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1 Introduction

In this note we study a special case of a problem that can be formulated in
a much more general context. We consider induced Harish-Chandra modules
IndGPDχµ which have non trivial cohomology with coefficients in a finite dimen-
sional highest weight module Mλ. This cohomology is the cohomology of a
complex HomK∞(Λ•(g/k), IndGPDχµ ⊗Mλ,F ) and it can be computed by a the-
orem of Delorme. The theory of these induced modules provides intertwining
operators Tχ : IndGPDχµ → IndGPDχµ′ . These intertwining operators may have a
non trivial kernel Dχ (sometimes this will be a discrete series representation).
Then we may have a non trivial kernel of the linear map

Hq(g,K∞,Dχ ⊗Mλ)→ Hq(g,K∞, IndGPDχµ ⊗Mλ)

Under certain conditions we find a natural element ω ∈ HomK∞(Λq(g/k),Dχ ⊗
Mλ) representing a given cohomology class ξ = [ω] in the kernel. Then we find
a form ψ ∈ HomK∞(Λq(g/k), IndGPDχµ ⊗Mλ) which bounds ω, i.e. dψ = ω.
The intertwining operator induces a homomorphism T • between the complexes
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and hence we get d(T q−1(ψ)) = T q(ω) = 0. Hence we get a closed form and
therefore a cohomology class

κT (ξ) = [T q−1(ψ)] ∈ Hq−1(g,K∞, IndGPDχµ′ ⊗Mλ)

The problem is to compute this class.
We will solve this problem in a special case. This will allow us to give an

explicit formula for the constant c which appears in the formula on p. 258 in
[1-2-3].

2 The example G = Sp2/Z
2.1 Some notations and structural data
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α2

α1 γ2γ1

The maximal torus is

T0/Z = t =
{

t1 0 0 0
0 t2 0 0
0 0 t−12 0
0 0 0 t−11

}

the simple roots are

α1(t) = t1/t2, α2(t) = t22

and the fundamental dominant weights are

γ1(t) = t1, γ2(t) = t1t2

and finally we have
2γM1 = t1/t2

The torus T0/Z contains the subtorus

Z0/Z =


z 0 0 0
0 z 0 0
0 0 z−1 0
0 0 0 z−1

 ,
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the centralizer M of Z0 is a Levi subgroup of the standard maximal Siegel
parabolic subgroup P/Z, let U0/Z be its unipotent radical. The roots in this

unipotent radical are {α2, α1+α2, 2α1+α2}. The torus T0 has the subtorus T
(1)
0

where the entries satisfy t1t2 = 1 The character module X∗(T
(1)
0 ) is generated

by γM1 (t) = t1 the character 2γM1 extends to a character on T0 and we have

2γM1 (t) = t1/t2

and this character is trivial on Z0.

In the semi simple part of M we have a maximal torus

T1/Q =


a b 0 0
−b a 0 0
0 0 a −b
0 0 b a

 , a2 + b2 = 1.

The torus T̃1 = T1 ·Z0 is a maximal torus in Sp2/Q. This torus is not split over
Q, it splits over the quadratic extension F = Q(i). It acts by the adjoint action
on the Lie algebra u0 = Lie(U0). The sub torus Z0/Q acts by the character
z2 = γ2|Z0. Under the action of T1/Q the module u0 ⊗ F decomposes into
weight eigenspaces

u0 ⊗ F = F E+ ⊕ F E0 ⊕ F E−

where

Ad(t)E+ = (a+ bi)2E+,Ad(t)E0 = E0, Ad(t)E− = (a− bi)2E−, .

For the basis of the eigenspaces we choose the specific elements

E+ =


0 0 1 −i
0 0 i 1
0 0 0 0
0 0 0 0

 , E0 =


0 0 0 i
0 0 i 0
0 0 0 0
0 0 0 0

 , E− =


0 0 1 i
0 0 −i 1
0 0 0 0
0 0 0 0


We also have the subgroup K/Q, up to isogeny this is K(1)/Q times Zc/Q where

K(1) =


a b c d
−b a −d c
−c d a −b
−d −c b a

 , a2 + b2 + c2 + d2 = 1

and

Zc =


x 0 0 y
0 x y 0
0 −y x 0
−y 0 0 x

 , x2 + y2 = 1

Then K/Q is a reductive subgroup, which over F = Q(i) is conjugate to
M/F. The group K(R) = K∞ is a maximal compact subgroup in G(R).

We introduce the group KM it is the intersection
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KM = M ∩K ⊃ T1(R).

We have the element

ε =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ∈ K∞
and

KM = T1 o {ε}.

So we have three maximal tori: The standard split maximal torus T0 =

T
(1)
0 · Z0 the above torus T̃1 = T1 · Z0 and the torus Tc = T1 · Zc. If we base

change to F they become conjugate and we we identify the character modules.
To be more precise we choose one of the two possible identifications

X∗(T1 × F )
∼−→ X∗(T

(1)
0 )

and using this identification we define γ̃M1 . (We choose the identification such
that γ̃M1 (t) = (a+ bi).

By the same token we get an identification X∗(Zc × F )
∼−→ X∗(Z0) it

sends γ̃2 to γ2. We normalize the identification such that for z ∈ Zc we get
γ̃2(z) = (x+ iy)2. Since all three tori are written as products of one dimensional
tori, we get an identification of the character modules of these tori.

Let g, k, kM = t1 be the Lie-algebras. Then we have the isomorphism

g/k = m/kM ⊕ u0.

The direct sum on the right hand side has a distinguished basis if we tensorize
by F

m/kM ⊗ F ⊕ u0 ⊗ F = FP+ ⊕ FP− ⊕ FH0 ⊕ FE+ ⊕ FE0 ⊕ FE−

where

P+ =


1 i 0 0
i −1 0 0
0 0 1 −i
0 0 −i −1

 , P− =


1 −i 0 0
−i −1 0 0
0 0 1 i
0 0 i −1

 , H0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


Both summands are modules under the adjoint action of M and all sum-

mands are eigenspaces under the action of T1 :

Ad(t)P+ = (a+ bi)2P+, Ad(t)P− = (a− bi)2P−,Ad(t)H0 = H0

The Lie algebra of Z0/Q is QH0, the center Z0 acts on u0 by the character
Ad(z)V = z2V. From this we get certain Lie brackets which will play a role.
The E-s commute, we get

[H0, V ] = 2V, [P+, E0] = −2E+, [P−, E0] = 2E−.
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We choose a highest weight λ = n1γ1 + n2γ2 we assume n1 > 0 and even.
Let Mλ be a corresponding highest weight module. It is a free Z module with
an action of the group scheme G/Z. Under the action of T0/Z it decomposes
into weight spaces

Mλ =
⊕
µ

Mλ,µ

and Mλ,λ = Zeλ is a highest weight submodule.
We get the following list of Kostant representatives for the Siegel parabolic

subgroup P they provide the following list of weights.

1λ = λ = 1
2 (2n2 + n1)γ2 + n1γ

M1
1

s2λ = 1
2n1γ2 + (2n2 + n1)γM1

1

s2s1λ = − 1
2n1γ2 + (2n2 + n1)γM1

1

s2s1s2λ = 1
2 (−2n2 − n1)γ2 + n1γ

M1
1 ,

We consider the rectangle spanned by the four weights

s2λ = 1
2n1γ2 + (2n2 + n1)γM1

s1s2λ = 1
2n1γ2 − (2n2 + n1)γM1

s2s1λ = − 1
2n1γ2 + (2n2 + n1)γM1

s1s2s1λ = − 1
2n1γ2 − (2n2 + n1)γM1

Here the characters are characters on the torus T0. We get a corresponding
list of weights for the other two tori if we place a tilda on γ2 or γM1 . We introduce
numbers

m =
1

2
n1, l = 2n2 + n1, k = 4 + l.

Some facts:
The centralizer of T1 is reductive a split group, its semi simple part M ′1 is

isomorphic to Sl2/Q, the torus Z0 ⊂M ′1 is a maximal torus. We have

m′1 ⊗ F = FH0 ⊕ FE0 ⊕ FE∗0 .

where E∗0 = Ad(s1s2s1)(E0). We see that for any weight µ = aγ̃M1 + bγ2
occurring in the set of weights in Mλ we always have |a| ≤ l. On the extremal
line joining mγ2 + lγ̃M1 and −mγ2 + lγ̃M1 we have the weights νγ2 + lγ̃M1 . These
are weights occurring in an irreducible M ′1 module N+

N+ = ⊕Felγ̃M+νγ2 .

(The choice of the generators will be discussed later, in any case they can be
fixed up to a unit in Z[i] The same procedure allows us to define
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N− = ⊕Fe−lγ̃M+νγ2

The modules N± ⊂ Mλ,F are also modules under the action of Zc. Hence
we get a second decomposition

N± = ⊕F e±lγ̃M1
1 +νγ̃2

For any −m ≤ ν ≤ m the vector e
lγ̃
M1
1 +νγ̃2

is the highest weight vectors of

an irreducible K module MK

lγ
M1
1 +νγ̃2

=MK(ν). We put MK

lγ
M1
1

= ⊕MK(ν)

Another element of importance is

c∞ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ∈ GSp2(Q).

Since we assumed that n1 is even, our representation Mλ can be viewed as a
GSp2-module and where the centre acts trivially. Hence the action of c∞ on
Mλ is the same as the action of

c′∞ =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 ∈ Sp2(F )

2.2 The induced Harish-Chandra modules

We consider the standard Borel subgroup B ⊂ M the standard split torus
T0 ⊂ B it contains our torus Z0. We consider a character (s is a complex
variable)

χ = (k, s) : B(R)→ C×, χ(t) = γM1 (t)k|γ2|s

We define the induced Harish-Chandra module I
M(R)
B(R) χ : We consider the

functions

f : M(R)→ C; f(bg) = χ(b)f(g); f |T1 is of finite type .

This is in fact a g,KM
∞ -module. The module contains the discrete representation

Dχµ . We have the decomposition

Dχµ =
⊕

ν≡0(2),|ν|≥k

Fφχ,ν

where

φχ,ν(g) = φχ,ν(b

(
cos(φ) sin(φ)
− sin(φ) cos(φ

)
) = χ(b)e2πmiφ.

Of course KM,0
∞ = T1(R) = {e(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ

)
} and we can write

e(φ)m = e2πmiφ.
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We can define the induced module IndGPDχµ , it is again a Harish-Chandra

module. We have a decomposition of IndGPDχµ into K∞ types. We put Vk =

{
∑
aνv

ν
+v

k−ν
− } on this module we have the standard action ofK

(1)
∞ = SU(2). For

integer m we have the action of Zc on the module given by scalar multiplication
by (x+ iy)m. For k ≡ m mod 2 this gives us an explicitly constructed module
Vk,m with an irreducible action of K∞. We have a positive definite hermitian
scalar product which is invariant and normalized by

< vk+, v
k
+ >= 1

The lowest K
(1)
∞ type in IndGPDχµ is kγM1 , i.e. it is the module Vk. It occurs

with multiplicity infinity. On this lowest K
(1)
∞ -type we have the action of Zc.

Under this action the lowest K
(1)
∞ type decomposes into

IndGPDlow
χµ =

⊕
m≡(2)

IndGPDχµ(Vk,m)

We will construct an explicit isomorphism

ik,ν : Vk,ν
∼−→ IndGPDχµ(Vk,ν)

Now we define the characters χ = (k,m+ 2) and χ′ = (k,−m+ 1). We have a
non trivial intertwining operator

T (χ, χ′) : IndGPDχµ → IndGPDχµ′ (1)

which is unique up to a scalar. The kernel of this this operator is a discrete
series representation Dχ whose lowest K∞ type is (k,m + 1). At this moment
we normalize T (χ, χ′) such that it is the identity on the K∞-type Vk,0.

We have

HomK∞(Λ3(g/k),Dχ ⊗Mλ) = FΩ2,1 ⊕ FΩ1,2 = H3(g,K∞,Dχ ⊗Mλ)

where the Ω-s are specific differential forms (See next section). We consider the
map

H3(g,K∞,Dχ ⊗Mλ)→ H3(g,K∞, IndGPDχµ ⊗Mλ).

The theorem of Delorme implies (see next section) that H3(g,K∞, IndGPDχµ ⊗
Mλ) is one dimensional, the element c∞ acts by (−1)m. The two forms Ω21,Ω12

yield non zero classes in H3(g,K∞, IndGPDχµ ⊗Mλ) and we have c∞(Ω21) =
(−1)mΩ12 (i.e. we normalize the choice of Ω12 in terms of the choice of Ω21. We
could also say that we adapt the choices of Ω21 and Ω12 such that they yield
the same class in H3(g,K∞, IndGPDχµ ⊗Mλ) ) and therefore the difference of

the two classes in H3(g,K∞, IndGPDχµ ⊗ Mλ) is zero. We find a form Ψ ∈
HomK∞(Λ2(g/k),Dχ ⊗Mλ) which bounds this difference:

d(Ψ) = Ω21 − Ω12

Since the Ω-s go to zero under the intertwining operator T the form T (Ψ)
in HomK∞(Λ2(g/k), IndGPDχµ′ ⊗Mλ) is closed.

Our aim is to compute the class

κT ([Ω21 − Ω12]) = [T (Ψ)].
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2.3 The calculation

In the following we evaluate at s = m+ 2 or at s = −m+ 1, i.e. the character is
χ or χ′.T hen our induced modules are in fact defined over Q and over F . We
get a commutative diagram

HomK∞(Λq(g/k), IndGPDχµ ⊗Mλ,F )
j(q)−→ HomKM (Λ•((m/kM ⊕ u0)⊗ F,Dχµ ⊗Mλ,F )

↓ T • ↓ t•

HomK∞(Λq(g/k), IndGPDχµ′ ⊗Mλ,F )
j(q)−→ HomKM (Λ•((m/kM ⊕ u0)⊗ F,Dχµ′ ⊗Mλ,F )

The horizontal arrows are isomorphisms. The operator T • is the intertwining
operator which is normalized to be the identity on the K∞ type IndGPDχµ(k, 0)
and t• is defined via the diagram.

Firstly we look at the right hand side, we consider the complex

HomKM (Λ•((m/kM ⊕ u0)⊗ F,Dχµ ⊗Mλ,F ).

here χ = (k, s). We look at the KM,0
∞ -types. The discrete series representation

has only e(φ)m with |m| ≥ k. The highest weight for T1 in Mλ sits in the
modules N± and is e(φ)±l. The gap between these weights is 4 and this can
only be bridged if we have weight ±4 in (m/kM ⊕ u0)⊗F. This implies that our
complex looks like (we restrict to KM,0

∞ = T1(R))

0→ HomT1(R)(Λ
2(m/kM⊕u0)⊗F,Dχµ⊗Mλ,F )→ HomT1(R)(Λ

3(m/kM⊕u0)⊗F,Dχµ⊗Mλ,F )→

HomT1(R)(Λ
4(m/kM ⊕ u0)⊗ F,Dχµ ⊗Mλ,F )→ 0

The tensor product Dχµ ⊗Mλ,F is in fact a M module, hence we have an
action of m⊕u0 the unipotent radical acts trivially. The module Dχµ decomposes
into KM,0

∞ types and P+φχ,k = cφk+2, P−φχ,k = 0. Hence we see that for q =
2, 3, 4 the forms in degree q are given by

HomT1(R)(Λ
q(m/kM ⊕ u0)⊗ F,Dχµ(k)⊗N− ⊕Dχµ(−k)⊗N+).

Now we can determine bases for these spaces. We decompose N± with
respect to the action of Z0 :

N+ =

ν=m⊕
ν=−m

N+(νγ2)

we choose generators e
+lγ̃

M1
1 +νγ2

∈ N+(νγ2). We observe that E0N+(νγ2) ⊂
N+((ν+1)γ2) hence we can define numbers E0e+lγ̃M1

1 +νγ2
= c(ν,m)elγ̃M1 +(ν+1)γ2 .

These numbers depend of course on the choice of the generators. Later we will
see that we can control the choice of the generators and hence the numbers
c(|nu,m) by representation theory of M ′. In any case we have c(ν,m) 6= 0 for
−m ≤ ν ≤ m− 1 and c(m,m) = 0.

We define forms in degree 2

ω(2,+)
ν = P∨+ ∧E∨+⊗φχ,k ⊗ e−lγ̃M1

1 +νγ2
, ω(2,−)

ν = P∨− ∧E∨−⊗φχ,−k ⊗ e+lγ̃M1
1 +νγ2
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these forms form a basis for the forms in degree 2. In degree 3 we have twice as
many basis elements

ω
(3,+)
H0,ν

= P∨+∧E∨+∧H∨0 ⊗φχ,k⊗e−lγ̃M1
1 +νγ2

, ω
(3,−)
H0,ν

= P∨−∧E∨−∧H∨0 ⊗φχ,−k⊗e+lγ̃M1
1 +νγ2

ω
(3,+)
E0,ν

= P∨+∧E∨+∧E∨0 ⊗φχ,k⊗e−lγ̃M1
1 +νγ2

, ω
(3,−)
E0,ν

= P∨−∧E∨−∧H∨0 ⊗φχ,−k⊗e+lγ̃M1
1 +νγ2

and in degree 4 we have

ω(4,+)
ν = P∨+∧E∨+∧H∨0 ∧E∨0 ⊗φχ,k⊗ẽ, n, ω(4,−)

ν = P∨−∧E∨−∧H∨0 ∧E∨0 ⊗φχ,−k⊗e+lγ̃M1
1 +νγ2

We have to compute the differentials. In this process we observe that E0

sends N±(νγ2) to N±((ν + 1)γ2) and more precisely we have E0e−lγ̃M1
1 +νγ2

=

c(ν,m)e−lγ̃1+(ν+1) where c(ν,m) 6= 0 for ν = −m, . . . ν = m − 1 and clearly
c(m,m) = 0. The values of these numbers depend on the choice of the genera-
tors and will be specified later.

d ω(2,+)
ν (P+, E+, H0) = H0(ω(2,+)

ν (P+, E+))− ω(2,+)
ν ([E+, H0], P+) =

H0(ω(2,+)
ν (P+, E+))− ω(2,+)

ν (P+, [H0, E+]) = 2(z + ν − 1)φχ,k ⊗ e−lγ̃M1
1 +νγ2

d ω(2,+)
ν (P+, E+, E0) = φχ,k ⊗ E0e−lγ̃M1

1 +νγ2
= c(ν,m)φχ,k ⊗ e−lγ̃M1 +(ν+1)γ2

d ω
(3,+)
H0,ν

(P+, E+, H0, E0) = −E0φχ,k⊗e−lγ̃M1
1 +νγ2

= −c(ν,m)φχ,k⊗e−lγ̃M1 +(ν+1)γ2

d ω
(3,+)
E0,ν

(P+, E+, H0, E0) =

H0ω
(3,+)
E0,ν

(P+, E+, E0)− ω(3,+)
E0,ν

)([E+, H0], P+, E0)− ω(3,+)
E0,ν

([H0, E0], P+, E+) =

2(z + ν − 2)φχ,k ⊗ e−lγ̃M1
1 +νγ2

We need to understand the subcomplex HomKM (), we write a differential
form in degree 2 ( or 4) as an array

ω =

ν=m∑
ν=−m

aν(ω(d,+)
ν ± ω(d,−)

ν ) = {a−m, . . . , aν , . . . , am} (2)

and in degree 3 as

ν=m∑
ν=−m

bνω
(3,+)
H0,ν

+ cνω
(3,−)
E0,ν

= {b−m, . . . , bν , . . . , bm; c−m, . . . , cν , . . . , cm} (3)

then our formulae above say that the differential in degree 2 does

d : {a−m, . . . , aν , . . . , am} 7→

{(z−m−1)a−m, . . . , (z+ν−1)aν , . . . (z+m−1)am; 0, c(−m,m)a−m, . . . , c(ν,m)aν , . . . , c(m−1,m)am−1}

9



and the differential in degree 3

d : {b−m, . . . , bν , . . . , bm; c−m . . . , cν , . . . , cm} 7→
{(z−m−2)c−m, (z−m−1)c−m+1−c(−m,m)bm, . . . , (z+m−2)cm−c(m−1,m)bm−1}

Clearly the cohomology of this complex is trivial unless z assumes the special
values z = −m+ 1 or z = m+ 2.

If z = −m + 1 we see that d ω
(2,+)
m = 0 and d ω

(3,+)
H0,m

= 0. Then it is clear

that these two classes represent generators for the cohomology H•(m/kM ⊕
u0,K

M
∞ ,Dχµ ⊗Mλ,F ) in degree 2 and 3.

If z = m + 2 then d(ω
(3,+)
E0,−m) = 0 represents a non zero class in H3. The

class ω
(4,+)
−m is not in the image of d hence we find a non zero class in H4. This

is all the cohomology in this case.

We have still the action of c∞ on our complex HomKM (Λ•((m/kM ⊕ u0) ⊗
F,Dχµ ⊗Mλ,F ). It acts on the Lie-algebra via the adjoint action hence trivially
on m/kM and by −1 on u0). It acts trivially on the Dχµ and the the e−lγ̃M1

1 +νγ2

are eigenvectors with eigenvalue (−1)ν .
We conclude that
a)the forms ω

(2,+)
ν are eigenclasses with eigenvalue (−1)ν+1

b) the forms ω
(3,+)
H0,ν

are eigenclasses with eigenvalue (−1)ν+1.

b1) the forms ω
(3,+)
E0,ν

are eigenclasses with eigenvalue (−1)ν .

c) the forms ω
(4,+)
,ν are eigenclasses with eigenvalue (−1)ν .

If we now choose z = m + 2 then the cohomology in degree 3 and 4 has
eigenvalue (−1)m. If z = −m + 1 then the cohomology in degree 2,3 is in the
eigenspace (−1)m+1.

This computation of the cohomology is of course in accordance with De-
lormes theorem.

We introduced the submodule N+, this was the submodule on which KM,1
∞

acts by lγ̃M1 it is only defined over F. On this module we have the action of our
group M ′1. This group contains Zc as a maximal torus, hence

N+ =

ν=m⊕
ν=−m

Fe
+lγ̃

M1
1 +νγ̃2

,

we specify a choice of the generators later. Now it is clear that the e
+lγ̃

M1
1 +νγ̃2

,

are highest weight vectors for K∞ of weight +lγ̃M1
1 + νγ̃2 Hence it defines an

irreducible K∞ module Ñν ⊂Mλ, here ν = −m, . . . , ν = m. Let Ñ = ⊕Ñν .
We have

HomK∞(Λq(g/k), IndGPDχµ ⊗Mλ,F )
∼−→ HomK∞(Λq(g/k), IndGPDlow

χµ ⊗ Ñ )

We have the standard decomposition

g/k⊗ F = u+ ⊕ u−

where u+, u− are the unipotent radicals of the two parabolic subgroups contain-
ing K∞. These unipotent radicals are K∞− modules and isomorphic to V2,1
(resp.) V2,−1.
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Then
Λ2(g/k) ⊃ V2,1 ⊗ V2,−1 ⊃ V4,0

Λ3(g/k) ⊃ Λ2(V2,1)⊗ V2,−1 ⊕ V2,1 ⊗ Λ2(V2,−1) ⊃ V4,1 ⊕ V4,−1
and (summation always ν = −m, ν = m)

HomK∞(Λ2(g/k), IndGPDχµ⊗Mλ,F ) = HomK∞(V4,0,⊕νIndGPDχµ(Vk,ν)⊗MK(−ν))

HomK∞(Λ3(g/k), IndGPDχµ ⊗Mλ,F ) =

HomK∞(V4,1,⊕νIndGPDχµ(Vk,ν+1)⊗MK(−ν))
⊕

HomK∞(V4,−1,⊕νIndGPDχµ(Vk,−ν−1)⊗MK(ν))

The individual summands are of dimension one. We can exhibit explicit gener-
ators, i.e. we write

HomK∞(Λ2(g/k), IndGPDχµ ⊗Mλ,F ) =
⊕

FΩ(2,χ)
ν

HomK∞(Λ3(g/k), IndGPDχµ ⊗Mλ,F ) =
⊕

(FΩ
(3,χ,o)
ν+1 ⊕ FΩ

(3,χ,∗)
−ν−1 )

We will give formulae for the generators. We have a basis for

g/k⊗ F = u+ ⊕ u− = F Ep ⊕ F Enull ⊕ F Em
⊕

F E∗p ⊕ F E∗null ⊕ F E∗m

where

Ep =


− i

2
1
2

i
2

1
2

1
2

i
2 − 1

2
i
2

i
2 − 1

2 − i
2 − 1

2
1
2

i
2 − 1

2
i
2

 , Enull =


i 0 0 −1
0 i −1 0
0 −1 −i 0
−1 0 0 −i

 , Em =


i
2

1
2

i
2 − 1

2
1
2 − i

2
1
2

i
2

i
2

1
2

i
2 − 1

2
− 1

2
i
2 − 1

2 − i
2


and

E∗p =


− i

2
1
2 − i

2 − 1
2

1
2

i
2

1
2 − i

2
− i

2
1
2 − i

2 − 1
2

− 1
2 − i

2 − 1
2

i
2

E∗null =


i 0 0 1
0 i 1 0
0 1 −i 0
1 0 0 −i

E∗m =


i
2

1
2 − i

2
1
2

1
2 − i

2 − 1
2 − i

2
− i

2 − 1
2

i
2 − 1

2
1
2 − i

2 − 1
2 − i

2


The vectors Ep, Enull, Em are eigenvalues for the action of T1(R) an element

of T1(R) acts by the eigenvalues (a+ bi)2, 1, (a− bi)2 respectively. The same is
true for E∗p , E

∗
null, E

∗
m. The torus Zc acts by (x+ iy)2 on the first three vectors

and by (x− iy)2 on the second group. For t ∈ T1(R) we have

γ̃M1 (t) = (a+ bi)2, γ̃2(z) = (x+ iy)2.

We take the χ with parameter z = m + 2. To identify Ω
(3,χ,o)
ν+1 we give its

value

Ω
(3,χ,o)
ν+1 (Ep, Enull, E

∗
p) = ek,ν+1⊗e−lγ̃M1

1 −νγ̃2
+· · · ∈ IndGPDχµ(Vk,ν+1)⊗MK(−ν)))

Ω
(3,χ,o)
ν+1 (E∗p , E

∗
null, Ep) = 0

11



For the ”conjugate” we get

Ω
(3,χ,∗)
−ν−1 (Ep, Enull, E

∗
p) = 0

Ω
(3,χ,∗)
−ν−1 (E∗p , E

∗
null, Ep) = ek,−ν−1⊗e−lγ̃M1

1 +νγ̃2
+· · · ∈ IndGPDχµ(Vk,−ν−1)⊗MK(ν))))

We want to determine the image of these differential forms under the Delorme-
Frobenius isomorphism. The interpretation of this isomorphism yields that

Ω
(3,χ,?)
ν,1 7→ a?0ω̃

(3,+,?)
H0,ν

+ b?0ω̃
(3,+,?)
E0,ν

with some coefficients a0, b0. Here we define these ω̃ with respect to the tilde
basis:

ω̃
(3,+)
H0,ν

(P+, E+, H0) = φχ,k⊗e−lγ̃M1
1 +νγ̃2

, ω̃
(3,+)
E0,ν

(P+, E+, E0) = φχ,k⊗e−lγ̃M1
1 +νγ̃2

To determine these coefficients a0, b0 we recall that g/k = m/kM ⊕u0 and we
have

P+ ∧ E+ ∧H0 + 2P+ ∧ E+ ∧ E0 = Ep ∧ Enull ∧ E∗p
P+ ∧ E+ ∧H0 − 2P+ ∧ E+ ∧ E0 = E∗p ∧ E∗null ∧ Ep

and hence a0 + 2b0 = 1, a0 − 2b0 = 0 hence b0 = 1/4, a0 = 1/2.
We are especially interested in the two elements

Ω
(3,χ,o)
m+1 =

1

2
P∨+∧E∨+∧H∨0 ⊗φχ,k⊗e−lγ̃M1

1 −mγ̃2
+

1

4
P∨+∧E∨+∧E∨0 φχ,k⊗e−lγ̃M1

1 −mγ̃2

c∞(Ω
(3,χ,o)
m+1 ) = −1

2
P∨+∧E∨+∧H∨0 ⊗φχ,k⊗c∞(e−lγ̃M1

1 −mγ̃2
)+

1

4
P∨+∧E∨+∧E∨0 φχ,k⊗c∞(e−lγ̃M1

1 −mγ̃2
),

we have the minus sign because c∞ acts on P+, H0 trivially and on E+, E − 0
by −1.

These classes are closed and hence they define cohomology classes. Again we
study the action of c∞ on the complex. The adjoint action on the Lie-algebra
sends Ep, Enull, Em to E∗p , E

∗
null, E

∗
m

c∞(Ω
(3,χ,o)
m+1 )(E∗p , E

∗
null, Ep) = c∞(Ω

(3,χ,o)
m+1 (Ep, Enull, E

∗
p)) = ek,ν+1⊗c∞(ẽ−lγM1

1 −νγ̃2
)+. . .

The element c∞ induces the automorphism −1 on Zc and hence we see that

c∞(ẽ−lγM1
1 −νγ̃2

) = iwν ẽ−lγM1
1 +νγ̃2

the unit in front depends on the choice of the basis vectors.
We know already that c∞ acts by the eigenvalue (−1)m on the cohomology

H3(g,K∞, IndGPDχµ ⊗Mλ) = H3(m/kM ⊕ u0,K
M
∞ ,Dχµ ⊗Mλ) = F [ω

(3,+)
E0,−m]

Hence we conclude that Ω
(3,χ,o)
m+1 + (−1)mc∞(Ω

(3,χ,o)
m+1 ) provides a non zero

class in the H3 we will compute its value on [ω
(3,+)
E0,−m], i.e. we will compute

12



[Ω
(3,χ,o)
m+1 + (−1)mc∞(Ω

(3,χ,o)
m+1 )] = a(k,m)[ω

(3,+)
E0,−m]

Then Ω
(3,χ,o)
m+1 − (−1)mc∞(Ω

(3,χ,o)
m+1 ) yields the trivial class and hence we find

a Ψ ∈ HomK∞(Λ2(g/k), IndGPDχµ ⊗Mλ,F ) which satisfies

dΨ = Ω
(3,χ,o)
m+1 − (−1)mc∞(Ω

(3,χ,o)
m+1 )

If we apply the intertwining operator

T • : HomK∞(Λ2(g/k), IndGPDχµ⊗Mλ,F )→ HomK∞(Λ2(g/k), IndGPDχµ′⊗Mλ,F )

and then T •(Ψ) will be a closed form. We get a cohomology class and we can
compute the class

[T •(Ψ)] = κ([Ω
(3,χ,o)
m+1 − (−1)mc∞(Ω

(3,χ,o)
m+1 )]) = b(k,m)[ω(2,+)

m ]

This is now hopefully a routine calculation.
We find that

Ω
(3,χ,o)
m+1 ± (−1)mc∞(Ω

(3,χ,o)
m+1 ) =

1

2
(P∨+ ∧ E∨+ ∧H∨0 ⊗ φχ,k ⊗ (e−lγ̃M1

1 −mγ̃2
± (−1)m+1c∞(e−lγ̃M1

1 −mγ̃2
))

+
1

4
P∨+ ∧ E∨+ ∧ E∨0 φχ,k ⊗ (e−lγ̃M1

1 −mγ̃2
± (−1)mc∞(e−lγ̃M1

1 −mγ̃2
))

We have identified Sl2
∼−→M ′1 such that

Z0
∼−→ {

(
z 0
0 z−1

)
}; E0 7→

(
1 1
0 1

)
and an isomorphism of M ′1-modules

ι : N+⊗OFF
∼−→ Sym2m(OFX⊕OFY )⊗OFF = {

∑
aµX

2m−µY µ|aµ ∈ OF }⊗F

We want to stress that both modules sides have a given structure as an OF
module and have a highest weight vector elγ̃M1 +mγ2 , X

2m respectively. These
highest weight vectors are unique up to a power of i, we make a choice for the
first one. Then we require that ι : elγ̃M1 +mγ2 7→ X2m.

Under this isomorphism ι : elγ̃M1 +νγ2 7→ Xm−νY m+ν we use this to normalize
the generators.

We define two new variables

U =
1√
2

(X + iY ); V =
1√
2

(X − iY )

Clearly these variables are eigenfunctions under the action of Zc. We have

zU = (x+ iy)U, zV = (x− iy)V.

We have to consider the two expansions

U2m + V 2m =
1

2m
((X + iY )2m + (X − iY )2m) =

13



1

2m−1
(X2m −

(
2m

2

)
X2m−2Y 2 +

(
2m

4

)
X2m−4Y 4 · · ·+ (−1)mY 2m)

and

U2m − V 2m =
1

2m
((X + iY )2m − (X − iY )2m) =

i

2m−1
(

(
2m

1

)
X2m−1Y −

(
2m

3

)
X2m−3Y 3 · · ·+ (−1)m

(
2m

2m− 1

)
XY 2m−1)

If we now write these forms in terms of our description in formula 3 , i.e if
we write

Ω
(3,χ,o)
m+1 ± (−1)mc∞(Ω

(3,χ,o)
m+1 ) = {b−m, . . . , bν , . . . , bm; c−m, . . . , cν , . . . , cm}

then the bν , cν will be the binomial coefficients occurring in these polynomials
(in opposite order)

Ω
(3,χ,o)
m+1 +(−1)mc∞(Ω

(3,χ,o)
m+1 ) =

1

2m−1
{0, (−1)m−1

i

2

(
2m

1

)
, 0,− . . . ; (−1)m

4
, 0,

(−1)m−1

4

(
2m

2

)
, 0, . . . ,

1

4
}

Then non trivial cohomology class is given by the first entry after the semicolon,
i.e.

Ω
(3,χ,o)
m+1 + (−1)mc∞(Ω

(3,χ,o)
m+1 ) =

(−1)m

2m+1
[ω3,+
E0,−m].

If we now consider the -1 class then

Ω
(3,χ,o)
m+1 − (−1)mc∞(Ω

(3,χ,o)
m+1 ) =

1

2m
{(−1)m, 0, (−1)m−1

(
2m

2

)
, 0, . . . , 1; 0, . . . }

The first entry after the ; is zero hence this is the trivial class, we can bound it.
Already the first half of the array (up to the ;) determines the bounding form
we get (recall s = m+ 2)

1

2m
d(

(−1)m

2 · 1
, 0,− (−1)m−1

2 · 3

(
2m

2

)
, 0,

(−1)m−2

2 · 5

(
2m

4

)
, . . . ,

1

2(2m+ 1)
) =

1

2m
{(−1)m, 0, (−1)m−1

(
2m

2

)
, 0, . . . , 1}

This corresponds to the polynomial

1

2m
(
(−1)m

2 · 1
Y 2m+

(−1)m−1

2 · 3

(
2m

2

)
Y 2m−2X2+

(−1)m−2

2 · 5

(
2m

4

)
Y 2m−4X4+· · ·+ 1

2(2m+ 1)
X2m)

We have to compute the effect of t• on this class, to do so we have to rewrite
this in the U, V variables. We have X = U+V√

2
, Y = U−V√

2i
. Now a miracle occurs:

Substituting this we get

1

2m+ 1
(U2m − U2m−1V + U2m−2V 2 − · · ·+ (−1)mV 2m)

The analysis of the differential operators in IndGPDχµ yields that t2 maps this
to
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1(
2m
m

) 1

2m+ 1
(U2m +

(
2m

2m− 1

)
U2m−1V +

(
2m

2m− 2

)
U2m−2V 2 − · · ·+ V 2m) =

1(
2m
m

) 1

2m+ 1
(U + V )2m =

(−1)m2m(
2m
m

) 1

2m+ 1
X2m.

This yields

2m[Ω
(3,χ,o)
m+1 + (−1)mc∞(Ω

(3,χ,o)
m+1 )] =

(−1)m

2
[ω3,+
E0,−m]. (4)

κT (2m[Ω
(3,χ,o)
m+1 − (−1)mc∞(Ω

(3,χ,o)
m+1 )]) =

22m(
2m
m

) 1

2m+ 1
[ω(2,+)
m ] (5)

2.4 The other intertwining operator

We claimed the existence of an intertwining operator T (χ, χ′) : IndGPDχµ →
IndGPDχµ′ (see (1)) without any justification. It was normalized to be the iden-
tity on Vk,0. We recall the standard construction of such an operator. At this
moment we assume that χ = (s, k), χ′ = (3− s, k). Then we can write down an
intertwining operator which is given by an integral

T int(χ, χ′) : f 7→
∫
f(gu)du (6)

and it is well known that this operator restricted to Vk,0 is a scalar and this
scalar is

Γ(n1 + n2 + 2 + s)/(2π)n1+n2+2+s

Γ(n1 + n2 + 3 + s)/(2π)n1+n2+3+s

Γ(m+ 1/2 + s)/πm+1/2+s

Γ(m+ 1 + s)/πm+1+s
=

2π3/2

n1 + n2 + 2

Γ(m+ 1/2 + s)

Γ(m+ 1 + s)

We evaluate at s = 0 and get

2π2

n1 + n2 + 2

(
2m
m

)
22m

This yields

κT int(2m[Ω
(3,χ,o)
m+1 − (−1)mc∞(Ω

(3,χ,o)
m+1 )]) =

1

2m+ 1

2π2

n1 + n2 + 2
[ω(2,+)
m ]

2.5 The mixed Anderson motives.( sketch)

In my lecture Notes volume ”Eisensteinkohomologie.....” I discuss the construc-
tion of certain mixed Tate motives which are visible in the cohomology of the
Shimura variety attached to Gl2/Z. I computed the Hodge-de Rham extension
class of these motives. (It is given by the formula in the middle of p.138, actually
there the exposition and the computation is much too complicated an improved
version will be contained in the final version of this paper.).
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In my manuscript [M-M] I discuss the analogous construction of mixed Tate
motives obtained from the symplectic group GSp2/Spec(Z). These mixed Tate-
motives are labelled by classical modular forms f of weight k = 4 + 2n2 + n1
They are also discussed in 1-2-3. They also depend on the choice of an auxiliary
prime p0. (This aspect is not mentioned in [1-2-3]) Such a motive is an a certain
sense an exact sequence

0→ Z(−1− n2)→ Xp0(f)→ Z(−2− n1 − n2)→ 0.

We see that the same modular form f can give rise to several mixed motives,
these motives are labelled by f, n1, p0.

For the moment we assume that f is unramified everywhere hence it corre-
sponds to an embedding of π∞ ×

∏
p σp ↪→ A0(Gl2(Q)\Gl2(A)), where π∞ is

the discrete series representation and where σp is an unramified principal series
for all p.

For our construction we have to choose an auxiliary prime p0. We choose
ψf =

∏
p 6=p0 ψp × ψp0 where for p 6= p0 ψp is the normalized spherical func-

tion and where ψp0 is only invariant under a suitable parahori subgroup and
satisfies a certain support condition. (This support condition corresponds to a
certain sheaf with support conditions and our mixed Tate motive is visible in
the cohomology of this sheaf.)

The computation of the Hodge-de-Rham extension class (See [M-I], [M-M])
comes down to the evaluation of an integral∫

z(f)

Eis((Ω
(3,χ,o)
m+1 − (−1)mc∞(Ω

(3,χ,o)
m+1 ))× ψf ) (7)

where z(f) is a certain relative cycle which depends on the modular form f.(For
more details I refer to [M-M], 2.2, the existence of this cycle follows from the
known results on Eisenstein cohomology and the results of Lan and Suh on the
vanishing of torsion. This has to be discussed in more detail. It seems that we
have to assume that we may have to invert the primes ` < λ in some sense. On
the other hand the results in [H-p] assert show that under certain conditions we
can interpolate the ordinary part of the torsion.)

We apply Stokes theorem and get for the integral

1

2m+ 1

2π2

n1 + n2 + 2

L(f, n1 + n2 + 2)

L(f, n1 + n2 + 3)

ζ(n1 + 1)

ζ(n1 + 2)
L(p0)Tp0(ψp0)(e)

∫
∂(z)

[ω(2,+)
m ]× ψf

(8)

Here L(p0) is the product of the inverses of the local Euler factors at p0 . The
factor Tp0(ψp0)(e) is the evaluation of the local intertwining operator. Let us
abbreviate this product by C(σp0 , λ).(See [H-E], p. 127 and 139). We rewrite
the first ratio in terms of the Λ(f, ∗) and get

π

2m+ 1

Λ(f, n1 + n2 + 2)

Λ(f, n1 + n2 + 3)

ζ(n1 + 1)

ζ(n1 + 2)
C(σp0 , λ)

∫
∂(z)

[ω(2,+)
m ]× ψf (9)

We have a look at the last factor. This factor is equal to the period Ω(σf )±

defined in my paper [H-A], it compares the ± parts provided by σf in the
cohomology of the boundary. We get for our integral
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1

Ω(σf )ε(k,m)

π

2m+ 1

Λ(f, n1 + n2 + 2)

Λ(f, n1 + n2 + 3)

ζ(n1 + 1)

ζ(n1 + 2)
C(σp0 , λ)(ψp0)(e) (10)

Finally we look at the ratio of the two ζ values.
We apply the functional equation and get for n1 > 0 and even

ζ(n1 + 1)

ζ(n1 + 2)
= −n1 + 1

π2

ζ ′(−n1)

ζ(−1− n1)

Recall that 2m = n1, we get the final formula for the Hodge-de Rham
extension class

X (f)H−dRh = −C(σp0 , λ)
( 1

Ω(σf )ε(k,m)

Λ(f, n1 + n2 + 2)

Λ(f, n1 + n2 + 3)

) 1

ζ(−1− n1)

ζ ′(−n1)

π
(11)

I have not yet carried out the computation of C(σp0 , λ) but in analogy to the
computation in [H-E] 4.3.3 one might guess that up to a power of p0 it is equal
to the inverse of the local Euler factor at p0 in the ratio of L-values. If ap0 is the
p0-th Fourier coefficient, i.e. the eigenvalue of Tp0 then ap0 = αp0 +βp0 , αp0βp0 =
pk−1 and we should have

C(σp0 , λ) =
(1− αp0p

−n1−n2−2
0 )(1− βp0p

−n1−n2−2
0 )

(1− αp0p
−n1−n2−3
0 )(1− βp0p

−n1−n2−3
0 )

1

p0

1− p−n1−1
0

1− p−n1−2
0

=

1− ap0p
−n1−n2−2
0 + p−n1−1

0

1− ap0p
−n1−n2−3
0 + p−n1−3

0

1

p0

1− p−n1−1
0

1− p−n1−2
0

(12)

2.6 The essence of this note

This is now an almost perfect formula for the Hodge-de-Rham extension class
of the mixed motive Xp0(f). I say ”almost” because I lost a factor i somewhere,
I have to look for the lost i. I have not given the explicit form of the factor
C(σp0 , λ), it has to be computed by a local computation at p0 (Comp. [H-E]),
this should not become difficult anymore. (See the remark above, here I see
some problems related to the ramification of our motive at p0, comp. [H-E],
p.139))

This formula is in many respects better than the formula in 1-2-3 on p.
258. In [1-2-3] is a factor c in front and I assert that this number is a rational
number which contains only ”small” primes as factors. This number is a product
c = C(σp0 , λ)c∞(λ) where the first factor is a local contribution at the auxiliary
prime p0 and the second factor a contribution at ∞.

The consequence of our formula above is that c∞(λ) only depends very mildly
on λ it is equal to a sign (or a power of i). The second consequence is that the
periods Ω± disappear they are replaced by the ratio Ω(σf )ε(k,m). The period
Ω(σf ) is well defined up to some units in O[1/N ]×. The primes dividing N
can be computed from the cohomology of the boundary stratum corresponding
to the Siegel parabolic viewed as module under the Hecke algebra. (Compare
[p-adic]) The primes not dividing N will be called large.

The formula should allow us to make the conjectures on congruences more
precise.
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In the case that σf is the modular form of weight 22 (as in 1-2-3) the number
N should be the product 131 · 593, this is the numerator of ζ(−21). We do
have congruences between the cusp form and the Eisenstein cohomology but no
congruences between cusp forms.

2.7 Arithmetic implications, still very imprecise

If we now believe that there are no exotic mixed Tate motives, then we can give
a much more precise formulation of the conjecture on congruences in 1-2-3. In
1-2-3 we assume that the prime ` should be large without specifying what that
means.

Here we consider primes ` which are prime to N and we look at the power
of ` (or perhaps better l) occurring in

(
1

Ω(σf )ε(k,m)

Λ(f, n1 + n2 + 2)

Λ(f, n1 + n2 + 3)
) = lδ(n1,n2,k) . . . .

Assume that δ(n1, n2, k) < 0, i.e. l occurs in the denominator, then we expect
a congruence.

More precisely: If in addition the following three assumptions are satisfied

(0) The factor C(p0, λ) is coprime to l,

(1) The modular form σf is ordinary at l,

(2) The Soule element cl(n1) ∈ H1(Q̄`/Q`,Z`(n1 + 1)) is a generator,

then I have an argument which implies (assuming that the mixed Tate motive
is not exotic ) that we should have a congruence between the Hecke-eigenvalues
of a cohomology eigenclass for the Siegel modular group and the eigenvalues ap
for σf

λ(p) ≡ pn2+1 + ap + pn1+n2+2 mod l−δ(n1,n2,k).

The assumption (0) is harmless, we still have another variable p0 and we can
try to minimize the l contribution. This adds a finite number of primes which
should be inverted in the beginning.

The assumptions (1) and (2) have to be verified in any specific case, they
are always ”probably” true but it is difficult to prove general theorems which
assert their validity.

The case of the modular form of weight 22 is already interesting in this
respect. Looking at the tables in [1-2-3] we see the relatively small primes
2,3,5,7,13,17,19 occurring in the L-values but none of them is ordinary and
hence we should not expect a congruence (but there may still be one). On the
other hand the prime 11 is ordinary but it also does not occur in the L-values.
We do not have a congruence mod 11.

18



2.8 p-adic interpolation

An important consequence of of our formula is that the product C(p0, λ)c∞(λ)
is a `-adic meromorphic function in the variable λ. Since we assume that our
modular form σf (= f) should be `-ordinary we can put σf into an `-adic family
σ̃f . Under certain assumptions we can show that the factor

(
1

Ω(σf )ε(k,m)

Λ(f, n1 + n2 + 2)

Λ(f, n1 + n2 + 3)
)

also is a `-adic analytic function in λ. (Project with Mahnkopf). If the derivative
of this `-adic L-function is not zero then we can produce congruences of arbitrary
high order.

2.9 The local factor at p0

When writing this note I realized that there are interesting aspects of the factor
C(σp0 , λ). To discuss these aspects I go back to the group Gl2 and look again on
the Anderson motives considered in [H-E]. In section 4.3.4 on p. 139 I discuss
the corresponding term

C(φp0 , λ) =
pn+1
0 − 1

pn+2
0 − 1

where φ is the character on p. 107, we also require χ1 = χ2 = 1. In [H-E]
I observe that this factor will introduce denominators for the Eisenstein classes
and therefore it should be a source of congruences. The congruences which we
considered so far where congruences originating from the divisibility of a L-value
by a prime and we found congruences between unramified modular forms( For
instance forms on Gl2(Z) and GSp2(Z). )These congruences are of global origin.

If we have a prime ` dividing the denominator pn+2
0 − 1 then we expect a con-

gruence between the Eisenstein class Eis(φ) which provides a cohomology class
for Sl2(Z) and a cohomology class for Γ(p0), the cohomology class is ramified at
p0 and corresponds to a new form.

These congruences should be known. I give an example. We consider the
case n = 8 so we are talking about modular forms of weight 10. We take p0 = 3.
Then

310 − 1 = 23 · 112 · 61

The prime factors 3 and 11 are of ”von Staudt-Clausen” type, they occur in
the denominator of ζ(−9) and hence cancel. The interesting prime is 61.

From W. Stein’s tables we get that there is a modular form of weight 10 for
Γ0(3) and its eigenvalues ap for Tp, p = 2, 3, 5, 7, . . . , 37 are

{−36,−81,−1314,−4480, 1476,−151522, 108162, 593084,−969480,−6642522, 7070600,−7472410}

One checks easily that for p = 2, 5, 7, . . . , 37 we have the Ramanujan type
congruence

ap ≡ p9 + 1 mod 61
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This is a congruence of local origin.

Of course we expect a similar thing for the pair of groups GSp2(Z),Gl2(Z).
For a prime p0 we define Γ0(p0) ⊂ GSp2(Z) as the inverse image of P (Fp0)
where P is of course the Siegel parabolic.

Let us start from ∆. We compute the denominator of C(σp0) we look only at
the local factor of the L- factor for ∆. Now we consider integers n1, n2, n1 even
which satisfy n1 + 2n2 = 8 these are {0, 4}, {2, 3}, {4, 2}, {6, 1}, {8, 0} perhaps
we should stick to the regular weights and leave out the two extremal ones. We
factorize

1− ap0p
−n1−n2−3
0 + p−n1−3

0

and look for ”large” prime factors. For p0 = 2, 3 we do not find large prime
factors. For p0 = 5 we find a 61 for {2, 3} a 41 for {4, 2} and a 83 for {6, 1}. Hence
we should find Siegel modular eigenforms of weights {2, 6}, {4, 5}, {6, 4} with
systems of eigenvalues λ1(p), λ2(p), λ3(p) respectively and look for congruences
of local origin

λ1(p) = p4 + ap + p7 mod 61

λ2(p) = p3 + ap + p8 mod 41

λ3(p) = p2 + ap + p9 mod 83 (13)

for p 6= 5
I think it is better to stick to p0 = 2 and go up with the weight because in

this case there some data are available (See [B-F-G]). For weight 16 we get the
pairs {2, 5}, {4, 4}, {6, 3}, {8, 2}, {10, 1} and find a 19 for {8, 2} hence we may
try to find a congruence mod 19 between a Siegel modular form on Γ0(2) of
weight {8, 5} and the modular form of weight 16.

We try the modular form of weight 18 and p0 = 2.

{4, 5} large prime {97}

{6, 4} large prime {13}

{8, 3} large prime {47}

{10, 2} large prime {37}

{12, 1} large prime {13}

We try the modular form of weight 20 and p0 = 2.

{2, 7} large prime {157}

{6, 5} large prime {19?}

{8, 4} large prime {499}

{10, 3} large prime {113}

{12, 2} large prime {311}
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