
We want to collect some standard facts from commutative algebra. Here we will be rather
sketchy because many good references are available. Some of the proofs are outlined in
exercises.

0.1 Localization

We consider commutative rings with identity A,B homomorphisms between rings send
the identity to the identity. If R is a ring and φ : R −→ A is a homomorphism, then we
say that A is a R-algebra.

We define Spec(A) as the ordered set of prime ideals of A.
If A is a field then Spec(A) consists of one element, namely the ideal (0).

For any A with 1A 6= 0 we have Spec(A) 6= ∅
An ideal m ⊂ A,(1A 6∈ A) is called maximal if one of the two equivalent conditions is
satisfied
a) There is no ideal a ⊃ m,1A 6∈ a,a 6= m
b) The residue ring A/m is a field
(needs Zorns lemma)

Let S ⊂ A be a subset, which is closed under multiplication and we have 0 6∈ S,1A ∈ S
then we can form the quotient ring

AS = {a
s
| a ∈ A,s ∈ S :

a1

s1
=
a2

s2
⇐⇒ ∃s ∈ S such that s(s2a1 − s1a2) = 0}

We can make an analogous definition for any A-module M

MS = {m
s
| m ∈ A,s ∈ S :

m1

s1
=
m2

s2
⇐⇒ ∃s ∈ S such that s(s2m1 − s1m2) = 0}

If p is a prime ideal in A then we can consider the set Sp = A \ p. By definition of prime
ideal this set is closed under multiplication. Then the quotient ring ASp

is a local ring
with maximal ideal pSp

.
Here we simplify the notation: We put

Ap := ASp
,pSp

:= pp or simply := p

The radical
Rad(A) = ∩p∈Spec(A)p

can also be defined as the ideal of nilpotent elements i.e. those elements f ∈ A,∃n ∈
N such that fn = 0.
An example: Let A = Z and let p be a prime number. Then the principal ideal (p) is a
maximal prime ideal and we define

Z(p) = {a
b
|a,b ∈ Z,b /∈ (p)}

this is the first example of a discrete valuation ring.
A ring is called reduced if its radical Rad(A) = 0.
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Proposition 0.1.1. If the radical of A is a finitely generated ideal then there exists a
number n ∈ N such that the product of any n elements in Rad(A) is equal to zero, i.e.
Rad(A)n = 0. The descending chain

Rad(A) ⊃ Rad(A)2 ⊃ · · · ⊃ Rad(A)n = (0)

stops at zero after a finite number of steps.

0.2 Finite A-Algebras

Definition 0.2.1. An A-module M is called finitely generated if there are elements
m1,m2, . . . ,mr ∈ B such that for any m ∈ M we can find ai ∈ A such that m =
a1m1 + . . .+ armr.

If φ : A −→ B is a homomorphism of rings, then we say that an element b ∈ B is
integral over A if it is the zero of a monic polynomial, i.e. we can find a polynomial
(with highest coefficient equal to 1)

P (X) = a0 + a1X . . .+Xn ∈ A[X] (0.1)

such that

P (b) = ϕ(a0) + ϕ(a1)b+ . . .+ bn = 0. (0.2)

Definition 0.2.2. A morphism φ : A → B between two commutative rings is called
finite if one of the following two equivalent conditions is satisfied

1. The A-module B is finitely generated.

2. The A-algebra B is finitely generated and all elements of B are finite over A.

It is immediately clear that 2. implies 1. because we can use the polynomials to reduce
the degree of the generating monomials. The proof that 1. implies 2. is amusing, we leave
it as an exercise. (See also [Ei], Chap. I section 4 and [At-McD]). The following exercise
gives a hint.

Exercise 1. 1. We have to show that any b ∈ B is a zero of a monic polynomial
in A[X], i.e. it is integral over A. To see this we multiply the generators bi by b
and express the result again as A-linear combination of the bi. This gives us an
r × r-matrix M with coefficients in A. If b is the column vector formed by the bi
we get a relation bb = Mb or (M − b Id)b = 0. From this we have to conclude that
det(M − b Id) = 0. This is clear if A is integral, but it suffices to know that the
identity of B is contained in the module generated by the bi, I refrain from giving
a hint. Hence we see that b is a zero of the characteristic polynomial of the matrix
M , but this polynomial equation has highest coefficient 1 and the other coefficients
are in A.

2. This argument generalizes: Let us consider any A-algebra A→ B, but assume that
B is integral. Show that an element b ∈ B is integral over A if we can find a finitely
generated A-submodule Y ⊂ B,Y 6= 0, which is invariant under multiplication by
b, i.e. bY ⊂ Y .
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If we have a morphism φ : A −→ B, then the integral closure of A in B consists
of all those elements in B, which are integral over A. It is an easy consequence of the
two exercises above that the integral closure is an A-sub algebra of B. (For two integral
elements b1,b2 consider the finitely generated module {bν1b

µ
2}.)

Definition 0.2.3. An ring A is normal if it is integral an if it is equal to its integral
closure in its quotient field K, i.e. if any element x ∈ K, which is integral over A is
already in A. For any integral ring A the integral closure of A in its quotient field is
called the normalization.

Synonymously we use the terminology A is integrally closed for A is normal.

Definition 0.2.4. An element a in an integral ring A is irreducible if it is not a
unit and if in any multiplicative decomposition a = bc one of the factors is a unit.
An integral ring A is called factorial if any element x ∈ A has a finite decomposition
x = x1 . . . xn into irreducible elements, where the irreducible factors are unique up to
units and permutations.

Exercise 2. 1. Show that a factorial ring is normal.

2. Show that an integral ring is factorial if for any irreducible element π ∈ A the
principal ideal (π) is a prime ideal.

3. Show that for any factorial ring A the polynomial ring A[X] is again factorial. (This
is essentially due to Gauss)

Hint: Let K be the field of fractions. Let P (X) = a0+a1X+· · ·+anXn ∈ A[X],an 6=
0. Assume that this polynomial splits in K[X]. Then we find a c ∈ A,c 6= 0 such
that we can factorize

ca0 + ca1X + · · ·+ canX
n = (b0 + b1X + · · ·+ brX

r)(c0 + c1X + · · ·+ csX
s)

into a product of two polynomials inA[X] of smaller degree. Now use 2) to show
that for any irreducible divisor π of c one of the factors must be zero mod (π),
hence we can divide on both sides by π. This process stops. Therefore we see that
a polynomial in A[X], which becomes reducible in K[X] is also reducible in A[X].
Then the rest is clear.

4. Show that the ring of integers Z and the ring k[X] of polynomials over a field k are
normal.

5. Let us assume that A −→ B are both integral and that K → L is the correspond-
ing extension of their quotient fields. Let us assume that L/K is a finite extension.
Furthermore we assume that A normal. For x ∈ L we have a unique monic polyno-
mial of minimal degree P (X) ∈ K[X] such that P (x) = 0. The multiplication by x
induces a linear transformation lx of the K-vector space L. It is well known that x
is a zero of the characteristic polynomial det(X Id−lx) of lx. Show that

x is integral over A⇐⇒ P [X] ∈ A[X]⇐⇒ det(XId− lx) ∈ A[X]

Hint: The polynomial P (X) is called the minimal polynomial of x. Look at the
K-algebra homomorphisms σ from L into an algebraic closure K̄ of K (See (0.3).
Galois theory tells us how the coefficients of P (X) can be expressed in terms of
the symmetric functions of the σ(x). From this we see that the coefficients are in
K and they are integral over A. Hence they are in A.
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To finish the argument we have to relate P (X) and the characteristic polynomial.

6. Under the above assumptions we have trL/K(x) ∈ A for any element x ∈ L, which
is integral over A.

7. Again under the assumptions of 3. we can say: For any x ∈ L we can find a non
zero element a ∈ A such that ax becomes integral over A

8. If an A module M is locally free of rank of one then we can find a finite covering
X = Spec(A) =

⋃
Xfi ,Xfi = Spec(Afi) such that M ⊗Afi is free of rank one, i.e.

M ⊗Afi = Afisi, where si ∈M.

Show that this implies that M is isomorphic to an ideal a, which is locally principal.

Show that for a factorial ring A any locally principal ideal a ⊂ A is itself principal
Hint: Show that either a = A or we can find an irreducible element π, which divides
all elements of a and hence a ⊂ π−1a ⊂ A. The ideal π−1a is strictly larger than
a. We apply the same argument to π−1a and get get an ascending chain of locally
principal ideals. This chain has to stop because a non zero element of a has only
finitely many irreducible divisors.

This implies that any locally free module of rank one over a factorial ring is free
(See [Ma], Thm. 20.7 )

The item (3) in the exercise above implies the following theorem, which we will use several
times (See for instance [J-S], Chap. IV, Satz 4.4.)

Theorem 0.2.5. For any factorial ring A the polynomial ring A[X1,X2, . . . ,Xn] is fac-
torial.

We have the following fundamental theorem for finite morphisms

Theorem 0.2.6 (Going up and down). Assume that the ring homomorphism φ : A→ B
is finite and injective. Then the induced map tφ : Spec(B) → Spec(A) is surjective, has
finite fibers and the elements in the fibers are incomparable with respect to the order on
Spec(B).

This means in other words: For any p ∈ Spec(A) we can find a q ∈ Spec(B) such that
A ∩ q = p. The number of such q is finite, whenever we have two of them q1,q2 we have
q1 6⊂ q2. (See [Ei], I. 4.4,prop. 4.15, cor. 4.18)
To prove the theorem we need another famous result from commutative algebra, namely
the Lemma of Nakayama.

Lemma 0.2.7. [Nakayama] Let A be a local ring with maximal ideal m and let M be a
finitely generated A-module. If

M ⊗ (A/m) = M/mM = 0

then M = 0.

To see this we use the same trick as above: Express a system of generators of M as a
linear combination of these generators but now with coefficients in m. We find that 1A
is a zero of a characteristic polynomial of a matrix with coefficients in m, which is only
possible for the 0× 0 -matrix. �
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Now we sketch the proof of the going up and down theorem. We pick a prime p ∈ Spec(A).
The residue class ring A/p is integral, we have Spec(A/p) ↪→ Spec(A) and the zero ideal
(0) is mapped to p. We localize at (0) and we get the quotient field (A/p)(0). Taking
fibered products we get a diagram of affine schemes

Spec(A) Spec(B)

Spec(A/p) Spec(B ⊗A (A/p))

Spec(A/p)(0) Spec(B ⊗A (A/p)(0))
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The vertical arrows are inclusions and it is clear that the prime ideals q ∈ Spec(A), for
which q∩A are exactly the elements in Spec(B⊗A (A/p)(0)). To prove the surjectivity we
have to show that this scheme is not empty. This follows from the lemma of Nakayama
because we can obtain Spec(A/p)(0) also as the residue field Ap/mp of the local ring
Ap. We have B ⊗A Ap 6= 0 (only the zero divisors of S = A \ p go to zero in this
tensor product) and hence we get by Nakayama that B ⊗A Ap/mp 6= 0 and this implies
Spec(B ⊗A Ap/mp) 6= ∅. Now we have that B ⊗A (A/p)(0) is a finite dimensional vector
space over the field (A/p)(0), it is a finite (A/p)(0)-algebra. This implies that any prime
ideal q ∈ Spec(B ⊗A (A/p)(0)) is maximal because the residue ring is automatically a
field. Then it is also clear that Spec(B ⊗A (A/p)(0)) must be finite. The map

B ⊗A (A/p)(0) −→
∏
q

B ⊗A (A/p)(0)/q

is easily seen to be surjective. Hence we have proved that the fibers are finite and non
empty and we have seen that the prime ideals in the fibers are incomparable.

0.2.1 Rings With Finiteness Conditions

In this section formulate some finiteness for rings collect some facts about these rings.
We will not give proofs because these facts are easily available in the literature. On the
other hand it may be a good exercise if the reader tries to find the proofs her(him)self.

Definition 0.2.8. A commutative ring A with identity is called noetherian if it satisfies
one of the following equivalent four conditions

1. Any ideal a ⊂ A is finitely generated.

2. Any submodule N of a finitely generated A-module M is finitely generated.

3. Any ascending chain aν ⊆ aν+1 ⊆ . . . an ⊆ . . . becomes stationary, i.e. there exists
an n0 such that an0

= an0+1 . . . = an0+m for all m ≥ 0.

4. Any ascending chain of A-submodules Nν ⊆ Nν+1 ⊆ . . . of a finitely generated
A-module M becomes stationary.
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Example 1. The ring Z is noetherian and of course we know that fields are so too.

Theorem 0.2.9 (E. Lasker). Let A be a reduced noetherian ring. Then the set of minimal
prime ideals is finite. To any minimal prime ideal p we can find an f ∈ A \ p such that

p = AnnA(f) = {x ∈ A|xf = 0}.

I want to indicate the steps of the proof and leave it to the reader to fill the gaps.

Exercise 3. We prove that there exist minimal prime ideals. This is clear if A is integral.
If not, then we find f,g ∈ A \ {0} such that fg = 0.

1a) Consider AnnA(f) = a and prove: If a is not prime then we can find an x ∈ A such
that f1 = xf 6= 0 and such that a1 = AnnA(f1) is strictly larger than a = AnnA(f).

1b) Show that this implies that we can find an y ∈ A such that AnnA(fy) = p is a prime
ideal and that this prime ideal is minimal. Hence we see that minimal primes exist.

Let us write yf = fp. It is clear that fp 6∈ p.

Exercise 4. Prove that any prime ideal q contains a minimal prime ideal p ⊂ q of the
form AnnA(fp) and hence all minimal prime ideals are of this form.

Let us assume we picked an fp for any minimal prime ideal.

Exercise 5. Prove that for two minimal prime ideals p 6= p1 the product fpfp1 = 0.

Exercise 6. Consider the ideal generated by these fp and combine the fact that this
ideal is finitely generated and Exercise 5 above to show that these fp form a finite set.

Exercise 7. Let A be an arbitrary noetherian ring, let p1, . . . ,pr be the set of minimal
prime ideals. Let us also assume that the spaces Spec(A/pi) are disjoint. Then there is a
unique collection of elements e1, . . . ,er such that

ei 6∈ pi and ei ∈ pj for all j 6= i

e2
i =ei for all i

eiej =0 for all i 6= j
r∑
i=1

ei =1A

(See [Ei], I. 7.3.) We give a hint for the solution. Our assumption that the spaces
Spec(A/pi) are disjoint implies that we can find e′i such that e′i ≡ 1 mod pi and ei ∈ pj
for all j 6= i. These e′i satisfy all the relations if we compute modulo the radical Rad(A).
Now we can modify e′i → e′i + ri = ei such that we have the idempotency e2

i = ei. (Use
the next exercise to show that

∑
i e
′
i is a unit.) Then all the other requirements are also

fulfilled.

Exercise 8. If we have any noetherian ring R and if we consider the homomorphism
R −→ R/Rad(R) then the group R× of units of R is the inverse image of the units in
R/Rad(R)
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This decomposition of 1A = e1 + . . . + er is called the decomposition into orthogonal
idempotents. It gives a decomposition of the ring

A =
⊕
i

Aei

If our ring has no radical, the fpi = uiei where ui is a unit in Aei .

0.3 Low Dimensional Rings

A noetherian ring is of dimension zero if every prime ideal is maximal (and minimal). In
this case it is clear from Theorem 0.2.9 that Spec(A) = {p1, . . . ,pt} is a finite set. Then
the local rings Api are also of dimension zero and Api has only one prime ideal, which
we call mpi and hence mpi is also the radical of this local ring. We get an isomorphism

A −→
t⊕
i=1

Api =

t⊕
i=1

Aepi .

The epi are the idempotents (See Exercise 1 (5)).

Definition 0.3.1. A ring is called artinian if any descending chain of ideals becomes
stationary.

The rings Api are local artinian and hence A is also artinian.

Finite k-Algebras

If k is a field, then a finite k-algebra A is a k-algebra, which is finite dimensional as a
k-vector space. Then it is clear that this is a zero dimensional k-algebra and hence we
apply step 5) in the proof of Theorem 0.2.9, we get A

∼−→
⊕
Aeν , where the the Aeν are

local finite (artinian) k-algebras. The k-algebra structure of Aeν is given by the injection
iν : x 7→ xeν .
Such a finite k-algebra A is called absolutely reduced or separable, if A ⊗k k does not
contain nilpotent elements. This is clearly equivalent to

A⊗k k
∼−→

dimA⊕
i=1

k. (0.3)

The set of indices in this decomposition can be identified to the set Homk(A,k̄) of k-
algebra homomorphisms φ : A −→ k̄, ( i.e. we have φ(x + y) = φ(x) + φ(y),φ(x · y) =
φ(x) ·φ(y) and for a ∈ k,x ∈ A we φ(ax) = aφ(x)): For any index we have the projection

homomorphism pν :
⊕dimA

i=1 k −→ k̄ to the ν−th coordinate, the composition A −→
A ⊗k k

pν−→ k̄ is a k-algebra homomorphism from A to k̄. They are all different and we
get all the elements of Homk(A,k̄) this way. (See formula below)

We have a simple criterion for separability. To formulate this criterion, we define the trace
trA/k : A −→ k. To any element x ∈ A we consider the linear endomorphism Lx : y 7→ xy
and we put trA/k(x) = tr(Lx). Then it is clear that:
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Proposition 0.3.2. The finite k-algebra A is separable if and only if the bilinear map
(x,y) 7→ trA/k(xy) from A×A to k is non degenerate.

To see that this is so one has to observe that degeneracy or non degeneracy are preserved,
if we extend k to k. For a nilpotent element x ∈ A⊗k k we have trA⊗kk/k(xy) = 0 for all
y. If we have a finite separable k-algebra A then we have

A⊗k k = ⊕Homk(A,k)k

where the isomorphism is given by x ⊗ a 7→
∑
σ∈Homk(A,k) σ(x)a. The linear map Lx is

diagonal with eigenvalues σ(x). Therefore we get the formula

trA/k(x) =
∑

σ∈Homk(A,k)

σ(x) (0.4)

for the trace. (This is the well know formula from an elementary course in algebra, which
says that the trace of an element is the sum of its conjugates.)
At this point I recall an important fact from Galois theory: The elements σ ∈ Homk(A,k̄)
can also be viewed as elements in Homk,vector-space(A,k̄). We have theorem of linear
independence auf automorphisms

Theorem 0.3.3. The elements σ ∈ Homk,vector-space(A,k̄) = Homk̄,vector-space(A ⊗ k̄,k̄)

are linear independent over k̄. If a linear combination
∑
aσσ defines a linear map from

A to k (i.e.
∑
aσσ(x) ∈ k, for all x ∈ A then the linear map is of the form a trA/k for

some a ∈ k.

This is rather obvious from the above.

One Dimensional Rings and Basic Results from Algebraic Number Theory

Now we consider integral rings A with dim(A) = 1. This means that every non-zero
prime ideal p is already maximal. If we have any ideal (0) 6= a 6= A, then dim(A/a) = 0
and Spec(A/a) ⊂ Spec(A) is a finite subset by the previous results.
Hence we see that for a one dimensional ring A the open sets U ⊂ Spec(A) are the
complements of a finite set of closed points (maximal prime ideals) and of course the
empty set.

Definition 0.3.4. If A is integral, of dimension one and local, then Spec(A) consists
of two points {p,(0)}. Such a ring is A is called a discrete valuation ring if p is a
principal ideal, i.e. we can find an element πp such that p = A · πp = (πp). The element
πp is called an uniformizing element.

A uniformizing element πp is of course not unique in general, it can be multiplied by a
unit and is still a uniformizing element. It is quite clear that any element a ∈ A can be
written as

a = ε π
νp(a)
p (0.5)

where ε is a unit and where νp(a) is an integer. This exponent is called the order of a
and can be considered as the order of vanishing of a at p.
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The elements of the quotient field K are of the form

x =
b

c
=

ε π
νp(b)
p

ε′ π
νp(c)
p

= ε′′ · πνp(a)−νp(b)
p = ε′′ · πordp(x)

p . (0.6)

We clearly have νp(x) ≥ 0 if and only if x ∈ A. We may say that x has a pole of order
−νp(x) if νp(x) < 0.
A very important class of one dimensional rings is provided by the Dedekind rings. We
have the following

Definition 0.3.5. A noetherian one-dimensional integral ring A is called a Dedekind
ring if one of the following equivalent conditions is satisfied.

1. The ring is normal, i.e. integrally closed in its quotient field (See 0.2.3)

2. For every prime ideal p 6= (0) the local ring Ap is a discrete valuation ring.

Proof: The inclusion 2.⇒ 1. is quite clear: We consider our element x ∈ K and assume
that it satisfies an equation as as in 0.1. We claim that for any p 6= (0) we must have
x ∈ Ap. Otherwise we could write x = επ−rp with r > 0 and ε a unit in Ap. But then x
can not satisfy the polynomial equation, because we can multiply the equation by πrnp
and then the first term is non zero mod p and the other terms are zero mod p. But if
x ∈ Ap for all p then it follows from proposition ?? that x ∈ A.
The direction 1.⇒ 2. is a not so easy. Of course we may assume that A is already local.
If p is the maximal ideal then we consider the A-module p−1 of all elements x ∈ K, which
satisfy xp ⊂ A. We clearly have p−1 ⊃ A. The decisive point is to show that we can find
an element y ∈ p−1, which is not in A. To see this we pick a non zero element b ∈ p.
The ring A/(b) has dimension zero and therefore, the image of p in this ring is equal
to the radical. This implies that a suitable power pn ⊂ (b), we choose n minimal with
this property. Then we know that we can find elements p1, . . . ,pn−1 ∈ p such that the
element y = p1p2 . . . pn−1/b 6∈ A. But if we multiply by any further element in p then the
result lies in A. Now we conclude yp = A or yp = p. But the second case is impossible,
because exercise 1. 2. implies that y is integral over A. Since A is integrally closed we
get y ∈ A this is a contradiction. The rest is clear: We can find a π ∈ p such that yπ = 1
and therefore p = (π) because if p ∈ p then yp = a ∈ A and this gives p = πa.
This proposition is fundamental for the foundation of the theory of algebraic numbers.

If we have a Dedekind ring A and a non-zero ideal (0) 6= a ⊂ A, then the quotient A/a
has dimension zero and we just saw that

A/a =
∏
p⊃a

(A/a)p.

If ap is the image of a in the localization Ap then (A/a)p = Ap/ap. Now we know that

Ap is a discrete valuation ring hence we have ap = (π
νp(a)
p ) and νp(a) is called the order

of a at p. It is not difficult to show that A/pνp(a) = Ap/(π
νp(a)
p ) and hence we get

A/a =
⊕
p⊃a

A/pνp(a).

:
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Exercise 9. a) Show this assertion implies a =
∏

p⊃a p
νp(a).

Hint: What is in general the relation between the product ab and the intersection of two
ideals a,b in an arbitrary ring A? Show that there is always an inclusion in one direction.
Then verify that this inclusion becomes an equality if the two ideals generate the ring,
or in other words if Spec(A/a) ∩ Spec(A/b) = ∅.

b) Show: For any maximal prime ideal p we can find an x ∈ K (the field of fractions)
such that ordp(x) = −1 and ordq(x) ≥ 0 for all the other maximal ideals. Then xp ∈ A
for all p ∈ p.

Definition 0.3.6. A fractional ideal b of a Dedekind ring A is a finitely generated
non zero A-submodule in the field of fractions K.

For any fractional ideal b we can find an x ∈ K∗ such that xb ⊂ A becomes an integral
(ordinary) ideal. We can multiply such fractional ideals and our previous results imply
that:

Lemma 0.3.7. The fractional ideals in a Dedekind ring form a group under multiplica-
tion.

Definition 0.3.8. The neutral element is obviously given by the ring A itself and exercise
9 b) above gives the inverse p−1 = (1,x). This group is the free abelian group generated
by the prime ideals. It is also called the group of divisors Div(A). This group of divisors
contains the subgroup of principal divisors P (A), these are the ideals of the form (x) with
x 6= 0. The quotient group

Pic(A) = Div(A)/P (A)

is the so called ideal class group of A. Sometimes it is also called the Picard group.

The Picard group is an important invariant of the ring. By definition it is trivial if and
only if A is a principal ideal domain.

If we have a Dedekind ring A with quotient field K and if L/K is an extension of finite
degree, then we may consider the integral closure of A in L. This is the ring B consisting
of those elements b, which satisfy an equation bn + a1b

n−1 + . . . a0 = 0 with ai ∈ A. We
have seen in exercise 1 that they form an A-algebra.
We have the

Theorem 0.3.9 (Krull - Akizuki). The integral closure of a Dedekind ring in a finite
extension of its quotient field is again a Dedekind ring.

This is not an easy theorem, we refer to the book of [?], prop. 12.8. The main problem
is to show that B is again noetherian.

The following fundamental theorem is easier, we drop the assumption thatA is a Dedekind
ring, we only assume that it is integral, noetherian and normal (See 0.2.3).

Theorem 0.3.10. 1. Let A be an integral ring, which is noetherian and normal. Let
K be its quotient field and let L/K be a finite separable extension. Then the integral
closure B of A in L is a finitely generated A- module. Hence B is clearly again an
integral, normal and noetherian ring
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2. If A is a normal integral ring, which is a finitely generated algebra over a field k,
i. e. A = k[x1, . . . ,xn] and if L is any finite extension of the quotient field K of A,
then the integral closure B of A in L is again a finitely generated algebra over k
and hence noetherian and normal.

For a proof see [Ei], II, 13.3, as an alternative the reader may fill the gaps in the following
sketch of the proof.
To see that that first assertion is true we start from a basis a1, · · · ,an of the field L
over K, which consists of integral elements over A. Write an element b ∈ B as linear
combination b = a1x1 +a2x2 . . . anxn with xi ∈ K. We use the separability to invert this
system of equations for the xi. The traces trL/K(baν) are integral (use Exercise 1), and
we find the relations

trL/K(baν) =
∑

trL/K(ai aν)xi.

Conclude that we can find an element a ∈ A, which does not depend on b such that
aia ∈ A, hence B ⊂ Aa1

a + . . .+Aan
a and therefore, is finitely generated.

To prove the second assertion we check that we may assume that L/K is normal (in
the sense of field extensions). Then we have a maximal purely inseparable sub extension
Li/K. This is obtained by successive extraction of p-th roots. Hence we prove the assertion
for extensions of the form L = K[r1/p] (not so easy) and proceed by induction and apply
the first assertion at the end.
Without any further assumption on A or the extension L/K the assertion of the theorem
above may become false.

We return to our assumption that A is a Dedekind ring. The theorem above has the
following implication: Let us assume that we have a Dedekind ring A with quotient field
K and a finite extension L/K and we assume that the assumptions of 1) or 2) are valid.
Then we know that the integral closure B of A in L is a finitely generated A-module.
Let us pick a maximal prime ideal p ⊂ A. We consider the A/p algebra B/pB. First of
all we claim that the dimension of B/pB as an A/p-vector space is equal to the degree
[L : K] = dimK L. This is almost obvious, we may assume that A is local and then B
must be a free A-module of rank [L : K] and this implies the claim. Now we have seen
that

B/pB =
⊕

P⊃pB

B/PνP(pB)eP (0.7)

where the eP are the idempotents. Then B/PνP(pB) is a local A/p algebra.
For a P ⊃ p we get a finite extension of residue fields (B/P)/(A/p) and we denote its
degree by fP = [B/P : A/p]. Moreover we know that for any integer m the quotient
Pm/Pm+1 is a B/P-vector space of dimension one and hence an A/p-vector space of
dimension fP. Therefore B/PνP(pB) is an A/p-vector space of dimension fPνP(pB).
We call the numbers νP(pB) = νP ramification indices. Counting the dimensions yields
the formula

[L : K] =
∑

P⊃pB

fPνP. (0.8)

Definition 0.3.11. The extension is called unramified at p if all the νP = 1 and if
the extensions (B/P)/(A/p) are separable.
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Since B is free over A we can define the trace trB/A in the same way as we did this in
2.4.1 and it is clear (we still assume that A is local):

Proposition 0.3.12. The extension B/A is unramified if and only if the pairing

B ×B −→ A,(x,y) 7→ trB/A(xy)

is non degenerate, i.e. if for x ∈ B the trace trB/A(xy) ∈ p for all y ∈ B then it follows
that x ∈ pB.

Let us now assume that our field extension L/K is a normal, separable extension. Let us
denote its Galois group by Gal(L/K). Let A,B be as above, let p be a non zero prime
ideal in A, we have the decomposition

B/pB =
⊕

P⊃pB

B/PνP(pB) =
⊕

P⊃pB

(B/pB)eP.

The Galois group Gal(L/K) acts on B and permutes the prime ideals P ⊃ p and the
idempotents eP.

Definition 0.3.13. Let us denote by DP ⊂ Gal(L/K) the stabilizer of P, this is the
decomposition group of P.

We anticipate the theorem below, which asserts that this action on the set of primes is
transitive. This implies that the subgroups DP are conjugate to each other, the degrees
[(B/P) : (A/p)] and the ramification indices νP are independent of P let us call them
fp,νp. The index of DP in the Galois group is gp and this is the number of primes P ⊃ p.
Our equation (0.8) becomes

[L : K] = gpfpνp (0.9)

We get homomorphisms

rP : DP −→ Gal((B/P)/(A/p)). (0.10)

Definition 0.3.14. The kernel of the homomorphism rP : DP → Gal((B/P)/(A/p) is
the inertia group IP.

For us the following result is basic for the theory of algebraic numbers.

Theorem 0.3.15. Let K,L,A,B,p as above. The action of the Galois group on the primes
above p is transitive. If L/K is unramified at the prime p then for any P ⊃ p the
homomorphism DP → Gal((B/P)/(A/p)) is an isomorphism.

To see the transitivity we look at the orbit P,σ(P), . . . of the prime ideal P and assume
that we find a prime ideal P′ ⊃ Bp which is not in the orbit of P. Then we can find an
element x ∈ B which maps to

∑
σ eσ(P). Then σ(x) 6∈ P for all σ in the Galois group.

Hence the norm a =
∏
σ(x) 6∈ P. Since a ∈ A we get a 6∈ p. But now x ∈ P′ and

therefore a ∈ P′ and hence a ∈ p a contradiction.
Assume that the homomorphism rP is not surjective, let D̄P ⊂ Gal((B/P)/(A/p)) be
the image, let mP = m the order of the kernel of rP, it is independent of P ⊃ p. We find
an element yP ∈ B/P such that
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σ∈D̄P

σ(yP) 6∈ A/p

See Thm. 0.3.3. We find an element x ∈ B which maps to yP. Then trL/K(x) ∈ A, the
image of this element in A/p is of the form a

∑
P′ eP′ with a ∈ A/p. We get

trL/K(x) =
∑

σ(x) = m(· · ·+ (
∑
σ∈D̄P

σ(yP))eP + . . . ).

Now m > 0 is an integer, which may become zero in A/p, this will be the case if the
characteristic of A/p divides m. But then trL/K(y) = 0 mod p for all y ∈ B, this is
not possible because L/K is unramified at p. But if m is not zero then we get that
trL/K 6∈ A/p, this is again a contradiction. The surjectivity of rP implies fp|#(DP) and
then it follows from equation (0.9) that rP must be an isomorphism.

�

The surjectivity of rP is always true and will be proved later.

Definition 0.3.16. A finite extension K of Q is called an algebraic number field.

Since the ring Z is a Dedekind ring we now know that its integral closure OK in K is
always a Dedekind ring. This ring is called the ring of integers in K. The study of
these rings of integers is the subject of algebraic number theory. We briefly state a basic
theorem of this theory. We need a little bit of notation. We consider the base extension
K ⊗Q R, this is a finite R algebra and hence a direct sum of copies of R and C. Then

K ⊗Q R = Rr1 ⊕Cr2 ,
this defines the numbers r1 and r2.

Theorem 0.3.17. For any algebraic number field K/Q the ideal class group Pic(OK) is
a finite abelian group.
The group of units O×K is a finitely generated group, it is the product W × E, where W
is the finite (cyclic) group of roots of unity and E is free of rank r1 + r2 − 1.

If in our situation above L/K is a finite normal extension of algebraic number fields and
if this extension is unramified at a prime p of A = OK , then the extensions (B/P)/(A/p)
are extensions of finite fields. Let N(p) = #(A/p). Then we know that the Galois group of
these extensions is the cyclic group generated by the Frobenius element ΦP : x 7→ xN(p).
Hence we find a unique element, also called ΦP ∈ DP ⊂ Gal(L/K), which maps to
this generator. This elements of the Galois group are also called Frobenius elements.
These Frobenii ΦP′ to the different P′ ⊃ p form a conjugacy class attached to p, it is
the Frobenius class.
Since we are very close to it, we also state the simplest version of the main theorem of
class field theory. We consider an algebraic number field L with its ring of integers OL.
We consider finite normal extensions F/L, with the property that their Galois group
Gal(F/L) is abelian, and which are unramified at all prime p of OL. If we have two such
extensions F1,F2 then we can form the tensor product F1 ⊗ F2 and decompose this into
a sum of fields

F1 ⊗ F2 =
⊕
ν

Fν .
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These extensions Fν are again unramified and have an abelian Galois group.
Let us pick any such an extension. We construct a homomorphism from the group of
fractional ideals to Gal(F/L) : To do this we observe that the group of fractional ideals
is the free abelian group generated by the prime ideals. To any prime ideal p we pick
a prime ideal P and our homomorphism sends p to the Frobenius element ΦP. Since
our extension is abelian this extension does not depend on the choice of P. Now we can
formulate the celebrated theorem, which has been proved by E. Artin in his paper [?]:

Theorem 0.3.18. The above homomorphism is trivial on the principal ideals and hence
it induces a homomorphism

Art : Pic(OL) −→ Gal(F/L).

This homomorphism is surjective and there exists a maximal abelian, unramified exten-
sion H/L, for which this homomorphism becomes an isomorphism.

This maximal abelian, unramified extension is called the Hilbert class field.
Of course it is clear that for any normal ring A, which is also factorial, the Picard group
Pic(A) = 0. The opposite direction is also true if the ring is noetherian, see [?] , Cor.
11.7.

0.4 Quadratic fields

The results imply that we have abundantly many Dedekind rings. First of all we know
that Z and k[X] are Dedekind rings, here k is any field. The quotient fields are Q and
k(X). Let K any of these two fields.
For any finite (separable in second case) extension L/K we can define the integral closure
of Z (resp. k[X]) in L, this is the ring OL of integral elements.

The theorem 0.3.9 above and the going up and down theorem imply that OL is again a
Dedekind ring

The simplest examples are the rings of integers in a quadratic extension of Q. Choose an
integer d ∈ Z,d 6= 1 and assume that it does not contain any non trivial square factor.
Then we define the field Q(

√
d) = a+ b

√
d,a,b ∈ Q where

√
d is a number which satisfies

(
√
d)2 = d, this is the only information we want to use about this number.

Then we put {
ω =
√
d if d ≡ 2,3 mod 4

ω = 1+
√
d

2 if d ≡ 1 mod 4

Show that the ring of integers in L = Q(
√
d) is

OL = {a+ bω | a,b ∈ Z}

The element ω satisfies the quadratic equation

ω2 − p0ω + q0 = 0



0.4 Quadratic fields 15

where p0 = 0,q0 = −d in the case d ≡ 2,3 mod 4 and p0 = 1,q0 = 1−d
4 in the case d ≡ 1

mod 4.
We have a dramatic difference between the cases d > 0 (real quadratic fields) and d < 0
(imaginary quadratic fields.)

Exercise : Discuss the structure of the group O×L of units in the two situations.

If we want to describe the group of units O×L then we have to exploit the fact that our
field has a nontrivial automorphism σ which sends ω to ω′ = 1−ω. This allows to define
the norm homomorphism

N : a+ bω 7→ (a+ bω)(a+ bω′) = a2 + p0ab+ q0b
2

Show that the norm of a unit must be ±1. Hence to get units we have to solve the
diophantine equation

x2 + p0xy + q0y
2 = ±1

in integers x,y.
If p0 = 0 then this reduces to Pell’s equation.

x2 − dy2 = ±1

For d < 0 it is not too difficult to find all solutions, in the case d > 0 we have to use
the method of continued fraction expansion, this can be done in examples and will be
discussed later.

0.4.1 Decomposition law for quadratic fields ”Zerlegungsgesetz”

We consider the general theorem 0.3.15 in the special case of quadratic field extensions
of Q. We have the relation epfpgp = 2 (see ( 0.9)).
Pick a prime p, we have to study the structure of the Fp algebra

Fp[ω] = Fp[X]/(X2 − p0X + p0)

It turns out to be reasonable to distinguish the cases p = 2 and p > 2.

First case p = 2 :
In this case F2[ω] has non zero nilpotent elements if and only if p0 = 0. The decomposition
group D(2) is trivial

If p0 = 1 then the polynomial is separable, it decomposes into two different factors if and
only if q0 = 0. In this case g2 = 2.

If q0 = 1 then our algebra F2[ω] is a field, it is isomorphic to F4, we have f(2) = 2 and
D(2) is the cyclic group of order 2. It is generated by the Frobenius element.
We have ramification at 2 if and only if p0 = 0 or in other words d ≡ 2,3 mod 4.

Second case p > 2:
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In this case we have ramification if an only if the two roots of the equation become equal
and this means that p divides −4a2

0 + p2
0 = d. We have ep = 2 and the decomposition

group D(p) is cyclic of order 2. (Here we use again that d is square free)
If p does not divide d then we get

Fp[ω] is the sum of two copies of F2 if d ∈ F×p is a square.

Fp[ω] is isomorphic to F4 if d ∈ Fp is a not a square.

In this last case D(2) is again cyclic of order 2 and generated by the Frobenius element.
If p is not ramified in our quadratic field, the we say that p splits and write (p) = p · p′
if Fp[ω] is is sum of two fields and otherwise we say that (p) is inert .

0.4.2 Quadratic fields and the group SL2(Z)

Our field L is a two dimensional vector space over Q, it comes with a distinguished basis
{1,ω} We have the homomorphism

ι : L −→ EndQ(L)

which is defined by

ι : α = a+ bω 7→ Lα = {x+ yω 7→ α(x+ yω)}

With respect to the above basis the the endomorphism Lα is given by the matrix

Lα =

(
a bq0

b a+ bp0

)
in other words ι provides a homomorphism

ι : L 7→M2(Q)

This yields group homomorphisms

ιQ : L× −→ GL2(Q)

and

ιZ : O×L −→ GL2(Z).

0.4.3 The action of SL2(Z) on the upper half plane H

The upper half plane is the set

H = {z = x+ iy | x,y ∈ R,y > 0} ⊂ C

The group SL2(R) acts upon H:

g =

(
a b
c d

)
(z) =

az + b

cz + d
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Verify that this is an action.
We can restrict this action to L×(1) ⊂ SL2(Q), these are the elements of norm 1.
We have two embeddings i+,i− : L ↪→ C, we normalize them so that i+(

√
d) becomes

the positive root if d > 0 and i
√
−d where the square root is again the positive one.

Theorem 0.4.1. If d < 0 then the action of L×(1) on H has exactly one fixed point,
namely the point namely i+(ω).
If d > 0 then we extend the action to an action to an action on H ∪ P1(R) = H ∪R ∪
{∞} = H̄, then L×(1) has the two fixed points i−(ω),i+(ω) ∈ R. The semicircle in H,
which goes from i−(ω) to i+(ω) and hits the real line orthogonally, is invariant under the
action of L×(1).
The subgroup L×(1) is the stabilizer of i+(ω) in SL2(Q), it also stabilizes i−(ω).

Exercise: Prove this theorem.

0.4.4 The continued fraction expansion

We introduce the following two matrices

S =

(
0 1
−1 0

)
, T =

(
1 −1
0 1

)
For any real number α0 = α > 0 we define a sequence cf(α) = [a0,a1,a2, . . . ] of integers
by the following rule

T a0(α) ∈ (−1,0] = β0, α1 = −1/β0 = ST a0(α0)

If α1 =∞ the sequence stops, otherwise we define a1 again by

T a1(α1) ∈ (−1,0]

and continue forever unless the sequence stops.

Theorem 0.4.2. The continued fraction expansion stops if and only if α ∈ Q. It yields
the generation of SL2(Z) by S,T.

Proof and explanation in Robert’s lecture on Friday.
This continued fraction expansion is different from the usual one. Usually we shift α into
the half open interval [0,1), i.e. the first step is

T a
′
0(α) ∈ [0,1) = β′0, α

′
1 = 1/β′0

This yields the classical continued fraction expansion

α = {a′0,a′1, . . . }

We observe that the transformation x 7→ 1/x is induced by the matrix S1 =

(
0 1
1 0

)
which is not in SL2(Z). Therefore we get a generation of GL2(Z) by the matrices S1,T

and t0 =

(
1 0
0 ±1

)
. Since we can express t0 = STS1T

−1S1T we get that GL2(Z) is

generated by S1,T.

More difficult is the following:
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Theorem 0.4.3. The continued fraction expansion

i+(ω) = [a0,a1, . . . ,ar]

is periodic after the first step. The matrix

A = T ar−a0ST ar−1 . . . ST a1ST a0 .

fixes I+(ω) and generates the group of totally positive units.
If we do this for the classical continued fraction expansion, then we get a matrix

A1 = T a
′
r−a

′
0S1T

a′r−1 . . . S1T
a′1S1T

a′0 .

which is a fundamental unit.

There is a way to prove the theorem above if we believe the Dirichlet-unit theorem. This
theorem asserts that the group of units of O×F is a product of the group W = {±1} of
roots of unity and an infinite cyclic group which is generated by a fundamental unit ε0.
An element a+ bω ∈ L× is called totally positive if a+ b i+(ω) > 0 and a− b i+(ω) > 0.
The group of totally positive units is also cyclic and generated by ε20 or ε. Let

ε = x+ yi+(ω)

be a generator of the group of totally positive units. We may assume that x > 0 and
then we have 0 < y < x. Under the above map ι this element is mapped to

ι(ε) =

(
x y q0

y x+ y p0

)
∈ SL2(Z)

Let A =

(
u ∗
v ∗

)
∈ SL2(Z) where u > v > 0. Then Robert showed in his lecture

Exercise: (a) If cf(u/v) = [a0,a1, . . . ,ar] then

T ar S T ar−1 . . . S T a0A =

(
0 1
−1 b

)
= S

(
1 b
0 1

)
,

where b is an integer (depending on the entries in the second column).

(b) Let α ∈ R and assume u/v < α and α− u/v < 1/v2, i.e. u/v is a very good approxi-
mation of α, then the beginning of the continuous fraction expansion of α coincides with
the expansion of u/v.

(c) Since we have A(i+(ω)) = i+(ω) we get

T ar S T ar−1 . . . S T a0(i+(ω)) = S

(
1 b
0 1

)
(i+(ω))

Show that x/y is a very good approximation of i+(ω). Show that this implies b = a0 and
hence we get the periodicity of the continued fraction expansion

cf(i∗(ω)) = [a0,a1, . . . ,ar,a1, . . . ]
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The continued fraction expansion is very useful if we want to identify a rational number
which is only given by an approximating decimal expansion.
Example and exercise:
One of the most interesting power series expansion is the expansion of the Ramanujan
∆ -function

∆(q) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − 1742q4 · · · =
∞∑
n=1

τ(n)qn

Associated to this power series we define a so called L -function

L(∆,s) =
Γ(s)

(2π)s

∞∑
n=1

τ(n)n−s

where s is a complex variable. (Γ(s) is the Γ-function) This series is absolutely convergent
for Re (s) ≥ 13/2. A not very precise computation yields

L(∆,11) ≈ 0.0059589649895783061617,F (∆,9) ≈ 0.0025417560541967110753

We have a theorem by Manin and Shimura which asserts that the ratio

L(∆,9)

L(∆,11)
∈ Q,

i.e. it is a rational number.
From above we get the numerical approximation

L(∆,9)

L(∆,11)
≈ 0.42654320987654967221

Use the continued fraction expansion to guess the value of this rational number.

The value L(∆,8)
L(∆,10) is also a rational number. Only if you are very courageous yo may try

to compute this number.

0.5 Various comments

Supplement to equation (0.6)

Let A be any discrete valuation ring (π) its maximal ideal, let K be its field of fractions.
For x ∈ K we define the order ord(x) by

x = πord(x)ε with ε ∈ A×.

If ord(x) > 0 then we say that x has a zero of order ord(x) if ord(x) < 0 then we say
that x has a pole of order ord(x).
We have

ord(xy) = ord(x) + ord(y),
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ord(x+ y) ≥ min(ord(x), ord(y)) and we have equality if ord(x) 6= ord(y)

This last assertion has an important consequence: If x1,x2, . . . ,xn ∈ K and if
∑
i xi ∈ A

and if min(ord(xi)) < 0 then this minimum is attained more than one times.
This is used to prove Op[ΠP] = OL in case of total ramification.

Supplement to Nakayamas’ Lemma (0.6)

Let A is any local ring with maximal ideal m and M a finitely generated A module.
ThenM⊗A/m is a finite dimensionalA/m -vector space and hence has a basis e1,e2, . . . ,en.
Let ẽ1,ẽ2, . . . ,ẽn be liftings of these basis elements( this means that they map to the ei
under the reduction map M −→M/mM = M ⊗A/m . Then these elements ẽ1,ẽ2, . . . ,ẽn
generate the A-module M.
If A is a discrete valuation ring and if M is torsion free, then these ẽ1,ẽ2, . . . ,ẽn form a
basis of the A-module M.
Proof: Let

∑
aiẽi = 0, assume not all the ai are zero. Let r = min(ord(ai)). Then we

have

πr(
∑
i

ai
πr
ẽi) = 0

and since M is torsion free already the inner sum∑
i

ai
πr
ẽi = 0,

where ai/π
r ∈ A. If we map this relation to M ⊗A/m we get a non trivial linear relation

among the ei, a contradiction.
Hence: A torsion free, finitely generated module over a discrete valuation ring is free.

Remark on ∆

Go back to 0.4.3. We introduce the variable z ∈ H and put q = e2πiz. We change our
notation and put

∆(z) = e2πiz
n=∞∏
n=1

(1− e2πiz)24

This infinite product converges locally uniformly inH and defines a holomorphic function
on H.
Theorem : We have ∆(z + 1) = ∆(z) and ∆(− 1

z ) = z12∆(z)
Proof: The first assertion is obvious the second one is difficult, (any book on modular
forms).

This implies that for γ =

(
a b
c d

)
∈ SL2(Z) :

∆(γ(z)) = ∆(
az + b

cz + d
) = (cz + d)12∆(z) (0.11)
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Exercise Show that ∫ ∞
0

∆(iy)ys
dy

y
= L(∆,s)

There are minor problems with convergence if y −→ 0 but good convergence properties
for y −→∞.
Split the integral into two terms

∫ 1

0
+
∫

1
∞ and use 0.11 to transform the first integral

also into an integral from 1 to ∞.
Excercise: Derive an expression for L(∆,s) which is the sum of two rapidly converging
series.
Now you are ready to compute L(∆,8)

L(∆,10) .

Comments on Exercises

Problem sheet 5 Exercise 1)
Let k be a field, α ∈ k,α 6= 0. Let n > 1 be an integer. Consider the k-algebra k[X]/(Xn−
α) = k[β].
Compute the trace map (x,y) −→ trk[β]/k(x,y), i.e. compute it for any power βm,0 ≤
m < n, and show: The k-algebra k[β] is separable if and only if ???
In exercise 2 the 119 has to be replaced by 120.

Comments on Gal(Q(ζ)/Q)

Let A be a discrete valuation ring, let K be its fraction field, assume its characteristic is
zero. Let p be a prime and assume that the principal ideal (p) is the maximal ideal, i.e.
assume that (p) is prime. Let m = pr. We define the cyclotomic polynomial

Φm(X) =
Xpr − 1

Xpr−1 − 1
= Xpr−1(p−1) + · · ·+Xpr−1ν + · · ·+Xpr−1

+ 1

We consider the extension L = K(ζm). Apply Theorem 0.3.15 to this situation and show

The extension L/K is totally ramified at p the ramification index is ϕ(pm) = pm−1(p−1).
The Tate character gives an isomorphism

α : Gal(L/K)
∼−→ (Z/prZ)×

and the cyclotomic polynomial Φm(X) ∈ K[X] is irreducible.
The ring of integers in L is B = A[ζm].
Every body is invited to write a formal proof of this assertion, it will be included in these
notes.

Let OK be the ring of integers in an algebraic number field K. We assume that the
principal ideal (p) = pOK is totally unramified at p, i.e. pO = P1 · P2 . . .Pr (all the
νP = 1). We still assume m = pr. Then we have a similar conclusion

The the cyclotomic polynomial Φm(X) ∈ K[X] is irreducible and the ring of integers in
K(ζm) is
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OK(ζm) = OK [ζm].

Cyclotomic units

We have the still pending problem to prove the existence of non trivial solutions of Pell’s
equation, or in other words the existence of non trivial units in real quadratic fields.
(Theorem 0.4.3).
We discuss a special case. Let p > 2 be a prime, assume p ≡ 1 mod 4. We consider the
following element in Q(ζp):

ε =
∏
a∈F×p

(1− ζap )( ap )

a) Show that this element is a unit in Z[ω], of course ω =
1+
√
p

2 .

b) Compute this number in the case p = 5.

c) (Not so easy) Show that this number is not equal to ±1. (Hints available on request)
Therefore it is a non trivial unit in Z[ω]×.

d) Write a little program that computes ε for larger primes.

e) Compute the fundamental unit ε0 for p = 229 and p = 401 using Theorem 0.4.3

f) Try to use d) to compute the unit ε for these two cases, relate ε to ε0.

0.5.1 Comments on Theorem 0.3.15

Recall the basic situation: We start from a global field K, let L/K be a finite separable
extension. Let A ⊂ K be a Dedekind ring in K, if K is a number field then A may be the
ring of integers. If K is a finite separable extension of Fq(t) then A can be the integral
closure of Fq[t] (or of Fq[t

−1].)
Let B ⊂ L be the integral closure of A in L. We know that B is again a Dedekindring
(see (0.3.5), this is a definition and a theorem). If p ⊂ A is a non zero prime ideal, then
B/pB is a finite dimensional A/p = k(p) algebra, hence there are only finitely many
primes P ⊃ pB and

r̃ : B/pB
∼−→

⊕
P⊃B/pB

B/pBeP (0.12)

Here the eP ∈ B/pB form a system of orthogonal idempotents: We have e2
P = eP,eP ·

eP′ = 0 if P 6= P′. The A/p-algebras B/pBeP are sub algebras, and the isomorphism
r̃−1 is given by (. . . ,xP, . . . } 7→

∑
xP.
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There is a slightly different way of looking on this isomorphism. Let us put Sp = A \
p,SP = B \P then we define (abuse of notation)

Ap := ASp
,BP := BSP

(0.13)

This are now discrete valuation rings with maximal ideals which are again called p,P
these ideals are principal, we write

p = (πp) , P = (ΠP)

Since P ⊃ pB we find a number νp such that (Π
νp
P ) = (πp). We define k(P) = B/p and

put fP = [k(P) : k(p)].
In our decomposition (0.12) the summands B/pBeP = BP/(πp) = BP/(Π

νP
P ) = B/PνP

We have the projection rP : B −→ B/PνP and hence we get a projection

r : B −→
∏
P⊃p

B/PνP

Our formula (0.12 ) tells us that r is surjective ( commonly known as Chinese remainder
theorem ) and the kernel is pB in other words we get an isomorphism

B/pB
r−→
∏
P⊃p

B/PνP (0.14)

In (0.12) we explicitly wrote down r̃ and r̃−1. To invert r in (??) we have to find the
elements eP which map to (0, . . . ,1,0 . . . ) where the 1 is at place P.
The numbers νP are called the ramification indices, the prime P is called unramified if
νP = 1, the prime p is unramified in L/K if all νP = 1.
We get

[L : K] =
∑

P⊃B/pB

fPνP (0.15)

If we now compute modulo higher powers of p then we get

B/pnB
∼−→
⊕

B/PνPn (0.16)

We defined the projective limit Âp = lim←−A/p
n and then we find

lim←−B/p
nB = B ⊗ Âp =

⊕
P⊃pB

lim←−B/P
νPn =

⊕
P⊃pB

B̂P (0.17)

Recall that the completions Kp of K (resp. LP) with respect to the valuations | |p (resp.

| |P are the fields of fractions of Âp (resp. B̂P) we get from here

L⊗Kp =
⊕
P⊃p

LP (0.18)

We get a ”completed” variant of our theorem 0.3.15
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Theorem 0.5.1. If L/K is normal then we get an action of the Galois group Gal(L/Q)
on L ⊗Kp This action is transitive on {P ⊃ pB} and hence it interchanges the direct
summands in the above decomposition. If DP is the stabilizer of P then the homomor-
phism DP −→ Gal(LP/Kp) is an isomorphism.

Since we have this transitive action it follows that the numbers fP,νP are independent
of P hence we call them fp,νp.
Then the number of elements in {P ⊃ pB} is called gp and we have (see 0.15)

[L : K] = fpgpνp (0.19)

The number gp = [Gal(L/K) : DP] and therefore the order of DP is equal to [LP : Kp].
We finish the argument by observing that L ⊂ LP and this implies that the homomor-
phism is injective.

0.5.2 Local considerations

We still have the homomorphismDP −→ Gal(k(P)/k(p)), it is surjective because Hensel’s
lemma shows that we can construct intermediate field Kp ⊂ Lnr

P ⊂ LP which is unrami-
fied and which satisfies

Gal(Lnr
P/Kp)

∼−→ Gal(k(P)/k(p))

Since Gal(LP/Kp) −→ Gal(Lnr
P/Kp) is surjective this removes the assumption that p

should be unramified from theorem 0.3.15.
The residue fields k(P) ⊃ k(p) are finite, let q = #k(p),qfp = #k(P). The Galois
group Gal(k(P)/k(p)) is cyclic of order [k(P) : k(p))] and generated by the Frobenius

automorphism Φq : x 7→ xq. We have Φ
fp
q (x) = xq

fp
(x) = x and hence Φ

fp
q is the identity

on k(P).
The kernel IP of the homomorphism DP −→ Gal(Lnr

P/Kp) is called the inertia group.
If we look more meticulously then we see a tower of homomorphisms

DP Gal(k(P)/k(p))

AutÂp
(B̂P/P

2)

...

AutÂp
(B̂P/P

ν)

................................................................................................................................................................................................... ............

.......

.......

.......

.......

.......

.......

.......

..............

............

.......

.......

.......

.......

.......

...............

............

.......................................................................................................................................................................................................... ..........
..

........................................................................................................................................................................................................................................................................................................................................................................... ........
....

the arrows are called r1,r2, . . . ,rν , . . . , the kernel of r1 is the inertia group IP and we get

a descending sequence of subgroups IP = I
(1)
P ⊃ I(2)

P ⊃ . . . I(ν)
P . . . where I

(µ)
P = ker(rµ)
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The inertia group IP is of course the Galois group Gal(LP/L
nr
P ). Let B̂nr

P be the ring of
integers in Lnr

P then the maximal ideal in this ring of integers is still (πp). We know that

B̂P = B̂nr
P [ΠP]

We want to understand the action of the Galois group Gal(LP/L
nr
P ) = IP, since any

σ ∈ IP leaves the ideal (ΠP) invariant, we see

σΠP = u(σ)ΠP (0.20)

where u : IP −→ B×P is a 1-cocycle: it satisfies u(στ) = u(σ)σ(u(τ)).
The map u is injective and it is clear that

I
(ν)
P = {σ ∈ IP | u(σ) ≡ 1 mod (Πν−1

P )}.

The following is now rather easy to show
a)For ν = 1 we can send u(σ) ∈ B×P to k(P)× and get an injective homomorphism

IP/I
(2)
P ↪→ k(P)×

b) For ν > 1 and σ ∈ I(ν) we can write

u(σ) = 1 + v(σ)Πν−1
P

The map σ 7→ v(σ) induces an injective homomorphism

I(ν)/I(ν+1) −→ k(P),

to the additive group of the field.
Therefore it becomes clear that I(2) is a p group ( Here p is of course the characteristic
of k(p)) and actually it is the p-Sylow-subgroup.
Our extension LP is called tamely ramified if I(2) is trivial.
c)Show that there is a maximal totally ramified, tamely ramified extension LP/Kp and

Gal(LP/Kp)
∼−→ k(p)×.

d) Show that a tamely ramified abelian extension L/Qp is contained in Qp[ζm] where
m = pm0 and m0 prime to p

0.5.3 Adeles and Ideles

The adele ring of a global field

Let K be a global field let S∞ be the set of archimedian places (this may be empty). For
any place v let Kv be the completion, the finite (non archimedian places) are denoted
by p,q, the completion at p is denoted by Kp and the discrete valuation ring in Kp is

denoted by Op, this is the projective limit over O/pn. (We drop the hat Ô).
For any S ⊃ S∞ we put
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A
(S)
K =

∏
v∈S

Kv ×
∏
p6∈S

Op

This is a ring where addition and multiplication are defined componentwise.

If S′ ⊃ S then we have an inclusion A
(S)
K ⊂ A(S′)

K and we define

AK =
⋃
S

A
(S)
K = {x | x ∈

∏
vall places

Kv, ∃S finite such that xp ∈ Op for all p 6∈ S}

We define a topology on AK : A basis for the family of open sets is given by subsets

US ×
∏
p6∈S

Op

where S runs over all finite sets S ⊃ S∞ and US ⊂
∏
v∈S Kv is open.

Endowed with this topology AK becomes a locally compact topological ring.

This is a consequence of the theorem of Tychonoff, but since the indexing set is countable
we do not need the axiom of choice( or Zorn’s lemma)

A subset B ⊂ A is compact if and only if we can find a finite set S ⊃ S∞ and a real

number T > 0 such that B ⊂ A(S)
K and for all b ∈ B we have |bv|v < T for all v ∈ S

The idele group of a global field

The idele group IK of K is the group of units of AK . We put

I
(S)
K =

∏
v∈S

K×v ×
∏
p6∈S

O×p

and then we define

IK =
⋃
S

I
(S)
K .

We have a topology on IK , a basis for the open sets consists of sets of the form

VS ×
∏
p6∈S

O×p ⊂ IK

where VS ⊂
∏
v∈S K

×
v is an open subset.

Endowed with this topology IK becomes a locally compact topological group.

A subset C ⊂ IK is compact if and only if we can find a finite set S ⊃ S∞ and a real

number T > 1 such that C ⊂ I(S)
K and for all b ∈ C we have 1/T < |bv|v < T for all

v ∈ S.
We have a homomorphism | | : IK −→ R×>0 this is the idele norm map and defined as
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| | : x 7→
∏
v

|xv|v

The kernel of this homomorphism is I
(1)
K , these are the ideles with idele norm 1. The

image of | | is equal to R×>0 if K is an algebraic number field. If K ⊃ Fq(t) is a function
field then the image is a subgroup of {qν}.
An element in AK or IK will be denoted by x it can be thought of as a vector with
infinitely many components

x = (. . . ,xv, . . . )v places of K

We have obvious (diagonal) embeddings K ↪→ AK and K× ↪→ IK . The product formula

implies that K× ↪→ I
(1)
K .

A subgroup Γ in a topological group G is called a discrete subgroup if every element
γ ∈ Γ has an open neighborhood Uγ such that Uγ ∩ Γ = {γ}.

Theorem 0.5.2. The subgroups K ⊂ AK and K× ⊂ IK are discrete. The quotients

AK/K and I
(1)
K /K×

are compact.

The last assertion is equivalent to the the finiteness of the class number in conjunction
with Dirichlets theorem on units. The theorem will be discussed in the lecture.

0.5.4 Metric lattices

A metric lattice is a pair (M,h) where M is a free Z-module of finite rank n and where
h : MR = M ⊗R −→ R is a positive definite quadratic form.
The datum of such a form is essentially the same as an euclidian scalar product, we define

< x,y >h= 1/2(f(x+ y)− f(x)− f(y)) (0.21)

then < x,x >h= h(x). We can define the length of a vector by |x|h =
√
h(x).

From our scalar product we also get a volume form volh on MR. The volume of the
box spanned by a system of orhonormal vectors is one. If ω1,ω2, . . . ,ωn is a basis of our
Z-module M then we define

V ((M,h)) = volh{
∑
i

xiωi|0 ≤ xi ≤ 1} (0.22)

Let Bn(r) be the ball of radius r in MR in then volh(Bn(r)) = rn volh(Bn(1)) = rnbn

Theorem 0.5.3. For any metric lattice (M,h) any ball with radius r > 2(V ((M,h))
bn

)
1
n

contains a non zero lattice point.

Proof: See Neukirch.
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The space of isomorhism classes of lattices

It is of course clear what an isomorphism between two metric lattices (M,h),(M1,h1) is:
This simply an isomorphism φ : M

∼−→ M1 of the Z-modules which induces an isometry
φR : MR

∼−→M1,R.
We also have the notion of conformal equivalence. If (M,h) is a metric lattice and α 6= 0
is a real number, then we can consider the new lattice αM ⊂MR. The multiplication by
α induces an isomorphism of Z-lattices but this not an isometry, the metric is changed
by a a scalar, we have h(αx) = α2h(x).
It is clear that any conformal class of lattices contains a unique lattice with V ((M,h)) = 1.
We also have the notion of an oriented metric lattice, this is a triple (M,h,Ω) where Ω is
a generator of the rank one Z-module Λn(M).
If we choose a basis ω1,ω2, . . . ,ωn of our oriented module M (i.e. ω1 ∧ ω2 . . . ωn = Ω)
then we can form the positive definite n×n matrix (< ωi,ωj >h) it is symmetric and its
determinant is V ((M,h,Ω)). If we replace our basis by another oriented one, i.e. we write

ω′i =
∑

aijωj (0.23)

then the matrix A = (aij) is in SLn(Z) and

(< ω′i,ω
′
j >h) = A(< ωi,ωj >h)tA (0.24)

Let Xn be the space of positive definite n× n matrices with coefficients in R and deter-
minant equal to 1. On this set SLn(Z) is acting as described above.

We have a bijection

{ The set isomorphism classes of oriented lattices of volume 1} ∼−→ SLn(Z)\X

The metric lattice (OK ,B(+)
tr ).

Let K/Q be an algebraic number field, let OK be its ring of algebraic integers, it is a
free Z module. We have the trace trK/Q : OK −→ Z. We have seen that this defines the
non degenerate bilinear form

Btr : K ×K −→ Q (0.25)

The bilinear form Btr extends to a bilinear form

Btr : K∞ ×K∞ = K ⊗Q R×K ⊗Q R −→ R. (0.26)

We know how to describe the R-algebra K∞: We look at the set of embeddings ΣK =
Hom(K,C). This set is the union of the set of real embeddings Σreal

K and the set of complex

embeddings Σcomplex
K On the second set we have the action of complex conjugation, the

complex embeddings come in pairs (σ,c ◦σ) = (σ,σ̄). We choose a representative for each

of these pairs, this defines a subset Σ
(c,1)
K ⊂ Σcomplex

K . We know that we can identify

ΣK/modulo conjugation = Σreal
K ∪ Σ

(c,1)
K = S∞ the set of archimedian valuations. Then
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K∞ = K ⊗Q R =
⊕
σ:Σreal

K

R⊕
⊕

σ∈Σ
(c,1)
K

C (0.27)

The trace of an element x ∈ K is given by trK/Q(x) =
∑
σ∈ΣK

σ(x) =
∑
σ∈Σreal

K
σ(x) +∑

Σ
(c,1)
K

(σ(x) + c ◦ σ(x)) =
∑
σ∈Σreal

K
σ(x) +

∑
Σ

(c,1)
K

(trC/R(σ(x)).

Therefore the extension of the trace to trK∞/R : K∞ −→ R is given by

trK∞/R : (. . . ,xσ, . . . ) 7→
∑
σ:Σreal

K

xσ +
∑

σ∈Σ
(c,1)
K

trC/R(xσ). (0.28)

For σ ∈ Σ
(c,1)
K we decompose xσ = uσ + ivσ into its real and imaginary part. Then we

get for the quadratic form defined by the trace

Btr(x) = trK∞/R(x2) =
∑

σ∈Σreal
K

x2
σ + 2

∑
σ∈Σ

(c,1)
K

(u2
σ − v2

σ) (0.29)

We modify Btr: We put

B
(+)
tr (x) = trK∞/R(x2) =

∑
σ∈Σreal

K

x2
σ + 2

∑
σ∈Σ

(c,1)
K

(u2
σ + v2

σ) (0.30)

and endowed with the quadratic form we get an arithmetic lattice (OK ,B(+)
tr ).

The two quadratic forms Btr and B
(+)
tr define the same volume form hence we get

V ((OK ,B(+)
tr )) = volBtr

(K∞/OK) =
√
|DK/Q| (0.31)

If we write

K∞ =
⊕
S∞

Kv (0.32)

where Kv = R for v real and C for v complex, then our form can also be written as

B
(+)
tr (x) =

∑
v real

x2
v + 2

∑
v complex

xvx̄v (0.33)

Let t be an element from the group IK of ideles. Using this element we define a new
lattice

(tfOK ,t∞B
(+)
tr ) (0.34)

We describe this lattice: The idele t decomposes into its finite part and its component at
infinity, we write
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t = (t∞,tf ) = {. . . ,tv, . . . ,tp, . . . } (0.35)

The new lattice will be

tfOK = {x ∈ K |t−1
p x ∈ Ôp for all finite places p} (0.36)

(this modifies the lattice at a finite number of places because the set of p with ordp(tp) 6= 0
is finite).
Remark: If we have ordp(tp) ≥ 0 for all p then we have tfOK ⊂ OK and it follows easily
from the definitions

[OK : tfOK ] =
∏
p

|tp|−1
p

and this is equivalent to

V ((tfOK ,B
(+)
tr )) = V ((OK ,B(+)

tr ))
∏
p

|tp|−1
p (0.37)

and clearly this is always true, independently of our assumption ordp ≥ 0.

Now we also modify the metric, i.e. our quadratic form. We refer to (0.33)

(t∞B
(+)
tr )(x) =

∑
v real

t−2
v x2

σ + 2
∑

v complex

(tv t̄v)
−1xvx̄v (0.38)

It is clear that

V ((tfOK ,t∞B
(+)
tr ) = Vh((OK ,B(+)

tr )|| t ||−1 (0.39)

where || t || is the idele norm of t. Hence for any idele t which has idele norm one, i.e.∏
v |tv|v = 1 we get the equality

Vh((tfOK ,t∞B
(+)
tr ) =

√
DK/Q (0.40)

We observe that for an element a ∈ K× the multiplication by a induces an isomorphism

(tfOK ,t∞B
(+)
tr )

∼−→ (atfOK ,(at∞)B
(+)
tr ).

From this we get easily the compactness of IK(1)/K× : Let t ∈ IK(1). The metric lattice

(tfOK ,t∞B
(+)
tr ) has a shortest non zero vector a ∈ K. We can modify t by an element

K× (product formula) and get an isomorphic metric lattice. Hence we may assume

that this shortest vector is the identity element 1. (*)

It follows from Minkowski‘s theorem that the square length of this vector 1 = (1, . . . ,1, . . . ) ∈
K∞ is less than 4(

|DK/Q|
b2n

)
1
n + ε, where ε > 0 is arbitrarily small. Hence

∑
v real

t−2
v + 2

∑
v complex

(tv t̄v)
−1 < 4(

|DK/Q|
b2n

)
1
n + ε (0.41)
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This implies that there exists a constant cK > 0 such that t2v and tv t̄v > cK . We have
the product formula ∏

v∈S∞

|tv|v
∏
|tp|p = 1 (0.42)

By our above assumption (*) we have t−1
p · 1 ∈ ÔK,p and this implies that ordp(t−1

p ) =
np ≥ 0 and |tp|p = #k(p)np ≥ 1 for all p. Since in our last formula the product over the
infinite places is bounded away from 0 by a constant CK > 0 it follows that the product
over the finite places can be estimated

1 ≤
∏
|tp|p =

∏
#k(p)np ≤ C−1

K (0.43)

We have only a finite set S′ of finite places for which #k(p) ≤ C−1
K hence we have np = 0

for all p 6∈ S′. For p ∈ S′ we get

1 ≤ |tp|p ≤ C−1
K (0.44)

If S = S∞ ∪ S′ then we have shown that

t ∈
∏
v∈S

K×v ×
∏
p6∈S

Ô×K,p

For p ∈ S′ we have (0.44) and for v ∈ S∞ we had t2v,tv t̄v > cK > 0. Then the product
formula implies that we also have and estimate for the |tv|v from above. This altogether
proves that under the assumption (*) we can find a constant 0 < c < 1 such that

t ∈ I(S)
K [c] =

∏
v∈S

K×v [c]×
∏
p6∈S

Ô×K,p (0.45)

where K×v [c] = {xv ∈ K×v |c ≤ |xv|v ≤ c−1}. This finishes the proof.

The growth of the Discriminant

Of course we have an explicit formula for the volume of the n-dimensional ball of radius
1:

bn =
πn/2

Γ(n2 + 1)
(0.46)

It is not so difficult to show that the identity element 1 ∈ K is a shortest vector in

(OK ,B(+)
tr ). Clearly we have B

(+)
tr (1) = n, this is the square of its length and (0.41)

implies that

n < 4
( |DK/Q|

πn

(Γ(n2 +1))2

) 1
n

+ ε (0.47)

and this implies
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|DK/Q| ≥ nn(
π

4
)n/(Γ(

n

2
+ 1))2 (0.48)

We apply the Stirling formula and find

|DK/Q| ≥
e

2n
(
eπ

2
)n−1 · Vn (0.49)

where Vn tends to one if n tends to infinity.
The estimate is weaker than the estimate in Neukirch’s book, but one checks easily that
the estimate in (0.48) implies that |DK/Q| > 2 unless we have n = 1 and this implies

Theorem 0.5.4. There is no non trivial unramified extension of Q..

0.5.5 Numerics of ζ

The computations done in the lecture yield

Γ( s2 )

π
s
2
ζ(s) =

1

π
s
2

∞∑
n=1

1

ns
Γ(πn2T,

s

2
) +

1

π
1−s
2

∞∑
n=1

1

n1−sΓ(
πn2

T
,
1− s

2
) +

1

s− 1
T
s−1
2 − 1

s
T
s
2

(0.50)

where Γ(s,A) is the incomplete Γ-function, it is defined by

Γ(s,A) =

∫ ∞
A

e−yys
dy

y
(0.51)

Exercise: a) Show that the two sums are very rapidly converging.

b) Show that Λ(s) =
Γ( s2 )

π
s
2
ζ(s) assumes real values on the critical line s = 1

2 + i · t
c) Use the formula to compute the values ζ(−1),ζ(−3) to a high precision. What do you
observe?
d) Plot the function Λ( 1

2 + i · t) in the range 13 ≤ t ≤ 15
e) Compute the first zero of ζ(s) on the critical line up to high accuracy.
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