Real Johnson-Wilson theories

Maia Averett

Mills College

Young Women in Topology
Bonn, Germany
June 2010
Suppose E is a complex oriented generalized cohomology theory.

- $E^*(\mathbb{C}P^\infty) \cong E^*[x]$ for $x \in E^2(\mathbb{C}P^\infty)$
 x = the first Chern class (Euler class) of the tautological line bundle
Suppose E is a complex oriented generalized cohomology theory.

- $E^{*}(\mathbb{C}P^\infty) \cong E^{*}[[x]]$ for $x \in E^{2}(\mathbb{C}P^\infty)$
 - x is the first Chern class (Euler class) of the tautological line bundle

- Examples: $H^{*}(-; R)$, $KU^{*}(-)$, and $MU^{*}(-)$
Suppose E is a complex oriented generalized cohomology theory.

- $E^*(\mathbb{C}P^\infty) \cong E^*[[x]]$ for $x \in E^2(\mathbb{C}P^\infty)$, where x is the first Chern class (Euler class) of the tautological line bundle.

- The classifying map $\mathbb{C}P^\infty \times \mathbb{C}P^\infty \xrightarrow{\mu} \mathbb{C}P^\infty$ of the tensor product of line bundles gives rise to a power series F_E over E^*.

\[
E^*(\mathbb{C}P^\infty) \xrightarrow{\mu^*} E^*(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \\
\| \hspace{1cm} \| \\
E^*[[x]] \xrightarrow{} E^*[[x,y]]
\]
Complex Oriented Theories and Formal Group Laws

Suppose E is a complex oriented generalized cohomology theory.

- $E^*(\mathbb{C}P^\infty) \cong E^*[x]$ for $x \in E^2(\mathbb{C}P^\infty)$

 $x =$ the first Chern class (Euler class) of the tautological line bundle

- The classifying map $\mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty$ of the tensor product of line bundles gives rise to a power series F_E over E^*

\[
E^*(\mathbb{C}P^\infty) \xrightarrow{\mu^*} E^*(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \\
\| \quad \|\]
\[
E^*[[x]] \xrightarrow{\mu} E^*[[x, y]]
\]

- F_E is a formal group law over E^*
Quillen and Landweber

Theorem (Quillen)

If F is a formal group law over R, then there is a unique map $MU^* \to R$ carrying F_{MU} to F_R.

Natural Question: When is this a cohomology theory?

Theorem (Landweber)

Let v_i be the coefficient of x^{p^i} in $\left[p \right] F(x)$. If the sequence $(v_0, v_1, v_2, ...)$ forms a regular sequence in R for every prime p, then $MU^*(X) \otimes MU^* R$ is a cohomology theory.
Theorem (Quillen)

If F *is a formal group law over* R, *then there is a unique map* $MU^* \to R$ *carrying* F_{MU} *to* F_R.

Given a formal group law F over R, we can form

$$MU^*(X) \otimes_{MU^*} R$$
Quillen and Landweber

Theorem (Quillen)

If F *is a formal group law over* R, *then there is a unique map* $\text{MU}^* \to R$ *carrying* F_{MU} *to* F_R.

Given a formal group law F over R, we can form

$$\text{MU}^*(X) \otimes_{\text{MU}^*} R$$

Natural Question: When is this a cohomology theory?

Theorem (Landweber)

Let v_i *be the coefficient of* x^{p^i} *in* $[p]_F(x)$. *If the sequence* (v_0, v_1, v_2, \ldots) *forms a regular sequence in* R *for every prime* p, *then* $\text{MU}^*(X) \otimes_{\text{MU}^*} R$ *is a cohomology theory.*
Two cohomology theories

Fix prime \(p = 2 \).

- **Johnson-Wilson theory** \(E(n) \): Landweber exact theory with
 \[
 E(n)_* = \mathbb{Z}_2(v_1, \ldots, v_{n-1}, v_n^\pm), \quad |v_i| = 2(2^i - 1)
 \]

- **Morava \(E \)-theory** \(E_n \): Landweber exact theory with
 \[
 (E_n)_* = W(\mathbb{F}_{2^n})[u_1, \ldots, u_{n-1}][u^\pm], \quad |u_i| = 0, |u| = 2
 \]

- Related by completion and homotopy fixed points:
 \[
 \widehat{E(n)} = L_{K(n)}E(n), \quad E_n(Gal) = E_n^{hG}
 \]
 \[
 \widehat{E(n)} \simeq E_n(Gal)
 \]
 \[
 \widehat{E(n)}_* = (E(n)_*)_{I_n} = \mathbb{Z}_2(v_1, \ldots, v_{n-1})[v_n^\pm]
 \]

Maia Averett (Mills College)
A natural question

We have $\hat{E}(n) \simeq E_n(Gal)$ and...

\[\mathbb{Z}/2 \text{ acts on } \hat{E}(n) \]

Complex conjugation action

\[\mathbb{Z}/2 \text{ acts on } E_n(Gal) \]

Action of the subgroup of Morava stabilizer group generated by the formal inverse
A natural question

We have $\hat{E}(n) \simeq E_n(Gal)$ and...

$\mathbb{Z}/2$ acts on $E(n)$
Complex conjugation action

$\mathbb{Z}/2$ acts on $E_n(Gal)$
Action of the subgroup of Morava stabilizer group
generated by the formal inverse

Natural question: Are these actions related?
A natural question

We have $\hat{E}(n) \simeq E_n(\text{Gal})$ and...

$\mathbb{Z}/2$ acts on $\hat{E}(n)$

Complex conjugation action

$\mathbb{Z}/2$ acts on $E_n(\text{Gal})$

Action of the subgroup of Morava stabilizer group generated by the formal inverse

Natural question: Are these actions related?

YES
A natural question

We have $\widehat{E(n)} \simeq E_n(\text{Gal})$ and...

$\mathbb{Z}/2$ acts on $\widehat{E(n)}$

Complex conjugation action

$\mathbb{Z}/2$ acts on $E_n(\text{Gal})$

Action of the subgroup of Morava stabilizer group generated by the formal inverse

Natural question: Are these actions related?

YES

First a little more background...
Real theories

Complex conjugation action on $E(n)$ arises in context of Real theories ($\mathbb{Z}/2$-equivariant $RO(\mathbb{Z}/2)$-graded)

- Atiyah, 1966: Real K-theory KR

 $$\text{KR}(X) = G \left\{ \text{cplx v.b. } \pi : E \to X \text{ \mid \text{antilin. on fibers, } } \pi \text{ equiv} \right\}$$

- Landweber, 1967: Real cobordism MR
 Uses $\mathbb{Z}/2$-action of complex conjugation on $BU(k)$.

- Araki, 1978: Defined BPR using a Quillen idempotent argument

- Hu & Kriz, 2001: Defined $\text{KR}(n)$ and $\text{ER}(n)$ as MR-modules
Real theories

Complex conjugation action on $E(n)$ arises in context of Real theories
($\mathbb{Z}/2$-equivariant $RO(\mathbb{Z}/2)$-graded)

- Atiyah, 1966: Real K-theory KR
 \[
 \text{KR}(X) = G \left\{ \text{cplx v.b. } \pi : E \rightarrow X \quad \begin{array}{|c|} \hline
 E, X \text{ } \mathbb{Z}/2\text{-spaces} \\
 \text{antilin. on fibers, } \pi \text{ equiv} \\
 \hline
 \end{array} \right\}
 \]

- Landweber, 1967: Real cobordism MR
 Uses $\mathbb{Z}/2$-action of complex conjugation on $BU(k)$.

Maia Averett (Mills College) Real Johnson-Wilson theories YWT 6 / 18
Real theories

Complex conjugation action on $E(n)$ arises in context of Real theories ($\mathbb{Z}/2$-equivariant $RO(\mathbb{Z}/2)$-graded)

- Atiyah, 1966: Real K-theory KR
 \[
 \text{KR}(X) = G \left\{ \text{cplx v.b. } \pi : E \to X \right\} \quad \text{antilin. on fibers, } \pi \text{ equiv}
 \]

- Landweber, 1967: Real cobordism MR
 Uses $\mathbb{Z}/2$-action of complex conjugation on $BU(k)$.

- Araki, 1978: Defined BPR using a Quillen idempotent argument
Real theories

Complex conjugation action on $E(n)$ arises in context of Real theories ($\mathbb{Z}/2$-equivariant $RO(\mathbb{Z}/2)$-graded)

- **Atiyah, 1966**: Real K-theory KR
 \[
 \text{KR}(X) = G \left\{ \text{cplx v.b. } \pi : E \to X \right\}
 \]

 \begin{align*}
 E, X \ & \mathbb{Z}/2\text{-spaces} \\
 \text{antilin. on fibers, } \pi \ & \text{equiv}
 \end{align*}

- **Landweber, 1967**: Real cobordism MR
 Uses $\mathbb{Z}/2$-action of complex conjugation on $BU(k)$.

- **Araki, 1978**: Defined BPR using a Quillen idempotent argument

- **Hu & Kriz, 2001**: Defined $\text{KR}(n)$ and $\text{ER}(n)$ as MR-modules
Kitchloo and Wilson’s real Johnson-Wilson theory

Real theory $\mathbb{E} \leadsto$ naïve $\mathbb{Z}/2$-equivariant theory

- $KR \leadsto KU$
- $MR \leadsto MU$
- $ER(n) \leadsto E(n)$

Taking homotopy fixed points gives new theories:

- $KU_{\mathbb{Z}/2} = KO$
- $E_{\mathbb{Z}/2} = ER(n)$, Kitchloo and Wilson’s “real Johnson-Wilson”

Moral: complex forget \leftarrow Real fixed pts \rightarrow real
Kitchloo and Wilson’s real Johnson-Wilson theory

Real theory $E \rightsquigarrow$ naïve $\mathbb{Z}/2$-equivariant theory

- $KR \rightsquigarrow KU$
- $MR \rightsquigarrow MU$
- $ER(n) \rightsquigarrow E(n)$

Taking homotopy fixed points gives new theories:

- $KU^{h\mathbb{Z}/2} = KO$
- $E(n)^{h\mathbb{Z}/2} = ER(n)$, Kitchloo and Wilson’s “real Johnson-Wilson”
Kitchloo and Wilson’s real Johnson-Wilson theory

Real theory $\mathbb{E} \rightsquigarrow \text{naïve } \mathbb{Z}/2$-equivariant theory

- $KR \rightsquigarrow KU$
- $MR \rightsquigarrow MU$
- $ER(n) \rightsquigarrow E(n)$

Taking homotopy fixed points gives new theories:

- $KU^{h\mathbb{Z}/2} = KO$
- $E(n)^{h\mathbb{Z}/2} = ER(n)$, Kitchloo and Wilson’s “real Johnson-Wilson”

Moral:

$$\text{complex} \xlongleftarrow{\text{forget}} \text{Real} \xrightarrow{\text{fixed pts}} \text{real}$$
Kitchloo and Wilson’s real Johnson-Wilson theory

The \(ER(n) \) are higher real \(K \)-theories.

\[
E(1) = KU(2) \quad \quad ER(1) = KO(2)
\]

Kitchloo-Wilson: There is a fibration

\[
\Sigma^{\lambda(n)} ER(n) \xrightarrow{\times(n)} ER(n) \rightarrow E(n)
\]

that reduces when \(n = 1 \) to the classical fibration

\[
\Sigma KO(2) \xrightarrow{\eta} KO(2) \rightarrow KU(2)
\]

Makes computations feasible (Bockstein spectral sequence).

\[
\lambda(n) = 2^{2n+1} - 2^{n+2} + 1
\]
A natural question

We have $\hat{E}(n) \simeq E_n(Gal)$ and...

$\mathbb{Z}/2$ acts on $\hat{E}(n)$

Complex conjugation action

$\mathbb{Z}/2$ acts on $E_n(Gal)$

Action of the subgroup of Morava stabilizer group generated by the formal inverse

Natural question: Are these actions related?
The Morava stabilizer group

Morava E-theory:

- Landweber exact cohomology theory E_n

\[(E_n)^* = \mathcal{W}(\mathbb{F}_{2^n})[[u_1, \ldots, u_{n-1}]][u^\pm] \]
Morava E-theory:

- Landweber exact cohomology theory E_n
- $(E_n)^* = W(F_{2^n})[[u_1, \ldots, u_{n-1}]][u^\pm]$
- F_{E_n} is the universal deformation of the Honda formal group law H_n
The Morava stabilizer group

Morava E-theory:

- Landweber exact cohomology theory E_n

- $(E_n)^* = W(\mathbb{F}_{2^n})[[u_1, \ldots, u_{n-1}]][u^\pm]

- F_{E_n} is the universal deformation of the Honda formal group law H_n

Morava stabilizer group: $S_n := \text{Aut}(H_n)$
The Morava stabilizer group

Morava \(E\)-theory:

- Landweber exact cohomology theory \(E_n\)
- \((E_n)^* = W(\mathbb{F}_2^n)[[u_1, \ldots, u_{n-1}]][u^\pm]\)
- \(F_{E_n}\) is the universal deformation of the Honda formal group law \(H_n\)

Morava stabilizer group: \(S_n := \text{Aut}(H_n)\)

Note: \(S_n\) has a subgroup of order two generated by the formal inverse \(i(x)\).
The Morava stabilizer group

Morava E-theory:

- Landweber exact cohomology theory E_n
- $(E_n)^* = \mathcal{W}(\mathbb{F}_2^n)[[u_1, \ldots, u_{n-1}]][u^\pm]$
- F_{E_n} is the universal deformation of the Honda formal group law H_n

Morava stabilizer group: $S_n := \text{Aut}(H_n)$

Note: S_n has a subgroup of order two generated by the formal inverse $i(x)$.

Extended Morava stabilizer group: $G_n := \text{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2) \rtimes S_n$
Lubin-Tate theory $\Rightarrow \mathbb{G}_n$ acts on $(E_n)_*$
Hopkins-Miller-Goerss

- Lubin-Tate theory $\Rightarrow \mathbb{G}_n$ acts on $(E_n)_*$
- Hopkins-Miller-Goerss $\Rightarrow \mathbb{G}_n$ acts on E_n by E_∞-maps
Hopkins-Miller-Goerss

- Lubin-Tate theory $\Rightarrow \mathbb{G}_n$ acts on $(E_n)_*$

- Hopkins-Miller-Goerss $\Rightarrow \mathbb{G}_n$ acts on E_n by E_∞-maps

- Get interesting E_∞-ring spectra by E_n^{hK} for $K \subseteq \mathbb{G}_n$
 e.g. $E_n^{h\mathbb{G}_n} = L_{K(n)}S$
Hopkins-Miller-Goerss

- Lubin-Tate theory ⇒ \mathbb{G}_n acts on $(E_n)_*$
- Hopkins-Miller-Goerss ⇒ \mathbb{G}_n acts on E_n by E_∞-maps
- Get interesting E_∞-ring spectra by E_n^{hK} for $K \subseteq \mathbb{G}_n$
 e.g. $E_n^{h\mathbb{G}_n} = L_{K(n)}S$

Define $E_n(\text{Gal}) := E_n^{hK}$ for $K = \text{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2) \times \mathbb{F}_{2^n}^\times$.
Lubin-Tate theory $\Rightarrow \mathbb{G}_n$ acts on $(E_n)_*$

Hopkins-Miller-Goerss $\Rightarrow \mathbb{G}_n$ acts on E_n by E_∞-maps

Get interesting E_∞-ring spectra by E_n^{hK} for $K \subseteq \mathbb{G}_n$
e.g. $E_n^{h\mathbb{G}_n} = L_{K(n)}S$

Define $E_n(\text{Gal}) := E_n^{hK}$ for $K = \text{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2) \rtimes \mathbb{F}_{2^n}^\times$.

$E_n(\text{Gal})_* = \hat{\mathbb{Z}}_2[[v_1, \ldots, v_{n-1}]][v_n^\pm]$

Order 2 subgroup generated by $i(x)$ acts on $E_n(\text{Gal})$
A natural question

We have $\widehat{E(n)} \simeq E_n(\text{Gal})$ and...

$\mathbb{Z}/2$ acts on $\widehat{E(n)}$

Complex conjugation action

$\mathbb{Z}/2$ acts on $E_n(\text{Gal})$

Action of the subgroup of Morava stabilizer group generated by the formal inverse
A natural question

We have $\hat{E}(n) \simeq E_n(\text{Gal})$ and...

$\mathbb{Z}/2$ acts on $\hat{E}(n)$
Complex conjugation action

$\mathbb{Z}/2$ acts on $E_n(\text{Gal})$
Action of the subgroup of Morava stabilizer group generated by the formal inverse

Natural question: Are these actions related?
A natural question

We have $\hat{E}(n) \simeq E_n(\text{Gal})$ and...

$\mathbb{Z}/2$ acts on $\hat{E}(n)$

Complex conjugation action

$\mathbb{Z}/2$ acts on $E_n(\text{Gal})$

Action of the subgroup of Morava stabilizer group generated by the formal inverse

Natural question: Are these actions related?

YES
Answer: Yes

Theorem (A.)

There is an equivalence

\[
\widehat{E(n)}^{h\mathbb{Z}/2} \cong E_n(Gal)^{h\mathbb{Z}/2}
\]

and the natural map

\[
ER(n) = E(n)^{h\mathbb{Z}/2} \rightarrow \widehat{E(n)}^{h\mathbb{Z}/2}
\]

induces an algebraic completion on coefficients.
Consequences

Corollary

After completion, $ER(n)$ is an E_∞-ring spectrum.
Consequences

Corollary

After completion, \(ER(n) \) is an \(E_\infty \)-ring spectrum.

Corollary

\[
(E_n(\text{Gal})^{h\mathbb{Z}/2})_* = \mathbb{Z}_2[[\hat{\nu}_k(l) \mid 0 \leq k < n, l \in \mathbb{Z}]] [x, \nu_n^{\pm 2^{n+1}}] / J
\]

\(J \) is the ideal generated by the relations

\[
\hat{\nu}_0(0) = 2 \quad x^{2^{k+1} - 1} \hat{\nu}_k(l) = 0
\]

and for \(k \leq m \),

\[
\hat{\nu}_m(l) \hat{\nu}_k(2^{m-k}s) = \hat{\nu}_m(l + s) \hat{\nu}_k(0)
\]

\[
|x| = \lambda(n) = 2^{2n+1} - 2^{n+2} + 1 \quad |\nu_n^{2^{n+1}}| = 2^{n+2}(2^n - 1)^2
\]

\[
|\hat{\nu}_k(l)| = 2(2^k - 1) + l2^{k+2}(2^n - 1)^2 - 2(2^k - 1)(2^n - 1)^2
\]
A bit about the proof

We’d like *equivariant* map \(\varphi : \hat{E}(n) \to E_n(\text{Gal}) \) that is also an equivalence. But we only have a *homotopy equivariant* one.
A bit about the proof

We’d like *equivariant* map \(\varphi : \hat{E}(n) \to E_n(\text{Gal}) \) that is also an equivalence.

But we only have a *homotopy equivariant* one.

- Try replacing \(\hat{E}(n) \) by \(\hat{E}(n) \wedge F(\hat{E}(n), E_n(\text{Gal}))_\varphi \)
- \(\varphi \) homotopy equivariant \(\Rightarrow \) conjugation action on \(F(\hat{E}(n), E_n(\text{Gal}))_\varphi \)
- \(ev : \hat{E}(n) \wedge F(\hat{E}(n), E_n(\text{Gal}))_\varphi \to E_n(\text{Gal}) \) is honestly equivariant
A bit about the proof

We’d like *equivariant* map $\varphi : \hat{E}(n) \to E_n(\text{Gal})$ that is also an equivalence.

But we only have a *homotopy equivariant* one.

- Try replacing $\hat{E}(n)$ by $\hat{E}(n) \wedge F(\hat{E}(n), E_n(\text{Gal})))\varphi$

- φ homotopy equivariant \Rightarrow conjugation action on $F(\hat{E}(n), E_n(\text{Gal})))\varphi$

- $ev : \hat{E}(n) \wedge F(\hat{E}(n), E_n(\text{Gal})))\varphi \to E_n(\text{Gal})$ is honestly equivariant

- If $F(\hat{E}(n), E_n(\text{Gal})))\varphi \simeq pt$, then $\hat{E}(n) \wedge F(\hat{E}(n), E_n(\text{Gal})))\varphi \simeq \hat{E}(n)$.

- Need appropriate category so that $F(\hat{E}(n), E_n(\text{Gal})))\varphi \simeq pt$. Try S-algebra maps.

- Problem: not known if $\mathbb{Z}/2$-action on $E(n)$ is a S-algebra map.
A bit about the proof

- Instead use $F_{S-\text{alg}}(v_n^{-1}\widehat{MU}, E_n(\text{Gal}))$. New problem: not contractible.

- Dirty trick: create S-algebra T so that $F_{T-\text{alg}}(v_n^{-1}\widehat{MU}, E_n(\text{Gal}))$ is homotopy discrete.
A bit about the proof

- Instead use $F_{S-alg}(v_n^{-1}\widehat{MU}, E_n(Gal))$. New problem: not contractible.

- Dirty trick: create S-algebra T so that $F_{T-alg}(v_n^{-1}\widehat{MU}, E_n(Gal))$ is homotopy discrete.

- $T =$ free S-algebra on a bunch of spheres
- $\pi_*(v_n^{-1}\widehat{MU}) = \pi_*(\widehat{E(n)} \wedge T)$
- Compute BKSS for $F_{T-alg}(\cdot, E_n(Gal))$
- A map $\widehat{E(n)} \wedge T \to v_n^{-1}\widehat{MU}$ gives a map of spectral sequences that is an iso on E_2
- Since that for $\widehat{E(n)} \wedge T$ collapses, so does that for $v_n^{-1}\widehat{MU}$
A bit about the proof

- Now
 \[
 \nu_n^{-1} \widehat{MU} \wedge F_{T\text{-alg}}(\nu_n^{-1} \widehat{MU}, E_n(\text{Gal}))_\nu \rightarrow E_n(\text{Gal})
 \]
 is equivariant.

- After taking homotopy fixed points, obtain a factorization

\[
\begin{align*}
\nu_n^{-1} \widehat{MU}^{h\mathbb{Z}/2} & \rightarrow E_n(\text{Gal})^{h\mathbb{Z}/2} \\
\widehat{E(n)}^{h\mathbb{Z}/2} & \rightarrow
\end{align*}
\]
Thank you!