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1 The basic object, some general and fundamen-
tal facts.

My basic object of interest is the following diagram

−→ Hi−1(
•
N SG,∞Kf

,M̃Z) −→ Hi
c(SGKf ,M̃Z) −→ Hi(SGKf ,M̃Z)

res−→ Hi(
•
N SG,∞Kf

,M̃Z) −→
pc ↘ ↗ q!

Hi
! (SGKf ,M̃Z)

Here G/Z is a split reductive group scheme over Z. We fix a split maximal
torus T/Z and a Borel subgroup B ⊃ T, i.e. a set of simple roots. We choose
an open compact subgroup Kf ⊂ G(Af ), and assume that Kf =

∏
pKp,Kp ⊂

G(Zp). Depending on the choice of Kf a prime is called unramified if Kp =
G(Zp), the set of ramified primes is finite. Let X = G(R)/K∞ be the symmetric
space attached to the real group G(R). Now we can define the associated locally
symmetric space

SGKf = G(Q)\G(A)/K∞ ×Kf = G(Q)\X ×G(Af )/Kf .

We choose a compactification SGKf ↪→ S
G,∨
Kf

and we put SG,∞Kf
= SG,∨Kf

\ SGKf , let

NSG,∞Kf
be a ”tubular” neighborhood of SG,∞Kf

and
•
N SG,∞Kf

= NSG,∞Kf
∩ SGKf

the ”punctured” tubular neighborhood. Let G → Gl(M) be an absolutely
irreducible representation of G/Z ( given by a highest weight λ) let M̃Z the
resulting local system of free Z modules of finite rank.

Now we have all the data necessary to define the cohomology groups above,
here H•c is the cohomology with compact support and H•! the image of the
cohomology with compact support in the cohomology. All these cohomology
modules are finitely generated Z modules, if Z→ R is any ring with identity the
same assertion holds for the corresponding cohomology groups with coefficients
in M̃R = M̃Z ⊗R.

A theorem due to Raghunathan asserts that all these cohomology groups
H•? (?,M̃Z) are finitely generated Z− modules.

We still have more structure on these cohomology groups. LetH(G(Af )//Kf ) =
⊗′H(G(Qp)//Kp) be the Hecke algebra. We can define an action of the Hecke
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algebra

hM : H(G(Af )//Kf )→ End(H•? (?,M̃Z)). (1)

We know that for unramified primes p the local Hecke algebra H(G(Qp)//Kp)
is commutative and generated by the characteristic functions of Kpχi(p)Kp

where χi are the coroots defined by < χi, αj >= δi,j . Let Tp,χ : H•? , (?,M̃Z)→
H•? , (?,M̃Z) be the resulting endomorphism. The sub algebra

H(S) =
⊗
p 6∈S

H(G(Qp)//Kp)

is a central sub-algebra of the Hecke algebra.
Since our modules are finitely generated it is clear that we can find a finite

extension F/Q such that any H•? (?,M̃F ) has a Jordan-Hölder filtration

⊂ JHν+1(H•? (?,M̃F )) ⊂ JHν(H•? (?,M̃F )) ⊂ · · · ⊂ H•? (?,M̃F )

with absolutely irreducible quotients JHν(H•? (?,M̃F ))/JHν+1(H•? (?,M̃F )).

Let us denote by Coh?(?,M̃F ) the set of isomorphism types πf of Hecke-
modules, which occur with multiplicity > 0. Each such isomorphism type is
a product of local Hecke modules πf = ⊗πp.

Finally we define H•? (?,M̃OF )int as the image of H•? (?,M̃OF ) in H•? (?,M̃F ).
Our Jordan-Hölder filtration induces a Jordan-Filtration

JHν(H•? (?,M̃OF ))int = JHν(H•? (?,M̃F )) ∩H•? (?,M̃OF )int

Hence we see that an isomorphism type πf which occurs in the Jordan Hölder

filtration of some H•? (?,M̃F )) gets a natural structure of a OF×Hecke module
structure where the OF module is locally free of finite rank. If we restrict the

module to H(S) then π
(S)
f is simply a homomorphism

π
(S)
f : H(S) → OF .

Of course π
(S)
f = ⊗p 6∈Sπp.

If F/Q is normal then the action of the Galois group Gal(F/Q) on MF

induces an action of the Galois group on H•? (?,M̃F ).

We have a first

Theorem 1.1. The Hecke module H•! (SGKf ,M̃Q) is semi simple we have an
isotypical decomposition

H•! (SGKf ,M̃F ) =
⊕

πf∈Coh!(SGKf ,M̃F )

H•! (SGKf ,M̃F )(πf )

The proof requires some sort of Hodge-theoretic arguments: We have to ex-
tend the coefficients to C. We choose a model space Hπf for our isomorphism
type πf . We have finitely many (up to isomorphism) irreducible unitary (g,K∞)
modules Hπ∞ for which H•(g,K∞, Hπ∞ ⊗MC) 6= 0. Let L2

disc(G(Q)\G(R) ×

2



G(Af )/Kf ) the discrete spectrum in the space of automorphic forms. We in-
troduce the finite dimensional vector space

W
(2)
π∞×πf = Homg,K∞(Hπ∞ ⊗Hπf , L

2
disc(G(Q)\G(R)×G(Af )/Kf )

and then we know

The natural homomorphism⊕
π∞

W
(2)
π∞×πf ⊗H

•(g,K∞, Hπ∞ ⊗MC)⊗Hπf → H•! (SGKf ,M̃C)(πf ) (2)

is surjective.

This is the representation theoretic version of the fact that on a complete
Riemannian manifold with finite volume every square integrable cohomology
class is represented by a harmonic square integrable form. (See [Ha-book],
4.1.4)

1.1 The cohomological L- functions

To any πf ∈ Coh(SGKfM̃F ) and any cocharacter χ : Gm → T we attach the
cohomological L- function

Lcoh(πf , rχ, s) =
∏
p∈§

Lcoh
p (πp, rχ, s)

∏
p 6∈S

1

1− πp(A1(p, λ, χ))p−s + πp(A2(p, λ, χ))p−2s . . .
.

(3)

Here the Ai(p, λ, χ) are certain elements in the Hecke - algebra Hp, so by defi-
nition we have for the local factors at unramified places

Lcoh
p (πf , rχ, s)

−1 ∈ OF [p−s].

Only after choosing an embedding ι : F ↪→ C we can view Lcoh(πf ◦ ι, rχ, s) as
an honest holomorphic-or meromorphic function in the variable s at least if we
assume <(s) >> 0. (See [Ha-book], Chap. III, 3.1.3.)

1.2 The role of automorphic forms

Here the theory of automorphic forms enters the stage. To our Hecke-module
πf ∈ Coh(SGKfM̃F ) and an embedding ι : F ↪→ C we can find π∞ as above
such that Hπ∞ ×Hπf occurs somewhere in the space of automorphic forms, i.
e. π∞ × πf becomes an automorphic representation of the group G(A). Then
Langlands has attached automorphic L -functions Laut(π, rχ, s) to π. These
automorphic L-functions differ from the cohomological L function by a factor
obtained from π∞ and a shift in the variable s.

In some cases the theory of automorphic forms provides tools to prove that
these L -functions have a meromorphic or even holomorphic continuation into
the entire complex plane.

The second important class of results of are multiplicity formulas. More
precisely
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The aim of this note is to show that an understanding of these cohomology
groups and especially an understanding of the restriction map res is a source
for number theoretic results.

a) We get rationality results for special values of L-functions attached to
automorphic forms. Using Eisenstein cohomology we get algebraicity results for
certain expressions

1

Ω(σf )

L(σf , rχ, ν)

L(σf , rχ, ν + 1)
(4)

Here Ω(σf ) is a period which is well defined modulo a group of (S)- units in a
specific number field.

b) Furthermore we can formulate conjectures:
The divisibility of certain expressions of special L values as above by primes

or prime powers implies that certain Eisenstein classes have a denominator
divisible by that prime (power). These conjectures imply certain congruences
modulo that same prime between eigenvalues of Hecke operators on eigenclasses
on different groups and congruence conjectures have been tested in many cases.
In principle it is also possible to check the stronger assertion concerning the
denominator in a given case using a computer.

2 The spectral sequence for the cohomology of
the boundary

We have to deal with the G(Q) conjugacy classes of parabolic subgroups, we
choose the parabolic subgroups containing B/Z as a set of representatives. We
have a spectral sequence which computes the cohomology of the boundary in
terms of the cohomology of reductive groups M which are the Levi-quotients of
parabolic subgroups, i. e. M = P/U . We put d(P ) = dim(CM )− dim(CG) this
is the rank of the center of the semi-simple part M (1) of M.

Then we put

Ep,q1 =
⊕

P :d(P )=p+1

⊕
w∈WP

IGPH
q−l(w)(SMKM

f
, H l(w)(uP ,MQ)) (5)

here WP is the set of Kostant representatives, IGP denotes the induction of Hecke
modules from P to G. Furthermore l(w) is the length of w, the cohomology
Hn(uP ,MQ)) = 0 in all degrees n 6= l(w) and for n = l(w) the M module
H l(w)(uP ,MQ) =M(w · λ) where w · λ = w(λ+ ρ)− ρ.

We get a complex

→ Ep−1,q
1 → Ep,q1 → Ep+1,q

1 → (6)

and the cohomology of this complex yields the next term Ep,q2 in the spectral
sequence which converges to the cohomology of the boundary.

On the E2 level we have differentials dp,q2 : Ep,q2 → Ep+2,q−1
2 and we have

the following fact (Schwermer)
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If the highest weight λ is regular, then the dp,q2 and also the higher differen-
tials are zero, the spectral sequence degenerates at level E2

Our previous considerations also apply to the cohomology groupsHq−l(w)(SM
KM
f
, H l(w)(uP ,MQ))

and we can define the inner cohomology

H
q−l(w)
! (SMKM

f
, H l(w)(uP ,MQ)) ⊂ Hq−l(w)(SMKM

f
, H l(w)(uP ,MQ)) (7)

Of course we have again

H
•−l(w)
! (SMKM

f
, H l(w)(uP ,MQ)) =

⊕
σf∈Coh(SM

KM
f

,M(w·λ))

H
•−l(w)
! (SMKM

f
, H l(w)(uP ,MQ))(σf )

We define

Ep,q!,1 =
⊕

P :d(P )=p+1

⊕
w∈WP

IGPH
q−l(w)
! (SMKM

f
, H l(w)(uP ,MQ))

then it is almost clear from the definition that the differentials dp,q1 : Ep,q!,1 →
Ep+1,q

!,1 vanish. We define Ep,q!,2 as the image of Ep,q!,1 in Ep,q2 and again it is clear

that the differentials dp,q2 : Ep,q!,2 → Ep+2,q−1
2 are zero. This goes on forever. We

say that the elements in Ep,q!,1 are universally closed.
This implies that we get an inclusion⊕
P :d(P )=1

⊕
w∈WP

IGPH
q−l(w)
! (SMKM

f
, H l(w)(uP ,MQ)) ↪→ Hq(

•
N SG,∞Kf

,M̃Q) (8)

3 The Eisenstein cohomology

The Eisenstein cohomology is designed to understand the image of the restric-
tion map res to the cohomology of the boundary, which amounts to understand
the difference between the H! and the cohomology without supports.

In this context we have a general theorem which is a consequence of Poincare
duality. The boundary cohomology is the cohomology of a compact manifold of
dimension d− 1 = dim(SGKf )− 1 and Poincare duality yields a non degenerate
pairing

Hi(
•
N SGKf ,M̃F)×Hd−i−1(

•
N SGKf ,M̃

∨
F )→ F (9)

here F may be any field.

Theorem 3.1. With respect to this pairing the images of res and res∨ are
mutual orthogonal complements of each other.

If we want a more precise information concerning the image, then we need
a better understanding of the above spectral sequence. In this context I want
to formulate a question, which seems to me of great importance

Is it always the case, that the above spectral sequence degenerates
at E2 level, or can it happen that we have non zero differentials dp,qr :
Ep,qr → Ep+r,q−r+1

r for r ≥ 2? Can the number r become large?
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It would be very interesting, if r could become large.

We discuss our issue for the submodule described in equation (8), we want
to describe the image of the restriction map res in⊕

P :d(P )=1

⊕
w∈WP

⊕
σf∈Coh(SM

KM
f

,w·λ)

IGPH
q−l(w)
! (SMKM

f
,Mw·λ,F ))(σf ) (10)

where I recall that Mw·λ = H l(w)(uP ,MQ) is a cohomology group in degree
l(w).

3.1 The Eisenstein summation

We start from a maximal parabolic subgroup P. We extend the scalars to C and
start from a summand

IGPH
q−l(w)
! (SMKM

f
,Mw·λ,C))(σf ) (11)

classes in this summand can be represented by differential forms

ω∞ ⊗ ψf ∈ HomK∞(Λ•(g/k), Ind
G(R)
P (R)Hσ∞ ⊗M)⊗ IGPHσf

which can be viewed as elements in Ω•(P (Q)UP (A)\G(A)/K∞ ×Kf ). We see
that it is only invariant under P (Q) whereas cohomology classes on SGKf should

be invariant under G(Q). Therefore we make an attempt to lift this form by
writing the infinite sum

∑
a∈P (Q)\G(Q)

(ω∞ ⊗ ψf )(ag) (12)

where g ∈ G(A).This sum may be divergent. This problem can be remedied

if we twist our representation by a character, i.e. we consider Ind
G(R)
P (R)Hσ∞ ⊗

IGPHσf )⊗ |γP |z and for <(z) >> 0 the infinite sum

Eis(ω∞ ⊗ ψf , z) =
∑

a∈P (Q)\G(Q)

(ω∞ ⊗ ψf )⊗ |γP |z)a (13)

is absolutely convergent and provides a holomorphic function in z. Then Eis(ω∞⊗
ψf , z) ∈ Ω•(G(Q)\G(A)/K∞ × Kf ) is a differential form. It follows from the
work of Langlands that it extends to a meromorphic function in the entire z−
plane.

Now it is clear

If Eis(ω∞ ⊗ ψf , z) is holomorphic at z = 0 then Eis(ω∞ ⊗ ψf , 0) is a closed
form and hence it represents a cohomology class [Eis(ω∞ ⊗ψf , 0)]. If Eis(ω∞ ⊗
ψf , z) is not holomorphic at z = 0 then we have to analyze what happens.

This gives us a method to construct ”global” cohomology classes starting
from ”local” cohomology classes at infinity. We have to understand the relation
between the class [Eis(ω∞ ⊗ ψf , 0)] and our original class [ω∞ ⊗ ψf ].
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3.2 The constant term

If we want to understand what happens at z = 0 we have to consider the constant
terms along the maximal parabolic subgroups. They are given by integrals

FQ(Eis(ω∞ ⊗ ψf , z))(g) =

∫
UQ(A)

Eis(ω∞ ⊗ ψf , z))(vg)dv (14)

We assume that the representation Hσ∞ ⊗ Hσf is embedded in the cuspidal

spectrum. Furthermore we assume that w · λ = µ(1) + a(w, λ)γP + δ is in the
negative chamber, i.e. a(w, λ) ≤ −fP .

We have two cases

a) The parabolic P is conjugate to its opposite P−. Then the constant term
is ”essentially” of the following form

FP : ω∞ ⊗ ψf ⊗ |γP |z 7→ ω∞ ⊗ ψf ⊗ |γP |z +
L(σ, z)

L(σ, z + 1)
T loc
∞ (ω∞)(z)

⊗
p

T loc
p (ψp)(z)|γP |2fP−z

(15)

b) The conjugacy class of the opposite parabolic subgroup is Q and Q 6= P.
Then we have to compute two constant terms

FP (Eis(ω∞ ⊗ ψf , z))(g) = (ω∞ ⊗ ψf , z))(g);

FQ(Eis(ω∞ ⊗ ψf , z))(g) = L(σ,z)
L(σ,z+1)T

loc
∞ (ω∞)(z)

⊗
p T

loc
p (ψp)(z)|γQ|2fP−z.

(16)

Here T loc
∞ (z) resp.T loc

p (z) are ”local” intertwining operators between Harish-
Chandra modules (resp. ) modules for the Hecke algebra which depend mero-
morphically on z and should be holomorphic for <(z) ≥ 0. Then L(σ, z) is a
certain product of L functions attached to the representation σ = σ∞ × σf .

We know
Under the assumption that σ∞×σf is cuspidal and w·λ in the negative cham-

ber Eis(ω∞⊗ψf , z) is holomorphic at z = 0 if and only if L(σ, z) is holomorphic
at z = 0.

4 The arithmetic applications

4.1 Rationality results for special values of L-functions

We pick a maximal parabolic subgroup P in the following the parabolic subgroup
Q = P if P is conjugate to its opposite, otherwise Q is the parabolic subgroup
containing the Borel and which is conjugate to the opposite of P. We have a
one-to-one correspondence between WP ↔ WQ, w 7→ w′ which satisfies l(w) +
l(w′) = dimUP . We start from an isotypical summand

IGPH
•−l(w)
! (SMKM

f
,Mw·λ,F )(σf )
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in (10), recall that this is a vector space over F. We have a corresponding
isotypical summand

IGQH
•−l(w′)
! (SMKM

f
,Mw′·λ,F )(σ′f ).

Here the • may vary in a certain range where the cohomology is non zero.
We choose an embedding ι : F → C. We assume that our Eisenstein form

Eis(ω∞⊗ψf , z)) is holomorphic at z = 0, hence we can evaluate it. The restric-
tion of this class is of the form

[ω∞]⊗ ψf +
1

Ω(σ)

L(σ, 0)

L(σ, 1)
[T loc
∞ (ω∞)(0)]

⊗
p

T loc
p (ψp)(0) (17)

This needs some explanation.

i) The operator
⊗

p T
loc
p = T loc

f : Hσf → Hσ′
f

and where σ′f is the corre-

sponding isomorphism type, both Hecke modules are defined over F and T loc
f is

also defined over F.

ii) We can put a Q-structure on these modules Hσ∞ , Hσ′
∞

and T loc
∞ is a Q−

linear map

T loc
∞ : HomK∞(Λ•(g/k), Ind

G(R)
P (R)Hσ∞ ⊗M)→ HomK∞(Λ•(g/k), Ind

G(R)
Q(R)Hσ′

∞
⊗M)

(18)

Therefore these operators also induce endomorphisms in cohomology

T loc
∞ : H•( g,K∞, Ind

G(R)
P (R)Hσ∞ ⊗M)→ H•( g,K∞, Ind

G(R)
Q(R)Hσ′

∞
⊗M) (19)

iii) The period Ω(σ) is number which comes from the comparison of two

isomorphisms Hσf

ψalg−→ Hσ′
f

and Hσf ⊗ C ψtrans−→ Hσ′
f
⊗ C.

We consider the commutative diagram

H•( g,K∞, Ind
G(R)
P (R)Hσ∞ ⊗M)⊗Hσf ⊗F,ι C

T loc
∞ ⊗T

loc
f−→ H•( g,K∞, Ind

G(R)
Q(R)Hσ′

∞
⊗M)⊗Hσ′

f
⊗F,ι C

↓ ↓

IGPH
•−l(w)
! (SM

KM
f
,Mw·λ,C)(σf )⊗ C

T loc
∞ ⊗T loc

f−→ IGQH
•−l(w′)
! (SM

KM
f
,Mw·λ,C)(σ′f )⊗ C

(20)

We assume that the kernels of the to vertical arrows are of the formK•⊗Hσ...
where K• ⊂ H•(...) is a rational subspace.

We have to distinguish cases:

a) Of course it can happen that the operator T loc
∞ ⊗ T loc

f = 0 in this case we
get that the restriction of [Eis(ω∞⊗ψf , 0)] to the cohomology of the boundary is

the original class, or in other words restricted to the summand IGPH
q−l(w)
! (SM

KM
f
,Mw·λ,C))(σf )⊗

C the Eisenstein series provide a section to the map res.

b) If the operator T loc
∞ ⊗ T loc

f 6= 0 then we can define a period matrix Ω†(σ)

such that Ω(σ)T loc
∞ ⊗ T loc

f is defined over F.
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If we now can show that the image of res intersected with

IGPH
•−l(w)
! (SMKM

f
,Mw·λ,F )(σf )⊗F,ι C⊕ IGQH

•−l(w′)
! (SMKM

f
,Mw·λ,F )(σ′f )⊗F,ι C

is given by the restrictions of the classes [Eis(ω∞ ⊗ ψf , 0)] then we get a ratio-
nality result for special values of L functions

1

Ω(σ)

L(σ, 0)

L(σ, 1)
∈ F (21)

where the period Ω(σ) is a suitable non zero matrix coefficient of Ω†(σ).

Now we have to sit down and try to realize situations where the condi-
tion b) is verified. This has been done in my paper with A. Raghuram (See
[Ha-Rag]). We observe that there is a little obstacle. The inner cohomology
Hk

! (SM
KM
f
,Mw·λ,F ) is non zero for k moving in a certain interval around the

middle dimension. This implies: If the difference |l(w)− l(w′)| becomes to large

then T loc
∞ ⊗ T loc

f = 0. Therefore our first attempt is to look for balanced pairs
where l(w) = l(w′).

We start from the group Gln/Spec(Z) (or over Spec(OF ) for a totally real
number field F ) Our parabolic subgroups P resp. Q have as reductive quotients
M = Gln1

× Gln2
resp. Gln2

× Gln1
where n1 + n2 = n at least one of the

summands is even.
We consider coefficient systems M = Mλ, we choose balanced Kostant

representatives w,w′ with l(w) = l(w′) We get coefficient systems

w(λ+ ρ)− ρ = µ(1) + a(w, λ)γP + dδ, w′(λ+ ρ)− ρ = µ(′1) + a(w′, λ)γQ + dδ
(22)

where we want to keep the semi simple components µ(1), µ(,′1) fixed. (We could
say that we start from a pair of self dual weights on µ(1), µ(′,1) and then vary
λ or w) Then we have a(w, λ) + a(w′, λ) = −2fP .

The combinatorial lemma says:

If we fix a self dual µ(1) and vary w, λ always requiring l(w) = l(w′) then
the numbers a(w, λ) run over an interval of integers [q(mu(1)), p(µ(1))] which is
determined by the so called cuspidal parameters of µ(1) (it may be empty).

This is a non trivial combinatorial fact, which we conjectured to be true and
was proved by my former student U. Weselmann.

Now we choose any highest weight µ = µ(1) + aγP + dδ for our reductive
group M, our semi simple component µ(1) is fixed, but we allow any a ≡ fP
mod Z. If we have an isotypical summand (!! means strongly inner and this is
equivalent to cuspidal)

H
•−l(w)
!! (SMKM

f
,Mµ,F )(σf )

then we get a string of such summands

H
•−l(w)
!! (SMKM

f
,Mµ+bγP ,F )(σf ⊗ |γP |bf )
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For a minimal degree • = bn1
+ bn2

the multiplicity is one. We have two
isomorphisms

Ψalg : H
•−l(w)
!! (SMKM

f
,Mµ,F )(σf )

∼−→ H
•−l(w)
!! (SMKM

f
,Mµ+γP ,F )(σf ⊗ |γP |)

(23)

Ψtrans : H
•−l(w)
!! (SMKM

f
,Mµ,F )(σf )⊗ C ∼−→ H

•−l(w)
!! (SMKM

f
,Mµ+γP ,F )(σf ⊗ |γP |)⊗ C

(24)

The first isomorphism is unique up to an element in F× ( if we argue a little
bit more carefully up to an element in O×F ), the second one is explicitly given
and hence unique. The comparison between these two gives a period Ω(σf ) we
have Ω(σf ⊗ |γP |f ) = Ω(σf ⊗ |γP |f )−1.

To our σf we attached a cohomological L function

Lcoh(σ,Ad, s) = Lcoh(σf ⊗ |γP |bf ,Ad, s) (25)

in other words it is invariant under twisting. If we keep in mind that by the
Künneth-theorem our σf = σ1,f ×σ2,f , this is a Rankin-Selberg L -function but
with a shift in the variable s. Then our principle above yields:

For m ∈ [q(mu(1)), p(µ(1))− 1]

Ω(σf )ε(b)
Lcoh(σf ⊗ |γP |bf ,Ad,m)

Lcoh(σf ⊗ |γP |bf ,Ad,m+ 1)
∈ ι(E) (26)

This interval of integers covers exactly the set of integers m for which m and m+
1 are critical arguments in the sense of Deligne’s conjecture, provided we believe
that there is a motive M(σ1,f )×M(σ2,f ). We know the Hodge numbers of this
motive - after Serre they can be computed from the Γ factors in the functional
equation for Lcoh(σf ⊗ |γP |bf ,Ad, s)- these Hodge numbers provide an interval
of critical arguments.

In a certain sense our result is weaker than the Deligne conjecture, but not
too much. The Deligne conjecture predicts rationality for

Ω±(σf )ε(b)Lcoh(σf ⊗ |γP |bf ,Ad,m) ∈ ι(E), (27)

where Ω±(σf ) are two periods attached to the motive M(σ1,f )×M(σ2,f ), to
define them we need algebraic geometry. But since we do not have this motive
we may forget these periods. We look at the extremal critical argument m0 and
put Ω+(σf ) = Lcoh(σf ⊗ |γP |bf ,Ad,m0) and then Ω−(σf ) = Ω(σf ). With this
choice of the period the above result implies Deligne’s conjecture for the given
L-functions.

Our result has another agreeable aspect. Our period comes from topology
and not from algebraic geometry. Since we have integral structures on the
cohomology we may choose our isomorphism Ψalg to be an isomorphism of the
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integral structure, at least locally in Spec(OF ). In other words if p is a prime,
then we find a Zariski open neighborhood Up such that we can choose

Ψalg,Up
: H
•−l(w)
!! (SMKM

f
,Mµ,OF (Up))(σf )

∼−→ H
•−l(w)
!! (SMKM

f
,Mµ+γP ,OF (Up))(σf ⊗ |γP |)

(28)

Then this pins down a period ΩUp
(σf ) up to a unit in OF (Up)×. This means

that we get a Zariski sheaf of periods, the ratio

ΩUp
(σf )

ΩUq
(σf )

∈ OF (Up ∩ Uq)× (29)

This makes it possible to speak of the factorization of the numbers

Ω(σf )ε(b)
Lcoh(σf ⊗ |γP |bf ,Ad,m)

Lcoh(σf ⊗ |γP |bf ,Ad,m+ 1)
(30)

into prime ideals.

4.2 The denominators of Eisenstein classes

This plays a role in the formulation of the conjectures about denominators of
Eisenstein classes and congruences between eigenvalues of Hecke operators. For

certain other groups expressions of the form (30) occur as factors in 1
Ω(σ)

L(σ,0)
L(σ,1)

in our formula (17) in other words the constant term is of the form

[ω∞]⊗ ψf + Ω(σf )ε(b)
Lcoh(σf ⊗ |γP |bf ,Ad,m)

Lcoh(σf ⊗ |γP |bf ,Ad,m+ 1)

Lmot(2m)

Lmot(2m+ 1)
[T loc
∞ (ω∞)(0)]⊗p T loc

f (ψf )(0)

(31)

where the first ratio is still a ratio of two critical values and the second ratio
of L− values can be interpreted as extension class in an Ext1 of Betti-de-Rham
structures. This happens for instance if our group is GSp2,GSp3, .., U(n,m), ....

Then we will be in the case a) and we also should know (Manin-Drinfeld
principle) that the section, which is provided by the Eisenstein classes, is defined
over F. Then

[Eis(ω∞ ⊗ ψf , 0)] ∈ H•(SGKf ,M̃F ) and res([Eis(ω∞ ⊗ ψf , 0)]) ∈ IGPH
•−l(w)
!! (SMKM

f
,Mµ,OF (Up))(σf )

(32)

Let $p be a uniformizer at p, we may ask for the denominator of the Eisen-
stein class, this is the smallest integer ∆p(σ) ≥ 0 such that

$
∆p(σ)
p [Eis(ω∞ ⊗ ψf , 0)] ∈ H•st(SGKf ,M̃OF,p) (33)

where H•st is the image of H•(SGKf ,M̃OF ) in H•(SGKf ,M̃F ), and OF,p is the

local ring at p (not completed). Then we ask the question:

11



Is the denominator $
∆p(σ)
p equal to the power of $p in the denom-

inator of

Ω(σf )ε(b)
Lcoh(σf ⊗ |γP |bf ,Ad,m)

Lcoh(σf ⊗ |γP |bf ,Ad,m+ 1)
?

In this generality we are asking to much, we should make some further
assumption. In earlier expositions I required p ”large” which is not such a
reasonable assumption, perhaps it is is better to assume that σ is p ordinary, or
does not divide some other L values...

Let us assume for simplicity that σf is unramified everywhere andH
q−l(w)
!! (SM

KM
f
,Mµ,OF (Up))(σf )

is of rank one over OF (Up) (multiplicity one). Let us also assume that

Hq(SGKf ,M̃OF,p), Hq+1(SGKf ,M̃OF,p)

are torsion free so that

Hq(SGKf ,M̃OF,p)⊗OF,p/($
∆p(σ)
p ) = Hq(SGKf ,M̃OF,p ⊗ (OF,p/($

∆p(σ)
p ))

(34)

If we choose an ordering of the πf in our Theorem 1 and this induces a filtration

0 ⊂ F 1(Hq
! (SGKf ,M̃OF,p) st) ⊂ F 2(Hq

! (SGKfM̃OF,p) st) ⊂ · · · ⊂ F t(Hq
! (SGKf ,M̃OF,p) st)

(35)

such that the successive quotient are free and

F j(Hq
! (SGKf ,M̃OF,p) st)/F

j−1(Hq
! (SGKf ,M̃OF,p) st)⊗ F = H•! (SGKf ,M̃F )(πj,f )

(36)

Then we get an induced filtration if we reduce modulo $
∆p(σ)
p :

0 ⊂ F 1(Hq
! (SGKf ,M̃OF,p/$∆p(σ)

p

)) ⊂ F 2(Hq
! (SGKf ,M̃OF,p/$∆p(σ)

p

)) ⊂ · · · ⊂ F t(Hq
! (SGKf ,M̃OF,p/$∆p(σ)

p

))

(37)

If now $
∆p(σ)
p is the denominator of the Eisenstein class then we get a Hecke

equivariant injection

H
q−l(w)
!! (SMKM

f
,Mµ,OF (Up))(σf )⊗ (OF,p/($

∆p(σ)
p )) ↪→ Hq

! (SGKf ,M̃OF,p/$∆p(σ)
p

)

(38)

Now we look howH
q−l(w)
!! (SM

KM
f
,Mµ,OF (Up))(σf )⊗OF,p/($

∆p(σ)
p ))

∼−→ (OF,p/($
∆p(σ)
p )

sits as submodule in the filtration. We take the intersections (OF,p/($
∆p(σ)
p ) ∩

F j(Hq
! (SGKf ,M̃OF,p)) = ($p)ejOF,p/($

∆p(σ)
p )). Here ej ≥ ej+1, et = 0, e0 =

∆p(σ). Then we get congruences between the eigenvalues of Hecke operators

πj,f (T`,χ) ≡ σf (T`,χ) mod $
ei−ei+1
p (39)

If our locally symmetric space SGKf is a Shimura variety defined over Q then

we may consider the etale cohomology groups H•et(SGKf × Q̄,M̃ÔF,p , on these
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groups we have the action of the Galois group and the above filtration induces
a Galois invariant filtration on these cohomology groups. Hence we get a Galois
actions on

F j(Hq
! (SGKf ,M̃ÔF,p)/F j−1(Hq

! (SGKf ,M̃ÔF,p)) = H(πj,f ). (40)

We also have a Galois action on H
q−l(w)
!! (SM

KM
f
,Mµ,OF (Up))(σf )⊗ÔF,p and hence

a Galois action on the quotient (OF,p/($
∆p(σ)
p ). This gives us injections

$
ej−ej+1
p OF,p/$

∆p(σ)
p ↪→ H(πj,f )⊗OF /$

∆p(σ)
p (41)

Hence we see that our conjecture about denominators imply congruences
and reducibility of certain Galois-modules mod $p.

4.3 Experimental aspects

The congruences have been checked in many examples for a certain range of
values `, but this does not imply the conjectures about denominators. The
denominator conjecture is stronger.

On the other hand the conjecture on denominators can be checked -with a
little bit of luck- in a given case. We only need a program which computes the
modules and the arrows in the diagram

0→ Hq
! (SGKf ,M̃Z)→ Hq(SGKf ,M̃Z)→ Hi(

•
N SG,∞Kf

,M̃Z)→

This is a purely combinatorial problem, such a program certainly exists in prin-
ciple and in simple cases it should work in practice.

The next - and much more difficult problem - is to write a program that
computes the action of Hecke operators T`,χ for some small `, possibly only for
` = 2.

Assume we find a submodule Zeσf ⊂ Hi(
•
N SG,∞Kf

,M̃Z) with the following
properties

a) It is a direct summand, it is in the image of res.

b)It is an eigenspace for the T`,χ, i.e. we have T`,χeσf = σf (T`,χ)eσf (Such
an eσf can be given by an elliptic modular form f)

c) There exists an ` such that the operator ∂(T`,χ, σf ) = T`,χ − σf (T`,χ)Id

is injective on Hq
! (SGKf ,M̃Z)/Torsion (Manin-Drinfeld).

We introduce the notationH•int for the image ofHq
? (SGKf ,M̃Z) inHq

? (SGKf ,M̃Q).

Furthermore let Hq(SGKf ,M̃Z)(σf ) be inverse image of Zeσf under res. This
means that we get an exact sequence

0→ Hq
! (SGKf ,M̃Z)→ Hq(SGKf ,M̃Z)(σf )→ Zeσf → 0 (42)

and this gives the exact sequence

0→ Hq
! (SGKf ,M̃Z)int → Hq(SGKf ,M̃Z)(σf )int → Zeσf → 0 (43)

13



Choosing a suitable ` we get from c) a splitting

Hq(SGKf ,M̃Q)(σf ) = Hq
! (SGKf ,M̃Q)⊕Qẽσf (44)

and hence we get a splitting up to isogeny

Hq(SGKf ,M̃Z)int(σf ) ⊃ Hq
! (SGKf ,M̃Z)int ⊕ Zẽ′σf (45)

Then we have res(ẽ′σf ) = ∆(σ)eσf and

Hq(SGKf ,M̃Z)int(σf )/(Hq
! (SGKf ,M̃Z)int ⊕ Zẽ′σf )

∼−→ Z/∆(σ)Z (46)

This means:
A single Hecke operator T`,χ satisfying c) detects the denominator of the

Eisenstein class.
The denominator implies the congruences for all T`,χ, the programs which

check the congruences cover only a finite number of `. But even in the smallest
case which is discussed in [Ha-Cong] where σf is the modular cusp form of
weight 22 and ∆ = 41 this computation of the action of the cohomology and
the action of a Hecke operator has not yet been carried out. It seems to be
incredibly difficult. (The congruence has been verified by different methods by
Chenevier-Lannes.)

4.3.1 A still stronger ”conjecture”

We stick to notations in the previous section. Let us pick an element ẽσf ∈
Hq(SGKf ,M̃Z)int which is a preimage of eσf , i.e. res(ẽσf ) = eσf . Then for all
`, χ we have

(T`,χ − σf (T`,χ)Id)(ẽσf ) ∈ Hq
! (SGKf ,M̃Z)int (47)

and clearly this induces a Hecke equivariant homomorphism

∂(T`,χ, σf ) : Zeσf /∆(σf )→ Hq
! (SGKf ,M̃Z)int/∂(T`,χ, σf )Hq

! (SGKf ,M̃Z)int (48)

We can ask

Can we find a prime ` such that ∂(T`,χ, σf ) is injective?

This is the kind of question where it is very likely that the answer is ”YES.”
But finding a proof seems to be difficult or may be even impossible. It is
connected via the congruence relations to Galois representations and the the
Tschebotareff density suggests the the ` for which this is the case have positive
density. But our question may be in the range of experimental verification.

In my book [Ha-book], Chapter2, I discuss the cohomology of the group
Γ = Sl2(Z) with coefficients inMn, this is of course the module of homogenous
polynomials of degree n in two variables. For this case I give a complete de-
scription of the cohomology groups and the arrows in 1.2.7 (modulo the exercise
at the end) (The notion of orbiconvex covering has to be revised, it works only
if the symmetric space is of rank one). So the first part is easy in this special
situation. What I do not do is to compute Hecke operators, but this should
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be possible in this case. (See the Final remark in chap2, 1.2.7 ) (See also the
dissertation of X. Wang ” Die Eisensteinklasse in H1(Sl2(Z),Mn,Z) und die
Arithmetik spezieller Werte von L Funktionen., 1989 Bonner Mathematische
Schriften 202)
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