ) this will
be the convolution endomorphism induced by ch(z ;) multiplied by a.

This ideal will depend on z; and on A and further down we compute it in
special cases.
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(iv) These endomorphisms a - ch(z;) generate an algebra ’H(ZA) acting on
the integral cohomology and the arrows in the fundamental exact sequence above
commute with this action.

v) Moreover, we have an action of 7o(G(R)) on the above sequence and this
action also commutes with the action of the Hecke algebra. Hence we know that

our above sequence is long exact sequence of mo(G(R)) x ’Hg‘)'

We come to the definition of the ideal.

If we are in the special case that our group has strong approximation then
we have

N\X = GQ\X x G(Af)/K;

(See (6.10)). We pick an element o € G(Q). In Chap. 3, 3.1. we defined the
Hecke operator T'(a, us) where u, : M@ — M is the canonical choice. Let us
denote the image of o in G(Ay) by a,. We just attached a Hecke operator to
the double coset Kya ;. K. We have the diagram of spaces

D(a)\X ———————G(Q\G(R)/Kw x G(Af)/K}' (6.:24)
(o) r(ay)

D™ N\X ————— G(Q\G(R)/Kw x G(A7)/KST

Here the horizontal arrows are the isomorphisms provided by strong approxi-
mation, the arrow [(a~!) is the isomorphism induced by left multiplication by
a~!and r(a f) by right multiplication by a . These two maps enter in the def-
inition of the Hecke operators T'(a™!, uq-1) and ch(a;) and a straightforward
inspection of the sheaves yields

ch(a;) =T(a " ug—1).

Hence we can conclude that under this assumption our newly defined Hecke
operators coincide with the Hecke operators defined in Chap.3. This also tells us
what we have to do if we want to define Hecke operators on integral cohomology.

To define the action of the Hecke algebra on the integral cohomology without
the assumption of simple connectedness we have to translate their definition into

the right module description. Then our sheaf M/?éj&f is described by the action
of Ky on M ® Ay and this allows us to define the sub sheaf Mz ® 7. We look

at the same diagram. But now the sheaf my, (M ® Ay) is the sheaf described

. —1
by the the Kj(ff) module (M ® Af)@f). This module is M ® Ay as abelian

-1

group, but 9, S K%f) acts by my gfggjilmf. The map my — Tymy
-1

induces an isomorphism [z ;] between the two Kj(}f ) modules (M ® A f)@f)

and (M ®A ). We now consider the diagram (6.22) and replace in the sequence
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of maps the homomorphism %, ; by the map [g}] induced by the isomorphism
[z f] between the sheaves. Then we can proceed as before and get an operator

Prx o [zf]* omy . 0p; = ch(zy).
It is straightforward to check that this operator is an extension w3 4 © igf )
my . omt to H*(SF,, M@ Ag).
Our right module sheaf contains the submodule sheaf M) ® Z, we can write

the same diagram but now it can happen that [gf] does not map Mz ® 7 into
itself. This forces us to make the following definition

n(z;) ={a € Q| laz;]: Mz ®Z C Mz ® L}

Then we can again go back to our above diagram and it becomes clear that
we can define Hecke operators

a-ch(z;): H’(SIG(f,./\;lZ) — H'(ng,/\;lz) for all a € n(zy).

The case of a split group

We want to discuss this in the special case that G/ Spec(Z) is split reductive, we
assume that the derived group g(1>/ Spec(Z) is simply connected, we assume
that the center C/ Spec(Z) is a (split)-torus and that C N G(Y) is equal to the
center Z() of GV, This center is a finite multiplicative group scheme (See 6.1.1).

Accordingly we get decompositions up to isogeny of the character and cochar-
acter modules of the torus

XHT) <= X*(TW) @ X*(C) Xo(TD) @ X,(C) — X.(T) (6.25)

they become isomorphisms after taking the tensor product by Q. We numerate
the simple positive roots I = {1,2,...,r} = {a1,@2,...,a,.} C X*(T) and we
define dominant fundamental weights ; € X*(7)g which restricted to 7() are
the usual fundamental dominant weights and restricted to C are trivial. Then
a dominant weight can be written as

A=Y ami+6= Y+, (6.26)
el

where § € X*(C) and we must have the congruence condition

AD £ ))zW =1 (6.27)

We can construct a highest weight module My z. We pick a prime p, we
assume that is unramified (with respect to K), this means that K, = G(Z,).
Any element ¢, € T(Q,) defines a double coset K,t,K,. Of course only the
image of t, in T(Q,)/T (Z,) matters and

T(Qp)/T(Zp) = X(T)

we find x € X, (T') such that x(p) = t,. We take a x in the positive chamber,
i.e. we assume < x,a >> 0 for all @. We can produce the element
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x =(1...,1,...,x(p),1...,1,...) € T(Ay)

and the Hecke operator
Hix,) : H*(SE,, M®Q) - H*(SE,, MaQ)
We have to look at the ideal of those integers a for which

aH(x,)(Mxz ®Zp) C (Mrz & Zp).

This is easy: We have the decomposition into weight spaces

Mz =&, My z(p)

and on a weight space the torus element H(Xp) acts by
— <X
H(Xp)xu =pSNHTg,.
We get the smallest exponent if we choose for u, the lowest weight vector.
We denote by wg the longest element in the Weyl group, which sends all the

positive roots into negative roots. The the element —wg induces an involution
1 — i’ on the set of simple roots. Then this lowest weight vector is

A =wo(N) == aiyi +4. (6.28)

We say that our weight is (essentially) self dual if we have a; = a;/. In this case
A=A 435.
Hence we see that our ideal is the principal ideal is given by

(p~<0woAV>=<x0>y o1 if ) self dual (p<A > <0, (6.29)
Hence we have defined the Hecke operator

TEA = XWX () < (ST, Mz) = HY(SE,, M)
(6.30)

We introduce the notation c¢(w, \) :=< —yx, woA— < X, >>, the number — <
x, woA) > is the relevant contribution in the exponent (let us call this the
semi-simple term), the second term — < x,d > is a correction term ( the
abelian contribution) and it takes care of the central character. It only serves
to fulfill a parity condition. We come back to this in section 7.1.3.

Modules of congruence origin and Hecke operators

We also can define an action of the Hecke algebra if the coefficient system is
of congruence origin. Our assumptlions are as above and we consider a finitely
generated G(Z/NZ)— module V. The finite group G(Z/NZ)— is of course a
quotient of G(Z) = K ¢ and hence we can define the sheaf V by the action of
K. This is now a sheaf of congruence origin in the adelic context.

We consider the subalgebra "H%\;) = CC(G(A;N))//K}N),Z) where A(fN) is
the partial adele ring where we take the restricted product over all primes not
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dividing N. If Z) C Q is the semi local ring of rational numbers which are
integral at p| N then we have a surjective homomorphism Zyy — Z/NZ. Hence
we can view V as a G(Zy)) module.

We apply the usual procedure to construct a sheaf V on ng, but here V is
not a G(Q) module but a K; = G(Z) module. If we want to attach a Hecke
operator T}, to the double coset Kz Ky with z; € G(A(N)) we have to define
amap ag, mgfw*(f/) — V. Let K(N) be the kernel of G(Z) — G(Z/NZ). We
have to make an assumption

The map mn : G(Z(ny) — G(Ay)/K;(N) is surjective

( This assumption is certainly true if the group G/Q is semi simple and
simply connected. ) Our assumption says that we can find an u, = € G(Z(n))
with mn (ug,) = zy.

6.3.3 The Satake isomorphism

In the formulation of this theorem I will use the language of group schemes,
the reader not so familiar with this language may think of Gl,, or the group of
symplectic similitudes GSp,,. Since we assumed that for p ¢ ¥ the integral struc-
ture G/Spec(Z,) is reductive it is also quasisplit. We can find a Borel subgroup
B/Spec(Z,) C G/Spec(Z,) and a maximal torus T /Spec(Z,) C B/Spec(Z,).
Then our torus T /Spec(Z,) splits over an unramified extension E,/Q, and
the Galois group Gal(E,/Q,) acts on the character module X*(7 x E,) =
Hom(T x E,,G,,). Let {a1,a,...,a,} C X*(T x E,) be the set of positive
simple roots, it is invariant under the action of the Galois group. Let W (Z,,) be
the centraliser of the Galois action in the absolute Weyl group W. We introduce
the module of unramified characters on the torus this is

Homunram (7(Qp), C*) = Hom(T(Qp)/T (Zp),C*) = A(T). (6.31)

Since we have T(Q,) = B(Q,)/U(Qp) the character n, € A(T) yields a char-
acter 1, : B(Q,) — C*. We write the module structure additively, i.e. (n1,, +
N2,p)(2) = Mp(2)N2,p(2).

The group of (rational ) characters Hom(7,G,,) = X*(T) “(Fr/Q) ig a
subgroup of A(T) : An element v € X*(7) “(¥»/Q) defines a homomorphism
T(Qp) — Q) and this gives us the following element = — |y(z)], € A(T)
which we denote by |v|,. Here of course |a|, is the usual p-adic absolute value of
a € Q,. We can even do this for elements y® L+ € X*(T) ® Q, then y® L (z) =

V(@)™ € RY.

Our open compact subgroup will be K, = G(Z,). Since we have the Iwasawa
decomposition G(Q,) = B(Q,)G(Z,) = B(Q,)K, we can attach to any n, €
A(T) a spherical function

¢np (9) = ¢7]p (bpkp) = np(bp) (6.32)

We introduce the induced representation

d5&)n, = { : G(Qy) = C|f(bg) = np(b) f(9)} (6.33)
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where f satisfies the (obvious) condition that there exists a finite index subgroup
KZ’) C K, such that f is invariant under right translations by elements in Kz/r

In general the induced representation will be irreducible. Then it is clear that

( IndG(Qp) )K

BO)) " = Coyy,, We call these representations spherical representations.
P

Since Indgggz 377;7 is also a module for H, it follows that spherical function

is of course an eigenfunction for H, for h, € H,

/ by (92 (2 = By (1)1, (9) (6.34)
G(Qp)

and S(np) : hy — ﬁp(np) is an algebra homomorphism from H, to C, hence
S(np) € Homaig(Hyp, C). Of course the measure dz gives volume 1 to G(Z,) =

K,.
The subgroup W(Z,) of the absolute Weyl group acts on X*(T") and hence

on A(T), we denote this action by (w,n,) — sn,. We also define the twisted
action by

(w, 1) = w -1 := (wnp)(Jwp = plp, (6.35)
here p € X*(T') is the half sum of positive roots.

The theorem of Satake asserts:
Theorem 6.3.1. The map & is invariant under the twisted action, i.e we have
S(w-np)) = &(np) and
S
ANT)/W(Zp) — Homag(H,,C)

is an tsomorphism.

The Hecke algebra is generated by the characteristic functions of double
cosets K,t, K, where ¢, € T(Q,) and where for all simple roots a € m we have
la(ty)]p <1, 1ie. t, € T4(Qp). Then the evaluation in (6.34) comes down to the
computation the integrals

/ b, (92)d2 = £ (1) b, (9) (6.36)
Kptp K,

We discuss this evaluation in (7.1.2)
bf Admissible basis +ramified induced repps

6.3.4 Spherical representations

Now we assume that Let F' C C be a finite extension of Q and let V/F be
a vector space. We choose K, = G(Z,), i.e. p is unramified. An admissible

representation (i.e. for any open subgroup K, the space VEb of invariants is
finite dimensional and V = UV )

7p 1 G(Qp) = GL(V)
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is called spherical if V7 # 0, and this space is a module for the Hecke algebra.
If the representation is absolutely irreducible, then it is well known (Refer-
ence) that dimp VEr = 1, this is a one dimensional module for Hk,, i.e. a
homomorphism 7, : Hg, — F. The G(Q,)— module V' is determined by the
H,- module VEr . Then it is well known that we can find a finite normal ex-
tension Fy/F and an 7, € Hom(A(T), F{*) such that V ® F} is isomorphic to
a subquotient of the induced representation

Ind5(8")n, = {/ : G(Qy) = Filf(bg) = n,(b)f(9)} (6.37)

where f satisfies the (obvious) condition that there exists a finite index subgroup
K, C K, such that f is invariant under right translations by elements &’ €
K. In general the induced representation will be irreducible and then it is
isomorphic to the representation V @p F.

6.3.5 Intertwining operators

The theorem of Satake implies that the two Hecke modules ( Ind BEQ )np) » and

( Indggg”)w -np) 7 are isomorphic. We give a proof of this fact, since we need
it later in Chapter 9 when we discuss the Eisenstein cohomology.

We only discuss the case that G/Z, is split, at the end we say something
how to modify the argument for quasisplit groups, We change our standpoint
slightly, we introduce the field F}[[q]] of Laurent power series

Fillg] :={P(q) = >_ avq”|a, € F1}.

v>N

For any character v € X*(T') we define a homomorphism v — Z. It defined
by the requirement that for any cocharacter x € X,.(T) we have the relation
Y(x(t)) = t<X7> (See ?7?). Now we consider characters n,®v : T(Q,)/T(Z,) —
F1[[q]]* which are given by = — 1, (x)q” ). :

As before (6.37) we define the induced representation

IndZ( &0, @ v = {f : G(Qp) — Fillal] | £(bg) = np(0)a” @ f(9)}  (6.38)
G(Qp)

The vector space Ind B, )np ® v can be identified to the vector space of

F1][q]] valued functions f on G(Q,)\G(Q,) = B(Z,)\G(Z,), which are invariant
under right translations by elements of a suitable open sub group K } (depend-
ing on f). Then it is clear that this space has a countable basis fo, fi1,...
consisting of F} valued functions which are invariant under smaller and smaller
open compact subgroups. If g € G(Q,) we have R,(f;) = >_ a; ; fy where only
finitely many of the matrix coefficients a; ; are zero.

We analyse how an element g € G(Qp) acts on IndB(Q %771) ® . We know
that Indgég")np ® v = Uk ( IndB(Q )77p ® 7)5» where K, runs over all open
compact subgroups. Then the right translation by g maps

-1 /
Ry : (Indg E@ iy ©7)% — (Ind E@ Jip @ )T K2 (6.39)
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The functions in these induced modules are determined by their restriction to
K, = G(Zy). We can find a basis {fo, fi, fo..., fi} given by functions f; :
B(Z,)\G(Zp)/ K, — Fi Then the right translation by an element g € G(Q,) is
given by

Ry: f={z~ f(z)} = {x— f(zg)}; here x € G(Z)) (6.40)
then we use the Iwasawa decomposition and write

g = b(zg)k(zg) = n,(b(xg))g" ™ f(k(xg)).

We have B(Q,)\G(Q,) = B(Z,)\G(Z,) and the right multiplication by g is given

G(Qp

by x — k(zg). If now choose a basis f§, f1, fa, ..., f; as above for ( IndB(Qpinp@)

7)9_1[{;9 then it becomes clear that
Ry(fi) =) ai;l;

where the matrix coefficients a; ; € Fi[q,¢7'].

Now we describe the well known process to write an explicit intertwining op-
erator. This operator is discussed at many places in the literature, but there the
basic field for the vector spaces is always C. Here we are in an arithmetic con-
text and our representations are defined over a number field F' or over F/[[¢]] and
this requires some algebraic arguments. But in principles there is no essential
change.

Under the assumption that 7 is in the positive chamber (see below) our
intertwining operator is given by an integral

G T(w,np®7) G
T(w,np ®7) IndBEgZ;np ®y  — Innggigw “Np QW -y

(6.41)
flg) — fU(W)(Qp) f(wug)du

This needs some explanation. Here U®) is the product of all the one parameter
subgroups Ug C U for which w™!3 < 0. Then it is clear that for any ug € U(Q))

/ f(wuugg)du = / fwug)du.
U (Qp)

U (Qp)

Moreover we see that for an element ¢ € T'(Q,)

fU<w>(Qp) f(wutg)du = fU<w>(Qp) fwtww =t utg)du = wn, @ ((t) =

= Hﬁemm Blp(t) fUcw)(@p) f(wug)du

and it is rather obvious that the factor in front is w- (1, ® 7). Hence we see that
indeed the image of T'(w,n, ® 7) lands in the right space.

We have to discuss the ”convergence” of the integral. For this we consider
the special case that w = s; the reflection at a positive simple root «; Then the
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two unipotent groups U, /Z and U_q,/Z generate a three dimensional semi-
simple subgroup H,,. We have a surjective homomorphism h,,, : Slo/Z — H,,
which induces isomorphisms of Uy /Z — U, /7. Then we can say

/Uai(Qp)f(s"““ig)d“ai: o, f(hm((_ol D (é zf))g)du (6.42)

Since we assumed that f is right invariant under some open compact subgroup

K, ,ie. f(gky) = f(g) for k, € K, we can an integer mo > 0 (depending on

oy sucnvanat f(ha (1) (5 T o =1t (O 1) (5§ o

v € po. Hence our integral becomes

f@,)/pmozpf(hai(<01 }) ((1) ?))g)duZ

0 1 1 u

For each summand the integral is a finite sum. For n > 0 we write u = p~ "¢

then
0 1 1 u n v .
(1 0) (0 1) _ (po pn))kp with &, € Sla(Z,).

We introduce the cocharacter o) : ¢ — hq, ( (é t01>) then

(6.43)

Flay (0" kp(e)g) = mp(a) ()" g7 f(kp(e)g)

We assume that v is in the positive chamber, i.e < o, >> 0 then it becomes
clear that our integral in (9.4.2) yields an honest Laurent power series in the
variable g, and hence we see that the integral provides an intertwining operator
in the case w = s,

We have a closer look at the case fo = ¢,,, In (9.4.2), we choose g = 1 and
mg = 0. Then the integral simplifies to (the right hand side becomes)

1 —np(ei (p))g=" >
1 —np(a) (p))pg=>i 7>

1+(1—5) > p (e (p)" g =
n=1

We observe that this last expression is a rational function in the variable q.
This has simple consequences for the intertwining operator on the entire induced
representation.

It is well known that the induced module Indgggz ;np ® 7 is irreducible,

therefore the translates Ry(fo) generate this module. Then we can conclude
that .

1 — (e (p)g= 7~
1 —1p(a) (p))pg=v7>
and this means that the matrix coefficients of the intertwining operator are
ratios of Laurent polynomials in ¢, ¢! with coefficients in F; divided by the
polynomial 1 — n,(a) (p))pg<®i ">

T(sa;,mp @7)(Ry fo) = (Rg fo)
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Then it is clear that we can replace the assumption < o,y >> 0 by <
a),y ># 0, we also constructed the operator T'(sq,, Sa,, (7p ® 7).

Now it is easy to understand the general intertwining operator T'(w, n, ® 7).
We denote by A(f) the set of positive roots 3 for which w=!3 < 0,( then our
subgroup U™ = HBGA(;”) Up). If it is not empty (i.e. if w # e), then it contains
a simple root 1 = a;,. Then w = s,, w; and A(ﬁl) = sailA(f) \ {—ai, }.
This set Aiwl) again contains a simple root ;, = Sq,; S2. This way we get an
expression as a product of reflections w = sq,, e Sa this expression is of

shortest length. This also gives us an ordered listing A(;“) ={B1,B2,- -, Biw) } -

Then we get for our intertwining operator

T(w,np ®7) =T (s, w" - (np ®7)) -+ 0 T(Sas, 5o, * (Mp @7)) 0 TS0y, > (1p © 7))
(6.44)

We look at the intermediate expressions w = S, ... Sq, W, = wyw!, and
1 v

consider T(SO%H ,wy - (np ®7)), we look at its effect on the spherical function

1—w, 'y - (g, @) () (p)) 5
v (p®7)

T(Sas, »wy by - (Mp @)1 . = - "
v 1 p v mp®Y) T pwy,ll (1, ® ,y)(aivu (p) ™
(6.45)

Now it is easy to see that

L@, (p) = wity (@) (o, (D) w1 p=plp = (0p,07) (B (p)p~ P!

where s(8,) is the sum of the coefficients if we write 8 as the sum of simple
roots. Hence we finally get

Hence we get

I(w)—1

T(w,mp @ 7)Pn,0v = VEIO 1—p(np, @7)(BY(p)p~

1 _ é(ﬂu)""l
(np ®7) (B, (p))p T Pwneey  (6.46)

We get the following

Proposition 6.3.2. The matriz coefficients of the intertwining operator are
rational functions in q. More precisely the become polynomials in q,q~ ' if we

maultiply them by [T'“) (1 — p(n, @ 7)(BY (p))p~*F)+1).

Now we can specialise ¢ — 1 provided Hlu(zgfl(l—pnp(ﬁl\,/ (p))p~=B)+1) £ 0.
Hence we get an intertwining operator

G P
T(w,np) : IndBEg Vi — IndB(Q ;w Mp (6.47)

This implies that we get an intertwining operator between the one dimensional
Hecke modules

G P
(T(w,mp) : (Indg &7 ) = (Indfar)w - )" (6.48)
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which is an isomorphism provided the numerator evaluated at ¢ = 1 in (6.46) is
non zero. This shows the that the Satake map & is invariant under the twisted
action of the Weyl group, i.e we have h(w -1,) = h(n,) in (6.34) , but still
under the proviso that the numerator and the denominator in (6.46) are non
zero for the given 7, and ¢ = 1. But it is easy to see that we can drop this
assumption. To see this we look at an individual factor T'(sq, ,w, ;- (1, ®7)).
If the denominator evaluated at ¢ = 1 is zero we normalise by multlplylng by
the denominator and then clearly the normalised operator evaluated at ¢ = 1
yields an isomorphism

1—pw,ty - (p @) (@) (D)T (Sas, » wyly - (11p @7))|g=1:

G(Qp ~ G(Qp _
( IndBEQ g w,, 1771)) P —( IndBEngwV ! -np)K”

It the denominator is non zero but the numerator 1 — (n,)(8Y (p))p~*¥)*+1 = 0,
then we apply the same considerations to the operator in the opposite direction

- G G
T (S0, wy " (0 ©7)) : (Indg @ wy - mp @) = (Ind e w, i, @ 7)
(6.49)
and now an easy calculation shows that we get an isomorphism of Hecke modules
(Ind ng") “np)Er = (Ind BE%I}) w, ' m,)K». This shows that the Hecke

algebra modules ( Indgggp;w . np) » are all isomorphic, so we almost proved

Theorem 6.3.1.
The orbit

{npa"'aw'npa"'}wew:w(np)

will be called the Satake parameter of the representation Ind BE%I) % . (If it is

irreducble). We come back to this in the next chapter.

If %PY is the spherical representation attached to the Satake parameter 7, 1
then we have a pairing | dualSat

H;Tp X H;rg - C
(6.50)
Ji X far pr f1(kp) fa(kp)dky

This tells us that the dual module to Hy, = H;Ti" has the Satake parameter

ny 1. The representations H3, are called the representations of the unramified
principal series.
We may consider the case that 7, is a unitary character, this means that
p + T(Qp)/T(Zy) — S'. Then we have n,*(t) = 7,(t) and our above pairing
defines a positive definite hermitian scalar product

<, >: Hﬁ—p X Hﬁ—p — C (651)

which is given by

<hﬁ>=Awamm%p (6.52)
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If we allow for f € Hz, all the functions whose restriction to K, lies in L3 (K,)
then Hz, becomes a Hilbert space and the representation of G(Q,) on Hz, is a
unitary representation.

These representations are called the unitary principal series representations.
It is not the case that these representations are the only unramified principal
series representations which carry an invariant positive definite scalar product.

(See [Sat]).

6.3.6 Back to cohomology, the case of a torus and the
central character

We counsider the case that our group G/Q is a torus T'/Q. This case is already
discussed in [33]. Our torus splits over a finite extension F//Q and our absolutely
irreducible representation is simply a character v : T' xg £ — G, it defines a
one dimensional 7' xg F'— module F'[y]. Here F[y] is simply the one dimensional
vector space I over I’ with T' xq F' acting by the character .

We recall the notion of an algebraic Hecke character of type v. We choose
an embedding ¢ : F < Q then « induces a homomorphisms 7'(C) — C*. The
restriction of this homomorphism to T'(R) is called v : T(R) — C*.

A continuos homomorphism

O = Qoo X oy = Poo X o5 - T(A)/T(@) — C~*

is called an algebraic Hecke character of type -y if the restrictions to the connected
component of the identity satisfy

Pool (o) (R) = %;1|T<0)(R)~

The finite part ¢; : T(Af) — QX is trivial on some open compact subgroup
K? C T(Ay). We also say that a homomorphism ¢; : T(Af)/KfT — Q% is an
algebraic Hecke-character, if it is the finite part of an algebraic Hecke character,
which is then uniquely defined.

In [33], 2.5.5 we explain that the cohomology vanishes ( for any choice of
KJ? ) if 7y is not the type of an algebraic Hecke character. In this case we give
the complete description of the cohomology in [33], 2.6: If we choose Z' = Z
(see 1.1) then

HO(Skr, Fly) ®©r, ®Q) = S, Q¢s.  (6:53)
¢5:C(Af)/KT)—»Qx:type(ss)=v

The property of v to be the type of an algebraic Hecke character does not
depend on the choice of ¢. If we fix the level then it is easy to see that the values
of the characters ¢y lie in a finite extension F of «(F') so we may replace in our
formula above the algebraic closure Q by Fj.

If we return to our group G/Q and if we start from an absolutely irreducible
representation G xg F' — GI(M) then its restriction to the center C/Q is a
character (x¢. Our remark above implies that this character must be the type
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of an algebraic Hecke character if we want the cohomology H? (Sfj. f,M) to be
non trivial. (Look at a suitable spectral sequence).

In any case we can consider the sub algebra Cx, C H, generated by central
double cosets Kjz;K; = Kjz;. with z; € C(Ay) This provides an action
of the group C’(Af)/KJ(cj on the cohomology Hy (ng,./\;l). Then the following
proposition is obvious
Proposition 6.3.3. Let Hy, be an absolutely irreducible subquotient in the
Jordan Holder series in any of our cohomology groups. Then C’(Af)/KJ? acts
by a character (r, on Hy, and (x, is an algebraic Hecke character of type (a.

Note that Cu is the restriction of the abelian component § in A = A() +§
to the center.

The cohomology in degree zero

Let us start from an absolutely irreducible representation r : G x F — Gl(M),

we want to understand H°(S% f,./\/l): To do this we have to understand the
connected components of the space and the spaces of invariants in M under the
discrete subgroups I'Ys in 1.2.1. We assume that the groups T'%s N G (Q) are
Zariski dense in G, Then it is clear that we can have non trivial cohomology
in degree zero if M is one dimensional and G") acts trivially. Hence M is given
by a character § : C' x F = G,,, x F.
To simplify the situation we assume that the assumptions in (6.1.3 ) are
fulfilled and we have a bijection
mo(SK,) — mo(SE ) (6.54)

KS xK§'

where K g and Kf/ are the images of the chosen compact subgroups respec-

tively. With these data we define SIC(/C, and we can view M as a sheaf on S[C(/c,,
7 7

in our previous notation it is the sheaf F[d].
Then we get for an absolutely irreducible G x F' module M -and under the
assumption that the T2 N G (Q) are Zariski dense in GM- that (See ??)

0 if dim(M) > 1

. 6.55
Dy, typesy)=s 10 if M = F[d] (6.55)

HY(SE, Mo Fy) = {

The density assumption is fulfilled if GV)/Q is quasisplit. We also observe
that we have the isogeny do : C — C' (See (1.1). Then it is clear that the
composition d¢ o d is the character (o in section ??. Remark on Poincare
duality

6.3.7 The Manin-Drinfeld principle

We return to the general situation. We start from a rational (preferably ab-
solutely irreducible) representation p : G xg Fy — Gl(Mp,) where Mp, is a
finite dimensional Fj vector spaces. We have an action of 4 on our cohomol-
ogy groups H;(SIC(: f,/\/l F,)- Most of the time we will consider the restriction of

this action to the central sub algebra H(*) We choose a finite normal extension
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F/Q,F D Fj such that all irreducible subquotients are absolutely irreducible.
We introduced the sets Coh(H;(ng,M)), Coh™® (H? (ng,./\/l)).

We say that for a cohomology groups Hi(SICéf,/\;lp) (resp. Hg(ng,/\;lF)
satisfy the (strong) Manin-Drinfeld principle, if

Coh® (H}(SF,, Mp) N Coh® (H'(0(SF, ), Mp) = 0

(resp

Coh™ (H{(SF,, Mr) N Coh™ (H'"1(0(SF,), Mr) = 0.
An equivalent formulation is: The #(*) module H;(Sf , Mp) is complete in
H' (ng ’ MF)

If the Manin-Drinfeld principle is valid we get canonical decompositions
HI(SE,, M) = Tm(H(SE,, Mr) — HI((SE,), Mr)) & Hi(SE,, Mx)

Hé(SI(?JnMF) = Im(Hi_l(a‘SIG(f’MF) — H(Z:(ngvMF» @H!i(sgf’MF)'
(6.56)

which is invariant under the action of the Hecke algebra.

In the first case we can consider the module H, (ng ,Mp) C Im(H? (SIGQ ,Mp) —
Hi(a(ng), M) as a submodule in H’ (ng , M) and this submodule is called
the Eisenstein cohomology. In the second case we will call the above image of the
boundary cohomology the Eisenstein subspace or compactly supported Eisen-
stein cohomology and denote it by

Im(H' =Y (8SE,, M) — Hy(SE . Mp)) = H. 5:i(SE, - Mp).
Therefore we get the decompositions

H(SE, M) = HI(SE, M) & Hiy S, M)
) ) ) (6.57)
HZ(SICéfaMF) = H!Z(SlcéfaMF) @H(Z:,Eisslcéf’MF)

We could also speak of the weak Manin-Drinfeld principle where we replace
H™) by the full Hecke algebra.

If we know the Manin-Drinfeld principle we can ask new questions. We re-
turn to the the integral cohomology Hi(S$ . M) and map it into the rational

cohomology, then the image is called Hy (ng,./\;lop) int C HY (ng,./\;lp) this
is also the module which we get if we divide H;(Sﬁf,/\;loF))) by the torsion.
(This may be not true for ? =!.(see??))

We introduce some terminology. Let R be any Dedekind ring, let K be its
quotient field. We consider finitely generated modules over R. If X is a finitely
generated R-module then we have the map X — X ®g K. The kernel of this map
is the module X .5 of torsion elements, the image is called X ;¢ it is a locally
free R-module and equal to X/X tors. If we have a decomposition submodules
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X®K =U®®YV then we consider U i, Ving C X int and we get a decomposition
up to isogeny

X int D Uint S¥) Vint Wlth X int/(Uint S>) Vint) ﬁnite

where the term up to isogeny is a synonym for the finiteness of the quotient
on the right. At this point we notice that the quotients X int/U int, X int/Vint
are torsion free. We call a submodule Y C X i saturated , if X /Y is
torsion free. Therefore we will call the above decomposition up to isogeny also
a decomposition into saturated submodules.

For instance the Manin-Drinfeld decomposition above yields ( a decomposi-
tion up to isogeny

H'Z(SlcéﬂMOF) int D HiEis(SICéﬂMOF) int C Hi(SIC{;WMOF) int,

It is one of the central questions discussed in this book to understand the quo-
tient

Hi(slgvaoF) int/(H!i(SICéfaMoF) int D HiEis(SIC?vaOF) int) (658)

In the earlier chapters 3-5 we discuss this problem in a very specific case.
Our group is G/Z = Gla/Z, the open compact subgroup is Ky = [], Gl2(Z,).
Then ng = Sly(Z)\H, our coefficient system is the module M’ (See section
[?]) and we give an answer to the above question.

I am convinced that there are many more cases in which the above question
is interesting and has an interesting answer. The structure of the quotient
should be related to the arithmetic of special values of L-functions which are
attached to Hecke eigenclasses in H®(9S¥ . M) (See Chapter 7) This is highly
conjectural but the experimental data are very convincing.

The same applies to the decomposition of H{ (ng , M) in¢ in isotypical sum-
mands. We put

H'Z(SIG(f’M)(ﬂ-f) N H'Z(SIG(vaoF) int = H!i(SIG(vaop) int(ﬂ-f)'
Then we get an decomposition up to isogeny
@Hli(SIG(vaOF) int(ﬂ-f) - H!i(sicévaOF) int- (6'59)
mf

It is a very interesting question to learn something about the the structure
of the quotient of the right hand side by the left hand side. The structure of
this quotient should be related to the arithmetic of special values of L-functions.
(See [50]).

The action of 7y(G(R))

We have seen that we can choose a maximal torus 7'/Q such that T(R)[2]
normalizes K. We know that T(R)[2] — m(G(R)) is surjective and that
T(R)[2] N GM(R) C Ku. This allows us to define an action of mo(G(R)) on
the various cohomology groups and this action commutes with the action of
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the Hecke-algebra. Therefore we can decompose any isotypical subspace in a
cohomology group into eigenspaces under this action

H3 (S, Mr)(ny) = @ HI (SE,, Mrp)(ns x ) (6.60)

€oo

and for the integral lattices we get a decomposition up to isogeny

@ H!i(SI(?pMOF) int(ﬂf X 600) - H!i(SICéf"/\;lOF) int (6'61)

Tf X€oo

6.3.8 Some questions and and some general facts

Homology

here M, is a “cosheaf”. The “costalk” My  is obtained as follows: We consider

7~ (x) and
@ ng)\a

y=yxg K;/K;

We may also define homology groups Hi(ng,MA) and HZ‘(SIG(f,8S[(§f7M/\),

and the action of G(Q) on this direct sum. Then M, , is the module of coin-
variants. If we pick a point y = y x ngf/Kf, which maps to z € ng then we
get an isomorphism

M)\,z =~ (ng)\)FFEf) .
We define the chain complex
Ci(SE,. M)

and the above homology groups are given by the homology of this complex.

If we assume that SIGQ_ is oriented (ref. to prop 1.3) then we know (Chap. II
2. 1. 5) that we have isomorphisms which are compatible with the fundamental
exact sequence

Hi_l(aégf,/\;l,\) - Hdi(aégf,/\/lx)
Hé(Sﬁt,/\;l,\) = Hd—i(SiéfaM)\)
Hi(SICiJ\;l)\) = dez-(SE?f 7%ng»MA)
Hi(asfi,MA) — Hd—i—l(;«ggw/\/ﬂ\)
1 3

poincdu
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6.3.9 Poincaré duality

We assume that ng is connected. If we denote the dual representation by
MY = Myyn) (we choose the right lattice My C My) we have the canonical
homomorphism @y : My ® MY — Z and the standard pairing between the
homology and the cohomology groups yields pairings

Hé(slgfa/\;t)\) X Hl(SICéf?aSIG(jaMX) — HO(ngaM)\ ®MX) — HO(SICéfaZ)
1 1 4 1
H(SE , M) x Hi(SE . Myv) = HOUSE . MyaMY) — HSE,.Z)

This pairing is of course compatible with the isomorphism between homology
and cohomology and then the pairing becomes the cup product. We get the
diagram

HY(SE,, M) x HIZH(SE  MY) = HISE . MyoMY) — HISE .Z)
I T ! \
HY(SE, M) x HEHSE ,Myv) — HUSE, , Mao M) — HI(SE,.Z)

We know that the manifold with corners 5'81% "smoothable” it can be ap-
proximated by a C— manifold and therefore we also have a pairing <, >g on the
cohomology of the boundary. This pairing is consistent with the fundamental
long exact sequence (Thm. 6.2.1). We write this sequence twice but the second
time in the opposite direction and the pairing < , > in vertical direction:

- HP(SE, M) & HPOSE, M) D
X X
e HIP(SE My) = HTPH0SE M) (6.62)
1<, > 1<, >s

da

H(SE,.2) H{~H(08E,,2)

then we have: For classes £ € H”(SIGQ,./\;I)\), n € Hd_p_l(ﬁSIG(f,/\;l,\v) we have
the equality '

<& 0(n) >=da(<r(§),n >s) (6.63)

Non degeneration of the pairing

The spaces Slcéf and 881% are not connected in general. Let us assume that we
have a consistent orientation on 81%. Then each connected component M of SIG(f

is an oriented manifold which is natural embedded into its compactification M.
It is obvious that the cohomology groups are the direct sums of the cohomology
groups of the connected components and that we may restrict the pairing to the
components

HP (M, M) x HI"P(M, Myv) — HY(M,Z) = 7. (6.64)

We recall the results which are explained in Vol. I 4.8.4. The fundamental
group 7 (M) is an arithmetic subgroup T'p; C G(Q) and My, M v are Ty,
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modules. For any commutative ring with identity Z — R the I'j; modules

M) ® R, Mv ® R provide local systems M) ® R, M/A?@ R, and we have the
extension of the cup product pairing

HP(M, My ® R) x HYP(M, Myo ® R) — HY(M,R) = R

Proposition 6.3.4. If R =k is a field then the pairing is non degenerate. .
If R is a Dedekind ring then the pairing then the cohomology may contain
some torsion submodules and

HP(M, My ® R)/Tors x HY?(M, Myv ® R)/Tors — HY(M,R) = R
is non degenerate.

(See Vol. T 4.8.9)

We want to discuss the consequences of this result for the cohomology of
H3 (ng , M. Before we do this we want to recall some simple facts concerning
the representations of the algebraic group G/Q. We consider two highest weights
A, A1 € X*(T x F) which are dual modulo the center. By this we mean that we
have (See 6.25)

A=AV 45 A = —wo(A\Y) + 6, (6.65)

Then § + ¢; is a character on X*(C’ x F') and yields a one dimensional module

for G x F, of course the action of G(!) on this module is trivial. Then we get a
G invariant non trivial pairing

M p X My, F = Naox,
which induces a pairing
H(SF,, My p) x HHSE , My, r) = HI(SE,, Nrox,),

this only a slight generalization of the previous pairing.
Now we recall that (under certain assumptions) we have the inclusion g (ng) —

C/
) S ’
( K xK¢

) and then we get
HE(SR, Naor,) € HO(S(er oo Naor,) = D Py
x':type(x’)=rox

The character x’ has a restriction to C'(A) let us call this restriction x.

The group C(Ay) acts on the cohomology groups and this action has an
open kernel KJ?. Hence we can decompose the cohomology groups on the left
hand side according to characters

Hi(SE, Mar)= @  HIASE Mrr)()  (6.66)
¢rtype(cy)=5
HYHSE My, p) = T HYH(SE, Mo, ) (Grp). (6.67)

G p:type(¢, 5)=6

With these notations we get another formulation of Poincaré duality.
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Proposition 6.3.5. If we have three algebraic Hecke characters Cf»(l,f’X} of
the correct type and if we have the relation (5 - (1,y = x5 then the cup product
induces a non degenerate pairing

HU(SE,, M r)(Cp) x HTHSE,, M, r)(Cry) = FX'

This is an obvious consequence of our considerations above. Fixing the
central characters has the advantage that the target space of the pairing becomes
one dimensional over F', The field F should contain the values of the characters.

We return to the diagram (6.62) and consider the images Im(r?)(¢s) =

Im(Hg(ng,MA7F)(cf) — Hg—q—l(asgf,/\?lxj)(cf) and Im(rV-4=971). Then
the following proposition is an obvious consequence of the non degeneration of
the pairing and (6.63)

Proposition 6.3.6. The images Im(rP(C)) and Im(rV-2=P=1)((1.¢) are mu-
tual orthogonal complements of each other with respect to <, > .
The pairing in proposition 6.3.5 induces a non degenerate pairing

H{(SE,, M) (Gp) x HTH(SE,, Ma, 1) (Crp) = FX.

Proof. Let n € H¥~P~1 (C1,f) Then we know from the exactness of the sequence
that n € Im(rV 4 P=1) (¢ ;) < 6(n) =0 <= < (n),6 >=0forall ¢ €
HP(SE,, My)((p) <= < n,r(§) >=0forall § € HP(SE , My)(() <= <
n,& >p=0 for all & € Im(r?)((y).

The second assertion is rather obvious. If we have £ € HI”(SIG{f M) (C) € €
H;’l‘f’(sgf,/\?lw)(gf) then we can lift either of these classes - say &i1- to a class

& € Hf(S[G(f,/\;lA)(Cf) and then < &,& >=< £1,& > . It is clear that the
result does not depend on the choice of class which we lift. It is also obvious
that the pairing is non degenerate. O

Of course we also have a version of proposition 6.3.6 for the integral coho-
mology. Since we fixed the level we have only a finite number of possible central
characters (y, (1,5 of the required type. The values of these characters evaluated
on C(Ay) lie in a finite extension F//Q and of of course they are integral. If we
now invert a few small primes and pass to a quotient ring R = Op[1/N] then we
get the decomposition (6.66 ) but with coefficient systems which are R-modules:

H§<ng’MA7R) = @ Hé(ngaM&R)(Cf) (6.68)
Cr:type(¢s)=6
HYN(SE,, Mx, k) = S5 HYH(SE,, M, r)(Crp) (6.69)
Crp:typPe(Gr )=01
Then it becomes clear that we get an integral version of proposition 6.3.5 where

replace the F-vector space coefficient systems My r by R -module coeflicient
systems. We get a pairing (See [37] 4.8.4)

HZ(SIC}Vf,MNR)(Cf)/TOI‘S X Hdii(SIG(f,./\;l)\hR)(CLf)/TOI‘S — Ry’ (6.70)

and this pairing is non degenerate. (See [37] Thm. 4.8.9. The finiteness as-
sumptions are easy consequences of reduction theory)
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We recall the notion of non degenerate. Our ring R is a Dedekind ring and
all our cohomology groups are finitely generated R modules. If we divide any
finitely generated R-module by the subgroups of torsion elements then the result
is a projective R-module and it is locally free for Zariski topology. An element
e Hé(ng,/\;l,\,R)(Cf)/Tors is called primitive if the submodule R¢ is -locally
for the Zariski topology- a direct summand or what amounts to the same if
Hé(SICéf,/\;lA,R)((f)/TorS/Rf is torsion free. Then the assertion that the above
pairing is non degenerate means:

For any primitive element n € Hé(ng,/\;lA,R)(Cf)/Tors we find elements
£,&,...,& € Hd_i(SIG(f,J\;IAI’R)(CLf)/Tors such that the ideal generated by
<&,m>,<&,n>, ..., < &,n > s equal to R.

We want to formulate an integral version of (6.63). Here the statement is
not quite symmetric. It is clear from 777 that we get a pairing

H{(SF,, Mar)(Cr) e X HHSE,, My m)(CLy) iney — RX'. (6.71)
It is also clear from proposition (6.3.4)
Proposition 6.3.7. This pairing is partially non degenerate. For any primitive

element n € Hd_i(SIG{f,./\;lM,R)(gLf) int,! we find elements

517527 oo 751” S H'Z(S[C(:faMA,R)(Cf) int

such that the ideal generated by < n,& >, < n,& >,...,<n,& > is equal to
R.

Here we see that the possibility that
HY(SE s My, m)(Cg) innt/HI (SR s Mar)(Cr) ine 7 (0)

plays 