
Cohomology of Arithmetic Groups

by

G. Harder.

The following is a first version of Chapter VI (probably the last one) of a book on the cohomology of
arithmetic groups. The intention of the book is to give a fairly elementary introduction into the subject
and to show that it yields interesting applications to number theory. This last chapter VI is really the heart
of the matter. I refer to the previous chapters, which exist in a preliminary version (in german) and are
available at the MPI or my office in Be1.

The main result in Chapter VI is Theorem I. This Theorem is an elementary statement on the structure
of the cohomology as a module for the Hecke-algebra. Its proof in 6.2 and 6.3 is also elementary but rather
long

The really difficult and by no means elementary part of this chapter VI is section 6.1, where I try to
explain how Theorem I yields insight into the structure of cyclotomic fields(the theorem of Herbrand-Ribet).

I also add the introduction to the book, the reader may get some impression of the concept of the whole
book. Any comments will be welcome.
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Introduction: This book is meant to be an introduction into the cohomology of arithmetic groups.
This is certainly a subject of interest in its own right, but my main goal will be to illustrate the arithmetical
applications of this theory. I will discuss the application to the theory of special values of L-functions and
the theorem of Herbrand-Ribet (See Chap V, [Ri], Chap VI, Theorem II).

On the other hand the subject is also of interest for differential geometers and topologists, since the
arithmetic groups provide so many interesting examples of Riemannian manifolds.

My intention is to write an elementary introduction. The text should be readable by graduate students.
This is not easy, since the subject requires a considerable background: One has to know some homological
algebra ( cohomology and homology of groups, spectral sequences, cohomology of sheaves), the theory of Lie
groups, the structure theory of semisimple algebraic groups, symmetric spaces, arithmetic groups, reduction
theory for arithmetic groups. At some point the theory of automorphic forms enters the stage, we have to
understand the theory of representations of semi-simple Lie groups and their cohomology. Finally when we
apply all this to number theory (in Chap. V and VI) one has to know a certain amount of algebraic geometry
(`−adic cohomology, Shimura varieties (in the classical case of elliptic modular functions)) and some number
theory( classfield theory, L−functions and their special values).

I will try to explain as much as possible of the general background. This should be possible, because
already the simplest examples namely the Lie groups Sl2(IR) and Sl2(C) and their arithmetic subgroups
Sl2(ZZ) and Sl2(ZZ[

√
−1]) are very interesting and provide deep applications to number theory. For these

special groups the results needed from the structure theory of semisimple groups, the theory of symmetric
spaces and reduction theory are easy to explain. I will therefore always try to discuss a lot of things for our
special examples and then to refer to the literature for the general case.

I want to some words about the general framework.
Arithmetic groups are subgroups of Lie groups. They are defined by arithmetic data. The classical

example is the group Sl2(ZZ) sitting in the real Lie group Sl2(IR) or the group Sl2(ZZ[
√
−1]) as a subgroup

of Sl2(C), which has to be viewed as real Lie group (See ..). Of course we may also consider SlnZZ ⊂ SlnIR
as an arithmetic group. We get a slightly more sophisticated example, if we start from a quadratic form, say

f(x1, x2, . . . , xn) = −x2
1 + x2

2 + . . . + x2
n

the orthogonal group O(f) is a linear algebraic group defined over the field Q of rational numbers, the group
of its real points is the group O(n, 1) = O(f)(IR) and the group of integral matrices preserving this form is
an arithmetic subgroup Γ ⊂ O(f)(IR)

The starting point will be an arithmetic group Γ ⊂ G∞, where G∞ is a real Lie group. This group is
always the group of real points of an algebraic group over Q or a subgroup of finite index in it. To this group
G∞ one associates a symmetric space X = G∞/K∞, where K∞ is a maximal compact subgroup of G∞, this
space is diffeomorphic to IRd. The next datum we give ourselves is a Γ-module M from which we construct
a sheaf M̃ on the quotient space Γ\X. This sheaf will be what topologists call a local coefficient system, if
Γ acts without fixed points on X. We are interested in the cohomology groups

H•(Γ\X,M̃).

Under certain conditions we have an action of a big algebra of operators on these cohomology groups, this
is the so called Hecke algebra H, it originates from the structure of the arithmetic group Γ (Γ has many
subgroups of finite index, which allow the passage to coverings of Γ\X and we have maps going back and
forth). It is the structure of the cohomology groups H•(Γ\X,M̃) as a module under this algebra H, which
we want to study, these modules contain relevant arithmetic information.

Now I give an overview on the Chapters of the book.
In chapter I we discuss some basic concepts from homological algebra, especially we introduce to the

homology and cohomology of groups, we recall some facts from the cohomology of sheaves and give a brief
introduction into the theory of spectral sequences.
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Chapter II introduces to the theory of linear algebraic groups, to the theory of semi simple algebraic
groups and the corresponding Lie groups of their real points. We give some examples and we say something
about the associated symmetric spaces. We consider the action of arithmetic groups on these symmetric
spaces, and discuss some classical examples in detail. This is the content of reduction theory. As a result
of this we introduce the Borel-Serre compactification Γ\X̄ of Γ\X, which will be discussed in detail for our
examples. After this we take up the considerations of chapter I and define and discuss the cohomology groups
of arithmetic groups with coefficients in some Γ-modules M. We shall see that these cohomology groups
are related (and under some conditions even equal) to the cohomology groups of the sheaves M̃ on Γ\X.
Another topic in this chapter is the discussion of the homology groups, their relation to the cohomology
with compact supports and the Poincaré duality. We will also explain the relations between the cohomology
with compact supports the ordinary cohomology and the cohomology of the boundary of the Borel-Serre
compactification. Finally we introduce the Hecke operators on the cohomology. We discuss these operators
in detail for our special examples, and we prove some classically well known relations for them in our context.
In these classical cases we also compute the cohomology of the boundary as a module over the Hecke algebra
H

At the end of this chapter we give some explicit procedures, which allow an explicit computation of
these cohomology groups in some special cases. It may be of some interest to develop such computational
techniques sinces this allows to carry out numerical experiments (See .. and ... ). We shall also indicate
that this apparently very explicit procedure for the computation of the cohomology does not give any insight
into the structure of the cohomology as a module under the Hecke algebra. This chapter II is still very
elementary.

In Chapter III we develop the analytic tools for the computation of the cohomology. Here we have to
assume that the Γ-module M is a C-vector space and is actually obtained from a rational representation of
the underlying algebraic group. In this case one may interprete the sheaf M̃ as the sheaf of locally constant
sections in a flat bundle, and this implies that the cohomology is computable from the de-Rham-complex
associated to this flat bundle. We could even go one step further and introduce a Laplace operator so that
we get some kind of Hodge-theory and we can express the cohomology in terms of harmonic forms. Here we
encounter serious difficulties since the quotient space Γ\X is not compact. But we will proceed in a different
way. Instead of doing analysis on Γ\X we work on C∞(Γ\G∞). This space is a module under the group
G∞, which acts by right translations, but we rather consider it as a module under the Lie algebra g of G∞
on which also the group K∞ acts, it is a (g,K)-module.

Since our module M comes from a rational representation of the underlying group G, we may replace
the de-Rham-complex by another complex

H•(g,K, C∞(Γ\G∞)⊗M),

this complex computes the so called (g,K)-cohomology. The general principle will be to ”decompose” the
(g,K)-module C∞ into irreducible submodules and therefore to compute the cohomology as the sum of the
contributions of the individual submodules. This is a group theoretic version of the classical approach by
Hodge-theory. Here we have to overcome two difficulties. The first one is that the quotient Γ\G∞ is not
compact and hence the above decomposition does not make sense, the second is that we have to understand
the irreducible (g,K)-modules and their cohomology. The first problem is of analytical nature, we will give
some indication how this can be solved by passing to certain subspaces of the cohomology the so called
cuspidal and the discrete part of the cohomology. We shall state some general results, which are mainly due
to A. Borel and H. Garland. We shall shall also state some general results concerning the second problem.
The general result in this chapter is a partial generalization of the theorem of Eichler-Shimura, it desribes
the cuspidal part of the cohomology in terms of irreducible representations occuring in the space of cusp
forms and contains some information on the discrete cohomology, which is slightly weaker. We shall also
give some indications how it can be proved.

In the next chapter IV we resume the discussion of the previous chapter but we restrict our attention
to the specific groups Sl2(IR) and Sl2(C) and their arithmetic subgroups. At first we give a rather detailed
discussion of their representation-theory (i.e. the theory of representations of the corresponding (g,K)-
modules) and we compute also the (g,K)-cohomology of the most important (g,K)-modules, this is the
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second ingredient in the theorem of Eichler -Shimura. But in this special case we give also a complete
solution for the analytical difficulties, so that in this case we get a very precise formulation of the Eichler-
Shimura theorem, together with a rather complete proof.

In the following chapter V we discuss the Eisenstein-cohomology. The theorem of Eichler-Shimura
desribes only a certain part of the cohomology , the Eisenstein -cohomology is meant to fill the gap, it is
complementary to the cuspidal cohomology. These Eisenstein classes are obtained by an infinite summation
process, which sometimes does not converge and is made convergent by analytic continuation. We shall
discuss in detail the cases of the special groups Sl2(IR) and Sl2(C) (the second case is not yet in the
manuscript). Here we will be able to explain an arithmetic application of our theory. Recall that we have
to start from a rational representation of the underlying algebraic group G/Q and this representation is
defined over Q or at least over some number field. Hence we actually get a Γ-module M which is a Q- vector
space, and hence we may study the cohomology H•(Γ\X,M̃) which then is aQ-vector space. The Eisenstein
classes are a priori defined by transcendental means, so they define a subspace in H•(g,K,M̃)C . But we
have still the action of the Hecke-algebra H, and this acts on the Q-vector space H•(Γ\X,M̃), and using
the so called Manin-Drinfeld argument we can characterize the space of Eisenstein-classes as an isotypic
piece in the cohomology, hence it is defined over Q. We shall indicate that we can evaluate the now rational
Eisenstein-classes on certain homology-classes, which are also defined over Q, hence the result is a rational
number. On the other hand we can-using the trancendental definition of the Eisenstein class-express the
result of this evaluation in terms of special values of L−functions. This yields rationality results for special
values of L−functions (see [Ha] and [Ha -Sch]). This gives us the first arithmetic informations of our theory.

In Chapter VI we discuss the arithmetic properties of the Eisenstein-classes. in the previous chapter we
have seen, that the Eisenstein-classes are rational classes despite of the fact, that they are obtained by an
infinite summation. Now we will discuss the extremely special case where Γ = Sl2(ZZ) and our Γ-module is

Mn/pMn = {
∑

aνXνY n−ν | aν ∈ ZZ[
1
6
]}.

We also introduce the dual module

Mn/pM∨
n = Hom(M,ZZ[

1
6
]).

We then ask whether the Eisenstein-class is actually an integral class, this means whether it is contained in
H1(Γ\X),Mn/pM∨

n). The answer is no in general, the Eisenstein-class has a denominator, which is apart
from powers of 2 and 3 exactly the numerator of the number

ζ(1− (n + 2)) = ±Bn+2

n + 2
.

(See Chap. VI, Theorem I) This result is obtained by testing the Eisenstein-classes on certain homology
classes, the so called modular symbols, which have been introduced in chapter II. This result generalizes
results of Haberland [Hab] and my student [Wg]. I will indicate that this result has arithmetic implications
in the direction of the theorem of Herbrand -Ribet. We cannot prove this theorem here since we need some
other techniques from arithmetic algebraic geometry to complete the proof. We shall also discuss some
congruence relations between Eisenstein classes of different weights, which arise from congruence relations
on the level of sheaves. These congruence relations between the sheaves have also been exploited by Hida
and R. Taylor

Finally I want to discuss some possible generalizations of all this and some open interesting problems.
During the whole book I always tried to keep the door open for such generalizations. I presented the
cohomology of arithmetic groups in such a way that we have the necessary tools to extend our results.
This may have had the effect, that the presentation of the results in the classical case of Sl2(ZZ) looks to
complicated, but I hope it will pay later on.

Some of these generalisations are discussed in [HS].
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I want to explain a few notations, that have been introduced in earlier chapters and may be not so clear.

H is the usual upper half plane and H̃ is the Borel-Serre completion of it: To each point r ∈ IP1(Q) we
add a line Hr,∞ which we interprete as the set of real Borel-subgroups in opposition to the Borel-subgroup
corresponding to r. The group Γ is Sl2(ZZ), if M is a Γ module, then M̃ we be the corresponding sheaf on
Γ\H or on Γ\H̃. The inclusion Γ\H ↪→ Γ\H̃ induces an isomorphism on cohomology. The boundary of the
Borel-Serre compactification Γ\H̃ is denoted by ∂(Γ\H̃)

Chapter VI

The arithmetic properties of Eisenstein classes

6.1: The main result and its arithmetic consequences.
We apply our previous results to a very specific situation. Our arithmetic group will be the group

Γ = SL(2,ZZ), it acts on the upper half plane H. We put R = ZZ[ 16 ] and we consider the following two
R-modules

Mn/pMn =
{∑n

ν=0
aνXνY n−ν |aν ∈ R

}
and

M∨
n =

{∑n

ν=0
aν

(
n

ν

)
XνY n−ν |aν ∈ R

}
.

The group Γ acts on these modules and if

eν = X
n
2 +νY

n
2−ν , e∨ν =

(
n

n
2 + ν

)
eν ,

we have a Γ-invariant pairing defined by < eν , e∨−µ >= δν,µ (See 5.6). We study the cohomomology of the

sheaves M̃n and M̃∨
n on Γ\H̃. I recall that n should be even, if we want these sheaves to be different from

zero. Of course the two modules become equal if we tensorize by Q, the result is denoted by Mn,Q. For any
finitely generated R-module M we denote by Mint the quotient of M by its torsion submodule. We consider
the following diagram

H1(Γ\H̃,M̃∨
n) r−→ H1(∂(Γ\H̃),M̃∨

n)

↓ ↓

H1(Γ\H̃,M̃∨
n)int

r−→ H1(∂(Γ\H̃),M̃∨
n)int

∩ ∩

H1(Γ\H̃,M̃n,Q) r−→ H1(∂(Γ\H̃),M̃n,Q)

.

We have seen in the preceeding Chapter (5.7) that

H1(∂(Γ\H̃),M̃∨
n) = Rωn ⊕ torsion

where for all primes p the Hecke operator Tp acts nilpotently on torsion⊗ ZZ(p) and satisfies

Tpωn = (pn+1 + 1)ωn.

The image of the class ωn in H1(∂(Γ\H̃),M̃n,Q) has a canonical lifting to a class Eisn ∈ H1(Γ\H̃,M̃n,Q)
which is characterized by the two properties

r(Eisn) = ωn and Tp(Eisn) = (pn+1 + 1)Eisn
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If we intersect the subspace Q · Eisn with the R-module H1
int(Γ\H̃,M̃∨

n) we get a primitive submodule

Q · Eisn ∩H1(Γ\H̃,M̃∨
n)int = R · eisn,

where eisn is unique up to an element in R∗. My student Wang showed in his dissertation that the Hecke
operator Tp acts also nilpotently on the torsion of H1(Γ\H̃,M̃∨

n)⊗ ZZ(p) and therefore we have a canonical
lifting of eisn to a class in H1(Γ\H̃,M̃∨

n) which we also call eisn. If we restrict the class eisn to the
cohomology of the boundary, the we find

r(eisn) = a(n) · ωn,

where the number a(n) is unique up to an element in R∗. This number can be interpreted as the denominator
of the Eisensteinclass Eisn, I am interested in its prime factorisation. For any prime p > 3 we define δp(n)
to be the highest power of p dividing a(n) i.e. in the usual notation we have

pδp(n)||a(n) or δp(n) = ordp(a(n)).

Then we have the following

Theorem I: For p > 3 we have

δp(n) = ordp(ζ(1− (n + 2)))

In his dissertation [Wg] my student Wang proved the weaker result

p|a(n) ⇐⇒ p|ζ(1− (n + 2)),

some of his ideas enter in the proof of the above theorem. The proof will be given in 6.2-6.3.

I want to discuss the arithmetic applications of this theorem. To do this I have to explain the connections
to étale cohomology. The fundamental point is:

For any natural number m the cohomology groups

H1(Γ\H̃,M̃∨
n ⊗ ZZ/pmZZ)

are not only modules for the Hecke-algebra but we have also an action of the Galois-group Gal(Q/Q) on these
modules, which commutes with the action of the the Hecke-algebra.

This gives us a structure of a Hecke×Galois-module on these cohomology groups. We may pass to the
projective limit over all m, then

lim
←

(H1(Γ\H̃,M̃∨
n ⊗ ZZ/pmZZ))

is also a Hecke×Galois–module and the famous theorem of Eichler-Shimura provides us some information
on the structure of this module in terms of automorphic forms (See [De ] and 6.1.1). We shall exploit the
following principle:

The denominator of the Eisenstein-class (i.e. the number δp(n)) has some influence on the structure of
this Hecke×Galois-module and this forces the module to tell us something on the arithmetic of the cyclotomic
field Q(ζp) (The theorem of Herbrand-Ribet)

I will explain in 6.1.2.2 how the denominator influences the structure of the module. First I will try to
give some idea how one gets this action of the Galois-group.

The starting point is that Γ\H is actually the set of complex points of a quasiprojective algebraic
variety S/Q and the above sheaves can be interpreted as sheaves for the étale site. This yields the action
of the Galois-group on H1(Γ\H̃,M̃∨

n ⊗ ZZp) . This will be explained briefly in the next section, a real
understanding of these things requires considerable knowledge some results in arithmetic algebraic geometry
( étale cohomology , large parts of the article of Deligne-Rapoport on the modular interpretation of the curve
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Γ\H and the theory of p-adic representations of the Galois-group in the sense of the theory of Fontaine-
Messing-Faltings.)

6.1.1 The interpretation of M̃∨
n/NM̃∨

n as étale sheaves: To begin we define an action of Gl2(ZZ/NZZ)
on M̃∨

n/NM̃∨
n by the rule σ(P (X, Y )) = P (aX + cY, bX +dY )det(σ)−n. We observe that we may twist this

action by a power of the determinant, we just multiply the result of the above action by det(σ)ν for some
fixed ν the resulting Gl2(ZZ/NZZ)-module is called M∨

n/NM∨
n [ν]. I have to explain some algebraic geometry,

especially some implications of the results of Deligne - Rapoport [De-Ra].
The quotient Γ\H is actually the Riemann-sphere minus the point at infinity. It has, considered as an

algebraic variety, a canonical model over Q, it is the projective line IP1/Q minus the point at infinity, I want
to call this S/Q. We have the canonical embedding

j : S −→ IP1.

To any natural number N exists a curve SN defined over Q and a map

πN : SN −→ S,

which is an étale covering outside the points 0, 1 ∈ IP1(Q) and the covering group is Gl2(ZZ/NZZ)/(±Id).
(On the transcendental level this covering is in principle obtained by passing to the congruence subgroup

Γ(N) = {γ ∈ Γ|γ ≡ Idmod(N)},

but it is slightly more complicated than that, the quotient Γ(N)\H yields only one connected component of
SN (C).) Let S ′ be the complement of the two points 0, 1. By construction our sheaf M̃∨

n/NM̃∨
n becomes

trivial on SN (C) if we pull it back by the map πN . Hence we may also consider it as the trivial sheaf for the
étale site on SN . We restrict it to the open subscheme SN\π−1(0, 1). The group Gl2(ZZ/NZZ) acts on this
sheaf and since this is the fundamental group of the covering, it defines a sheaf on S ′. This is a standard
procedure for the construction of sheaves. We have the embedding

i : S ′ −→ S

and the direct image i∗(M̃
∨
n/NM̃∨

n) is an étale sheaf on S which we also denote by M̃∨
n/NM̃∨

n (The functor
i∗ is exact since we assume 6 /| N). Now we have the following fundamental facts:

(i)We have an action of the Hecke algebra on the étale cohomology groups

H1
ét(S ×Q Q,M∨

n/NM∨
n),

which commutes with the action of the Galois-group Gal(Q/Q)) .
(ii) We have a comparison isomorphism

Φ : H1
ét(S ×Q Q,M∨

n/NM∨
n) −→ H1(Γ\H,M∨

n/NM∨
n),

which commutes with the action of the Hecke algebra on both sides.

(Of course we can perform the same construction also with the dual sheaf Mn/pMn).
We define as usual ẐZ = lim

←
(ZZ/NZZ) and define R̂ = ẐZ[ 16 ] then we have of course

lim
←

(M∨
n/NM∨

n) = M∨
n ⊗ R̂ = M̂∨

n

and this is again a Γ- module, which defines a sheaf ˜̂M∨
n on Γ\H̃ and since we have no cohomology in degree

two one checks easily that

H1(Γ\H̃,
˜̂M∨

n) = lim
←

(H1(Γ\H̃,M∨
n/NM∨

n)) = H1(Γ\H̃,M̃∨
n)⊗ R̂.
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(One has to use the fact that the map ZZ → R̂ is faithfully flat.) In the context of the étale cohomology we

do not consider the cohomology with coefficients in the sheaf ˜̂M∨
n , this does not give a good result, instead

we define
H1

ét(S ×Q Q̄,
˜̂M∨

n) := lim
←

(H1
ét(S ×Q Q̄,M∨

n/NM∨
n)).

Using the comparison isomorphism and the above assertions concerning the transcendental cohomology we
get a comparison

Φ : H1(Γ\H̃,
˜̂M∨

n) → H1
ét(S ×Q Q̄,

˜̂M∨
n),

which of course commutes with the action of the Hecke-algebra. This comparison-isomorphism gives us the
structure of a Galois-module to the transcendental cohomology if we extend the coefficients from M̃∨

n to
M̃∨

n ⊗ R̂.

Now we fix a prime p. It is known that R̂ =
∏

p,p 6=2,3 ZZp and choosing the above prime means that we
project to one component in the product. It also amounts to the following: In the above construction we
tacitly assumed that we took the projective limit with respect to the set of all integers N and the ordering
was given by divisibility. Now we perform the same constructions as above but we restrict N to the set of
powers of p. Then we put M̃∨

n,p = M̃∨
n ⊗ ZZp and the above comparison gives us an isomorphism

Φ : H1(Γ\H̃,M̃∨
n,p) → H1

ét(S ×Q Q̄,M̃∨
n,p),

where the right hand side is defined by a projective limit. If we restrict to the prime p we have the additional
bonus that the representation of the Galois-group is unramified outside of the prime p. (This is not at all
obvious and depends on the fact, that our scheme S has a smooth model over Spec(ZZ).

We also have the same construction for the cohomology with compact supports. If we want to define it
in the context of étale cohomology we recall that we have the compactification j : S ↪→ IP1. We extend the
étale sheaf M∨

n/NM∨
n by zero to a sheaf j!(M∨

n/NM∨
n) on IP1.([SGA 4 1/2], ) Then we have a comparison

isomorphism
Φc : H1

c (Γ\H̃,M∨
n/NM∨

n) → H1
ét(IP

1 ×Q Q, j!(M∨
n/NM∨

n)),

and we put
H1

ét(IP
1 ×Q Q, j!(

˜̂M∨
n)) := lim

←
(H1

ét(IP
1 ×Q Q, j!(M∨

n/NM∨
n)).

We define always H1
! to be the image of H1

c in H1, then we have

H1
! (S ×Q Q̄,

˜̂M∨
n) = lim

←
(H1

! (S ×Q Q̄,M∨
n/NM∨

n))

and this is again a Hecke×Galois-module. Again we restrict N to the powers of our given prime p, we get
an exact sequence

0 → H1
! (S ×Q Q̄,M̃∨

n,p) → H1
ét(S ×Q Q̄,M̃∨

n,p) → H1(∂(Γ\H̃),M̃∨
n,p) → 0, (Seq)

so far the last term is only defined in the transcendental context, but since the first two terms have a
Galois-module structure, it inherits also such a structure.

We still may go one step further and tensorize the sheaves (or the cohomology groups) with Qp then
we get Qp vector spaces together with an action of the Hecke-algebra and the Galois-group. We apply the
results in V 5.9 and get :

If we go to a suitable finite algebraic extension E$ of Qp then we get a decomposition in isotypical spaces
under the Hecke-algebra

H1
ét(S ×Q Q̄,M̃∨

n,p)⊗ E$ =
⊕

π

H1
ét(S ×Q Q̄,M̃∨

n,p)(π)⊕ E$ · Eisn,

where the isotypical E$- vector spaces H1
ét(S×QQ̄,M̃∨

n,p)(π) are two-dimensional Galois -modules and where
E$ · Eisn is a one dimensional Galois-module .
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At this point I can state the famous and fundamental result of Eichler- Shimura and Deligne (See[De]):
The action of the Galois-group Gal(Q̄/Q) on H1

ét(S ×QQ̄,M̃∨
n,p)(π) is unramified outside p and for any

prime ` different from p the trace and the determinant of the inverse Frobenius Φ−1
` are given by

tr(Φ−1
` ) = T`(π) and det(Φ−1

` ) = `n+1

This determines these modules as modules for the Galois-group. We will determine the structure of E$ ·Eisn

as a module for the Galois-group in the next section. Its structure is much simpler.
If O$ is the ring of integers then (H1

ét(S ×Q Q̄,M̃∨
n,p) ⊗ O$)int is a free O$-module, the above de-

composition will in general not introduce a decomposition of this module. But if we choose an ordering of
the summands in the decomposition over E$, we get a filtration on (H1

ét(S ×Q Q̄,M̃∨
n,p) ⊗ O$)int. The

successive quotients of this filtration are lattices in the corresponding vector spaces H1
ét(S ×Q Q̄,M̃∨

n,p)(π)
or E$ · Eisn. They are Hecke×Galois-modules.

6.1.2 The Galois-module ZZp · eisn: We want to determine the Galois-module ZZp · eisn. To do this
we have to investigate the Galois-module- structure of H0(∂(Γ\H̃),M̃∨

n,p) and H1(∂(Γ\H̃),M̃∨
n,p). To be

more precise we have to introduce a Galois-module structure on these cohomology-groups which fits into our
diagram, and then we have to compute it.

To state our result we have to introduce the Tate-module ZZp(1). The group of pm-th roots of unity

µpm = {ζ ∈ Q̄ | ζpm

= 1}

is (non canonically) isomorphic to the module ZZ/pmZZ and the Galois-group acts on this module by a
homomorphism

α : Gal(Q̄/Q) → (ZZ/pmZZ)∗,

which is defined by the rule σ(ζ) = ζα(σ). If we pass to the projective limit over all m we get lim
←

(µpm) ≈ ZZp

and the Galois-group acts on this limit by this limit of the above α’s, this is a character

α : Gal(Q̄/Q) → ZZ∗p

which is the so called Tate-character. We denote the module ZZp with the above action of the Galois-
group on it by ZZp(1). We define ZZp(ν) to be the Galois-module ZZp with the action σ(x) = α(σ)νx for
σ ∈ Gal(Q̄/Q), x ∈ ZZp. I assert

Proposition 6.1.2.1:The Galois-module ZZp · eisn is isomorphic to ZZp(−n− 1).

This is by no means obvious, I will try to give an outline of the proof, I do not know whether I should
advise the reader to skip it.

We constructed the étale sheaves M∨
n/NM∨

n on S and we have two way to extend it to a sheaf on the
compactification: We discussed already the extension j!(M∨

n/NM∨
n) whose stalk at infinity is zero, this is

an exact functor. We may also take the direct image j∗(M∨
n/NM∨

n) on the compactification IP1. Then we
have to take into account that this direct image functor is not exact, hence we have to consider the derived
functors R•j∗(M∨

n/NM∨
n). We get a spectral sequence

H•

ét(IP
1 ×Q Q, R•j∗(M∨

n/NM∨
n)) =⇒ H1

ét(S ×Q Q̄,M∨
n/NM∨

n),

to state this in modern terms, we may compute the cohomology of our sheaf on the open piece also as the
cohomology of a complex of sheaves on the compactification. This yields us the exact sequence

H1
c,ét(S×QQ̄,M∨

n/NM∨
n) → H1

ét(S×QQ̄,M∨
n/NM∨

n) → H1
ét(S×QQ̄, R•j∗(M∨

n/NM∨
n)/j!(M∨

n/NM∨
n)) →

9



the quotient in the argument of the last term is a complex of sheaves which is concentrated in the point
at infinity. Hence we may consider it as a complex of ZZ/NZZ- modules on which we have an action of the
Galois-group, simply because an étale sheaf on Spec(Q) is simply a module for the Galois-group. Then the
H1 of this complex of sheaves is simply the stalk R1j∗(M∨

n/NM∨
n)∞. Under the present conditions we can

pass to the projective limit and we still get an exact sequence

H1
c,ét(S ×Q Q̄,M∨

n ⊗ R̂) → H1
ét(S ×Q Q̄,M∨

n ⊗ R̂) → R1j∗(M∨
n ⊗ R̂)∞,

we shall see that the last term is actually equal to H1
ét(∂(Γ\H̃),M̃∨

n ⊗ R̂) hence we gain an action of the

Galois group on the cohomology of the boundary after we tensorize by R̂. We also know that the cohomology
of the boundary splits off a canonical direct summand R̂ · Eisn which is also a Galois-module, this is the
one we want to understand. ( The reader should observe that in the previous chapters the cohomology of
the boundary was computed from the Borel-Serre compactification, this is an object that has nothing to do
with algebraic geometry).

To get the structure of these Galois-modules we remind ourselves of what would we do in the trans-
cendental context. We take a little disc D∞ around the point ∞ in IP1(C), the intersection of D∞ with
Γ\H̃ = S(C) is the punctured disc Ḋ∞, we may restrict our sheaf M∨

n to Ḋ∞. We have the embedding

j : D∞ → Ḋ∞

and we want to compute the derived functors R•j∗(M∨
n). We recall that our sheaves M∨

n where defined
through an action of the group Γ, but it is clear that the restriction of the sheaf to the punctured disc is
obtained from the action of the fundamental group π1(Ḋ∞) = Γ∞ = ZZ on M∨

n . Since we are only interested
in the free part we may replace the sheaf M̃∨

n by M̃n. We have an emdedding

Mn/pMn ↪→Mn+1,

which is given by XνY n−ν → Xν+1Y n−ν and which commutes with the action of Γ∞ = π1(Ḋ∞). Hence we
have exact sequences

0 → M̃n → M̃n+1 → ˜R · Y n+1 → 0

of sheaves on Ḋ∞. It is easy to see that the boundary operator of the long exact sequence in cohomology
provides an isomorphism modulo torsion

H0(Ḋ∞, R · Y n+1) → H1(Ḋ∞,M̃n).

This gives an alternative method to compute the cohomology of the boundary. The point is that this can
be imitated in the arithmetic context and then we will be able to read off the Galois-module structure. Let
u be the uniformizing element at ∞ we replace the disc by the spectrum of the power series ring

Dˆ∞ = Spec(Q[[u]]),

and Ḋˆ∞ = Dˆ∞\{∞}.
For any integer N we define D N̂ = Spec(Q[ζN ][[v]]), where ζN is a primitive N -th root of unity and

vN = u. We have a map D N̂ → Dˆ∞ , which becomes étale if we remove the point ∞. The Galois group of
this étale covering is isomorphic to the group of matrices

BN = {σ =
(

a b
0 1

)
|a ∈ (ZZ/NZZ)∗, b ∈ ZZ/NZZ} ⊂ Gl2(ZZ/NZZ).
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This group acts on our module Mn/pMn/NMn/pMn and by the same procedure that gave us the sheaves
M̃n on S we get the restriction of these sheaves toḊ∞ˆ if we restrict the group action to BN . Hence we
have the exact sequences of sheaves onḊ∞ˆ as before (remember the twist in the definition of M∨

n/NM∨
n as

Gl2(ZZ/NZZ)-module)

0 → ˜Mn/NMn → ˜Mn+1/NMn+1 → (ZZ/NZZ)Y n+1 → 0.

This yields a coboundary map
j∗(R · Y n+1) → R1j∗( ˜Mn/NMn)

which becomes an isomorphism modulo torsion if we pass to the projective limit over N . This implies that
the Galois group acts on R̂ · Eisn in the same way as it acts on the left hand side. But it is clear that
the element σ ∈ BN acts on (R/NR)Y n+1 by multiplication by a−n−1. (This explains the strange twist
we introduced, when we defined the Gl2(ZZ/NZZ), it has the effect that the Galois-group acts trivially on
R0j∗(M∨

n/NM∨
n))

If we pass to the limit over N = pk, then we see that

Rj
∗(M̃

∨
n) = lim

←
(R1(M∨

n/NM∨
n)) = ZZp(−n− 1) + torsion,

and this is the assertion of our proposition.

6.1.2.2: ZZp-Hecke modules: At this point I want to explain some very simple principles concerning the
structure of modules under the Hecke algebra:

Here I want to look at the Hecke-algebra H as the polynomial algebra over ZZ generated by the indeter-
minates T` one of them for each prime `. We fix a prime p and we consider finitely generated ZZp-modules
X on which H acts. I want to make the following assumption

The Hecke-operator Tp acts nilpotently on Xtors

If I want to make I category out of these objects I should require that cokernels of maps have this
property too. I claim that each such module has a canonical decomposition

X = Xnil ⊕Xord,

so that Tp acts topologically nilpotent on Xnil (i.e we have Tm
p (Xnil) ⊂ pXnil for some m) and Tp induces

an isomorphism on Xord. The module Xord is called the ordinary part of X it is torsion free. If we apply
this construction to Xint we get Xint,ord = Xord.

This is indeed very elementary. We consider the vector space X ⊗Q̄p and decompose it into generalized
eigenspaces under the Hecke algebra. This means that we have a finite set Spec(X) of homomorphisms

λ : H → Q̄p

such that we get a decomposition into generalized eigenspaces

X ⊗Q̄p =
⊕

λ∈Spec(X)

Zλ,

where Zλ = (ξ ∈ X ⊗Q̄p|(T` − λ(T`))Nξ = 0) for a suitably large number N . Since X is a finitely generated
ZZp-module the values λ(T`) will be integers in Q̄p, we decompose Spec(X) = Spec(X)tnilp ∪ Spec(X)ord

according to whether λ(Tp) is in the maximal ideal or it is a unit. Then we get a decomposition

X ⊗Q̄p =
⊕

λ∈Spec(X)tnilp

Zλ ⊕
⊕

λ∈Spec(X)ord

Zλ = Ztnilp ⊕ Zord.

11



The two summands are invariant under the action of Galpur and therefore this decomposition descends to a
decomposition over Qp:

X ⊗Qp = Ytnilp ⊕ Yord

and we define
Xint,tnilp := Ytnilp ∩Xint Xint,ord = Zord ∩Xint.

Now one has to prove that
Xint = Xint,tnilp ⊕Xint,ord,

it is clear that the left hand side contains the direct sum on the right hand side. I leave this as an exercise
to the reader.

This proves the claim for Xint, it follows from our general assumption on the torsion that we have a
section from Xord in Xint back to X. The following assertions are now obvious

(i) Xord is a free ZZp-module, its rank is equal to the sum of the dimensions of the spaces Zλ if λ runs
over Spec(X)ord

(ii) We get a decomposition

X ⊗ ZZ/p = Xnil ⊗ ZZ/p⊕Xord ⊗ ZZ/p

where the first summand is the generalized eigenspace to the eigenvalue 0 for Tp and where Tp induces an
isomorphism on the second summand.

(iii) The functor ord : X → Xord would be an exact functor if we had made a category out of these
modules in the above sense. (This is not true for int).

We define the Eisenstein-part of the spectrum: Let (π̄) be the maximal ideal of the ring of intgers in
Q̄p, we define

SpecEis(X) = (λ ∈ Spec(X)ord|λ(T`) ≡ `n+1 + 1mod(π̄) for all `).

The same reasoning as before yields that the space

(X ⊗Q̄p)Eis :=
⊕

λ∈SpecEis(X)

Zλ

descends to a subspace in Xord ⊗Qp and we have a decomposition

Xord ⊗Qp = (Xord ⊗Qp)nonEis ⊕ (Xord ⊗Qp)Eis.

Again it is also clear, that intersecting this direct sum decomposition with Xord gives us

Xord = Xord,nonEis ⊕ Eis X

and alltogether
X = Xnil ⊕Xord,nonEis ⊕ Eis X.

The following facts are obvious

(iv) Any endomorphism of X, which commutes with the action of the Hecke algebra leaves this decom-
position invariant

(v) Rank(Eis X) equals the sum of the dimensions of the Zλ with λ ∈ SpecEis(X).

(vi) Eis X⊗ZZ/p is the submodule of X⊗ZZ/p on which all the operators T`− (`n+1 +1) act nilpotently.
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We apply this to our exact sequence (Seq) and we restrict it to the Eisenstein-part, this yields

0 → H1
! (S ×Q Q̄,M̃∨

n,p)Eis → H1
ét(S ×Q Q̄,M̃∨

n,p)Eis → H1(∂(Γ\H̃),M̃∨
n,p) → 0,

of course the third term is already in the Eisenstein-part.

Now we discuss the influence of the denominator of the Eisenstein-class on the structure of the coho-
mology as Hecke×Galois-module. As before we write the denominator as pδp(n), by construction we get an
exact sequence

0 −→ H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊕ ZZp · eisn −→ H1
ét(S ×Q Q̄,M̃∨

n,p)Eis −→ ZZ/pδp(n) −→ 0.

tensorizing this sequence with ZZ/pδp(n)gives us an exact sequence

H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n) ⊕ (ZZ/pδp(n)) · eisn → H1
ét(S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n) → ZZ/pδp(n) → 0.

The kernel of the last arrow is H1
! (S ×Q Q̄,M̃∨

n,p)Eis and hence we get a surjective map

H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n) ⊕ (ZZ/pδp(n)) · eisn → H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n).

This map is of course of the form (Id,Ψ), where Ψ is a map

Ψ : (ZZ/pδp(n)) · eisn → H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n).

I claim

Lemma:This map is injective and commutes with the action of the Hecke-operators and the Galois-
group.

Proof: The injectivity follows from the fact that ZZp · eisn is a primitive submodule hence it is a direct
summand (as a ZZp-module) and therefore ZZ/pδp(n) ·eisn injects into H1

ét(S×QQ̄,M̃∨
n,p)Eis⊗ZZ/pδp(n). The

rest is clear.

6.1.3.The arithmetic consequences: Now we are ready to discuss the influence of the denominator of the
Eisenstein-class on the arithmetic of cyclotomic fields. I recall the decomposition of the cohomology-groups
into eigenspaces for the Hecke algebra (See 6.1.1). If we use our results from the previous section then we
find that rankH1

! (S ×Q Q̄,M̃∨
n,p)Eis

is 2 times the number of π ∈ Spec(H1
! (S ×Q Q̄,M̃∨

n,p)) which satisfy

π(T`) ≡ `n+1 + 1modp for all `

Therefore we know that rank(H1
! (S ×Q Q̄,M̃∨

n,p)Eis
) ≥ 2 if δp(n) > 0. This is a classical assertion on

congruences between Eisenstein- series and cusp forms, statements of this kind occur in the work if Doi,
Hida, Koike and Ribet.

A pair (p, n + 2) is called irregular if δp(n) > 0. I propose to call (p, n + 2) tamely irregular if the rank
of H1

! (S ×Q Q̄,M̃∨
n,p)Eis

is equal to 2. I call itwildly irregular if it is greater than 2. We shall see in the next
section that the type of irregularity of (p, n + 2) depends only on (n + 2)mod(p− 1).

In general the Galois group Gal(Q̄p/Qp) or in our situation Gal(E$/Qp) acts on Spec(H1
! (S×QQ̄,M̃∨

n,p)),
but if the pair is tame the the single element in the Eisenstein-part of the spectrum is of course defined over
Qp.
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I want to formulate the theorem of Herbrand-Ribet, actually I will state a stronger version of it in case
of a tamely irregular prime. One will see from our arguments how one gets the theorem of Herbrand-Ribet
without this restriction. It seems to me that our result in this special situation is even stronger than the
consequences one gets from the Main-conjecture of Mazur-Wiles. In the following discussion we abbreviate
δp(n) = δ

Theorem II: If pδ|ζ(1 − (n + 2)) and if the pair (p, n + 2) is tame then the cyclotomic field Q(ζpδ)
of pδ-th roots of unity has a cyclic extension L/Q(ζpδ) of degree pδ, which is normal over Q, everywhere
unramified and so that the Galois group Gal(Q(ζpδ/Q) = (ZZ/pδZZ)∗ acts on Gal(L/Q(ζpδ)) by multiplication
by x−n−1.

If δ = 1 this is the part of Ribet in the theorem of Herbrand-Ribet if we drop the assumption of tameness.

Proof: Let us define X = H1
! (S ×Q Q̄,M̃∨

n,p)Eis
Since we assume that the pair (p, n + 2) is tame this is

a free ZZp- module of rank 2. The ZZ/pδ-module X ⊗ ZZ/pδ is also free of rank 2 and it contains ZZ/pδ · eisn

as a free, rank one Galois-submodule, we get a short exact sequence

0 → eisn → X ⊗ ZZ/pδ → ZZ/pδ → 0.

The Galois group Gal(Q̄/Q) acts by α−n−1mod(ZZ/pδ) on the submodule and trivially on the quotient,
the first assertion follows from proposition 6.1.2.1 the second from the formula for the determinant of the
Frobenius in the theorem of Eichler-Shimura-Deligne quoted above.( This comes from a simple duality
argument). We restrict the action to the Galois group Gal(Q/Q(ζpδ)), let L]/Q(ζpδ) be the smallest extension
over which this module becomes trivial. Hence we have an action of Gal(L]/Q(ζpδ)) on X ⊗ ZZ/pδ.

I quote a result from the theory of p-adic representations. We choose a prime in Q̄ this provides an
embedding of the local Galois group Galpur ⊂ Gal(Q̄/Q). We have some information concerning the action
of this local group on a Hecke eigenspace H1

ét(S ×Q Q̄,M̃∨
n,p)(π) if π is ordinary, i.e. π(Tp) is a unit in O$.

In this case this result asserts, that we have an exact sequence of Galpur-modules

0 → E$(0) → H1
ét(S ×Q Q̄,M̃∨

n,p)(π) → E$(−n− 1) → 0.

Such a sequence induces on any Galpur invariant O$-lattice in H1
ét(S ×QQ̄,M̃∨

n,p)(π) a filtration, where the
submodule and the quotient have to be replaced by O$(0) and O$(−n− 1).

We apply this to our element π that makes up the Eisenstein-part of the spectrum. Then the local
theorem implies that we have a canonical splitting of the Galpur- module

X ⊗ ZZ/pδ = ZZ/pδ(−n− 1)⊕ ZZ/pδ(0),

because the local filtration goes in the opposite direction.

Now we proceed along similar lines as Ribet (See [Ri2]). We choose a basis e, f to our lattice X such
that these two basis vectors give this splitting if we reduce modulo pδ and of course e should be the one
that reduces to eisn. (This depends of course on the choice of Galpur ⊂ Gal(Q̄/Q)). Then we have for
σ ∈ Gal(Q̄/Q) that

σ(e) = a(σ)e + c(σ)f

σ(f) = b(σ)e + d(σ)f

and we have that modulo pδ the matrix reduces to(
α(σ)−n−1 c(σ)

0 1

)
.
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Let us assume that we find an element σ in the Galois group for which c(σ) 6≡ 0modp. We know that the
local Galois group Galpur gives us all the elements(

α(τ)−n−1 0
0 1

)
if we reduce modulo pδ and therefore we find also an element σ in the global Galois group which has the
matrix (

1 c(σ)
0 1

)
and c(σ) 6≡ 0modp. This element generates a cyclic subgroup of order pδ in Gal(L]/Q(ζpδ)), which is invariant
under the action of the action of Gal(Q(ζpδ)/Q). The Galois group Gal(L]/Q(ζpδ)) has exponent pδ so it is a
ZZ/(pδ) module and the Galois group Gal(Q(ζpδ)/Q) = (ZZ/(pδ))∗ acts on this module by multiplication by
x−n−1. Moreover it is clear that L]/Q(ζpδ) is unramified everywhere, because the p-adic Galois modules are
certainly unramified outside p and at p we have the above reduction of the action of Galpur to the diagonal
group. So we are through if the above assumption is true. But if it is not true then we modify our lattice to
ZZp · e⊕ ZZp · (f/p). This new lattice will be invariant under the action of the Galois group and with respect
to this basis we have to make the following changes in our matrix above:

c(σ) → c(σ)/p

d(σ) → d(σ) · p

To this lattice we can apply the same arguments as before, actually we could now even compute mod pδ+1.
So we will eventually construct the desired extension unless we have c(σ) = 0 for all σ ∈ Gal(Q̄/Q). But this
is not possible, because the representation of the Galois-group on X ⊗Qp is irreducilble ([Ri1], Thm.2.3),
hence the theorem is proved.

Remarks: 6.1.4: If we drop the assumption that the pair is tamely irregular, then we may have several
π in Spec(H1

! (S ×Q Q̄,M̃∨
n,p)Eis

). If we order them they induce a filtration on our lattice X ⊗ O$ =

H1
! (S ×Q Q̄,M̃∨

n,p)Eis
⊗O$. Let e be the ramification index of E$ overQp and ∆ = e·δ. The same arguments

as before show that we have still an injective map Ψ : O$/($δ) · eisn → X ⊗O$/($δ). This induces a non
trivial map into one step of this filtration. To this step we can obviously apply the same reasoning as before
(with a little modification). Therefore we see that we can prove the theorem of Herbrand-Ribet without the
assumption that p is tame.

6.1.5: After the discussion of the proof of theorem I we shall see in next section that we give indeed a
modular construction of the minus part of the Hilbert classfield of the field Q(ζp) under the assumption that
the prime is tamely irregular.

6.1.6: Our method here differs in one point from the methods used by Ribet and Mazur-Wiles. In some
sense they use the de-Rham-realization of the cohomology and exploit informations they get from there to
get results on the p-adic representations. They read off from the q-expansion of the classical Eisenstein-series,
that it has a denominator as a de-Rham cohomology class. From there they get some information on the
Jordan-Hölder series of the ZZp -integral cusp forms as a module under the Hecke-algebra. Then they invoke
the theorem of Eichler-Shimura and Deligne to get some information on the Galois-module structure of the
steps in the filtration. Here we work directly with the p-adic realization, which to me seems to be more
natural and opens some perspectives for generalisations (See [HS ] and 6.4). Our point of view is that of
Haberland in [Hab], but he falls short proving Theorem I because he restricts the weights (See 6.4.1 and
[Hab], 5.2 Satz 3)
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6.2. Modular Symbols: The patient reader may have forgotten that we still have to prove Theorem I.

The main idea of the proof is quite simple. We construct certain homology classes which generate
H1(Γ\H̃,M

∼ n) and we evaluate the Eisenstein classe on these homology classes. The result of this evaluation

gives us a collection of rational numbers. The smallest common denominator of these rational numbers will
be the denominator of the Eisenstein class. Here we need the theory of singular homology with coefficients
as it is explained in Kapitel E 1(Chapter II in the final version).

6.2.1. The homology classes are the so called modular symbols (with coefficients). At the present
moment Γ ⊂ SL2(ZZ) may be an arbitrary congruence subgroup. To any two points r, s ∈ IP1(Q) we have
the geodesic circle Cr,s in the upper half plane which joins these two points. We recall the discussion of
the Borel-Serre compactification in V, 5.1. To any point r ∈ IP1(Q) we added the line Hr,∞ of real Borel
subgroups in opposition to r and we defined

H̃ = H ∪
⋃

r∈IP1(Q)

Hr,∞.

It is clear form the definition that Cr,s closes up to an intervall in H̃. It hits Hr,∞ in the points s and Hs,∞

in the point r. Let us denote the point s on Hr,∞ by {s}r. For m ∈Mn we introduce the 1-chain

Cr,s ⊗m ∈ C1(Γ\H̃,M
∼ n).

Its boundary is
∂(Cr,s ⊗m) = {s}r ⊗m− {r}s ⊗m.

(We orient the chain by going from r to s.) This chain is actually a relative 1-cycle, i. e. an element of

Z1(Γ\H̃, ∂(Γ\H̃),M
∼ n)

and one can prove that these cycles generate the first relative homology group

H1(Γ\H̃),M
∼ n)

(Diplomarbeit Gebertz, Bonn 198.). From now on we assume that Γ = SL2(ZZ) and we consider the special
1-chains

C∞,0 ⊗ eν ν = −n

2
, . . . ,

n

2
.

We compute its boundary, since

w =
(

0 1
−1 0

)
interchanges 0 and ∞ in IP1(Q), we obtain

∂(C∞,0 ⊗ eν) = {0}∞ ⊗ eν − {∞}0 ⊗ eν = {0}∞ ⊗ (eν − w eν)

(We may visualize these 1-chains on the quotient Γ\H̃. We have the path from ∞ to i on the imaginary
axis. If we ”tensor” it by eν we get a 1-chain [∞, i] ⊗ eν . Now we make a turn and go back on the same
path but we ”tensor” by w eν . This 1-chain has the boundary

{0}∞ ⊗ (eν − w eν) + {i} ⊗ (eν − w eν).
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But since i is a fixed point for w the second term is zero.)

We abbreviate
Z (f)

ν = C∞,0 ⊗ eν ,

and denote by [Z (f)
ν ] the corresponding relative homology class.

Our Eisenstein classes Eisn are cohomology classes hence they cannot be evaluated on the relative
homology classes [Z (f)

ν ]. But we can try to bound the boundary ∂Z (f)
ν ∈ C0(∂(Γ\H̃),M

∼ n) by a 1-chain in

C1(∂(Γ\H̃),M
∼ n), i.e. we can try to write

∂Z (f)
ν = ∂Z∞ν

with some Z∞ν ∈ C1(∂(Γ\H̃),M
∼ n). If we can do this then

Z (f)
ν −Z∞ν ∈ Z1(Γ\H̃,M

∼ n)

would define an absolute homology class. This does not always work, we have to use the Hecke-operators to
modify this construction.

The evaluation of the Eisenstein class on classes of this type will provide us the information on the
denominator.

6.2.2. We want to discuss the problem to find Z∞ν . The group

U∞,∞ =

{(
1 x
0 1

)
| x ∈ IR

}
= IR

acts by definition simply transitively on H∞,∞. We identify IR = H∞,∞ by this action and taking the base
point 0 ∈ IP1(IR). A point x ∈ IR when viewed as a point on H∞,∞ is denoted by {x}∞.

If we want to bound {0}∞ ⊗ eν , we try to write

{0}∞ ⊗ eν = ∂([0, 1]∞ ⊗ P )

where P ∈Mn and this means we have to write

eν = (1− T )P (X, Y ) = P (X, Y )− P (X, X + Y ),

where T =
(

1 1
0 1

)
as in 5.7. If we pass to rational coefficients, we can find such a P if and only if ν 6= −n

2 ,

i.e. eν 6= Y n. Since we want to bound {0}∞(eν − w eν) = {0}∞ ⊗ (eν − (−1)
n
2 +νe−ν), we always require

ν 6= ±n
2 . In this case we know that we may bound by a P ∈Mn,Q. But we need something better since we

want to get integral homology classes. In this case we only know that {0}∞ ⊗ (eν − w eν) defines a torsion
element in H0(∂(Γ\H̃),Mn). At this point we have to use the Hecke operators to annihilate these classes.
To be more precise we localize at the prime p (the one for which we want to prove Theorem I), and this means
we tensorize our modules with ZZ(p), the local ring at p. For simplicity we denote the localized modules and
sheaves still by Mn,M̃n, . . .. Then we have seen in 5.7. that for ν 6= ±n

2 the zero cycles {0} ⊗ e±ν define
classes which will be annihilated by a power Tm

p of the Hecke operator at p. Hence we may write

Tm
p ({0} ⊗ (eν − w eν)) = ∂Z∞ν

with Z∞ν ∈ C1(∂(Γ\H̃),Mn) and
Tm

p Z (f)
ν − Z∞ν
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will be a 1-cycle which defines a homology class in H1(Γ\H̃,M
∼ n): Hence we may evaluate

〈Eisn, Tm
p Z (f)

ν − Z∞ν 〉.

The result is a rational number. We also take into account that the 1-chain Z∞ν is not unique. It may be
modified by a cycle C ∈ Z1(∂(Γ\H̃),M

∼ n). This changes the evaluation above by

〈Eisn, [C]〉,

and this is an integer (in ZZ(p)) since Eisn restricted to the boundary is an integral class. Hence we should
consider

〈Eisn, Tm
p Z (f)

ν −Z∞ν 〉 ∈Q/ZZ(p).

We have the following

Lemma 6.2.2.1: The p-part of the denominator of the Eisenstein class Eisn is equal to the maximal
p-denominator of the numbers

〈Eisn, Tm
p Z (f)

ν −Z∞ν 〉.

Proof: It is not difficult to see that the [Z (f)
ν ] generate the relative homology H1(Γ\H̃, ∂(Γ\H̃),M

∼ n)

(Diplomarbeit, A. Geberts or exercise). Since we obviously have Z (f)
ν = ±Z(f)

−ν it suffices to look at ν ≥ 0.

We recall that we are looking for the p-denominator of the Eisenstein class Eisn, i.e. we want to find
the smallest δ ≥ 0 such that pδEisn becomes integral. It follows from Poincaré-duality that we can find a
homology class ξ ∈ H1(Γ\H̃,M

∼ n) such that

〈pδEisn, ξ〉 = 1

and hence
〈Eisn, ξ〉 =

1
pδ

.

We send ξ into the relative homology and we may write its image ξ′ in the form

ξ′ =

n
2−1∑
ν=0

rν [Z (f)
ν ] eν ∈ ZZ(p).

(The class Z(f)
n
2

cannot occur since otherwise the boundary of ξ′ in H0(∂(Γ\H̃),M
∼ n) would not be zero).

We apply Tm
p . We have from our adjunction formula

〈Eisn, Tm
p ξ〉 = 〈Tm

p Eisn, ξ〉 = (pn+1 + 1) · 〈Eisn, ξ〉

=
(pn+1 + 1)m

pδ

,

and hence Tm
p ξ gives us the same denominator.

Now
Tm

p ξ′ =
∑

rνTm
p Z (f)

ν .

This class lifts back to a class in the absolute homology by our previous construction, and we have that∑
rν(Tm

p Z (f)
ν −Z∞ν ) and ξ

18



differ by an element that comes from H1(∂(Γ\H̃),M
∼ n). On this difference the Eisenstein class Eisn takes

an integral value and now the Lemma is clear.

I propose to call a 1-cycle, which is a sum of chains of the type Cr,s ⊗m and chains in the boundary a
modular symbol.

6.2.3 Now we discuss the evaluation of the Eisenstein class on these cycles.

We will represent the Eisenstein class by a suitable 1-form. We will modify our cycle into another
one which is homologous to it, and whose support is in Γ\H. Then we may evaluate by integration and
eventually we push the cycle back into its original position.

We have a closer look at the cycle

(Tm
p )Z (f)

ν −Z∞ν = Zν .

We shall see that the chain (Tm
p )Z (f)

ν will be a combination of chains of the form C∞,r ⊗ xr with xr ∈Mn.
In the neighborhood of Γ∞\H∞,∞ in Γ\H̃. Such a cycle is supported by two (or one) vertical lines, so that
we get the following picture for (Tm

p )Z (f)
ν at infinity

Γ∞\H∞,∞

The chain Z∞ν is supported in Γ∞\H∞,∞. It is clear that we get a cycle homologous to Tm
p Z

(f)
ν −Z(∞)

if we chop of the cylinder on a finite level far enough out. Then the boundary will be

Γ∞\{z | Im(z) = y}

and our modified cycle will be

Zν [y] = Tm
p Z (f)

ν [y]−Z∞ν [y] ∈ Z1(Γ\H,M
∼ n),

where Z∞ν [y] is the chain corresponding to Z∞ν in Γ∞\{z | Im(z) = y}.
If we represent the class Eisn by a 1-form Ẽisn, then we have

〈Eisn,Zν〉 = 〈Eisn,Zν [y]〉 =
∫

Zν [y]

Ẽisn =
∫

(Tp)mZ (f)
ν [y]

Ẽisn −
∫

Z∞ν [y]

Ẽisn.

Proposition 6.2.3.1 :We can choose the representing form Ẽisn such that

Tp Ẽisn = (pn+1 + 1) Ẽisn
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and such that the limits
lim

y→∞

∫
(T m

p )Z (f)
ν [y]

Ẽisn and lim
y→∞

∫
Z∞ν [y]

Ẽisn

exist. Then we get

〈Eisn,Zν〉 = (pn+1 + 1)m

∫
Z (f)

ν

Ẽisn − lim
y→∞

∫
Z∞ν [y]

Ẽisn.

Proof: We recall the construction of the Eisenstein classes. Given n we have the character χ∞ =
χ = (n + 1, n) to which we attach the (g,K)-module Iχ∞ . The Eisenstein intertwining operator gives us an
embedding

Eis : Iχ∞ ↪−→A(SL2(ZZ)\SL2(IR)).

We have seen that the Hecke operators act by scalars on the module Eis(χ∞) and using 5.5.4 we see that
they act with eigenvalues {pn+1 + 1}p on

HomK(Λ1(g/k), Iχ∞ ⊗Mn,C).

We have seen in 4.3.3 that

HomK(Λ1(g/k), Iχ∞ ⊗Mn,C) = HomKT (Λ1(a/k
T ⊕ u),Cχ∞+s ⊗Mn,C)

where of course kT = 0 and KT =

{(
±1 0
0 ±1

)}
. We have the generator H =

(
1 0
0 −1

)
of a and

E+ =
(

0 1
0 0

)
of u and therefore we can define the element

ω̃n :
{

H −→ 0
E+ −→ 1⊗ Y n

of HomKT (Λ1(a⊕ u),Cχ∞+δ ⊗Mn,C) and

Ẽisn = Eis(ωn) ∈ HomK(Λ1(g/k),A(Ω2(ZZ)\SL2(IR)• ⊗Mn,C).

If we restrict the Eisenstein class to a neighvorhood of the boundary Γ∞\H∞,∞, i.e. to

Γ∞ \
{

z | Im(z) > y0

}
⊂ Γ\H

then it is dominated by its constant term. We have seen in 5.4.5 that this constant term is

ω̃n ∈ HomK(Λ1(g/k), I∞ ⊗Mn,C)) ⊂ HomK(Λ1(g/k), C∞(Γ∞\SL2(IR))⊗Mn,C).

But ω̃n vanisches on the tangent vectors of the chains C∞,r⊗m in a neighborhood of Γ∞\H∞,∞ and therefore
we see that

Ẽisn(Tangentvectors of Tm
p Z (f)

ν of length 1)

goes rapidly to zero, if we approach Γ∞\H∞,∞ or if y →∞. (Faster than 0(y−N ) for any N .) This implies
that the limit

lim
y→∞

∫
Z (f)

ν [y]

Ẽisn
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exists. (Of course this depends on the choice of our form ω̃n. There are several choices possible which gice
the same cohomology class on Γ∞\H. If we had taken the classical holomorphic Eisenstein series, we would
have some trouble.) But now it is also clear that

lim
y→∞

∫
Z∞ν [y]

Ẽisn

converges, and if we want to complete the limit, we can substitute Ẽisn by its constant term. The proposition
is proved.

I want to discuss the computation of the limit. The following considerations are purely technical and
consist of bookkeeping of the definitions.

We recall the construction of the compactification. We have

Γ∞\H ↪−→ Γ∞\H̃

‖ ‖

S1 × IR>0 ↪−→ S1 × (IR>0 ∪ {∞}).

A 1-chain in C1(Γ∞\H∞,∞,M
∼ n) is a linear combination of expressions

c = [a, b]⊗ P

where P (X, Y ) ∈Mn and where we identified H∞,∞ ' IR (see 6.2). If we push the 1-chain to a finite level,
we get

cy[a, b] = [a + iy, b + iy]⊗ P.

We want a formula for
lim

y→∞

∫
cy[a,b]

Ẽisn.

In Kapitel E5 we gave the rule how to compute such integrals. We lift the map

σ : [0, 1] −→ H

σ : t −→ iy0 + a + t(b− a)

to a map into the group. For simplicity we change the group from SL2(IR) to GL2(IR)+, and we choose

σ̃ : [0, 1] −→ GL2(IR)

σ̃ : t −→
(

y0 a + t(b− a)
0 1

)
.

Then in the notations of Kapitel E, p. 23 we have

σ∗(t)(
∂

∂t
) =

b− a

y
E+,

and the formula at the bottom of that page yields

∫
cy[a,b]

Ẽisn =
b− a

y

1∫
0

〈Ẽisn(σ̃(t))(E∗), σ̃(t)−1m〉 dt.
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Since the Eisenstein series is dominated by its constant term, we may substitute ω̃n for Ẽisn when we pass
to the limit y →∞. By definition we have

ω̃n(σ̃(t))(E+) = yn+1
0 ω̃n(t)(E+) = yn+1

0 Y n.

We have

σ̃(t)−1P (X, Y ) = σ̃(t)−1
∑

aνXνY n−ν =
∑

aνy−ν
0 Xν

(−a− t(b− a)
y0

X + Y
)n−ν

.

Since we have to pair with Y n we only have to consider the coefficient of Xn and get for the integral

∫
cy[a,b]

ω̃n = (b− a)

1∫
0

n∑
v=0

aν(−a− t(b− a))u−νdt =

−a∫
−b

(
∑

aνnn−ν)du.

Hence we find the following formula for the integration of the Eisensteinclass against a 1-chain [a, b] ⊗
P (X, Y ) ∈ C1(∂(Γ∞\H∞,∞),M

∼ n). We substitute 1, u for X, Y into P (X, Y ) and get

lim
y→∞

∫
cy[a,b]

Ẽisn =

−a∫
−b

P (1, u) du. (∗∗)

6.2.4 We are now ready to carry out the evaluation. Before starting I will state the result. For any ν

with −n
2 < ν < n

2 we define the following numbers modZZ(p)

bn,ν =


0 if p− 1 /| n

2 + ν + 1

1

p · (
n
2 +ν+1

p−1 )
if p− 1 | n

2 + ν + 1.

Then we shall prove

〈Eisn, (Tp)mZ (f)
ν −Z∞ν 〉 = (pn+1 + 1)m ·

ζ(1− (n
2 + ν + 1))ζ(1− (n

2 − ν + 1))
ζ(1− (n + 2))

+ bn,ν + bn,−ν mod ZZ(p),

where of course ζ( ) is the ordinary Riemann-zeta function.

It is clear that this has to be done in two steps. We will prove that∫
Z (f)

ν

Ẽisn =
ζ(1− (n

2 + ν + 1)) · ζ(1− (n
2 − ν + 1))

ζ(1− (n + 2))

and ∫
Z∞ν

Ẽisn = −bn,ν − bn,−ν mod ZZ(p).

Let us look at the boundary terms first. We consider Mn,Q as GL2(Q)-module with the action(
a b
c d

)
P (X, Y ) = P (aX + cY, bX + dY )

i.e. without any twist by a power of the determinant. Then we have the advantage that M2(ZZ) acts on Mn.
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Let us consider the zero-cycle {0}∞ ⊗ eν . For m large enough we have to bound

(Tp)m({0}∞ ⊗ eν)

by a 1-chain (remember that we localized at the prime p). The general formula for the Hecke operator is

Tp({r}∞ ⊗m) =
∑

j 6=modp

{(
1 j
0 p

)
r

}
∞

⊗
(

1 j
0 p

)
m + {pr}∞ ⊗

(
p 0
0 1

)
m.

One checks easily that it decomposes into a sum of two operators

Up : {r} ⊗m −→
∑

jmodp

{(
1 j
0 p

)
r

}
∞

⊗
(

1 j
0 p

)
m

and

Vp : {r} ⊗m −→ {pr} ⊗
(

p 0
0 1

)
m.

We have
VpUp{r}∞ ⊗m = Vp

(∑{ r+j
p

}
∞
⊗
(

1 j
0 p

)
m

)
=

=
∑
{r + j}∞ ⊗

(
1 j
0 1

)
· pnm = pn+1 · {r} ⊗m

.

Hence if we evaluate
(Up + Vp)m{0}∞ ⊗ eν ,

and we take into account that
Vp : {0}∞ ⊗ eν → p

n
2 +ν{0}∞ ⊗ eν ,

we find that this is equal to

Um
p {0}∞ ⊗ eν + c1U

m−1
p {0}∞ ⊗ eν + c2U

m−2
p {0}∞ ⊗ eν . . .

where
c1 ≡ p

n
2 +νmod pn

c2 ≡ p( n
2 +ν)2mod pn

... .

(This must be so since only those products of U ’s andV ’s which have the V ’s at their right end can give an
contribution which is non zero mod p.)

Now we have for all m

Um
p ({0} ⊗ eν) =

p−1∑
j1,...,jm=0

{
j1 + j2 p + . . . + jm pm−1

pm

}
∞

⊗
(

1 jm

0 p

)
. . .

(
1 j1
0 p

)
eν .

We put
j = j1 + j2 p . . . jm pm−1,

then the sum becomes
p−1∑

j1,...,jm=0

{
j

pm

}
∞

⊗X
n
2 +ν(jX + pmY )

n
2−ν .
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Let us look at the individual terms in the sum. I claim that for large m we can find a P ∈Mn such that

X
n
2 +ν(jX + pmY )

n
2−ν = ∂P = P (X, Y )− P (X,−X + Y ).

This is so because the term Y n does not occur, Xn can be written in that form and all other terms are
highly divisible by p. We substitute X = 1 and Y = u. Then we get

(j + pmu)
n
2−ν = ∂P (1, u) = P (1, u)− P (1, u− 1).

We write
P (1, u) = a0 + a1u + . . .

with ai ∈ ZZ(p), the constant coefficient a0 is arbitrary. Now we have written the zero-cycle

{j/pm}∞ ⊗X
n
2 +ν(jX + pmY )

n
2−ν

a boundary of the 1-cycle
[j/pm, j/pm + 1]∞ ⊗ P,

so it yields according to our formula (∗∗) the contribution

−j/pm∫
−j/pm−1

P (1, u) du = P̃1(−j/pm)− P̃1(−j/pm − 1)

where P̃1 is a primitive polynomial for the polynomial P (1, u). We normalize it to P̃1(0) = 0, hence

P̃1(u) = a0 u +
a1

2
u2 +

a3

3
u3 . . . .

The Q̃1(u) = P̃1(u)− P̃1(u− 1) is a primitive polynomial for

Q(1, u) = (j + pmu)
n
2−ν

and therefore we get for our above integral

−j/pm∫
−j/pm−1

P1(u) du = Q̃1(−j/pm).

We do not yet know the constant term of Q̃1 (it is not arbitrary) but in any case we have

Q̃1(u) =
1

(n
2 − ν + 1)pm

· (j + pmu)
n
2−ν+1 + Q̃1(0)−

j
n
2−ν+1

(n
2 − ν + 1)pm

and hence
−j/pm∫

−j/pm−1

P1(u) du = Q̃1(0)−
j

n
2−ν+1

pm(n
2 − ν + 1)

= −P̃1(−1)−
j

n
2−ν+1

pm(n
2 − ν + 1)

.

Let us consider
−P̃1(−1) = +a0 −

a1

2
+

a2

3
. . . .

24



Since we have
(j + pmu)

n
2−ν = P1(u)− P1(u− 1),

we have
P1(u) = ju + P ∗1 (u),

where the coefficients of P ∗1 (u) are highly divisible by p. Hence we see (since p > 2) that −P1(−1) ∈ ZZ(p)

and the contribution of an individual term in the sum giving Um
p ({0}∞ ⊗ eν) is

−
j

n
2−ν+1

(n
2 − ν + 1)pm

mod ZZ(p).

We consider the expression

Sm(µ) =
1

pmµ

pm−1∑
j=0

jµmod ZZ(p).

Since j runs over the integers mod pm, we have to consider sums (µ = 1, 2, . . .)

Sm(µ) =
1

pmµ

pm−1∑
j=0

jµ,

and look at their value as an element in Q/ZZ(p). One checks that the values become stationary if m is
sufficiently large, and we get the same value if we sum over any system of representatives. I claim that

Sm(µ) ≡ 0 mod ZZ(p) if p− 1 /| µ

and
Sm(µ) ≡ −1

p · p−1
µ

if p− 1 | µ

provided that m is sufficiently large. I leave this as an excercise for the reader. Now we have to sum up
the contributions form the p( n

2 +ν)αUm−α
p {0}∞ ⊗ eν . They are zero mod ZZ(p) if α > 0 because the factor in

front cancels the deniminator, hence we have proved the desired formula for the contribution of the infinite
part Z∞ν .

To evaluate the finite part we recall that the Eisensteinclass is a form with values in M∨
n,C and the

chains take values in Mn,C. In the previous considerations we let α ∈ GL2(Q) act on Mn,Q by

αP (X, Y ) = P (aX + cY, bX + dY ),

and hence it should act on P∨ ∈M∨
n,C by

αP∨(X, Y ) = P (aX + cY, bX + dY ) det(α)−n.

But it is clear that the value of the integral does not change if we twist both actions by powers of the
determinant which are inverse to each other. Hence we twist the action on Mn,Q by the factor det(α)−

n
2 .

This has the effect that the center of GL2 acts trivially on Mn,Q and M∨
n,Q. Another effect is that we can

work on the group PGL2 instead of SL2, which has some advantages.

We want to compute the integral ∫
Z (f)

ν

Ẽisn.
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and of course we should follow the rules from Chapter E. We lift the chain into the group and define

σ̃ : IR∗>0 −→ PGL+
2 (IR)

σ̃ : t −→
(

t 0
0 1

)
,

where we consider IR∗>0 ⊂ [0,∞] = [0, 1]. Then the support of our chain Z (f)
ν is given by the map

σ : t −→ σ̃(t)i = ti.

The differential Dσ of σ maps the tangent vector t · ∂
∂t at a point t0 to the tangent vector y · ∂

∂y at t0i = y0

and hence
D−1

Lσ̃(t0)
◦Dσ(t0) · (t

∂

∂y
) =

∂

∂y
|i .

We have the canonical identification of g/k to the tangent space TH
i and under this identification the vector

h1 =
(

1 0
0 0

)
∈ g/k

corresponds to ∂
∂y |i. We have to compute the integral

∫
Z (f)

ν

Ẽisn =

∞∫
0

〈σ̃(t)Ẽisn(σ̃(t))(h1), eν〉
dt

t
=

= lim
y→∞

y∫
1/y

〈σ̃(t)Ẽisn(σ̃(t))(h1), eν〉
dt

t
.

We want to transform this integral into an integral over an adelic variable. We consider the torus

T1 =

{(
∗ 0
0 1

)}
⊂ GL2

which is identified to the multiplicative group by the map

χ : x −→
(

x 0
0 1

)
.

This yields identifications
χ/A : IQ −̃→ T1(/A)

IQ/Q∗ −→ T1(/A)/T1(Q) .

If we divide T1(/A) by the maximal compact subgroup KT1
f,0 =

∏
p ZZ∗p, then we get

T1(/A)/T (Q)KT1
f,0 ' IR∗>0.

This identification is induced by the map

t∞ −→
((

t∞ 0
0 1

)
, 1, . . . , 1, . . .

)
.
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We recall the adelic construction of the Eisenstein series in 5.8. To the character

χ : B(/A) −→ C∗

χ :
(

t1 u
0 t2

)
−→ |t1|

n+1
2 · |t2|

−n+1
2

we have the induced (g,K)×G(/Af )-modul Iχ which we map by the Eisenstein intertwining operator

Eis : Iχ −→ C∞(GL2(Q)\GL2(/A))

Eis : Ψ(g) −→
∑

γ∈B(Q)\GL2(Q)

Ψ(γg)

into the space of automorphic forms. (It does not make a difference if we work on PGL2 or on GL2.) We
evaluate the Eisenstein operator at the element

Ψ0 = Ψ∞ ⊗Ψ0
f

where Ψ0
f is the standard spherical function and where Ψ∞(g∞) = ω̃n(h1)(g∞) it is an element in Iχ⊗M

∨
n,C.

Then our integral ∫
IR∗>0

〈σ̃∞(t∞)Eis(Ψ0)(σ̃∞(t∞)), eν〉
dt∞
t∞

.

We can move the element σ̃∞(t∞) =
(

t∞ 0
0 1

)
to the other side, since eν is a weight vector for the torus

we get by defintion of the action that this is equal to∫
IR∗>0

t−ν
∞ 〈Eis(Ψ0)(σ̃∞(t∞)), eν〉

dt∞
t∞

.

This is now equal to the integral ∫
IQ/Q∗

|t|−ν〈Eis(Ψ0)(χ/A(t)), eν〉
dt

|t|
.

Here dt
|t| is an invariant measure on IQ. It is the product of local measures dt∞

t∞
at infinity and µp = cp

dtp

|tp| at
the finite places where at the finite place the volume of T1(ZZp) = ZZ∗p is normalized to one.

We recall the definition of the Eisenstein class and get for that integral∫
IQ/Q∗

|t|−ν
∑

γ∈B(Q)\GL2(Q)

〈Ψ0(γ · χ/A(t)), eν〉
dt

|t|
.

The torus T1(Q) acts on B(Q)\GL2(Q) = IP1(Q) with three orbits. We have

GL2(Q) = B(Q) ∪B(Q)
(

0 1
−1 0

)
∪B(Q)

(
1 0
1 1

)
T1(Q).

The first two points corespond to fixed points, on the third the torus T1(Q) acts simply transitively. We get∑
γ∈B(Q)\GL2(Q)

〈Ψ0(χ/A(t)), eν〉 = 〈Ψ0(χ/A(t)), eν〉+ 〈Ψ0(w · χ/A(t)w−1w), eν〉

+
∑

a∈T1(Q)

〈Ψ0

((
1 0
1 1

)
a · χ/A(t)

)
, eν〉.
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The first two terms are zero. For this one has to recall the definition of ω̃n and one has to take into account
that ν 6= ±n

2 . So we are left with

∫
T1(/A)/T1(Q)

|t|−ν

 ∑
a∈T1(Q)

〈Ψ0

((
1 0
1 1

)
a · χ/A(t)

)
, eν〉

 dt

|t|
.

Of course we want to write this as∫
T1(/A)

|t|−ν〈Ψ0

((
1 0
1 1

)
a · χ/A(t)

)
, eν〉

dt

|t|
.

It is clear that we are allowed to do so if we can prove that the integral over T1(/A) is absolutely convergent.
But this will be clear from the following computation.

The point is of course that now the integral can be written as a product over local integrals. We have
that the above integral is equal to

∏
v

∫
T1(Qv)

|tv|−ν〈Ψo,v

((
1 0
1 1

)
tv

)
, eν〉

dtv
|tv|

.

(We will see in the process of the computation that the local integrals are absolutely convergent and that
the infinite product is so too.)

I studied integrals of this kind in my papers [Ha1] and [Ha2]. I more or less copy the corresponding
computations here. At a finite place p we have to evaluate∫

T1(Qp)

|tp|−ν ·Ψ0,p

((
1 0
1 1

)(
tp 0
0 1

))
dtp
|tp|

=
∫

T1(Qp)

|tp|−ν ·Ψ0,p

((
tp 0

tp − 1 1

))
dtp
|tp|

.

We write tp = pµ · ε, where µ runs over the integers and ε over the units.

We apply the Iwasawa decomposition and get

(
εpµ 0

εpµ − 1 1

)
=



(
pµ ∗
0 1

)
kp if µ ≥ 0

(
1 ∗
0 pµ

)
kp if µ < 0

and hence we have

Ψ0,p

((
εpµ 0

εpµ − 1 1

))
=

 p−µ( n
2 +1) if µ ≥ 0

pµ( n
2 +1) if µ < 0

.

(Note that we have unitary induction here).

Since we have normalized the measure to give volume one on the units, we find∫
T1(Qp)

|tp|−ν ·Ψ0,p

((
tp 0

tp − 1 1

))
dtp
|tp|

=
∞∑

µ=0

pµ(ν−n
2−1) +

∞∑
µ=1

p−µ(ν+ n
2 +1) =

1
1− p−( n

2 +1−ν)
+

p−
n
2−1−ν

1− p−( n
2 +1+ν)

=
1− p−n−2

(1− p−( n
2 +1−ν)) · (1− p−( n

2 +1+ν))
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These local integrals are certainly absolutely convergent for all finite places. If we multiply them together,
the infinite product is also convergent and gives the value

ζ(n
2 + 1 + ν)ζ(n

2 + 1− ν)
ζ(n + 2)

.

Again we made use of the assumption that ν 6= ±n
2 .

I investigate the integral at the infinite place. We have to compute∫
T1(IR)

|t|−ν〈ω̃n(h1)
((

1 0
1 1

)(
t 0
0 1

))
, eν〉

dt

|t|
.

We have to unravel the definition of ω̃n which is by definition an element in

HomK(Λ1(g/k), Iχ∞ ⊗M∨
n,C) = HomKT (Λ1(t⊕ u),Cχ∞+δ∞ ⊗M∨

n,C)

(see 4.3.3) and for g ∈ PGL2(IR) we have

ω̃n(h1)(g) = ω̃n(h1)(bk) = bχ∞+δ∞ ω̃n(h1)(k)

and
ω̃n(h1)(k) = k ω̃n(ad(k)−1h1)(1) = k ω̃n(a(k)h1 + b(k)E+)

and ω̃n(a(k)h1 + b(k)E+)(1) = b(k)Y n by definition. We write(
1 0
1 1

)(
t 0
0 1

)
=
(

t 0
t 1

)
= b(t) · k(t) =

( t√
1+t2

∗
0

√
1 + t2

)
·

(
1√

1+t2
−t√
1+t2

t√
1+t2

1√
1+t2

)

and get

ω̃n(h1)
((

t 0
t 1

))
=

|t|n
2 +1

(1 + t2)
n
2 +1

ω̃n(h1)(k(t)) =

|t|n
2 +1 · t

(1 + t2)
n
2 +2

k(t)ω̃n(. . . h1 +
t

1 + t2
E+)(1) =

|t|n
2 +1

(1 + t2)
n
2 +1

k(t)Y n.

and we get the integral∫
IR∗

|t|n
2 +1−ν · t

(1 + t2)
n
2 +2

〈Y n, k(t)−1eν〉
dt

|t|
=
∫

IR∗

|t|n
2 +1−ν · tn

2−ν+1

(1 + t2)n+2

dt

|t|
.

This integral vanishes if n
2 + 1− ν ≡ 1 mod 2. If n

2 + 1− ν is even, we get the following value

2

∞∫
0

tn+2−2ν

(1 + t2)n+2

dt

t
.

We substitute 1 + t2 = 1
w , then t = (1−w

w )
1
2 and dt

t = − 1
2

1
w(1−w) , and we get as value for our integral

1∫
0

(1− w)
n
2 +1−ν−1w

n
2 +1ν−1dw =

Γ(n
2 + ν + 1)Γ(n

2 − ν + 1)
Γ(n + 2)

.

29



(By the way, the integral is absolutely convergent!).

If we multiply everything together, we find∫
Z (f)

ν

Ẽisn =
Γ(n

2 + ν + 1) · Γ(n
2 − ν + 1)

Γ(n + 2)
·
ζ(n

2 + ν + 1)ζ(n
2 − ν + 1)

ζ(n + 2)
.

If we exploit the functional equation for the Riemann ζ-function which tells us

ζ(2k) =
22k−1π2k

(2k − 1)!
(−1)k · ζ(1− 2k),

we find ∫
Z (f)

ν

Ẽisn =
ζ(1− (n

2 + ν + 1)) · ζ(1− (n
2 − ν + 1))

ζ(1− (n + 2))

which now together with the formula for the boundary term gives us the formula

〈Eisn, Tm
p Z (f)

ν −Z∞ν 〉 = (pn+1 + 1)m ζ(1− (n
2 + ν + 1))ζ(1− (n

2 − ν + 1))
ζ(1− (n + 2))

+ bn,ν + bn,−ν mod ZZ(p).

I want to point out that this formula is true for all values ν which satisfy −n
2 < ν < n

2 , we do not need a
parity condition since the values of the ζ-function vanish if 1− (n

2 ± ν + 1) is odd.

Using Lemma 6.2.2.1 we can easily determine the denominator of the Eisenstein class. We look what
happens for the different values of ν. We assume pδ(n)‖ζ(1− (n + 2)). We have three cases:

I. Case: p− 1 /| (n
2 − ν + 1)(n

2 + ν + 1).

In this case the bn,±ν and ζ(1− (n
2 ± ν + 1)) are integral at p. Hence we find the denominator of Eisn

evaluated at Zν is
pδ(n)−ordpζ(1−( n

2−ν+1))·ζ(1−( n
2 +ν+1)).

II. Case: p− 1 | n
2 − ν + 1 and p− 1 /| n

2 + ν + 1.

Let us assume pα−1(p− 1)‖n
2 − ν + 1. Then pα is the demoninator of ζ(1− (n

2 − ν + 1)). The Kummer
congruences yield

ζ(1− (n + 2)) ≡ ζ(1− (
n

2
+ ν + 1)) mod pα.

We write
ζ(1− (

n

2
+ ν + 1)) = ζ(1− (n + 2)) + pα · Z(ν, n)

with Z(ν, n) ∈ ZZ(p) and substitute this into the first part of our formula. We get

〈Eisn,Zν〉 ≡ ζ(1− (
n

2
− ν + 1)) ·

(
1 + pα Z(ν, n)

ζ(1− (n + 2))

)
+ bn,ν + bn,−ν .

The classical Clausen-von Standt congruences tell us that

ζ(1− (
n

2
− ν + 1)) =

−1

p(
n
2−ν+1

p−1 )
+ ν.

With ν ∈ ZZ(p) this gives us and hence

〈Eisn,Zν〉 ≡
−1

p(
n
2−ν+1

p−1 )
+ ν − pα

p · (
n
2−ν+1

p−1 )

Z(ν, n)
ζ(1− (n + 2))

+ νpα · Z(ν, n)
ζ(1− (n + 2))

+ bn,ν + bn,ν .
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The first term cancels against bn,−ν , in the first factor of the third term the pα cancels. Therfore it is this
term which determines the denominator: it is

pordp(ζ(1−(n+2))−ordpZ(ν,n)

III. Case: p− 1 | n
2 − ν + 1 and p− 1 | n

2 + ν + 1.

In this case the numerator of ζ(1− (n+2)) is a unit at p and the whole expression is obviously integral.

We are now ready to prove Theorem I in the case n > p. We will discuss the case n < p in the next
section.

Obviously it suffices to prove that

min ordp(ζ(1− (n
2 − ν + 1)) · ζ(1− (n

2 + ν + 1)) = 0
ν

if ν runs over the integers ν = 0 to n
2 − 1 for which n

2 − ν + 1 ≡ 0 mod 2 and p− 1 /| n
2 ± ν + 1. We reduce

the arguments (n
2 − ν + 1) mod p− 1, i.e. we write

n

2
− ν + 1 ≡ m(−ν) mod p− 1

2 ≤ m(−ν) < p− 1.

If ν runs over the given set of numbers, the number m(ν) (or m(−ν)) runs over the even residue classes
mod (p− 1), and we always have m(ν) + m(−ν) ≡ n + 2 mod (p− 1). We have the Kummer congruences

ζ(1− (
n

2
+ ν + 1)) ≡ ζ(1−m(ν)) mod p.

If now for all even numbers k, k′ with k, k′ = 2, 4, . . . , p− 3 and k + k′ ≡ n + 2 mod (p− 1) we had

p | ζ(1− k)ζ(1− k′)

then at least [p
4 ] of the numbers ζ(1− k) for k = 2, . . . , p− 3 would be divisible by p and this contradicts the

following inequality of Carlitz on the irregularity index:

This inequality asserts that the irregularity index i(p) which is the number of even k′s between 2 and
p− 3 for which p | ζ(1− k) is less then

i(p) ≤ p + 3
4

− logp(2) · p− 1
4

(see [ ],. . . ). Hence we have proved Theorem I in the case p > n.

To get the result in general we have to investigate congruences between coefficient systems. This goes
back to Ash-Stevens. It has been used by Wang in his dissertation and is apparently also related to the work
of Hida and Taylor.

6.3. Congruences between coefficient systems: We only consider the simplest case. Let n0 be
even 0 < n0 ≤ p− 3. We put n = n0 + (p− 1). We look at our module Mn as a module over R = ZZ[16 ]. It
has the basis

{XνY n−ν}ν=0,...,n.

The dual module M∨
n is contained in Mn after localizing at p. It has a basis

Xn, Xn−1Y, . . . ,XpY n−p, pXp−1Y n−(p−1), . . . , pXn−(p−1)Y p−1, Xn−pY p, . . . , Y n.
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We have pMn ⊂M∨
n ⊂Mn, hence we find the submodul

Xn = M∨
n/pMn ⊂Mn/pMn,

as a IFp-basis of this module is given by the monomials

Xn, Xn−1Y, . . . ,XpY n−p, Xn−pY p, . . . , Y n.

If we consider the action of the torus (
t 0
0 1

)
t ∈ IF∗p

on Xn we find that the monomials are eigenvectors with weights

tn, tn−1, . . . , tp, tn−p, . . . , t, 1.

It is clear that the weights tn and 1 occur with multiplicity one. The other weights come in pairs

tn−1 and tn−p = tn−1−(p−1)

...
...

...

tp and t .

We consider the SL2(IFp) submodule generated by Xn. It certainly contains Y n, and we have

(
1 u
0 1

)
Xn = Xu +

n−p∑
ν=1

uνWν + unXu

where Wν = ανXn−νY ν + βνXn−ν−(p−1)Y ν+(p−1) with some αν , βν ∈ IF∗p. I claim

Proposition 6.3.1: The elements Xn, Y n and the Wν generate a submodule of Mn/pMn which is
isomorphic to Mn0/pMn0 .

Proof: This is rather obvious. One has to observe that the subspace in question is the space generated
by the polynomials

(αX + βY )n α, β ∈ IFp

which is certainly invariant. Then it is clear that the map Φ sending

Xn0 −→ Xn, Y n0 −→ Y

extends to an isomorphism from Mn0/pMn0 to that subspace. Hence we get the exact sequence

0 −→Mn0/pMn0

φ−→Mn/pMn −→ Yn −→ 0

of GL2(IFp) and hence Γ-modules. This induces an exact sequence in cohomology

−→ H1(Γ\H,Mn0/pMn0) −→ H1(Γ\H,Mn/pMn) −→ H1(Γ\H,Yn) −→ .

Proposition 6.3.2: The action of the Hecke-Algebra on H•(Γ\H,Mm) induces an action on the
groups H•(Γ\H,Mm/pMm) and extends to an action on the long exact sequence. The Hecke operator Tp

acts nilpotently on H•(Γ\H,Yn).
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Proof: We have to comment briefly on the functoriality properties of Hecke operators. If M,N are
any two Γ-modules and if ϕ : M→ N is a Γ-module homomorphism, then we may ask wether this map ϕ

induces a map on cohomology which commutes with the action of Tp (or T`).

We recall the discussion in 5.5. To get a Hecke Operator we needed an element α ∈ G(Q) and an element

uα ∈ HomΓ(α)(M(α),M).

Of course it is clear that ϕ induces Γ(α) homomorphisms

ϕ : M(α) −→ N (α)

ϕ : M −→ N ,

so what we need is that the elements

uα ∈ HomΓ(α)(M(α),M), vα ∈ HomΓ(α)(N (α),N )

give rise to a commutative diagram
M(α) ϕ−−−−−−→ N (α)yuα

yvα

M ϕ−−−−−−→ N .

It is clear that such a choice of the uα, vα gives rise to Hecke operators which commute with ϕ. If we are in
the case discussed in 5.5.0 it is obvious that the natural choice of uα, vα gives such a diagram, hence we do
not have problems with the operators T` where ` 6= p.

If ` = p, we recall the construction in 5.6. It is clear that the choice of uα there for α =
(

p 0
0 1

)
does

on
Mn0/pMn0 Mn/pMn

exactly the same thing. It maps all Xn−νY ν with ν > 0 to zero and map

uα : Xn0 −→ Y n0 on Mn0/pMn0

uα : Xn −→ Y n on Mn/pMn.

Hence we get indeed such a diagram as above and moreover we see that this operator induces obviously zero
on Yn, hence also on the cohomology (So we proved actually something much stronger.).

It is clear that we also get an exact sequence in the opposite direction

0 −→ Y∨n −→M∨
n/pM∨

n −→M∨
n0

/pM∨
n0
−→ 0,

where we have of course the same assertions concerning the Hecke operators.

We defined the classes eisn0 ∈ H1(Γ\H,M̃∨
n0

) and eisn ∈ H1(Γ\H,M̃∨
n). If we reduce them mod p, we

get one-dimensional subspaces
〈eisn0〉 ⊂ H1(Γ\H, ˜Mn0/pMn0)

〈eisn〉 ⊂ H1(Γ\H, ˜Mn/pMn).

We prove the following

Theorem III: The map Φ∨ sends 〈eisn〉 to 〈eisn0〉.
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Before I come to the proof of this theorem, I will show that it has Theorem I for n0 < p−1 is a corollary.
We know that we can write

eisn0 = a(n0) Eisn0

eisn = a(n) Eisn .

It follows from Kummer’s congruences that p | ζ(1− (n0 +2)) if and only if p | ζ(1− (n+2)). Let us assume
that this is the case. We know already that p | a(n). This implies that eisn is zero if we restrict it to the
boundary. But then it is clear that eisno is also zero after restriction to the boundary and hence we have
p(a(n0). But then our evaluation formula for the Eisenstein class on the modular symbols tells us that there
must be a number ν with −n0

2 < ν < n0
2 , n0

2 + ν + 1 ≡ 0mod 2 such that

p /| ζ(1− (
n0

2
+ ν + 1))ζ(1− (

n0

2
− ν + 1))

and the rest is clear.

We now come to the proof of the theorem 6.3.3. We do it by testing the classes on the modular symbols.

We start from the cycles Z0,ν ∈ H1(Γ\H,M̃n0) which generate this homology group. Since we have
n0 < p they are rather simple. If we have

e0,ν = X
n0
2 +ν · Y

n0
2 −ν ,

we may write
e0,ν − w e0,ν = P0,ν(X, Y )− P0,ν(X, X + Y )

with P0,ν ∈ Mn0 ⊗ ZZ(p). Therefore we do not need to apply the Hecke operator to define Z0,ν . We simply
take

Z0,ν = Z(f)
0,ν −Z

(∞)
0,ν = Z(f)

0,ν − [0, 1]∞ ⊗ P0,ν .

Let Z̄0,ν be the reduction mod p of this 1-cycle. The Map Φ sends it to

Φ(Z̄0,ν) ∈ Z1(Γ\H,Mn/pMn˜ ).

All we need to prove is that there exists a constant α 6= 0 in IF∗p such that

α〈eisn0 , Z̄o,ν〉 = 〈Φ∨(eis), Z̄0,ν〉,

and since the second term is equal to
〈eisn,Φ(Z̄0,ν)〉,

we need to prove
α〈ēisn0 , Z̄o,ν〉 = 〈eisn,Φ(Z̄0,ν)〉.

For the term on the left hand side we have our formula. Since it is simply equal to

α〈eisn0 ,Zo,ν〉 mod p.

For the second term we can do the same, but there is still a difficulty. We have to interprete Φ(Z̄0,ν) as the
reduction mod p of a modular symbol.

We define
ḡν = Φ(ē0,ν) = ξν ēν+ p−1

2
+ ην ēν− p−1

2

34



and we lift these elements to
gν = ξ̃ν eν+ p−1

2
+ η̃ν eν− p−1

2
,

i.e. we lift the coefficients. (The numbers ξνην coincide with the α, β up to a shift in the indices.) We wrote

e0,ν − w e0,ν = ∂P0,ν(X, Y ) = P0,ν(X, Y )− P0,ν(X, X + Y )

and of course
∂Φ(P̄0,ν) = ḡν − w ḡν .

We write

Po,ν =
n0∑

µ=0

aµXn0−µY µ,

and we define
P#

ν =
∑

aµ(α̃µXn−µY µ + β̃µXn−(p−1)−µY p−1+µ)

where α̃µ, β̃µ are lifts of the αµ, βµ so we have α̃µ + β̃µ ≡ 1 mod p and β̃0 = 0, α̃n0 = 0. We have

∂P#
ν = gν − w gν + p hν .

We can write
Xn+1−pY p−1 −Xp−1Y n+1−p = ∂R,

and it is clear that we γν ∈ ZZ(p) and Qν ∈Mn ⊗ ZZ(p) such that

p hν = p ∂Qν + γν ∂R.

We modify P#
ν into Pν = P#

ν − p Qν , then Pν is a lifting of Φ(P̄o,ν) and

∂Pν = gν − w gν + γν∂R.

Hence it is clear that the cycle Φ(Z̄0,ν) is reduction mod p of the following modular symbol

Zν = ξ̃ν Z(f)

ν+ p−1
2

+ η̃ν Z(f)

ν− p−1
2

+ p γν Z(f)
n
2 +1−p − [0, 1]∞ ⊗ Pν

and
〈ēisn,Φ(Z̄0,ν)〉 = 〈eisn, Z̃ν〉 mod p.

We know already that we may choose eisn as

eisn = ζ(1− (n + 2))Eisn

and we define
eis′n0

= ζ(1− (n0 + 2)) · Eisn0 .

Then eis′n0
∈ ZZ(p) eisn0 . We prove the congruence

〈eisn,Zν〉 ≡ 〈eis′n0
,Z0,ν〉 mod p.

The contribution from the finite part of the modular symbols is

ζ(1− (
n0

2
+ ν + 1)) · ζ(1− (

n0

2
− ν + 1))
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for Z0,ν and

ξ̃ν ζ(1− (
n0

2
+ ν + 1 + p− 1)) · ζ(1− (

n0

2
− ν + 1)) + η̃ν ζ(1− (

n0

2
+ ν + 1)) · ζ(1− (

n0

2
− ν + 1 + p− 1))

+ contribution of Z(f)
n
2 +1−p. The last contribution is zero because n

2 + n
2 + 1 − p + 1 is odd and the ζ-

value vanisches. Then it is clear that the contributions of the finite part are congruent. This follows from
Kummer’s congruences and the fact that ξ̃ν + η̃ν ≡ 1 mod p.

We have to compare the contribution sof

−[0, 1]∞ ⊗ P0,ν and − [0, 1]∞ ⊗ Pν .

This means we have to compare the values

ζ(1− (n0 + 2))
∫ 1

0

P0,ν(u) du = a0 +
a1

2
+ . . .

an0

n0 + 1

and

ζ(1− (n + 2))
∫ 1

0

Pν(u) du

modulo the prime p. We have to recall our requirements on Pν . First of all we required that Pν is a lifting
of Φ(P̄0,ν) hence

Pν(u) = a0 + a1(α̃1u + β̃1u
p) + . . . + an0u

n + p Hν .

We see that for the evaluation of the second integral we need only the coefficients of Pν mod p except for
the coefficient of up−1. Since we assumed n0 < p + 1 we write

Pν(u) = a0 + a1(α̃1u + β̃1u
p) + . . . + an0u

n + γ p up−1 + p H#
ν

where the coefficient of up−1 in H#
ν is zero mod p2.

Now we get for the second integral mod p

ao + a1

(
α̃1

2
+ β̃1

)
+ a2

(
α̃2

3
+

β̃2

2

)
+ . . . +

an0

n0
+ γ.

We see that there is no problem if δp(n0) and δp(n) > 0, since both contributions are zero. So we are left
with the case that p /| ζ(1− (n0 + 2)) and p /| ζ(1− (n + 2)). (In this case I could refer to the Dissertation of
Xiandong Wang,... .)

The reader should be a little bit puzzled. How can this expression be equal to the first one? We have
to prove that

a1β̃1 + a2
β̃2

2
+ . . . +

an0

n0
+ γ = a1

β̃1

2
+ a2

β̃2

3
+ . . . +

an0

n0 + 1
.

We still have the requirement that

∂ Pν = gν − w gν + γν · (Xn+1−pY p−1 −Xp−1Y n+1−p),

if we substitute 1, u for X, Y then

Pν(u)− Pν(1 + u) = α̃νuν + β̃νuν+p−1 + (−1)ν(α̃νun−ν + β̃νun0−ν) + γν(up−1 − un0)
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where ν of course still runs from −n0
2 + 1 to n0

2 − 1. The only thing that counts is that the coefficient of
up−2 on the right hand side is zero.

We have

∂ Pν = Pν(u)− Pν(−1 + u) = ∂(a0 + a1(α̃, u + β̃1, u
p) + . . . + an0u

n + γ p up−1) + p · ∂ H#
ν .

It is clear that the contribution of p ∂ H#
ν to the coefficient up−2 is zero mod p2. On the other hand

∂ up−1 = up−1 − (n + u)p−1 = up−1 − (up−1 + (p− 1)up−2 + . . .) = −(p− 1)up−2

and

∂ up+µ = up+µ − (up+µ + . . . +
(

p + µ

µ + 2

)
up−2 + . . .) = . . .−

(
p + µ

µ + 2

)
up−2 . . . .

One sees that (
p + µ

µ + 2

)
= p · (p + µ) . . . (p + 1) · (p− 1)

(µ + 2)!

and the value of this mod p2 is

−p
1

(µ + 1)(µ + 2)
.

Hence the vanishing of the coefficient of up−2 gives us the relation

a1
β̃1

1 · 2
+ a2

β̃2

2 · 3
+ . . . + an0 ·

1
n0(n0 + 1)

+ γ ≡ 0 mod p

and this is what we wanted.

Since the Z̄0,ν generate the homology H1(Γ\H,M̃n0/pM̃n0) we have proved that Φ∨ sends eisn to
eis′n0

. By construction we have eis′n0
= u · eisn0 with u ∈ ZZ(p). We still have to prove that u is a unit. This

is clear from the exact sequence

−→ H1(Γ\H, Y ∨n ) −→ H1(Γ\H,M̃∨
n/pM̃∨

n) Φ∨−→H1(Γ\H,Mn0/pMn0) −→ .

The map cannot send ēisn to zero since the Hecke operator Tp acts nilpotently on the term on the left.

6.1.2 The Galois-module ZZp · eisn: We want to determine the Galois-module ZZp · eisn. To do this
we have to investigate the Galois-module- structure of H0(∂(Γ\H̃),M̃∨

n,p) and H1(∂(Γ\H̃),M̃∨
n,p). To be

more precise we have to introduce a Galois-module structure on these cohomology-groups which fits into our
diagram, and then we have to compute it.

To state our result we have to introduce the Tate-module ZZp(1). The group of pm-th roots of unity

µpm = {ζ ∈ Q̄ | ζpm

= 1}

is (non canonically) isomorphic to the module ZZ/pmZZ and the Galois-group acts on this module by a
homomorphism

α : Gal(Q̄/Q) → (ZZ/pmZZ)∗,

which is defined by the rule σ(ζ) = ζα(σ). If we pass to the projective limit over all m we get lim
←

(µpm) ≈ ZZp

and the Galois-group acts on this limit by this limit of the above α’s, this is a character

α : Gal(Q̄/Q) → ZZ∗p
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which is the so called Tate-character. We denote the module ZZp with the above action of the Galois-
group on it by ZZp(1). We define ZZp(ν) to be the Galois-module ZZp with the action σ(x) = α(σ)νx for
σ ∈ Gal(Q̄/Q), x ∈ ZZp. I assert

Proposition 6.1.2.1:The Galois-module ZZp · eisn is isomorphic to ZZp(−n− 1).

This is by no means obvious, I will try to give an outline of the proof, I do not know whether I should
advise the reader to skip it.

We constructed the étale sheaves M∨
n/NM∨

n on S and we have two way to extend it to a sheaf on the
compactification: We discussed already the extension j!(M∨

n/NM∨
n) whose stalk at infinity is zero, this is

an exact functor. We may also take the direct image j∗(M∨
n/NM∨

n) on the compactification IP1. Then we
have to take into account that this direct image functor is not exact, hence we have to consider the derived
functors R•j∗(M∨

n/NM∨
n). We get a spectral sequence

H•

ét(IP
1 ×Q Q, R•j∗(M∨

n/NM∨
n)) =⇒ H1

ét(S ×Q Q̄,M∨
n/NM∨

n),

to state this in modern terms, we may compute the cohomology of our sheaf on the open piece also as the
cohomology of a complex of sheaves on the compactification. This yields us the exact sequence

H1
c,ét(S×QQ̄,M∨

n/NM∨
n) → H1

ét(S×QQ̄,M∨
n/NM∨

n) → H1
ét(S×QQ̄, R•j∗(M∨

n/NM∨
n)/j!(M∨

n/NM∨
n)) →

the quotient in the argument of the last term is a complex of sheaves which is concentrated in the point
at infinity. Hence we may consider it as a complex of ZZ/NZZ- modules on which we have an action of the
Galois-group, simply because an étale sheaf on Spec(Q) is simply a module for the Galois-group. Then the
H1 of this complex of sheaves is simply the stalk R1j∗(M∨

n/NM∨
n)∞. Under the present conditions we can

pass to the projective limit and we still get an exact sequence

H1
c,ét(S ×Q Q̄,M∨

n ⊗ R̂) → H1
ét(S ×Q Q̄,M∨

n ⊗ R̂) → R1j∗(M∨
n ⊗ R̂)∞,

we shall see that the last term is actually equal to H1
ét(∂(Γ\H̃),M̃∨

n ⊗ R̂) hence we gain an action of the

Galois group on the cohomology of the boundary after we tensorize by R̂. We also know that the cohomology
of the boundary splits off a canonical direct summand R̂ · Eisn which is also a Galois-module, this is the
one we want to understand. ( The reader should observe that in the previous chapters the cohomology of
the boundary was computed from the Borel-Serre compactification, this is an object that has nothing to do
with algebraic geometry).

To get the structure of these Galois-modules we remind ourselves of what would we do in the trans-
cendental context. We take a little disc D∞ around the point ∞ in IP1(C), the intersection of D∞ with
Γ\H̃ = S(C) is the punctured disc Ḋ∞, we may restrict our sheaf M∨

n to D∞. We have the embedding

j : D∞ → Ḋ∞

and we want to compute the derived functors R•j∗(M∨
n). We recall that our sheaves M∨

n where defined
through an action of the group Γ, but it is clear that the restriction of the sheaf to the punctured disc is
obtained from the action of the fundamental group π1(Ḋ∞) = Γ∞ = ZZ on M∨

n . Since we are only interested
in the free part we may replace the sheaf M̃∨

n by M̃n. We have an emdedding

Mn/pMn ↪→Mn+1,

which is given by XνY n−ν → Xν+1Y n−ν and which commutes with the action of Γ∞ = π1(Ḋ∞). Hence we
have exact sequences

0 → M̃n → M̃n+1 → ˜R · Y n+1 → 0
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of sheaves on Ḋ∞. It is easy to see that the boundary operator of the long exact sequence in cohomology
provides an isomorphism modulo torsion

H0(Ḋ∞, R · Y n+1) → H1(Ḋ∞,M̃n).

This gives an alternative method to compute the cohomology of the boundary. The point is that this can
be imitated in the arithmetic context and then we will be able to read off the Galois-module structure. Let
u be the uniformizing element at ∞ we replace the disc by the spectrum of the power series ring

Dˆ∞ = Spec(Q[[u]]),

and Ḋˆ∞ = Dˆ∞\{∞}.
For any integer N we define D N̂ = Spec(Q[ζN ][[v]]), where ζN is a primitive N -th root of unity and

vN = u. We have a map D N̂ → Dˆ∞ , which becomes étale if we remove the point ∞. The Galois group of
this étale covering is isomorphic to the group of matrices

BN = {σ =
(

a b
0 1

)
|a ∈ (ZZ/NZZ)∗, b ∈ ZZ/NZZ} ⊂ Gl2(ZZ/NZZ).

This group acts on our module Mn/pMn/NMn/pMn and by the same procedure that gave us the sheaves
M̃n on S we get the restriction of these sheaves to Ḋˆ∞ if we restrict the group action to BN . Hence we
have the exact sequences of sheaves on Ḋˆ∞ as before (remember the twist in the definition of M∨

n/NM∨
n

as Gl2(ZZ/NZZ)-module)

0 → ˜Mn/NMn → ˜Mn+1/NMn+1 → (ZZ/NZZ)Y n+1 → 0.

This yields a coboundary map
j∗(R · Y n+1) → R1j∗( ˜Mn/NMn)

which becomes an isomorphism modulo torsion if we pass to the projective limit over N . This implies that
the Galois group acts on R̂ · Eisn in the same way as it acts on the left hand side. But it is clear that
the element σ ∈ BN acts on (R/NR)Y n+1 by multiplication by a−n−1. (This explains the strange twist
we introduced, when we defined the Gl2(ZZ/NZZ), it has the effect that the Galois-group acts trivially on
R0j∗(M))

If we pass to the limit over N = pk, then we see that

Rj
∗(M̃

∨
n) = lim

←
(R1(M)) = ZZp(−n− 1) + torsion,

and this is the assertion of our proposition.

6.1.2.2: ZZp-Hecke modules: At this point I want to explain some very simple principles concerning the
structure of modules under the Hecke algebra:

Here I want to look at the Hecke-algebra H as the polynomial algebra over ZZ generated by the indeter-
minates T` one of them for each prime `. We fix a prime p and we consider finitely generated ZZp-modules
X on which H acts. I want to make the following assumption

The Hecke-operator Tp acts nilpotently on Xtors

If I want to make I category out of these objects I should require that cokernels of maps have this
property too. I claim that each such module has a canonical decomposition

X = Xnil ⊕Xord,
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so that Tp acts topologically nilpotent on Xnil (i.e we have Tm
p (Xnil) ⊂ pXnil for some m) and Tp induces

an isomorphism on Xord. The module Xord is called the ordinary part of X it is torsion free. If we apply
this construction to Xint we get Xint,ord = Xord.

This is indeed very elementary. We consider the vector space X ⊗Q̄p and decompose it into generalized
eigenspaces under the Hecke algebra. This means that we have a finite set Spec(X) of homomorphisms

λ : H → Q̄p

such that we get a decomposition into generalized eigenspaces

X ⊗Q̄p =
⊕

λ∈Spec(X)

Zλ,

where Zλ = (ξ ∈ X ⊗Q̄p|(T` − λ(T`))Nξ = 0) for a suitably large number N . Since X is a finitely generated
ZZp-module the values λ(T`) will be integers in Q̄p, we decompose Spec(X) = Spec(X)tnilp ∪ Spec(X)ord

according to whether λ(Tp) is in the maximal ideal or it is a unit. Then we get a decomposition

X ⊗Q̄p =
⊕

λ∈Spec(X)tnilp

Zλ ⊕
⊕

λ∈Spec(X)ord

Zλ = Ztnilp ⊕ Zord.

The two summands are invariant under the action of Galpur and therefore this decomposition descends to a
decomposition over Qp:

X ⊗Qp = Ytnilp ⊕ Yord

and we define
Xint,tnilp := Ytnilp ∩Xint Xint,ord = ordZ ∩Xint.

Now one has to prove that
Xint = Xint,tnilp ⊕Xint,ord,

it is clear that the left hand side contains the direct sum on the right hand side. I leave this as an exercise
to the reader.

This proves the claim for Xint, it follows from our general assumption on the torsion that we have a
section from ordX in Xint back to X. The following assertions are now obvious

(i) ordX is a free ZZp-module, its rank is equal to the sum of the dimensions of the spaces Zλ if λ runs
over Spec(X)ord

(ii) We get a decomposition

X ⊗ ZZ/p = Xnil ⊗ ZZ/p⊕Xord ⊗ ZZ/p

where the first summand is the generalized eigenspace to the eigenvalue 0 for Tp and where Tp induces an
isomorphism on the second summand.

(iii) The functor ord : X → Xord would be an exact functor if we had made a category out of these
modules in the above sense. (This is not true for int).

We define the Eisenstein-part of the spectrum: Let (π̄) be the maximal ideal of the ring of intgers in
Q̄p, we define

SpecEis(X) = (λ ∈ Spec(X)ord|λ(T`) ≡ `n+1 + 1mod(π̄) for all `).
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The same reasoning as before yields that the space

(X ⊗Q̄p)Eis :=
⊕

λ∈SpecEis(X)

Zλ

descends to a subspace in Xord ⊗Qp and we have a decomposition

Xord ⊗Qp = (Xord ⊗Qp)nonEis ⊕ (Xord ⊗Qp)Eis.

Again it is also clear, that intersecting this direct sum decomposition with Xord gives us

Xord = Xord,nonEis ⊕ Eis X

and alltogether
X = Xnil ⊕Xord,nonEis ⊕ Eis X.

The following facts are obvious

(iv) Any endomorphism of X, which commutes with the action of the Hecke algebra leaves this decom-
position invariant

(v) Rank(Eis X) equals the sum of the dimensions of the Zλ with λ ∈ SpecEis(X).

(vi) Eis X⊗ZZ/p is the submodule of X⊗ZZ/p on which all the operators T`− (`n+1 +1) act nilpotently.

We apply this to our exact sequence (Seq) and we restrict it to the Eisenstein-part, this yields

0 → H1
! (S ×Q Q̄,M̃∨

n,p)Eis → H1
ét(S ×Q Q̄,M̃∨

n,p)Eis → H1(∂(Γ\H̃),M̃∨
n,p) → 0,

of course the third term is already in the Eisenstein-part.

Now we discuss the influence of the denominator of the Eisenstein-class on the structure of the coho-
mology as Hecke×Galois-module. As before we write the denominator as pδp(n), by construction we get an
exact sequence

0 −→ H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊕ ZZp · eisn −→ H1
ét(S ×Q Q̄,M̃∨

n,p)Eis −→ ZZ/pδp(n) −→ 0.

tensorizing this sequence with ZZ/pδp(n)gives us an exact sequence

H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n) ⊕ (ZZ/pδp(n)) · eisn → H1
ét(S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n) → ZZ/pδp(n) → 0.

The kernel of the last arrow is H1
! (S ×Q Q̄,M̃∨

n,p)Eis and hence we get a surjective map

H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n) ⊕ (ZZ/pδp(n)) · eisn → H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n).

This map is of course of the form (Id,Ψ), where Ψ is a map

Ψ : (ZZ/pδp(n)) · eisn → H1
! (S ×Q Q̄,M̃∨

n,p)Eis ⊗ ZZ/pδp(n).

I claim

Lemma:This map is injective and commutes with the action of the Hecke-operators and the Galois-
group.
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Proof: The injectivity follows from the fact that ZZp · eisn is a primitive submodule hence it is a direct
summand (as a ZZp-module) and therefore ZZ/pδp(n) ·eisn injects into H1

ét(S×QQ̄,M̃∨
n,p)Eis⊗ZZ/pδp(n). The

rest is clear.
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