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1 Eisenstein cohomology

Our starting point is a smooth group scheme G/Spec(Z) whose generic fiber
G = G×ZQ is reductive and quasisplit. We assume the group scheme is reductive
over the largest possible open subset of Spec(Z) and at the remaining places it
is given by a maximal parahoric group scheme structure. If G is split, then we
assume that G is split. We define Kf = G(Ẑ) =

∏
p G(Zp) ⊂ G(Af )

We choose a Borel subgroup B/Q and a torus T/Q ⊂ B/Q. We assume that

T (Af )∩Kf = T/Ẑ) is maximal compact in T (Af ). Let λ ∈ X∗(T ) be a highest
weight, let Mλ be a highest weight module attached to this weight. It is a
Z-module, the module Mλ ⊗Q is a highest weight module for the group G/Q.

1.1 The Borel-Serre compactification

We consider our space

SGKf = G(Q)\G(A)/K∞Kf

and its Borel-Serre compactification

i : SGKf → S̄K .
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Our highest weight module Mλ provides a sheaf M̃λ on these spaces.
We have an isomorphism

H•(SGKf ,M̃λ)
∼̃−→H•( ¯SGKf ,M̃λ)

for any coefficient system M̃λ coming from a rational representationM of G(Q).
The boundary ∂S̄K is a manifold with corners. It is stratified by submanifolds

∂S̄K =
⋃
P

∂PSGKf ,

where P runs over the G(Q) conjugacy classes of proper parabolic subgroups
defined over Q. We identify the set of conjugacy classes of parabolic subgroups
with the set of representatives given by the parabolic subgroups that contain
our standard Borel subgroup B/Q. Then we have

H•(∂PSGKf ,M̃λ) = H•(P (Q)\G(A)/K∞Kf ,M̃λ)

We have a finite coset decomposition

G(Af ) =
⋃
ξf

P (Af )ξfKf ,

for any ξf put KP
f (ξf ) = P (A)f ∩ ξfKfξ

−1
f . Then we have

P (Q)\X ×G(Af )/Kf =
⋃
ξf

P (Q)\X × P (Af )/KP
f (ξf )ξf ,

If Ru(P ) ⊂ P is the unipotent radical, then

M = P/Ru(P )

is a reductive group. For any open compact subgroup Kf ⊂ G(Af )(resp. for
K∞ ⊂ G∞) we define KM

f (ξf ) ⊂ M(Af )(resp. KM
∞ ⊂ M∞) to be the image of

KP (ξf ) in M(Af ) (resp. M∞). We put

SMKf (ξf ) = M(Q)\M(A)/KM
∞K

M
f (ξf )

and get a fibration

πP : P (Q)\X × P (Af )/KP
f (ξf )→M(Q)\M(A)/M(Q)\KM

∞ ×KM
f (ξf )

where the fibers are of the form ΓU\Ru(P )(R) and where ΓU ⊂ U(Z) is of finite
index and defined by some congruence condition dictated by KP

f (ξf ). The Lie-
algebra u of Ru(P ) is a free Z-module and it is clear that we have an integral
version of the van -Est theorem which says:

If R = Z[ 1
N ] where a suitable set of primes has been inverted then

H•(ΓU\Ru(P )(R),M̃R)
∼−→ H•(u,M̃R).

More precisely we know that the local coefficient system R•πP∗(M̃) is obtained
from the rational representation of M on H•(u,M).
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Hence we get

H•(∂PS,M̃R) =
⋃
ξf

H•(SMKM
f (ξf ),

˜H•(u,M)R),

and
H•(u,MR) =

⊕
w∈WP

H l(w)(u,MR)(w · λ),

where WP is the set of Kostant representatives of W/WM and where w · λ =
(λ+ ρ)w − ρ and ρ is the half sum of positive roots.

The primes which we have to be inverted should be those which are smaller
than the coefficients of the dominant weights in the highest weight of M. But
at this point we may have to enlarge the set of small primes.

We conclude

The cohomology of the boundary strata ∂PSGKf with coefficients in M can be
computed in terms of the cohomology of the reductive quotient, where we have
coefficients in the cohomology of the Lie algebra of the unipotent radical with
coefficients in M

In the following considerations we sometimes suppress the subscriptsKf ,K
M
KM
f

and so on. Then we mean that the considerations are valid for a fixed level or
that we have taken the limit over the Kf . (See the remarks below concerning
induction)

1.1.1 The two spectral sequences

The covering of the boundary by the strata ∂PS provides a spectral sequence,
which converges to te cohomology of the boundary. We can introduce the
simplex ∆ of types of parabolic subgroups, the vertices correspond to the
maximal ones and the full simplex corresponds to the minimal parabolic. To
any type of a parabolic P let d(P ) its rank, we make the convention that
d(P ) − 1 is equal to the dimension of the corresponding face in the simplex.
Let M = MP = P/Ru(P ) be the reductive quotient (the Levi quotient). If
ZM/Q is the connected component of the identity of the center of M/Q then
d(P ) is also the dimension of the maximal split subtorus of ZM/Q minus the
dimension of the maximal split subtorus of ZG/Q. The covering yields a spec-
tral sequence whose E•,•1 term together with the differentials of our spectral
sequence is given by

0→ E0,q
1 =

⊕
P,d(P )=1

Hq(∂PS,M)
d0,q1−→ · · · →

⊕
P,d(P )=p+1

Hq(∂PS,M)
dp,q1−→ (1)

where the boundary map dp,q1 is obtained from the restriction maps (See [Gln]).
There is also a homological spectral sequence which converges to the cohomology
of the boundary. It can be written as a spectral sequence for the cohomology
with compact supports. Let d be the dimension of S then we have a complex

→
⊕

P,d(P )=p+1

Hd−1−p−q−1
c (∂PS,M)

δ1−→
⊕

P,d(P )=p

Hd−1−p−q
c (∂PS,M)→ (2)
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and therefore the E1
•,• term is

E1
p,q =

⊕
P,d(P )=p

Hd−1−p−q
c (∂PS,M)

the (higher) differential go from (p, q) to (p− r, q + 1− r).

1.1.2 Induction

The description of the cohomology of a boundary stratum is a little bit clumsy,
since we are working with the coset decomposition. The reason is that we are
working on a fixed level, if we consider cohomology with integral coefficients. If
we have rational coefficients then we can pass to the limit. Then

H•(∂PSGKf ,M̃) = lim
Kf
H•(P (Q)\G(A)/K∞Kf ,M̃) =

Ind
π0(G(R)×G(Af )

π0(M(R)×P (Af ) lim
KM
f

H•(SMKM
f
, ˜H•(u,M)) = Ind

π0(G(R))×G(Af )

π0(M(R))×P (Af )H
•(SM , ˜H•(u,M)),

where the induction is ordinary group theoretic induction. We should keep in
our mind that the π0(M(R))×P (Af ) -modules are in fact π0(M(R))×M(Af )-
modules. We need some simplification in the notation and we will write for any
such π0(M(R))×M(Af ) module H

Ind
π0(G(R))×G(Af )

π0(M(R))×P (Af )H = IGMH

We will use the same notation for an induction from the torus T to M .
Under certain conditions we also have the notion of induction for Hecke

- modules and we can work with integral coefficient systems. This will be
discussed at another occasion.

But I want to mention that in the case that Kf is a hyperspecial maxi-
mal compact subgroup ( in the cases where we are dealing with a split semi-
simple group scheme over Spec(Z) we can take Kf =

∏
G(Zp) (see 1.1)) then

G(Qp) = P (Zp)Kp = B(Zp)Kp the group theoretic induction followed by taking
Kf invariants gives back the original module. In this case we do not have to
induce!

Of course we have to understand the coefficient systems H•(u,M), for this
we need the theorem of Kostant which will be discussed in the next section.

1.1.3 A review of Kostants theorem

At this point we can make the assumption that our group G/Q is quasisplit, we
also assume that G(1)/Q is simply connected. Then we may assume that MZ
is irreducible and of highest weight λ. Let B/Q be a Borel subgroup, we choose
a torus T/Q ⊂ B/Q. Let X∗(T ) = Hom(T ×Q Q̄,Gm ×Q Q̄ be the character
module, it comes with an action of a finite Galois group Gal(F/Q), here F
is the smallest sub field of Q̄ over which G/Q splits. Let T (1)/Q ⊂ T/Q the
maximal torus in G(1)/Q, then X∗(T (1)) contains the set ∆ of roots, the subset
∆+ of positive roots (with respect to B.) The set of simple roots is identified
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to a finite index set I = {1, 2, . . . , r}, i.e we write the set of simple roots as
π = {α1, . . . , αi, . . . , αr} ⊂ ∆+. We assume that the numeration is somehow
adapted the Dynkin diagram. The finite Galois group Gal(F/Q) acts on I
and π by permutations. Attached to the simple roots we have the dominant
fundamental weights {, . . . , γi, . . . , γj , . . . } they are related to the simple roots
by the rule

2
< γi, βj >

< βj , βj >
= δi,j .

The dominant fundamental weights form a basis of X∗(T (1)).
Our maximal torus T/Q is up to isogeny the product of T (1) and the central

torus C/Q, i.e. T = T (1) ·C and the restriction of characters yields an injection

j : X∗(T )→ X∗(T (1))⊕X∗(C),

this becomes an isomorphism if we tensorize by the rationals

X∗Q(T ) = X∗(T )⊗Q ∼−→ X∗Q(T (1))⊕X∗Q(C).

This isomorphism gives us canonical lifts of elements in X∗(T (1)) or X∗(C)
to elements in X∗Q(T ) which will be denoted by the same letter. Especially the
fundamental weights γi, . . . are elements in X∗Q(T ).

Let λ ∈ X∗(T ) be a dominant weight, our decomposition allows us to write
it as

λ =
∑
i∈I

niγi + δ = λ(1) + δ

we have ni ∈ Z, ni ≥ 0 and δ ∈ X∗(C). To such a dominant weight λ we
have an absolutely irreducible G× F -module Mλ.

We consider maximal parabolic subgroups P/Q ⊃ B/Q. These parabolic
subgroups are given by the choice of a Gal(F/Q) orbit ĩ = J ⊂ I Such an orbit
yields a character γJ =

∑
i∈J γi The parabolic subgroup P/Q provided by this

datum is determined by its root system ∆P = {β ∈ ∆| < β, γJ >≥ 0}. The
choice of the maximal torus T ⊂ P also provides a Levi subgroup M ⊂ P but
actually it is better to consider M as the quotient P/UP .

The set of simple roots of M (1) is the subset πM = {. . . , αi, . . . }i∈IM , where
of course IM = I \J. We also consider the group G(1)∩M = M1. It is a reductive
group, it has T (1) as its maximal torus. We apply our previous considerations
to this group M1. It has a non trivial central torus C1/Q. This torus has a
simple description, we pick a root αi, i ∈ J, we know that J is an orbit under
Gal(F/Q). We have the subfield Fαi ⊂ F such that Gal(F/Fαi) is the stabilizer
of αi. Then it is clear that

C1
∼−→ RFαi/Q(Gm/Fαi),

up to isogeny it is a product of an anisotropic torus C
(1)
1 /Q and a copy of Gm.

The character module X∗Q(C1) is a direct sum

X∗Q(C1) = X∗Q(C
(1)
1 )⊕QγJ . (3)
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Here X∗Q(C
(1)
1 ) = {γ ∈ X∗Q(C1) | < γ,

∑
i∈J αi >= 0}. The half sum of positive

roots in the unipotent radical is

ρU = fP γJ (4)

where 2fP > 0 is an integer.
We also have the semi simple part T (1,M) ⊂ M (1) and again we get the

orthogonal decomposition

X∗Q(T (1)) = X∗Q(T (1,M))⊕X∗Q(C1) =
⊕
i∈IM

Qαi⊕
⊕
i∈J

Qγi =
⊕
i∈IM

QγMi ⊕
⊕
i∈J

Qγi.

Here we have to observe that the γMi , i ∈ IM are the dominant fundamental
weights for the group M (1), they are the orthogonal projections of the γi to the
first summand in the above decomposition. We have a relation

γj = γMj +
∑
i∈ĩ

c(j, i)γi, for j ∈ IM

and we have c(j, i) ≥ 0 for all i ∈ J.
Let W be absolute Weylgroup and subgroup WM ⊂ W the Weyl group of

M . For the quotient WM\W we have a canonical system of representatives

WP = {w ∈W | w−1(πM ) ⊂ ∆+}.

To any w ∈W we define w ·λ = w(λ+ρ)−ρ where ρ us the half sum of positive
roots. If we do this with an element w ∈WP then µ = w · λ is a highest weight
for M (1) and w · λ defines us a module for M . Then Kostants theorem says

H•(uP ,Mλ) =
⊕

w∈WP

H`(w)(uP ,M)(w · λ),

the summands on the right hand side are the irreducible modules attached to
w · λ, they sit in degree

l(w) = #{α ∈ ∆+|w−1α ∈ ∆−} (5)

Each isomorphism class occurs only once.
We write

w · (λ+ ρ)− ρ = µ(1,M) + δ1︸ ︷︷ ︸ +δ

∈ X∗Q(T (1,M))⊕X∗Q(C1) ⊕X∗(C)

(6)

We decompose δ1 and define the numbers a(w, λ) (see (3))

δ1 = δ′1 − (a(w, λ) + fP )γJ .

In (6) we move the −ρ = −ρG to the right and split it into ρ = ρM + fP γJ
then we get

w(λ+ ρ) = µ(1,M) + ρM − a(w, λ)γJ (7)
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We also consider the extended Weyl group W̃ , this is the group of automor-
phisms of the root system. Let w0 ∈W be the element sending all positive roots
into negative ones. We have an automorphism Θ− ∈ W̃ inducing t 7→ t−1 on
the torus. Let Θ = w0 ◦Θ−. This element induces a permutation on the set π of
positive roots, which may be the identity and induces −1 on the determinant.
Then

Θλ =
∑
i∈I

nΘiγi − δ

is a dominant weight and the resulting highest weight module is dual module
to Mλ. Therefore we get a non degenerate pairing

H•(uP ,Mλ)×H•(uP ,MΘλ)→ HdUP (uP , F ) = F (−2ρU ),

which respects the decomposition, i.e. we get a bijection w 7→ w′ such that
l(w) + l(w′) = dUP and such

H l(w)(uP ,Mλ)(w · λ)×H l(w′)(uP ,MΘλ)(w′ ·Θλ)→ HdUP (uP , F ) (8)

is non degenerate. We conclude

a(w, λ) + a(w′,Θλ) = 0.

The element Θ conjugates the parabolic subgroup P into the parabolic sub-
group Q, which may be equal to P or not. If P = Q resp. P 6= Q then we say
that P is (resp. not ) conjugate to its opposite parabolic. If Θ− is in the Weyl
group then all parabolic subgroups are conjugate to their opposite. In this case
we have Θ = 1.

Conjugating by the element Θ provides an identification θP,Q : WP ∼−→WQ.
We have two specific Kostant representatives, namely the identity e ∈WP and
the element wP ∈ WP , this is the element which sends all the roots in UP to
negative roots (the longest element). Its length l(wP ) is equal to the dimension
dP = dim(UP ).

Any element in w ∈WP can be written as product of reflections

w = sαi1 . . . sαiν (9)

where ν = l(w) and the first factor αi1 ∈ J. We always can complement this
product to a product giving the longest element

sαi1 . . . sαiν sαiν+1
. . . sαidP

= wsαiν+1
. . . sαidP

= wP , (10)

The inverse of the element sαiν+1
. . . sαidP

is

w′ = sαidP
. . . sαiν+1

∈WQ

This defines a second bijection iP,Q : WP ∼−→ WQ which is defined by the
relation

w = wP · iP,Q(w) = wP · w′, l(w) + l(w′) = dP (11)

The composition θ−1
P,Q ◦ IP,Q : WP →WP is the bijection provided by duality.
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The element wP conjugates the Levi subgroup M of P into the Levi subgroup
of Q = wPPw

−1
P , the element w̃P = ΘwP conjugates the parabolic subgroup

P into its opposite (which is conjugate to Q) and induces an automorphism on
the subgroup M which is a common Levi-subgroup of P and its opposite.

If we choose w = e then∑
i∈I

niγi + δ =
∑
i∈IM

niγ
M
i +

∑
j∈J

(
∑
i∈IM

nic(i, j) + nj)γj + δ.

Since J is the orbit of an element i ∈ I we see that < γj , αj > is independent
of j and hence we get easily

∑
j∈J

(
∑
i∈IM

nic(i, j) + nj)γj =
1

#J
(
∑
j∈J

(
∑
i∈IM

nic(i, j) + nj))γJ + δ′

and hence

a(e, λ) =
1

#J
(
∑
j∈J

(
∑
i∈IM

nic(i, j) + nj))

If we choose ΘP then as an M -moduleMΘP ·λ is dual toMΘλ(−2fJγJ). We
write Θλ+ ρ =

∑
i∈I nΘiγi − δ and then

wP (
∑
i∈I

niγi + δ) =
∑
i∈IM

nΘiγ
M
i −

∑
j∈J

(
∑

Θi∈IM

nΘic(Θi,Θj) +nΘj)γj − 2fJγJ − δ.

and especially we find

a(wP , λ) = −(
1

#J
(
∑
j∈J

(
∑
i∈IM

nΘic(Θi,Θj) + nΘj)) + 2fJ)γJ

In general we have the inequalities

a(ΘP , λ) ≤ a(w, λ) ≤ a(e, λ).

1.1.4 The inverse problem

Later we will encounter the following problem. Our data are as above and we
start from a highest weight for M , we write

µ = µ(1) + δ1 + aγJ + δ =
∑
i∈IM

nΘiγ
M
i + δ1 + aγJ + δ.

We ask whether we can find a λ such that we can solve the equation (Kost).
More precisely: We give ourselves only the semi simple component µ(1) of µ and
we ask for the solutions

w(λ+ ρ) = µ(1) + . . .

where w ∈WP and λ dominant, i.e. we only care for the semi simple component.
Let us consider the case where J = {i0}, i.e. it is just one simple root. Then

the term δ1 disappears and our equation becomes

w(λ+ ρ) = µ(1) + aγi0 + δ,
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of course the δ is irrelevant, but we want to know the range of the values
a = a(λ,w) when µ(1) is fixed, but λ,w vary. Of course it may be empty. Let
us fix a w and let us assume we have solved w(λ + ρ) = µ(1) + . . . . Then it is
clear that the other solutions are of the form λ+ ρ+ ν where wν ∈ Qγi0 . These
ν are of the form ν = cν0 with c ∈ Z. We write ν0 =

∑
i∈I biγi and it is easy to

see that there must be some bi > 0 and some bj < 0. This implies that λ+ cν0

is dominant if and only if c ∈ [a, b], an interval with integers as boundary point.
This of course implies that -still for a given w - the values a = a(λ,w) also have
to lie in a fixed finite interval

a = a(w, λ) ⊂ [amin(w, µ(1)), amax(w, µ(1)] = I(w, µ(1)).

This will be of importance because these intervals will be related to intervals
of critical values of L-functions.

1.2 The goal of Eisenstein cohomology

The goal of the Eisenstein cohomology is to provide an understanding of the re-
striction map r in theorem ( ??). More precisely we assume that we have an un-
derstanding of the cohomology H•(∂SGKf ,M̃λ) and in terms of the description of

the boundary cohomology we want to describe the image H•Eis(∂SGKf ,M̃λ) of r.

Under certain conditions we will construct a section Eis : Hi
Eis(∂SGKf ,M̃λ,C)→

Hi(SGKf ,M̃λ,C). It is clear from the previous considerations that understanding

of the understanding of H•(∂SGKf ,M̃λ) requires understanding of the Eisenstein

cohomology of the Eisenstein cohomology of H•(SM
KM
f
, ˜H•(u,M)).

We consider certain submodules in the cohomology of the Borel-Serre com-
pactification for which we can construct a section as above. We start from a
maximal parabolic subgroup P/Q, let M/Q be its reductive quotient. We define

H•! (∂P (SGKf ),M̃λ) =
⊕

w∈WP

H
•−l(w)
! (SMKM

f
, H l(w)(uP ,M̃)(w · λ)) ⊂ H•(∂P (SGKf ),M̃λ)

(12)

We will abbreviate H l(w)(uP ,M̃)(w · λ) = M̃(w · λ) where always keep in mind
that the element w ∈ WP knows what the actual parabolic subgroup is and
that M̃(w · λ) sits in degree l(w).

By definition the inner cohomology is the image of the cohomology with
compact supports. This implies that the submodule⊕

P :d(P )=1

Hq
! (∂P (SGKf ),M̃λ) ⊂

⊕
P :d(P )=1

Hq(∂P (SGKf ),M̃λ) = E0,q
1

is annihilated by all differentials d0,q
ν and hence we get an inclusion

iP : ⊕w∈WP IGPH
•−l(w)
! (SMKM

f
,M(w · λ))→ H•(∂SGKf ,Mλ) (13)

Taking the direct sum over the maximal parabolic subgroups yields a sub-
module

H•! (∂(SGKf ),M̃λ) ↪→ H•! (∂(SGKf ),M̃λ) (14)
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The Hecke algebra acts on these two modules. Let us assume that this submod-
ule when tensorized by Q is isotypical in H•! (∂(SGKf ,M̃λ ⊗ Q). Then we get a
decomposition

H•! (∂(SGKf ,M̃λ ⊗Q)⊕H•non!(∂(SGKf ,M̃λ ⊗Q) = H•(∂(SGKf ,M̃λ ⊗Q). (15)

We formulated the goal of the Eisenstein cohomology, we described an isotypical
subspace and we know can ask: What is the intersection of H•Eis(∂SGKf ,M̃λ⊗Q)

with this subspace, or what amounts to the same, what is H•!,Eis∂(SGKf ,M̃λ⊗Q).

The element Θ induces an involution on the set of parabolic subgroups con-
tainingB (= set ofG(Q) conjugacy classes of parabolic subgroups) two parabolic
subgroups P,Q ⊃ B are called associate if ΘP = Q.We can decompose the coho-
mology H•! (∂(SGKf ,M̃λ⊗Q) into summands attached to the classes of associated
parabolic subgroups

H•! (∂(SGKf ,M̃λ ⊗Q) =
⊕

P :P=ΘP

H•! (∂P (SGKf ),M̃λ)⊕
⊕
[P,Q]

H•! (∂P (SGKf ),M̃λ)⊕H•! (∂Q(SGKf ),M̃λ)

(16)

where in the second sum Q = ΘP. Each summand is a sum over the elements
of WP and then we can decompose under the action of the Hecke algebra. We
choose a sufficiently large extension F/Q and in the case P = ΘP we get

H•! (∂P (SGKf ),M̃λ ⊗ F ) =
⊕

w∈WP

⊕
σf

H
•−l(w)
! (SMKM

f
,M̃(w · λ)⊗ F )(σf ) (17)

In the case P 6= ΘP = Q we group the contributions from the two parabolic
subgroups together. To any w ∈WP we have the element iP,Q(w) = w′ ∈WQ.
We also group the terms corresponding to w and w′ together. To any σf which

occurs in H
•−l(w)
! (SM

KM
f
, H l(w)(uP ,M̃)(w · λ)⊗ F ) we find a σ′f = σwPf |γΘj |

2fQ
f ,

which occurs in the second summand.
The decomposition into isotypical pieces becomes⊕

σf

(
H
•−l(w)
! (SMKM

f
,M̃(w · λ)⊗ F )(σf )⊕H•−l(w

′)
! (SM

′

KM′
f

,M̃(w′ · λ)⊗ F )(σ′f )
)

(18)

1.2.1 Induction and the local intertwining operator at finite places

Our modules σf are modules for the Hecke algebras HM
KM
f

= ⊗pHMKM
p
. Therefore

we can write them as tensor product σf = ⊗pσp. We consider a prime p where
σf is unramified then we get can give a standard model for this isomorphism
class. The module Hσp is the rank one OF -module OF , i.e. it comes with a
distinguished generator 1. The Hecke algebra acts by a homomorphism (See ??)

h(σp) : H(M,w·λ)

KM
p ,Z → OF (19)

and gives us the Hecke-module structure on Hσp . We can induce Hσp to a
HGKG

p
module. This is actually the same OF module but now with an action

10



of the algebra H(G,λ)

KG
p ,Z

. We simply observe that we have an inclusion H(G,λ)

KG
p ,Z

↪→

H(M,w′·λ)

KM
p ,Z and induction simply means restriction.

It follows easily from the description of the description of the spherical (un-
ramified) Hecke modules via their Satake-parameters that the induced modules

Hσp and Hσ′p
are isomorphic as H(G,λ)

KG
p ,Z

-modules and hence we get that after

induction the two summands in (18) become isomorphic. We choose a local
intertwining operator

T loc
p : Hσp → Hσ′p

(20)

simply the identity.
We postpone the discussion of a local intertwining operator at ramified

places.

1.3 The Eisenstein intertwining operator

We start from an irreducible unitary module Hσ∞ × Hσf = Hσ and assume
that we have an inclusion Φ : Hσ ↪→ L2

cusp(M(Q)\M(A)). We consider Φ as
an element of W (σ) and for the moment we identify Hσ to its image under Φ.
We stick to our assumption that σ occurs with multiplicity one in the cuspidal
spectrum.

Then we we can consider the induced module, recall that this is the space
of functions

{f : G(A)→ Hσ|f(pg) = p̄f(g)} (Ind)

where p̄ is the image of p in M(A). We can define the subspace H
(∞)
σ consisting

of those f which satisfy some suitable smoothness conditions and then we can

define a submodule Ind
G(A)
P (A)H

(∞)
σ where the f(g) ∈ H(∞)

σ and the f themselves

also satisfy some smoothness conditions.
We embed this space into the space A(P (Q)\G(A)) by sending

f 7→ {g 7→ f(g)(eM )},

here A denotes some space of automorphic forms. This an embedding of G(A)-
modules or an embedding of Hecke modules if we fix a level.

We have the character γP : M → Gm, for any complex number z this yields
a homomorphism |γP |z : M(A) → R× which is given by |γP | : m 7→ |γP (m)|z.
As usual we denote by C(|γP |z) the one dimensional C vector space on which
M(A) acts by the character |γP |z. Then we may twist the representation Hσ

by this character and put Hσ ⊗ z = H ⊗ C(|γP |z). An element g ∈ G(A) can

be written as g = pk, p ∈ P (A), k ∈ K0
f where K0

f ⊃ Kf is a suitable maximal
compact subgroup and now we define h(g) = |γP |(p).

Eisenstein summation yields embeddings

Eis : Ind
G(A)
P (A)H

(∞)
σ ⊗ z → A(G(Q)\G(A)), (21)

where
Eis(f)(g) =

∑
γ∈P (Q)\G(Q)

f(γg)(eM )h(γg)z,

11



it is well known that this is locally uniformly convergent provided <(z) >> 0
and it has meromorphic continuation into the entire z plane (See [Ha-Ch]).

We assumed that Hσ is in the cuspidal spectrum. We get important infor-
mation concerning these Eisenstein series, if we compute their constant Fourier
coefficient with respect to parabolic subgroups: For any parabolic subgroup
P1/Q ⊂ G/Q with unipotent radical U1 ⊂ P1 we define (See [Ha-Ch], 4)

FP1(Eis(f))(g) =

∫
U1(Q)\U1(A)

Eis(f)(ug)(eM )du.

This essentially depends only on the G(Q)-conjugacy class of P1/Q. It it
also in [Ha-Ch] , 4 that this constant term is zero unless P1 is maximal and the
conjugacy class of P1 is equal to the conjugacy class of P/Q or the conjugacy
class of Q/Q. (which may or may not be equal to the conjugacy class of P/Q.)

These constant Fourier coefficients have been computed by Langlands, we
have to distinguish the two cases:

a) The parabolic subgroup P/Q is conjugate to an opposite parabolic Q/Q.
In this case we have a Kostant representative wP ∈ WP which conjugates

Q/Q into P/Q and it induces an automorphism of M/Q. We get a twisted
representation wP (σ) of M(A). In the computation of the the constant term we
have to exploit that σ is cuspidal and we get two terms:

FP ◦ Eis : Ind
G(A)
P (A)Hσ ⊗ z →

Ind
G(A)
P (A)Hσ ⊗ z ⊕ Ind

G(A)
P (A)HwP (σ) ⊗ (2fP − z) ⊂ A(P (Q)\G(A)).

We can describe the image. It is well known, that we can define a holomor-
phic family

T loc(z) : Ind
G(A)
P (A)Hσ ⊗ z → Ind

G(A)
P (A)HσwP ⊗ (2fP − z)

which is defined in a neighborhood of z = 0 and which is nowhere zero. This
local intertwining operator is unique up to a nowhere vanishing holomorphic
function h(z). It is the tensor product over all places T loc(z) = ⊗vT loc

v (z).
For the unramified finite places the local operator is constant, i.e. does not
depend on z and is equal to T loc

p in section (1.2.1) and T loc(0) = ⊗pT loc
p . At

the remaining factors there is a certain arbitrariness for the choice of the local
operator and some fine tuning is appropriate.

We also assume that we have chosen nice model spaces Hσ∞ , Hσ′∞
, and an

intertwining operator

T loc
∞ : Hσ∞ → Hσ′∞

(22)

which is normalized by the requirement that it induces the ”identity” on a
certain fixed KM

∞ type.

Then we get the classical formula of Langlands for the constant term: For

f ∈ Ind
G(A)
P (A)Hσ ⊗ z we get

FP ◦ Eis(f) = f + C(σ, z)T loc(z)(f),

12



where C(σ, λ, z) is a product of local factors C(σv, z) and where C(σv, z) is a
holomorphic function in z which compares our local intertwining operator to an
intertwining operator which is defined by the integral.

The computation of this factor is carried out in H. Kims paper in [C-K-
M], chap. 6. He expresses the factor in terms of the automorphic L function
attached to σf . If we translate this into the cohomological L-function we get for
the for the local factor at a prime p the following expression

Cp(σ, z) =
∏
χ

Laut(σp, rχ,mrχ(z − fP
2 ))

Laut(σp, r,mrχ(z − fP
2 ) + 1)

T locp(z)(f) (23)

Here χ runs over a set of of cocharacters of our maximal torus. These cochar-
acters are those roots in the unipotent radical of U∨P which are the dominant
weights of the irreducible representations the Langlands dual group M∨ on the
dual Lie-algebra u∨P . The rχ is the associated representation attached to χ. The
mχ are the heights of these roots, this is the coefficient of the coroot χJ in χ.

We do not discuss the ramified finite places, from now on we assume that
σf is unramified. Then we get

C(σ, z) = C(σ∞, z)
∏
p

Cp(σp, z)

The local factor at infinity depends on the choice of T loc
∞ , in 1.2.4 we gave

some rules how to fix it, if it is not zero on cohomology.
b) The opposite group Q/Q is not conjugate to P/Q, then we have to com-

pute two Fourier coefficients namely FP and FQ in this case we get

F : Ind
G(A)
P (A)Hσ ⊗ z

FP⊕FQ−→

Ind
G(A)
P (A)Hσ ⊗ z ⊕ Ind

G(A)
Q(A)Hσ ⊗ (2fP − z) ⊂ A(P (Q)\G(A))⊕A(Q(Q)\G(A)).

and again we get

F ◦ Eis(f) = f + C(σ∞)
∏
r

L(σf , r,mr(z − fP
2 ))

L(σf , r,mr(z − fP
2 ) + 1)

T loc(z)(f),

where now T loc(z) is a product of local intertwining operators

T loc
v : Ind

G(Qv)
P (Qv)Hσv ⊗ z → Ind

G(Qv)
Q(Qv)HσwPv

⊗ (2fP − z).

It is also due to Langlands that the Eisenstein intertwining operator is holo-
morphic at z = 0 if the factor in front of the second term is holomorphic at z = 0.
Up to here σ can be any representation occurring in the cuspidal spectrum of
M.

Now we assume that we have a coefficient system M = Mλ and a w ∈
WP such that our σf occurs in H

•−l(w)
! (SM

KM
f
,M̃(w · λ) ⊗ F ). Then we find a

(m,KM
∞ )− module Hσ∞ such that H•(m,KM

∞ , Hσ∞ ⊗M(w · λ)) 6= 0. We also
find an embedding

Φι : Hσ∞ ⊗Hσf ⊗F,ι C ↪→ L2
cusp(M(Q)\M(A))

13



Let us assume that w ·λ or equivalently σf are in the positive chamber. In case
a) we have holomorphicity at z = 0 if the weight λ is regular (See [Schw] ) and
in case b) the Eisenstein series is always holomorphic at z = 0. We that we are
in this case and then we can evaluate at z = 0 in (46) and get an intertwining
operator

Eis ◦ Φι : Ind
G(A)
P (A)Hσ → A(G(Q)\G(A)).

We get a homomorphism on the de-Rham complexes

HomK∞(Λ•(g/k), Ind
G(A)
P (A)Hσ ⊗F,ι C⊗Mλ)→ HomK∞(Λ•(g/k),A(G(Q)\G(A))⊗ M̃λ)

(24)

We introduce the abbreviation Hι◦σf = Hσf ⊗F,ι C and decompose Hι◦σ =
Hσ∞ ⊗Hι◦σf . We compose (24) with the constant term and get

F ◦ Eis• : HomK∞(Λ•(g/k), Ind
G(R)
P (R)Hσ∞ ⊗Mλ)⊗Hι◦σf →

HomK∞(Λ•(g/k), Ind
G(R)
P (R)Hσ∞ ⊗Mλ)⊗Hι◦σf )⊕HomK∞(Λ•(g/k), Ind

G(R)
Q(R)Hσ′∞

⊗Mλ)⊗Hι◦σ′f )

(25)

where P = Q in case a).

We choose an ω ∈ HomK∞(Λ•(g/k), Ind
G(R)
P (R) ⊗ Mλ) and consider classes

ω⊗ψf and map them by the Eisenstein intertwining operator to the cohomology
(or the de-Rham complex) on SGKf . Then the restriction of of the Eisenstein
cohomology to the boundary is given by the classes

Φι(ω ⊗ ψf + C(σ∞, λ)C(σf , λ)T loc
∞ (ω)⊗ T loc

f (ψf ))

The factor C(σf , λ) can be expressed in terms of the cohomological L-function.
Translating the formula (23) yields

C(σf , λ) =
∏
p

∏
χ

Lcoh(σp, rχ, < χ, µ(1) + ρM > +a(w, λ) < χ, γP >)

Lcoh(σp, rχ, < χ, µ(1) + ρM > +a(w, λ) < χ, γP > +1)

The factor C(σ∞)T loc
∞ is not always easy to understand in SecOps.pdf we

discuss the special case of the symplectic group.

We see that the constant term is the sum of two terms. The first term
reproduces the original class from which we started. We assumed that it is in
the positive chamber. The second term is some kind of scattering term which
is the image of the first term under an intertwining operator. In case a) the
restriction of the second term gives a class in the same stratum, in case b) the
restriction gives a class in a second stratum.

At this point I formulate a general principle

The second term is of fundamental arithmetic interest, it contains relevant
arithmetic information. To exploit this information we have to understand the
contribution C(σ∞, λ)T loc

∞ .
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Here are some comments which give some support to this belief. We start
from σ∞ and consider the intertwining operator

T loc,•
∞ : HomK∞(Λ•(g/k), Ind

G(R)
P (R)Hσ∞ ⊗Mλ)→ HomK∞(Λ•(g/k), Ind

G(R)
P (R)Hσ′∞

⊗Mλ)

(26)

The two complexes can be described by the Delorme isomorphism

HomK∞(Λ•(g/k), Ind
G(R)
P (R)Hσ∞ ⊗Mλ)

∼−→
⊕

w∈WP

HomKM
∞

(Λ•−l(w)(m
(1)
C /kM )), Hσ∞ ⊗M(w · λ))

(27)

Our intertwining operator respects this decomposition and we get

T loc,•
∞ (w) : HomKM

∞
(Λ•−l(w)(m

(1)
C /kM )), Hσ∞ ⊗M(w · λ))→

HomKM
∞

(Λ•−l(w
′)(m

(1)
C /kM )), Hσ′∞

⊗M(w′ · λ))

We assume that w · λ is in the positive chamber and l(w) ≥ l(w′). Now we
know that for regular representations Mλ the cohomology Hν(m,KM

∞ , Hσ∞ ⊗
M(w · λ)) is non zero only for ν in a very narrow interval around the middle
degree (See [Vo-Zu], Thm. 5.5). If the difference |l(w) − l(w′)| is greater then
the length of this interval, then it is clear that in any degree T loc,•

∞ (w) induces
zero on the cohomology. In such cases the Eisenstein intertwining operator gives
us a section

EisHq−l(w))(SMKM
f
,M(w · λ)⊗ F )(σf )→ Hq(SGKf ,M̃λ ⊗ F ) (28)

But even in the case where the intertwining operator induces the zero map on
cohomology the second term has influence on the structure of the cohomology.
It influences the structure of the integral cohomology Hq

int(SGKf ,M̃λ ⊗ F ) and
apparently provides some understanding of the denominators of the Eisenstein
classes.

In the next section we discuss such a situation for the group G = GSp2/Z
and where our parabolic subgroup is the Siegel parabolic subgroup. In this case
the second term does not contribute to the Eisenstein cohomology. In this case
we have experimental evidence that ”arithmetic” of the ratio of special values
of the form

1

Ω(σf , ι)

∏
χ

Lcoh(σf , rχ, < χ, µ(1) + ρM > +a(w, λ) < χ, γP >)

Lcoh(σf , rχ, < χ, µ(1) + ρM > +a(w, λ) < χ, γP > +1)

has influence on the structure of the cohomology. We will of course also have

cases where the intertwining operator is not zero on the cohomology. In that
case we can prove rationality results for these ratios of L-values.
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2 The example G = Sp2/Z
2.1 Some notations and structural data
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α2

α1 γ2γ1

The maximal torus is

T0/Z = t =
{

t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1

}
the simple roots are

α1(t) = t1/t2, α2(t) = t22

and the fundamental dominant weights are

γ1(t) = t1, γ2(t) = t1t2

and finally we have
2γM1 = t1/t2

We choose a highest weight λ = n1γ1 + n2γ2 let Mλ be a resulting module
for G/Spec(Z). We get the following list of Kostant representatives for the Siegel
parabolic subgroup P and they provide the following list of weights.

1 · λ = λ = 1
2 (2n2 + n1)γ2 + n1γ

M1
1

s2 · λ = 1
2 (−2 + n1)γ2 + (2n2 + n1 + 2)γM1

1

s2s1 · λ = 1
2 (−4− n1)γ2 + (2 + 2n2 + n1)γM1

1

s2s1s2 · λ = 1
2 (−6− 2n2 − n1)γ2 + n1γ

M1
1 ,

We choose for K∞ ⊂ Sp2(R) the standard maximal compact subgroup U(2),
it is the centralizer of the matrix

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


which defines a complex structure. With this choice we can define SGKf =

G(Q)\G(R)/K∞ ×G(Af )/Kf .
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2.2 The cuspidal cohomology of the Siegel-stratum

We consider the cohomology groups H•(SGKf ,M̃λ) and the resulting fundamen-

tal exact sequence. We have the boundary stratum ∂P (SGKf ) with respect to the
Siegel parabolic. Let us assume that we are in the unramified case, then we get

H•(∂P (SGKf ),M̃λ) =
⊕

w∈WP

H•−l(w)(SMKM
f
, H l(w)(uP ,Mλ)) (29)

We look at the case w = s2s1 in this case we know how to describe the cor-
responding summand in terms of automorphic forms on Gl2. We introduce the
usual abbreviation H l(w)(uP ,Mλ) =Mλ(w · λ).

Our coefficient modules are the modules attached to the highest weight

w · λ = µ = (2 + 2n2 + n1)γM1
1 +

1

2
(−4− n1)γ2

Let us put k = 4+2n2 +n1 and m = 1
2n1. We give the usual concrete realization

for these modules as M2+2n2+n1 [n2 − 3− k] =Mk−2[n2 − 3− k]
Let us look at the space SM

KM
f
. The group M/Spec(Z) is isomorphic to Gl2,

it is the Levi-quotient of the Siegel parabolic. The group KM
∞ is the image

of P (R) ∩K∞ under the projection P (R) → M(R). This is the group O(2) it
contains the standard choice KM

∞ (1) = SO(2) as a subgroup of index 2. Hence
we get a covering of degree 2

˜SM
KM
f

= M(Q)\M(R)/KM
∞ (1)×M(Af )/KM

f → SMKM
f

(30)

We get an inclusion

i : H1(SMKM
f
,Mλ(w · λ)) ↪→ H1( ˜SM

KM
f

,Mλ(w · λ)). (31)

On the cohomology on the right we have the action of O(2)/SO(2) = Z/2Z
and the cohomology decomposes into a + and a − eigenspace. The inclusion i
provides an isomorphism of the left hand side and the + eigenspace.

This inclusion is of course compatible with the action of the Hecke algebra.
If we pass to a suitable extension F/Q we get the decompositions into isotypic
subspaces if we tensor our coefficient system by F . An isomorphism type σf
occurs with multiplicity one on the left hand side and with multiplicity two
on the right hand side. Over the ring OF the modules H1

±, int(SMKM
f
,Mλ(w ·

λ)F )(σf ) are of rank one, hence we can find locally in the base Spec(OF ) an
isomorphism

T arith(σf ) : H1
+( ˜SM

KM
f

,Mλ(w · λ)F ))(σf )
∼−→ H1

−( ˜SM
KM
f

,Mλ(w · λ)F ))(σf )

(32)

The isomorphism given by the fundamental class (see(??) interchanges the +
and the − eigenspace, hence we can arrange our arithmetic intertwining operator
such that it satisfies

T arith(σf ⊗ |δf |) = T arith(σf ⊗ |δf |)−1 (33)
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We consider the transcendental description of the cohomology groups

H1( ˜SM
KM
f

,Mλ(w · λ)C) =
⊕
σf

H1
+( ˜SM

KM
f

,Mλ(w · λ)C)(σf )⊕H1
−( ˜SM

KM
f

,Mλ(w · λ)C)(σf )

(34)

We consider the standard Borel subgroup B ⊂ M the standard split torus
T0 ⊂ B it contains our torus Z0. We define the character

χµ = (k,m+ 2) : B(R)→ C×, χ(t) = γM1 (t)k|γ2|m+2.

It yields the induced Harish-Chandra module I
M(R)
B(R) χµ : We consider the

functions

f : M(R)→ C; f(bg) = χ(b)f(g); f |T1 is of finite type .

This is in fact a (m,KM,0
∞ ) -module, it contains the discrete representation Dχµ .

We have the decomposition

Dχµ =
⊕

ν≡0(2),|ν|≥k

Fφχ,ν

where

φχ,ν(g) = φχ,ν(b

(
cos(φ) sin(φ)
− sin(φ) cos(φ

)
) = χ(b)e2πiνφ.

Of course KM,0
∞ = T1(R) = {e(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ

)
} and we can write

e(φ)ν = e2πνiφ.
We have the well known formula for the ((m,KM,0

∞ ) cohomology

H1((m,KM,0
∞ ),Dχµ ⊗Mλ(w · λ)) = HomKM,0

∞
(Λ1(m/kM )),Dχµ ⊗Mλ(w · λ)) =

(35)

CP∨+ ⊗ φχ,−k ⊗ vk−2 + CP∨− ⊗ φχ,k ⊗ v−k+2 = Cωk,m + Cω̄k,m
(36)

Here vk−2 = (X + iY )k−2, resp. v2−k = (X − iY )k−2 are two carefully chosen
highest (resp. lowest) weight vectors with respect to the action of KM,0

∞ . The
elements P± are the usual elements in m/k. We choose a model space Hσf for
σf i.e. a free rank one OF -module on which the Hecke algebra acts by the
homomorphism σf : HM

KM
f
→ OF . We also choose and embedding ι : F ↪→ C

and an (m,KM,0
∞ )×KM

∞ ×HMKM
f

- invariant embedding

Φι : Dχµ ⊗Hσf ⊗F,ι C→ L2
0(M(Q)\M(A)) (37)

this is unique up to a scalar in C× because the representation is irreducible and
occurs with multiplicity one in the right hand side. This yields an isomorphism

Φ1
ι : H1((m,KM,0

∞ ),Dχµ⊗Mλ(w·λ))⊗Hσf⊗F,ιC
∼−→ H1( ˜SM

KM
f

,Mλ(w·λ)C)(ι◦σf )
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We observe that the element ε =

(
−1 0
0 1

)
∈ KM

∞ has the following effect

Ad(ε)(P+) = P− , ε(φχ,k) = φχ,−k and ε(vk−2) = (−1)mv2−k (38)

Hence we see that

ω
(+)
k,m = ωk,m + (−1)mω̄k,m resp. ω

(−)
k,m = ωk,m − (−1)mω̄k,m (39)

are generators of the + and the − eigenspace in H1(m,KM,0
∞ ,Dχµ⊗Mλ(w ·λ)).

Therefore our map Φ and the choice of these generators provide isomorphisms

Φ(+)
ι : Hσf ⊗F,ι C

∼−→ H1
+( ˜SM

KM
f

,Mλ(w · λ)C)(ι ◦ σf ), (40)

Φ(−)
ι : Hσf ⊗F,ι C

∼−→ H1
−( ˜SM

KM
f

,Mλ(w · λ)C)(ι ◦ σf ) (41)

The choice of P+, P− and φχ,−ν is canonic, hence we see that the identifications
depend only on Φι , which is unique up to a scalar. This means that the
composition

T trans(ι ◦ σf ) = Φ(−)
ι ◦ (Φ(+)

ι )−1

: H1
+( ˜SM

KM
f

,Mλ(w · λ)C)(ι ◦ σf )
∼−→ H1

−
˜SM
KM
f

,Mλ(w · λ)C)(ι ◦ σf )

yields a second (canonical) identification between the ± eigenspaces in the co-
homology. Our arithmetic intertwining operator (See (32) yields an array of
intertwining operators

T arith(σf )⊗F,ι C : H1
+( ˜SM

KM
f

,Mλ(w · λ)F ))(σf )⊗F,ι C
∼−→ H1

−( ˜SM
KM
f

,Mλ(w · λ)F ))(σf )⊗F,ι C
(42)

Hence get an array of periods which compare these two arrays of intertwining
operators

Ω(σf , ι)T
trans(ι ◦ σf ) = T arith(σf )⊗F,ι C (43)

Our formula (33) tells us that we can arrange the intertwining operators such
that

Ω(σf ⊗ |δf |, ι) = Ω(σf , ι)
−1 (44)

These periods are uniquely defined up to a unit in O×F .

2.2.1 The Eisenstein intertwining

We pick a σf which occurs in H1
! ( ˜SM

KM
f

,Mλ(w · λ)F )), we choose a ι : F ↪→ C
and we choose an embedding

Φι : Dχµ ⊗Hσf ⊗F,ι C ↪→ L2
cusp(M(Q)\M(A)) (45)

and from this we get the Eisenstein intertwining

Eis ◦ Φι : Ind
G(R)
P (R)(Dχµ)⊗Hσf ⊗F,ι C→ A(G(Q)\G(A)) (46)
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(Here we use that Kf = GSp2(Ẑ).) Hence we get an intertwining operator

Eis• : HomK∞(Λ•(g/k), IGP (Dχµ)⊗Mλ)⊗Hσf ⊗F,ι C→ HomK∞(Λ•(g/k),A(G(Q)\G(A))⊗Mλ)
(47)

and this induces a homomorphism in cohomology

H3(g,K∞, I
G
P (Dχµ)⊗Mλ)⊗Hσf ⊗F,ι C)→ H3(SGKf ,M̃λ,C) (48)

and we want to compose it with the restriction to the cohomology of the
boundary. We have to compose it with the the constant Fourier coefficient
FP : A(G(Q)\G(A))→ A(P (Q)U(A)\G(A)). We know that FP maps into the
subspace

IGP Dχµ ⊗Hσf ⊗F,ι C
FP−→ IGP Dχµ ⊗Hσf ⊗F,ι C

⊕
IGP Dχµ′ ⊗Hσ

wP
f |γP,f |2fP ⊗F,ι C

(49)

where µ′ = wPw ·λ = s2 ·λ = (2+2n2 +n1)γM1
1 + 1

2 (−2+n1)γ2. More precisely
we know that for h ∈ IGP Dχµ ⊗Hσf ⊗F,ι C

FP (h) = h+ C(σ, 0)T loc(0)(h) (50)

where T loc(0) = T loc
∞ ⊗ ⊗pT loc

p . The local intertwining operator at the finite
primes is normalized, it maps the standard spherical function into the standard
spherical function. The operator T loc

∞ will be discussed below.
Our general formula for the constant term yields for an h = h∞ × hf

FP (h) = h+ C(σ∞, λ)T loc
∞ (h∞)

L(f, n1 + n2 + 2)

L(f, n1 + n2 + 3)

ζ(n1 + 1)

ζ(n1 + 2)
× T loc

f (0)(hf )

(51)

(For the following compare SecOps.pdf) We analyze the factor C(σ∞, λ)T loc
∞

more precisely we study the effect of this operator on the cohomology. Let us
look at the map between complexes

T loc,•
∞ : HomK∞(Λ•(g/k), IGP Dχµ ⊗Mλ)→ HomK∞(Λ•(g/k), IGP Dχµ′ ⊗Mλ)

(52)

The intertwining operator T loc
∞ : IGP Dχµ → IGP Dχµ′ has a kernel Dχµ , this is a

discrete series representation. We know that

HomK∞(Λ•(g/k),Dχµ ⊗Mλ) = HomK∞(Λ3(g/k),Dχµ ⊗Mλ) = (53)

H3(g,K∞,Dχµ ⊗Mλ) = CΩ2,1 ⊕ CΩ1,2 (54)

We have the surjective homomorphism

H3(g,K∞,Dχµ ⊗Mλ)→ H3(Λ3(g/k), IGP Dχµ ⊗Mλ) = H1(m,KM
∞ ,Dχµ ⊗H2(uP ,Mλ) = Cω(3)

(55)

the differential form Ω2,1 + ε(λ)Ω1,2 maps to a non zero multiple A(λ)ω(3). (The
factor ε(λ) is a sign depending on λ). We can write Ω2,1− ε(λ)Ω1,2 = dψ where

ψ ∈ HomK∞(Λ2(g/k),Dχµ ⊗Mλ) (56)
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and ω = T loc,2
∞ (ψ) ∈ HomK∞(Λ2(g/k),Dχµ′ ⊗Mλ) is a closed form, hence it

provides a cohomology class. Let us denote this cohomology class by κ(ω(3)).
Choosing ω(3) as a basis element and applying the Eisenstein intertwining

operator (47) yields a homomorphism

Eis(3) ◦ Φι : H1
! ( ˜SM

KM
f

,Mλ(w · λ)F ))(σf ◦ ι)→ H3(SGKf ,M̃λ ⊗ C) (57)

.
The local intertwining operator T loc

∞ maps ω(3) to zero and hence it follows

that the composition r ◦ Eis(3) is the identity, the Eisenstein intertwining oper-

ator yields a section on H1
! ( ˜SM

KM
f

,Mλ(w · λ)F ))(σf ). (Remember w = s2s1). If

we define

H3(SGKf ,M̃λF )(σf ) = r−1(H1
! ( ˜SM

KM
f

,Mλ(w · λ)F ))(σf )) (58)

(Induction does not play a role since the level is one) then we get the decompo-
sition

H3
! (SGKf ,M̃λF )⊕H3

Eis(SGKf ,M̃λF )(σf ) = H3
! (SGKf ,M̃λF )(σf ) (59)

2.2.2 The denominator of the Eisenstein class

We restrict this decomposition to the integral cohomology (better the image of
the integral cohomology in the cohomology with rational coefficients)

H3
int(SGKf ,M̃λF )(σf ) ⊃ H3

!, int(SGKf ,M̃λF )(σf )⊕H3
int,Eis(SGKf ,M̃λF )(σf )

(60)

The image of H3
int,Eis(SGKf ,M̃λF )(σf ) under r is a submodule of finite index in

H1
!, int(

˜SM
KM
f

,Mλ(w · λ)F ))(σf )) and the quotient is

H3
int(SGKf ,M̃λF )(σf )/(H3

!, int(SGKf ,M̃λF )(σf )⊕H3
int,Eis(SGKf ,M̃λF )(σf )) =

H1
! int(

˜SM
KM
f

,Mλ(w · λ)F ))(σf ))/image(r).

(61)

The quotient on the right hand side is OF /∆(σf ) where ∆(σf ) is the denomi-
nator ideal. Tensoring the exact sequence

0→ H3
!, int(SGKf ,M̃λF )(σf )⊕H3

int,Eis(SGKf ,M̃λF )(σf )→ H1
int(

˜SM
KM
f

,Mλ(w · λ)F ))(σf ))→ OF /∆(σf )→ 0

(62)

by OF /∆(σf ) yields an inclusion

Tor1
OF (OF /∆(σf ),OF /∆(σf ) = OF /∆(σf )) ↪→ H3

!, int(SGKf ,M̃λF )(σf )⊗OF /∆(σf )

(63)

and this explains the congruences.
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2.2.3 The secondary class

We choose generators ω(3)(σf )( resp. ω(2)(σwPf |γP,f |2fP )) forH1
int(

˜SM
KM
f

,Mλ(w·

λ)F ))(σf )( resp. H1
int(

˜SM
KM
f

,Mλ(s2 · λ))(σf )) (Perhaps we can do this only lo-

cally on Spec(OF ).) We may arrange these generators such that T arith(σf )(ω(3)(σf )) =
ω(2)(σwPf |γP,f |2fP ). The isomorphism

Φ(3)
ι : H3(g,K∞,Dχµ ⊗Mλ)⊗Hσf ⊗F,ι C

∼−→ H1
int(

˜SM
KM
f

,Mλ(w · λ)F ))(ι ◦ σf )

(64)

maps
(Ω2,1 + ε(λ)Ω1,2)⊗ ω(3)(ι ◦ σf ) 7→ Ω+(σf , ι)ω(σf )

where Ω+(σf , ι) is a period depending on the choice of Φι. The element

(Ω2,1 − ε(λ)Ω1,2)⊗ ω(3)(ι ◦ σf ) = dψ ⊗ ω(3)(ι ◦ σf ).

where ψ ∈ HomK∞(Λ2(g/k), IGP Dχµ ⊗Mλ). The operator T loc(0) in (50) pro-
vides a homomorphism (52)

T loc,2⊗T loc
f : HomK∞(Λ2(g/k), IGP Dχµ⊗Mλ)⊗Hι◦σf → HomK∞(Λ2(g/k), IGP Dχµ′⊗Mλ)⊗H

ι◦σwPf
|γP,f |2fP ))

Under this homomorphism the class ψ is mapped to a multiple of ω(2)(σwPf |γP,f |2fP )).
We can calculate this multiple, during this calculation we see a second period
Ω−(σf , ι) depending on Φι and the ratio of these periods will be our period
Ω(ι ◦ σf ) in formula (43) .

This period is independent of Φι. To state the final result we denote by f
the modular cusp form attached to σf , this is a modular form with coefficients
in F, then ι ◦ f is a modular form with coefficients in C. By Λ(f, s) we denote
the usual completed L -function. We get

C(σ, 0)T loc(κ(ω(3)(ι ◦ σf )) =( 1

Ω(σf , ι))ε(k,m)

Λ(ι ◦ f, n1 + n2 + 2)

Λ(ι ◦ f, n1 + n2 + 3)

1

ζ(−1− n1)

)ζ ′(−n1)

π
ω(2)(σwPf |γP,f |

2fP ))

The factor inside the large brackets is essentially rational ( it is in F and

behaves invariantly under the action of the Galois group) the factor ζ′(−n1)
π

should viewed as a generator of a group of extension classes of mixed motives.
For me the most difficult part in the calculation is the treatment of the

intertwining operator at ∞, this is carried out in SecOps.pdf. At the end of
SecOps.pdf. I discuss the arithmetic applications and the conjectural relation-
ship between the primes dividing the denominator of the expression in the large
brackets and the denominators of the Eisenstein classes in (2.2.2)
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