
dr−3,•
2 : Er−3,•

2 → Er−1,•−1
2

G. Harder

October 31, 2023

Let G/Z be any semi simple (simply connected) group scheme (Chevalley
scheme). We put X = G(R))/K∞ and Γ = G(Z). (You may think of G = Sln)
Let T,B a split maximal torus and B ⊃ T a Borel. Let ∆+ be the set of
positive roots and π = {α1, . . . , αi, . . . , αr} ⊂ X∗(T ) be the set of simple roots
and {. . . , γi, . . . } be the set of fundamental weights. If I ⊂ π then PI will
be the parabolic subgroup whose Levi MI has simple roots π ∖ I, the number
d(PI) := #I−1 is its rank minus 1. We will denote the locally symmetric space
Γ\X = S and accordingly SMI will be the locally symmetric space defined by
MI . The Borel-Serre boundary is denoted by Γ\X it is the union of boundary
strata ∂I(Γ\X). These boundary strata are open in their closure. The closure
∂I(Γ\X) of a stratum is the union of the strata ∂I′(Γ\X) with I ′ ⊃ I. If P = PI

then ∂P (Γ\X) = ∂I(Γ\X). Let λ =
∑
niγi be a highest weight and Mλ the

resulting highest weight representation. Let M̃ be the resulting sheaf on Γ\X.

We consider the cohomology and the fundamental long exact sequence

→ Hq
c (Γ\X,M̃) → Hq(Γ\X,M̃)

r∂−→ Hq(∂(Γ\X),M̃) → Hq+1(. . . ) (1)

We also introduce the ”inner cohomology”

Hq
! (Γ\X,M̃) := ker(r∂) = Im(ic).

The first -still vague problem- is

Describe the image of the restriction map r∂

But this does not make sense, how can we describe a subspace in a vector
space which we do not know. Hence we have to understand the cohomology

Hq(
•
N (Γ\X),M̃) = Hq(∂(Γ\X),M̃),

here
•
N (Γ\X) is the tubular neighbourhood described in the book.

Now homological algebra provides some non trivial tools, we have a spectral
sequence that converges to the cohomology, the E•,•

1 term is

Ep,q
1 =

⊕
P :d(P )=p+1

Hq(∂P (Γ\X),M̃) (2)

and the differentials dp,q1 : Ep,q
1 → Ep+1,q

1 are obtained from the restriction maps
to the next lower stratum. We define Ep,q

2 : ker(dp,q1 )/Im(dp−1,q
1 ), and the we

can define dp,q2 :: Ep,q
2 →: Ep+2,q−1

2 .
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This spectral sequence converges, hence we get a descending filtration

(0) ⊂ Fr−1(Hq(∂(Γ\X),M̃) ⊂ . . .F1(Hq(∂(Γ\X),M̃) ⊂ F0(Hq(∂(Γ\X),M̃) = Hq(∂(Γ\X),M̃)
(3)

and the quotients

FpHq(∂(Γ\X),M̃)/Fp+1Hq(∂(Γ\X),M̃) = Ep,q−p
r = Ep,q−p

∞ (4)

We also have Kostant’s theorem

Hq(∂P (Γ\X),M̃) =
⊕

w∈WP

Hq−l(e)(ΓM\XM , ˜H l(w)(u,M)(w · M))

and hence

Ep,q
1 =

⊕
P :d(P )=p+1

⊕
w∈WP

Hq−l(e)(ΓM\XM , ˜H l(w)(u,M)(w · M)). (5)

We have the so called edge homomorphisms

Hq(∂(Γ\X),M̃) → E0,q
∞ ⊂ E0,q

1 ;Er−1,q
1 → Er−1,q

∞ ↪→ Hq+r−1(∂(Γ\X),M̃)
(6)

We also have a homological spectral sequence with E1
•,• -term

E1
p,q =

⊕
P :d(P )=p+1

Hq(∂P (Γ\X,M̃) and differentials d1p,q : E1
p,q → E1

p−1,q. (7)

the higher differentials are maps

dνp,q : Eν
p,q → Eν

p−ν,q+ν−1. (8)

This spectral sequence induces an ascending filtration

(0) ⊂ G0(Hq(∂(Γ\X),M̃) ⊂ . . .Gr−2(Hq(∂(Γ\X),M̃) ⊂ Hq(∂(Γ\X),M̃) (9)

which converges to H•(∂(Γ\X),M̃). For this filtration we know that

Gp(Hq(∂(Γ\X),M̃)/Gp−1(Hq(∂(Γ\X),M̃) = E∞
p,q−p (10)

We have the Poincare duality pairing

H•(∂(Γ\X),M̃)×Hd−1−•(∂(Γ\X),M̃∨)
∪−→ Q (11)

which also yields and identification PD : Hd−1−•(∂(Γ\X),M̃∨)
∼−→ H•(∂(Γ\X),M̃∨).

where < PD(ξ), η) >= ξ∪η and < , > is the obvious pairing between homology
and cohomology.

Now I claim that a careful analysis of the spectral sequences yields that for
the pairing

Gp(Hq(∂(Γ\X),M̃∨) ∪ Fp+1(Hq(∂(Γ\X),M̃) = 0 (12)
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and hence the Poincare duality pairing induces a non degenerate pairing

Gp(Hq(∂(Γ\X),M̃∨)/Gp−1(Hq(∂(Γ\X),M̃∨)×FpHq(∂(Γ\X),M̃)/Fp+1(Hq(∂(Γ\X),M̃) → Q

< , >∞: E∞
p,q−p × Ep,q−p

∞ → Q
(13)

These modules are now subquotients of E1
p,q−p and Ep,q−p

1 and the pairing <
, >∞ is induced by the natural pairing between these modules

Now we can formulate a slightly more precise question.

I think we should always try to compute the cohomology H•( Γ\X,M̃), H•(∂(Γ\X),M̃)
and the map r at the same time. Assume that we computed the Ep,q

1 page of
the spectral sequence, i.e we solved our problem for the Levi-quotients M , then
we have to compute the higher pages in the spectral sequence. The computa-
tion of the terms Ep,q

2 requires that we have solved our problem for the reduc-
tive quotients of the parabolic subgroups. The computation of the differentials
dp,q2 : Ep,q

2 → Ep+2,q−1
2 may become delicate, eventually we have to compute the

terms Ep,q
∞ .

Once this problem is solved we try to construct -starting from cohomol-
ogy classes ω ∈ H•(∂(Γ\X),M̃) - Eisenstein cohomology classes Eis(ω)] ∈
H•( Γ\X,M̃ ⊗ C). The construction of these classes requires that we have to
write some infinite series and we have to discuss some -sometimes delicate- is-
sues of convergence. We go to the transcendental level and hence we extend
scalars to C. These Eisenstein series may have poles we have to take residues.
Then we try to show that the images r∂(Eis(ω)) of these classes span a maxi-
mal isotropic subspace (with respect to above pairing) in the cohomology of the
boundary.

This problem has been successfully tackled by J. Bajpai, L. Guan and various
other authors in some low rank cases. We come back to this later.

If we use Eisenstein series to produce classes in the image of r∂ or to compute
the differentials in the spectral sequence we have to evaluate infinite series.
Hence we expect that certain transcendental quantities will show up. But on
the other hand we know that all the vector spaces and all arrows are defined
over Q there must be some elgebraicity or rationality relations between these
transcendental quantities.

This principle is exploited in our book with Raghuram. There the underlying
group is Gln/Z we consider the first column of the spectral sequence E0.•

1 . We

know that the edge homomorphism H•(∂(Γ\X),M̃)
eg0

−→ E0.•
∞ is surjective. We

define a certain subspace E0.•
1,!! ⊂ E0.•

∞ of so called strongly inner classes. To do
this we use the action of the Hecke algebra and and strong multiplicity one.We
construct a canonical section s : E0.•

1,!! → H•(∂(Γ\X),M̃). The image s(E0.•
1,!!) is

a direct summand, more precisely we have

H•(∂(Γ\X),M̃) = s(E0.•
1,!!)⊕ s(E0.•

1,!!)
⊥ (14)

where the second summand is the orthogonal complement with respect to the
above pairing. Now we construct Eisenstein classes Eis(ω) ∈ H•(Γ\X,M̃⊗C)
such that the images r∂( Eis(ω) span a maximal isotropic subspace in (E0.•

1,!!).
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The position of this subspace is determined by special values of Rankin-Selberg
L functions. Since this subspace is defined over Q we get our rationality result
for these special values.

One purpose of this note is to show that we should look at the entire spectral
sequence and not only at the cuspidal part of the E0,•

1 .We pick a highest weight
λ let Mλ be the highest weight module. Instead of looking at the first column
we consider the last column in the spectral sequence

Er−1,•
1 =

⊕
q

Er−1,q
1 =

⊕
q

⊕
w∈W :l(w)=q

H0(ST ,Q(w · λ)) =
⊕
q

⊕
w∈W :l(w)=q

Qew·λ

(15)

where ew·λ is a generator in degree l(w) and non zero if and only if w·λ|T (Z) = 0.
( The symmetric space ST is essentially a point, divided by T (Z) = {±1}r.)

We want to compute Er−1,•
2 and consider the differential

dr−2,q
1 : Er−2,q

1 → Er−1,q
1⊕

I:#I=r−1

⊕
wI∈WPI H

q−l(wI)(Γ\XMI ,MwI ·λ) →
⊕

w∈W Q(w · λ)(= Qew)
(16)

the image respects the direct sum decomposition. We need to know for which
w ∈ W the space Qew·λ is not in the image of dr−2,q

1 . Let us call this set
S[λ] ⊂W.

We understand the Eisenstein cohomology of M
(1)
I (= Sl2), and this tells us

what the image

dI : Hq−l(wI)(Γ\XMI ,Q(wI · λ)) → QewI
⊕QesiwI

(17)

will be. (Here π ∖ I = {αi} and si is the reflection). Only one of the terms on
the right hand side can be non zero (because w · λ|w0 · λ|T (Z) = 1). ) Then it
is clear that

The element w ∈ S[λ] if and only for all I ⊂ π; #I = r − 1, {αi} = π ∖ I
the following holds:

If w ∈WPI then dim(Mw·λ) > 1 ; if w ̸∈WPI then dim(Msiw·λ) = 1

The set S[λ] should be computed with the help of a computer. If λ is regular
then it is clear that S[λ] consists just of one element namely the identity Id. We
get in this case Er−1,•

2 = Q(eId) and this injects into Hr−1(∂(Γ\X),Mλ). Hence
we get, provided |w0 ·λ|T (Z) = 1, non trivial cohomology Hr(∂(Γ\X),Mλ) ̸= 0.

But for non regular λ this set may become more complicated. In any case
we find

Er−1,q
2 = Er−1,q

1 /Im(dr−2,q
1 ) =

⊕
w∈S[λ],l(w)=q

Q(w · λ) (18)

and this says that the computation of Er−1,q
2 is a Weyl group issue. Now we

want to compute Er−1,•
3 , this means that we have to compute the image of the

differential

dr−3,•
2 : Er−3,•

2 → Er−1,•−1
2 . (19)
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This is a delicate issue. We know that Er−3,•
2 is a quotient of the kernel of the

differential Er−3,•
1

dr−3,•
1−→ Er−2,•

1 . We can compute this kernel from Weyl group
combinatoric and our knowledge of the restriction maps

H•(SMI , w · λ) → H•(∂(SMI ), w · λ), (20)

here I runs over the subsets with #I = r − 2 or in other words MI is of rank
2. For these groups the above general problem is solved (Schwermer, Bajpai,
Moya, Horozow, H., ...). We compute the map

ker(Er−3,•
1 → Er−2,•

1 )
dr−3,•
2−→ Er,•−1

1 (21)

Now we have to use transcendental tools, we extend our coefficient system
by C and compute the map

ker(Er−3,•
1 ⊗ C

dr−3,•
1−→ Er−2,•

1 ⊗ C)
dr−3,•
2−→ Er,•−1

1 ⊗ C (22)

.
We recall that the spectral sequence is obtained from the cohomology of the

double de-Rham complex. We represent a cohomology class [ω] in ker(dr−3,•
1 )

by an array of closed differential forms

ω̃ = {....., ωI , ..} ∈
∏

I,#I=r−2

Ω•(∂I(Γ\X),Mλ ⊗ C) (23)

and send this to by the horizontal boundary map to

d0ω̃ = {..., ωJ , ...} ∈
∏

J,#J=r−1

Ω•(∂J(Γ\X),Mλ ⊗ C). (24)

Here we know that we get the ωJ by taking a sum over constant Fourier coeffi-
cients

FMI ,MJ : ωI(.) 7→
∫
UI,J

ωI(uI,J ·)duI,J

We know that the ωJ are representing the trivial class, hence we can write
ωJ = dψJ where now

ψ̃ = {..., ψJ , ...} ∈
∏

J,#J=r−1

Ω•−1(∂J(Γ\X),Mλ ⊗ C). (25)

and this array of differentials is now by the horizontal boundary mapped to a
differential form

ψ ∈ Ω•−1(∂π(Γ\X),Mλ). (26)

This is a closed form and hence it defines a cohomology class [ψ] ∈ H•−1(∂J(Γ\X),Mλ⊗
C). This class is the image of the class [ω] under the map dr−3,•

2 , i.e.

dr−3,•
2 ([ω̃]) = [ψ] (27)
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I think the first situation where something really interesting happens is Γ =
Sl4(Z), we consider the trivial representation, i.e. λ = 0. Now we have to com-
pute. My computation (partially supported by Mathematica and with the help
of Taiwang Deng) gave the following result: We write the elements of the Weyl
group W as products of reflections at simple roots i.e. w = sαi1

sαi2
. . . sαik

=
{i1, i2, . . . , ik}. Then S[0] = {{1, 3}, {1, 2, 3}, ({3, 2, 1}, {1, 2, 3, 1, 2, 1}} and hence

E2,2
2 = Q({1, 3} · 0), E2,3

2 = Q({1, 2, 3} · 0)⊕Q({3, 2, 1} · 0), E2,6
2 = Q({1, 2, 3, 1, 2, 1} · 0)

(28)

The E•,•
2 page looks as follows

E0,0
2 = Q 0 0

0 0 0

0 0 E2,,2
2 = Q

E0,3
2 = Q2 0 E2,3

2 = Q2

E0,4
2 = Q 0 0

0 0 0

0 0 E2,6
2 = Q

(29)

and I am 99,9 % sure that the two arrows d0,32 : E0,3
2 → E2,,2

2 and d0,42 : E0,4
2 →

E2,3
2 are non zero. Let us assume that this is true. Then the E•,•

3 page looks as
follows

E0,0
3 = Q 0 0

0 0 0
0 0 0

E0,3
3 = Q 0 E2,3

3 = Q
0 0 0
0 0 0

0 0 E2,6
3 = Q

(30)

Hence

Hq(∂(Γ\X),Q)
∼−→ E0,q

3 for q = 0, 3
and

E2,q−2
3

∼−→ Hq(∂(Γ\X),Q) for q = 5, 8

(31)

and all the other cohomology groups vanish.
We get a short exact sequence

0 → E2,•−2
3

eg2

−→ H•(∂(Γ\X),Q)
eg0

−→ E0,•
3 → 0, (32)

where the eg• are the so called edge homomorphisms. We have computed the
cohomology off the boundary.

The map d0,42 sends x 7→ (αx, βx), we expect that at least one of the two
numbers is non zero and the quotient c = α/β is a rational number (or infinity)
which can be expressed in terms of special values of the ζ function. For this we
use the computation of Langlands for the constant term. We come back to this
later.
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I have not yet computed this expression for the number c .

We still have to compute the image of r∂ . It must be a maximal isotropic
subspace and hence we have the two possibilities

r∂(H
•(Γ\X,Q) = H0(Γ\X,Q)⊕H3(Γ\X,Q) or H0(Γ\X,Q)⊕H5(Γ\X,Q).

At this moment it is not clear to me which of the two cases happens.
If we are able to write down some Eisenstein classes Eis(ω) in degree 0 and

3 which restrict non trivially to the boundary cohomology then the first case
happens and we have solved our general problem in this case.

If not then we return to our fundamental exact sequence. We have to go
to the transcendental level. We apply Thm. 8.1.1 from the book, we know
that H•

! (Γ\X,R) ⊂ H•
(2)(Γ\X,R) and the H•

(2) cohomology is generated by the
images of

H•(g,K∞, Hπ∞) → H•
(2)(Γ\X,R) (33)

where Hπ∞ ⊂ L2
disc(Γ\Sl4(R)) runs over the irreducible subspaces. Since we do

not allow ramification the only possibility is π∞ = 1∞ = C).)

We have an action of the Hecke algebra on the fundamental exact sequence it
also acts on the E•,•

1 terms in the spectral sequence and this action is compatible
with the differentials. Hence it also acts on the higher pages.

This allows us to define subspaces in our cohomology groups. Let 1f be
the one dimensional Hecke module given by the constant functions, let I1 the
ideal of Hecke operators annihilating 1f . Then we define H•(Γ\X,Q)[1f ] to
be the submodule annihilated by a suitable high power of I1. Then the above
computations show that for Γ = Sl3(Z),Γ = Sl4(Z)

H•(∂(Γ\X),Q) = H•(∂(Γ\X),Q)(1f ) (34)

(The modules Q(w · 0) are isomorphic to 1f .).

Now I also believe that this also holds for the ”global” cohomology, i.e.

H•(Γ\X,Q) = H•(Γ\X,Q)(1f ). (35)

These considerations can be extended to the case of any semi- simple simply
connected group scheme G/Z. Let us put Γ = G(Z). Any dominant highest
weight λ that satisfies λ|w0 · λ| T (Z) = 1 defines a one dimensional Hecke
module λH and we can define H•(Γ\X,Q)[λH]. Now we consider the objects

r : H•(Γ\X,Q)(λH)
r∂−→ H•(∂(Γ\X),Q)(λH) (36)

and all the pages (E•,•
s , d•,•s )(λH).

I think that it is of great interest to write an algorithm which computes all
these modules and arrows in a given case. For instance we can compute S[λ]
and hence Er−1,•

2 . But it is clear that this can not be achieved with bare hands.
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If λ is regular we know that we have an exact sequence (w0 the longest element
in the Weyl group)

0 → Q(λ) → H•(∂(Γ\X),M̃λ)(λH) → Q(|w0 · λ)| → 0 (37)

where the two extremal terms sit in degree r−1, l(w0) andH
l(w0)(Γ\X,M̃λ)

∼−→
Q(w= ·λ) respectively. This becomes much more complicated if λ is not regular,
the most complicated case is λ = 0.

We recall some known facts from the theory of Eisenstein series.

Since we assumed λ|T (Z) = 1 we can define the character |λ| : T (Q)\T (A)/T (Ẑ) →
R×

>0. We consider the induced G(R)×-Hecke module

Ind
G(A)
B(A)|w0 · λ| |ρ|s = {f : G(A) → C |f(bgkf ) = |w0 · λ| |ρ|s(b)f(g) (38)

for all b ∈ B(A), g ∈ G(A), kf ∈ G(Ẑ). Here |ρ|s =
∏

|γi|si , si ∈ C. Since we do
not allow any ramification we know that

Ind
G(A)
B(A)|w0 · λ| |ρ|s = Ind

G(R)
B(R)|w0 · λ| |ρ|s (39)

Following Langlands we define the Eisenstein intertwining operator

Eis(λ, s) : Ind
G(A)
B(A)|w0 · λ| |ρ|s → C∞(G(Q)\G(A)/G(Ẑ)) = C∞(G(Z)\G(R))

Eis(λ, s) : {g 7→ f(g)} 7→ {g 7→
∑

a∈B(Q)\G(Q)

f(ag)}

(40)

We know that this yields a meromorphic function in the variable s, its poles can
be computed from the constant term

FB(f)(g) =

∫
U(Q)\U(A)

f(ug)du =
∑
w∈W

c(w, λ+ s)T loc(w, s)(f). (41)

We explain the term on the right hand side, we begin with T loc(w, s). The oper-
ator T loc(w, s) =

∏
v T

loc
v (w, s) is an intertwining operator which is a product of

local operators T loc
v (w, ) : Ind

G(Qv)
B(Qv)

|w0 · λ| |ρ|sv → Ind
G(Qv)
B(Qv)

|ww0 · λ| |ρ|sv. These
local operators are normalized such that they map the spherical function to the
spherical function.

We know that any isomorphism type θ of an irreducible representation of the

maximal compact subgroupK∞ occurs with finite multiplicity in Ind
G(Qv)
B(Qv)

|ww0·
λ| |ρ|sv and we define the Harish-Chandra module

Ind
G(R),(0)
B(R) |ww0 · λ| |ρ|sv :=

⊕
θ∈K̂∞

Ind
G(R)
B(R)|ww0 · λ| |ρ|sv(θ) (42)

For a given θ we can identify the isotypical components Ind
G(R)
B(R)|ww0 ·

λ| |ρ|sv(θ) to the fixed space C∞(T (Z)\K∞)(θ), provided we only consider those
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(λ,w) for which ww0 · λ|T (Z) = 1. Hence we see that we can interpret the iso-
typical components of the intertwining operator

Ind
G(R)
B(R)|w0 · λ| |ρ|sv(θ)

T (w,θ,s)−→ Ind
G(R)
B(R)|ww0 · λ| |ρ|sv(θ) (43)

simply as endomorphisms of a fixed finite dimensional vector space.

It is well known - or very easy to see -that the operator T (w, θ, s) is a poly-
nomial in the variables s and hence holomorphic at s = 0.

We define the K∞ invariant subspace IGB [w, i] ⊂ Ind
G(R)
B(R)|w0 · λ| |ρ|sv(θ)

it consist of those elements f for which T (w, θ, s)(f) vanishes if si = 0, i.e.
T (w, θ, s)(f) = sig.

Now we consider the complexes

HomK∞(Λ•(g/k), Ind
G(R)
B(R)|ww0 · λ| |ρ|sv ⊗ M̃λ) (44)

Again it is clear that these complexes are acyclic if s =
∑
siγ is generic, i.e. all

si ̸= 0. But we are are interested in what happens at s = 0. It is clear that the
differentials are holomorphic at s = 0, hence can evaluate at s = 0 and compute
the cohomology

H•( HomK∞(Λ•(g/k), Ind
G(R),(0)
B(R) |ww0 · λ| ⊗ M̃λ) (45)

here we use the formulas of Delorme.

In my book with Raghuram I introduce a Q− structure on everything. I
explain that the group K∞ is the group of real points of an algebraic group
scheme K/Q, let A(K) be its affine algebra. Hence we can view its Lie-algebra
k as a vector space over Q. The θ isotypical subspace C∞(T (Z)\K∞)(θ), is
canonically isomorphic toA(T (Z)\K)(θ)⊗C. Hence we have the Harish-Chandra
modules over Q

IG
Bww0 · λ =

⊕
θ

A(T (Z)\K)(θ) (46)

and we get the complex of Q-vector spaces and its cohomology

H•( HomK∞(Λ•(g/k), IG
Bww0 · λ⊗Mλ) (47)

Of course the intertwining operators T loc(w, 0) are also defined over Q. This

ends the discussion of T loc(w, s), we study the factor c(w, λ + s). This is a
”transcendental” contribution. This factor has been computed by Langlands.
Let

∆+,w := {α ∈ ∆+| w−1α ̸∈ ∆+} (48)

and for any positive root let α let χα : Gm → T be the cocharacter attached to
α then

c(w, λ+ s) =
∏

α∈∆+,w

ξ(< χα, λ+ ρ+ s >)

ξ(< χα, λ+ ρ+ s > +1)
(49)
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here ξ(s) = Γ(s/2)
πs/2 ζ(s) is the completed Riemann ζ-function.

We observe that always < χα, λ+ ρ >≥ 1 and we have equality if and only
if α = αi is a simple root and if < αi, λ >= 0 Hence we see that

The function s 7→ ξ(< χα, λ+ ρ+ s >)

ξ(< χα, λ+ ρ+ s > +1)
is regular at s = 0 unless

α = αi is a simple root and < αi, λ >= 0 In this last case we have a simple
pole at si = 0.

Now we ”evaluate” the Eisenstein intertwining operator at s = 0, of course
we have to explain what we mean by that. We start from an element

ω ∈ HomK∞(Λp(g/k), Ind
G(R)
B(R)|w0 · λ| |ρ|sv(θ),

we pick a p-tuple of linear independent vectors in g/k and we want to attach a
value to Eis(λ, s)(ω(X1, X2 . . . , Xp)) at s = 0. We look at the individual terms
in the constant term (41). We define the Sw ⊂ {αi, . . . , αi, . . . , αr} to be the
set of those indices i for which αi ∈ ∆+,w and ω(X1, . . . , Xp) ∈ IGB [w, i]. This
guarantees that c(w, λ + s)T loc(w, s) is holomorphic at si = 0. This set does
not depend on the choice of the Xν . Then it is clear that

∏
i,i̸∈Sw

sic(w, λ +

s)T loc(w, s) is regular at s = 0. If S is the union of all Sw then we define the
Eisenstein differential form

ResSs=0 Eis(λ, s)(ωs) = (
∏

|not∈S

si) Eis(λ, s)(ωs)|s=0

This gives us a supply of differential forms and it is not difficult to see that there
is a Harish Chandra module Eis∗(λ, 0) ⊂ C∞(G(Z)\G(R)) of finite length such
that HomK∞(Λ•(g/k), Eis∗(λ, 0)⊗ M̃λ) contains all these differential forms.

Now I assume that the map

H•( HomK∞(Λ•(g/k), Eis∗(λ, 0)⊗ M̃λ)) → H•(Γ\X,M̃λ ⊗ C)(λ) (50)

is surjective, I think that this follows from Frankes theorem.

I think that now we have the tools to compute the differentials in the spectral
sequence. We recall the procedure on p.5 . We can represent the cohomology
classes (See p.5, 23) by Eisenstein cohomology classes as above. Then we can
compute the closed differential forms ωJ in (24) they are zero in cohomology:
Since we know them explicitly we can compute ψ. This can also applied to
higher differentials.

This tells us that any differential dp,qν : Ep,q
ν ⊗ C → Ep−ν+1,q+ν

ν ⊗ C can be
given by a matrix

C(λ) =

c1,1 c1,t
ca,b

cu,1 cu,t

 (51)

and the coefficients ca,b are linear combinations with rational coefficients of
”transcendental” numbers of the form c(w, λ, 0).

10



Since this matrix is equivalent to a matrix given by a linear map between two
rational vector spaces this implies certain relations between these transcendental
quantities. Since these quantities are monomials in values of the Riemann ζ
function at strictly positive integer arguments (ζ(1) = 1) we get some relations
amoung these numbers. But I think that people believe that all such relations
follow from ζ(2a) · ζ(2b) = u · ζ(2(a + b)), u ∈ Q and that there are no non
tautological relations involving ζ values at odd positive integers.

Nevertheless it is an interesting question to compute the last column Er−1,•
∞

in the spectral sequence. We get an ascending chain of subspaces

0 ⊂ d(Er−3,•−1
2 ) ⊂ d(Er−4,•−2

3 ) ⊂ · · · ⊂ d(E0,•−r+2
r−1 ) ⊂ Er−1,•

2 =
⊕

w∈S[λ]

Qew.

(52)

The quotient embeds Er−1,•
2 /d(E0,•−r+2

r−1 ) = Er−1,•
∞ ⊂ H•+r−1(∂(Γ\X),M̃). If

d = dim(X) is then dimension of X then d−1 is the dimension of the boundary
∂(Γ\X) and Poincare duality provides a non degenerate pairing (we assume
w0 · λ|T (Z) = 1)

H•+r−1(∂(Γ\X),M̃)×Hd−r−•((∂(Γ\X),M̃∨) → Q (53)

We get a diagram

Hq+r−1(∂(Γ\X),M̃) × Hd−r−q((∂(Γ\X),M̃∨) → Q
∪ ↓

Er−1,qt
∞ E0,d−r−q

∞
↑ uq ∩⊕

w:l(w)=q Qew ×
⊕

w:l(w′)=d−r−q Qew′ → Q

(54)

and the pairing in the bottom line is the obvious one. It seems to be desirable
to have a computer program which computes all these modules, it is a Weyl
group issue but we also have to compute the local operators T (w, θ, 0) for this
I refer to my Mumbai paper 2008 where I did this for Sl.3.

We consider the Eisenstein cohomology classes in 50 and restrict them to
the boundary., we intersect this restriction with Er−1,q

∞ in the left column 54 ,
call this intersection X(q), and project it to E0,d−r−q

∞ and call this projection
Y (q)..

Now we want to prove that X(q) and Y (q) are mutual orthogonal complements
of each other.

Examples: If λ is regular then the only interesting value for q is q = 0,in
this case X(0) = 0, Y (0). = Qew0

.
If λ = 0 the situation is more interesting, In this case we the value q = d− r

is of interest and it is not difficult to show that Y (q) = Qe1 and X(q) = 0.
But we also have to take the values w ∈ S[0] into account. Already in this
case it still has to be verified that (30) is the correct E3 page but we ve not yet
computed-only speculated- the modules X(5), , Y (3). Exactly one of them should
be zero, the other one Q.

Final remark. It is certainly justified to call the cohomology groupsH•(Γ\X,M̃λ)[λ]
the ”abelian” part of the Eisenstein cohomology..
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We can also consider quasisplit groups over Q. If F/Q ist an imaginary
quadratic extension then G = RF/Q(G0/F ) where G0/F is split, is such a
group.. But we may also start from a totally isotropic hermitian form f on a
vector space V/F and consider the group G/Q = SU(f).. Let B/Q, T/Q be a
Borel and a maximal torus such that B ×Q F, T ×Q F are the standard Borel
and its maximal torus. If πF = {αF

1 , . . . , α
F
i , . . . , α

F
r1} ⊂ X∗(T ×Q F ) is the set

of simple roots over F then π = πF /σ is the system of simple roots in X∗(T )..
Hence a simple root is either

1) a simple root αi = αF
i if σ(αF

i ) = αF
i ,

2) or a pair {αF
ν , σ(α

F
ν )}

To any αi we have the little semi-simple H
(1)
αi which is a Sl2/Q in the first

case, in the second case it depends on whether αF
ν + σ(αF

ν ) is a root or not. In
the case

2a ) Hαi
is the quasisplit SU(2, 1)

in the case

2b ) Hαi = RF/Q(Sl2).

These H
(1)
αi are the semi simple parts of the reductive quotients of the next

to minimal parabolic subgroups (called P (i)). The symmetric space attached

to H
(1)
αi is either the upper half plane, the three dimensional hyperbolic space

or the two dimensional complex ball. The resulting locally symmetric space is

denoted by SH(1)
αi . The maximal torus Tαi

⊂ H
(1)
αi is isomorphic to Gm/Q in the

first case, to RF/Q(Gm) in the second and third case. The simple roots α, ᾱ are
t→ t2, t → t̄2 in the first case and t→ t2/t̄, t→ t̄2/t in the second case.

In my inventiones, Math. Annalen 1984-87 papers I give a description of the
Eisenstein restriction map

Hq(SH(1)
αi ,M̃λ ⊗ F̃ )

r∂−→ Hq∂(SH(1)
αi ),M̃λ ⊗ F̃ )) =

⊕
w∈W :l(w)=q

⊕
ϕ:type(ϕ)=w·λ

F̃ eϕ

(55)

Here F̃ is finite extension of F which is generated by the values of the values of
ϕ on T (Af ).

If H
(1)
αi is a Sl2/Q we described the image in the first part of this note. In

this case W is the group Z/2Z = {e, s1} and if λ ̸= 0 the image is

r∂(H
•(SH(1)

αi ,M̃λ ⊗ F̃ )) =
⊕

ϕ:type(ϕ)=s1·λ

F̃ eϕ, (56)

the image is exactly the cohomology in degree 1.
If λ = 0 then the image is slightly different, then we have to special Hecke

characters namely the trivial Hecke character 1 which is of type 0 and |α1| which
is of type α1 = 2ρ. Now

r∂(H
•(SH(1)

αi ,M̃0 ⊗ F̃ )) = F̃ e1 ⊕
⊕

ϕ:type(ϕ)=s1·λ,ϕ ̸=|α1|

F̃ eϕ, (57)

hence one summand is missing in degree one and it is replaced by a term in
degree 0. (We have seen this already in the first section of this note)
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If H
(1)
αi = RF/Q(Sl2/F ) then the situation is a little bit different. We restrict

r∂ to the cohomology in even degrees, then the answer is completely analogous
to the previous case. For • ≡ 0 mod 2 and w0 = s1s2

r∂(H
•(SH(1)

αi ,M̃0 ⊗ F̃ )) = F̃ e1 ⊕
⊕

ϕ:type(ϕ)=w0·λ,ϕ̸=|α1||α2|

F̃ eϕ, (58)

In odd degree, i.e. • = 1 we have two elements of length one in the Weyl
group, namely s1 and s2 and we have to look at

H1(SH(1)
αi ,M̃0 ⊗ F̃ ))

r∂−→
⊕

ϕ:type(ϕ)=s1·λ

F̃ eϕ ⊕
⊕

ϕ′:type(ϕ′)=s2·λ

F̃ eϕ′ (59)

Now the theory of Eisenstein series tells us that the ϕ, ϕ′ come in pairs, i.e.
to each ϕ we have a unique ϕ′ such that

r∂(H
1(SH(1)

αi ,M̃0 ⊗ F̃ )) =
⊕

ϕ:type(ϕ)=s1·λ

F̃ (eϕ + L(ϕ)eϕ′) (60)

Here L(ϕ) ∈ F̃ is a ratio of L-values, it can be zero and also ∞.

It remains the case that H
(1)
αi is the quasisplit SU(2, 1). In this case the Weyl

group W = S3, it is generated by the two reflections s1, s2. We divide the W
into three sets of two elements

V0 = {e, s1s2s1}, V1 = {s1, s2s1}, V2 = {s2, s1s2} (61)

and then (55) becomes

H•(SH(1)
αi ,M̃λ ⊗ F̃ )

r∂−→
3⊕

i=1

⊕
wi∈Vi

⊕
ϕ:type(ϕ)=wi·λ

F̃ eϕ (62)

Now we rearrange the terms on the right hand side, we write Vi = {wl
i, w

s
i } where

l(wl
i) > l(ws

i )− Then it is again clear that the ϕ with type(ϕ) = wl
i and type(ϕ

′) =
ws

i come in pairs and we can rewrite the previous diagram

H•(SH(1)
αi ,M̃λ ⊗ F̃ )

r∂−→
3⊕

i=1

⊕
ϕ:type(ϕ)=wl

i·λ

(F̃ eϕ ⊕ F̃ eϕ′) (63)

Now it follows from the computations in the Annalen paper that the restric-
tion map r∂ respects this directs sum and hence we have to understand the
projection

H•(SH(1)
αi ,M̃λ ⊗ F̃ )

pϕ◦r∂−→ F̃ eϕ ⊕ F̃ eϕ′ (64)

Now we know

The image of pϕ◦r∂ is the summand F̃ eϕ unless we are in one of the following
cases

a) We have λ = 0 and ϕ = | |F
b) We have w = s1s2( resp. w = s2s1) and λ = n1γ1( resp.λ = n2γ2.)
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Moreover we have: The restriction of ϕ to IQ is equal to χF/Q| |3Q. (of course
χF/Q is the Dirichlet character attached to F/Q) and L(ϕ,−1) ̸= 0.

If these conditions are fulfilled the image of pϕ ◦ r∂ is the second summand

F̃ eϕ′ .
Here a minor point has to be clarified. The evaluation point s = −1 is

the central point for the L-function L(ϕ, s). But I think that the condition
ϕ|Q = χF/Q| |3Q also forces that this evaluation point is critical.

I think that again we should be able to compute the Er−1,•
2 term in the

spectral sequence. This is the kokernel of the map

r⊕
i=1

⊕
w∈WP (i)

H•−l(w)(SHαi ,M̃w·λ) →
⊕
w∈W

⊕
ϕ:type(ϕ)=w·λ

H0(ST ,M̃w·λ) =
⊕

ϕ:type(ϕ)=w·λ

F̃ eϕ

(65)

We are essentially in the same situation as in the first part. We have to find
an analogue for (18), In principle this is a Weyl group issue, we have to write a
algorithm which produces lists of the elements in W and produces lists of the

Kostant representatives {. . . , w(i), . . . } =WP (i)

. Then our above computations
will help us to describe the images

H•−l(w(i))(SHαi ,M̃w(i)·λ)
rw

(i)

∂−→
⊕

ϕ:type(ϕ)=w·λ

F̃ eϕ. (66)

Here we observe that for a given w(i) this image lies in a ”very small” subspace,
more precisely

Im(rw
(i)

∂ ) ⊂
⊕
v∈Wi

⊕
ϕ:type(ϕ)=vw(i)·λ

F̃ eϕ. (67)

here Wi is the ”small” Weyl group of Hαi .

Now we have to understand the space generated by the Im(rw
(i)

∂ ), I think
that this will become much more complicated than in the split case. There is
of course the combinatorial aspect, we have to understand the intersections of
the sets of summation indices {vw(i)}v∈Wi

and {vw(j)}v∈Wj
. But we also have

understand the influence of the values of the L function, i.e. the value L(ϕ) in
(60) and the influence of the vanishing of L(ϕ, s) at s = −1.

Hence we see that we can compute the Er−1,•
2 and it is clear that this term

depends on whether L(ϕ) ̸= 0,∞ (in (60) and on the vanishing of L(ϕ, s) at
s = −1. Again the next step will be to compute (the image of) the map

dr−3,•
2 : Er−3,•

2 → Er−1,•−1
2 (68)

Finally I want to raise a question which haunts me since many years and
which I formulated in my Luminy paper.

The structure of the (abelian part) of the cohomology groups

H•(Γ\X,M̃)
r∂−→ H•(∂(Γ\X),M̃)
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and the structure of the spectral sequence depend on the vanishing or non van-
ishing of certain L-function at their central point, hence we can read off from
these cohomology groups whether we have vanishing or not.

Can we even read off the order of vanishing if we look deeper into
the spectral sequence or can we see the order of vanishing if we look
at H•(Γ\X,M̃)

r∂−→ H•(∂(Γ\X),M̃) for larger groups?

15


