Algebraic models for rational equivariant stable homotopy theory (joint work with John Greenlees)

Conjecture. (Greenlees) For any compact Lie group G there is an abelian category $\mathcal{A}(G)$ such that

 \mathbb{Q} - G-spectra $\simeq_Q d.$ g. $(\mathcal{A}(G))$

where $\mathcal{A}(G)$ has injective dimension equal to the rank of G.

Verified for finite groups, SO(2), O(2), SO(3) (G.-May, G., S., Barnes)

Theorem 1.(G.-S., '09) For G connected compact Lie, \mathbb{Q} free G-spectra \simeq_Q tor- H^*BG -Mod

Theorem 2.(preprint in progress) The conjecture holds for G any torus.

The rest of this talk will outline the five steps of the proof of Theorem 2 for $G = S^1$.

We will concentrate on step one.

Step 1 Variation on fixed point diagram.

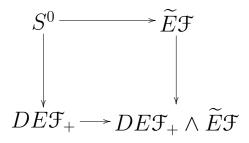
Definitions. Let $\mathcal{F} = \{F\}$ be the family of finite subgroups of G. Define

$$(E\mathcal{F})^{H} = \begin{cases} \text{pt} & H \text{ finite} \\ \emptyset & H \text{ not finite} \end{cases}$$

Define $\widetilde{E}\mathcal{F}$ as the cofiber of the map $E\mathcal{F}_+ \to S^0$.

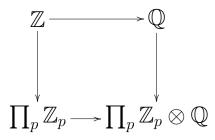
Define $DE\mathcal{F}_+ = \operatorname{Hom}(E\mathcal{F}_+, S^0).$

Proposition. For G = SO(2) there is a homotopy pullback of *G*-equivariant commutative ring spectra.



Analogues

Proposition. There is a pullback square



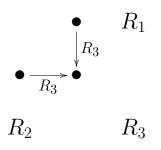
General Case: Assume given a homotopy pullback of rings (ring spectra or DGAs):

$$\begin{array}{c} R \longrightarrow R_1 \\ \downarrow & \downarrow \\ R_2 \longrightarrow R_3 \end{array}$$

Let R^{\downarrow} denote the diagram of rings above with R deleted.

$$\begin{array}{c} R_1 \\ \downarrow \\ R_2 \longrightarrow R_3 \end{array}$$

Definition. R^{\perp} -modules is the category of modules over the ring with three objects with $\text{Hom}(1,3) = R_3$ and $\text{Hom}(2,3) = R_3$.



Such a module is a collection $\{M_i\}_{i=1,2,3}$ of $\{R_i\}$ -modules with structure maps $R_3 \otimes_{R_1} M_1 \to M_3$ and $R_3 \otimes_{R_2} M_2 \to M_3$. (The adjoints of these structure maps are an R_1 -morphism $M_1 \to M_3$ and an R_2 -morphism $M_2 \to M_3$.)

Note R^{\perp} determines such a module.

 R^{\perp} -Mod has three generators R-Mod has only one.

Proposition. The derived category of R-modules is equivalent to the localizing subcategory of R^{\perp} -modules generated by R^{\perp} . This equivalence is

induced by a Quillen equivalence of model categories.

 $R\operatorname{-Mod}\simeq_Q\operatorname{cell}_{\{R^{\lrcorner}\}}\operatorname{-} R^{\lrcorner}\operatorname{-Mod}$

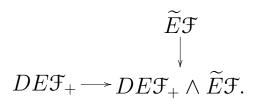
Proof. Consider the adjoint functors on the generators.

$$M \quad \to \quad R^{\bot} \otimes_R M$$

$$\operatorname{pullback}(\{M_i\}) \leftarrow \{M_i\}$$

Step 1:

Rational G-spectra are S^0 -modules; apply above proposition with above square with $R^{\lrcorner} =$



Here cellularize with respect to $\{G/H_+ \land R \downarrow\}_H$.

Conclude:

$$\mathbb{Q}$$
 - G-spectra = S⁰-Mod $\simeq_1 \operatorname{cell}_{\{G/H_+ \land R \lrcorner\}}$ - $R \lrcorner$ -Mod

Step 2: Move from *G*-spectra to spectra.

$$A \operatorname{-Mod}_{(G \operatorname{-spectra})} \leftrightarrow A^G \operatorname{-Mod}_{(\operatorname{spectra.})}$$

This induces an equivalence on each of the cells $\{G/H_+ \wedge R^{\downarrow}\}_H$ for each of the relevant rings.

$$S^0$$
-Mod_G \simeq_1 cell- R^{\perp} -Mod_G \simeq_2 cell- $(R^{\perp})^G$ -Mod

Step 3: Make algebraic: rational commutative ring spectra are modeled by rational commutative DGA's

$$\simeq_2 \operatorname{cell}(R^{\lrcorner})^G \operatorname{-Mod} \simeq_3 \operatorname{cell-d.g.}(R^{\lrcorner})^G_{DGA} \operatorname{-Mod}$$

Step 4: Rigidity

 $(R \lrcorner)^G_{DGA}$ is intrinsically formal.

1.
$$\pi_*(\widetilde{E}\mathcal{F})^G \cong \pi_*S^0 \cong \mathbb{Q}[0].$$

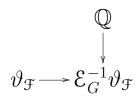
2. Note $E\mathcal{F}_+$ rationally splits as $\lor E\langle F \rangle$. Since $E\langle 1 \rangle = EG$, then

$$(DEG_+)^G = \operatorname{Hom}(EG_+, S^0)^G \simeq \operatorname{Hom}(BG_+, S^0).$$

So
$$\pi_*(DE\mathcal{F}_+)^G \cong \prod_F H^*(BG/F) =: \vartheta_{\mathfrak{F}}.$$

3.
$$\pi_*(DE\mathcal{F}_+ \wedge \widetilde{E}\mathcal{F})^G \cong \mathcal{E}_G^{-1}\vartheta_{\mathcal{F}}$$

Thus $(R \lrcorner)_{DGA}^G$ is quasi-isomorphic to $R_{alg} \lrcorner = H_*(R \lrcorner)_{DGA}^G$.



Summary:

$$S^0$$
-Mod_G \simeq_1 cell- R^{\lrcorner} -Mod_G \simeq_2 cell- $(R^{\lrcorner})^G$ -Mod
 \simeq_3 cell-d.g.- $(R^{\lrcorner})^G_{DGA}$ -Mod \simeq_4 cell-d.g.- R^{\lrcorner}_{alg} -Mod

Step 5: Small algebraic model.

For $G = SO(2), \mathcal{A}(G)$ is the category of modules $N \to M \leftarrow V$ over

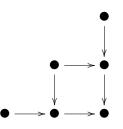
$$\vartheta_{\mathfrak{F}} \longrightarrow \mathcal{E}_{G}^{-1} \vartheta_{\mathfrak{F}}$$

such that both structure maps are isomorphisms.

- 1. Quasi-coherence: $\mathcal{E}_G^{-1}\vartheta_{\mathcal{F}} \otimes_{\vartheta_{\mathcal{F}}} N \cong \mathcal{E}_G^{-1}N \xrightarrow{\cong} M.$
- 2. Extended: $\mathcal{E}_G^{-1}\vartheta_{\mathcal{F}} \otimes_{\mathbb{Q}} V \cong M$.

$$\simeq_4$$
 cell-d.g.- R_{alg} -Mod \simeq_5 d.g. $\mathcal{A}(G)$

Theorem 2. For G = SO(2), the homotopy theory of rational *G*-spectra is modeled by differential graded $\mathcal{A}(G)$ -modules. Here $\mathcal{A}(G)$ has injective dimension one. General outline is the same for all tori, just have larger diagrams. For G a 2-torus, the diagram shape is:



For an n-torus there are n layers.

Can restrict to families of fixed points.

For example, free G-spectra with G = SO(2): have a module N over $H^*(BG)$, with V = 0, M = 0. The quasi-coherence condition says $\mathcal{E}_G^{-1}N \cong M = 0$; that is, N is torsion.

Theorem 1. The homotopy theory of free rational *G*-spectra is modeled by torsion modules over H^*BG .