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Overview

The notion of an operad emerged in algebraic topology in May’s study of iterated loopspaces [May].
Operads model properties of operations such as associativity and commutativity. The operations encoded
in a given operad are realized by algebras over this operad.

Let dg-mod denote the category of differential graded modules over a fixed ground ring k. Examples
of algebras over operads in dg-mod include A∞-algebras and E∞-algebras, generalizing the concept of
associativity and commutativity:

• An A∞-algebra is a differential graded module equipped with a multiplication that is associative up
to homotopies of all possible higher degrees.

• An E∞-algebra is a differential graded module with a multiplication which is associative and com-
mutative up to all higher homotopies.

These algebras are algebras over so called En-operads, the notion of A∞-algebras corresponding to the
case n = 1, the example of E∞-algebras corresponding to n =∞.

To every (sufficiently good) operad O we can associate a homology theory HO
∗ and a cohomology theory

H∗
O defined for algebras over the operad O. In particular, we can associate a homology and a cohomology

theory to En-operads.

By neglect of structure every ordinary commutative associative algebra A can be thought of as an algebra
over an En-operad. In particular, the homology and cohomology theories associated to the operad are
defined for A.

The cases n = 1 and n =∞ once again provide familiar examples:
For n = 1 we retrieve Hochschild homology and cohomology, the classical theory associated to associative
algebras. For n = ∞ the homology and cohomology associated to E∞-algebras coincides with André-
Quillen homology and cohomology if applied to ordinary commutative associative algebras.

The project described here is concerned with gaining knowledge about the intermediate cases 1 < n <∞
by constructing and investigating additional structure of En-cohomology of commutative associative alge-
bras.

Operads

Operads were introduced in 1972 by May in his work [May] on iterated loop spaces. We only give a rough
definition:

Definition 1 An operad O consists of a collection (O(j))j≥0 of objects in a given symmetric monoidal
category, so that each O(j) is endowed with an action of the symmetric group Σj, and of morphisms

γs,r1,...,rs : O(s)⊗ O(r1)⊗ ...⊗ O(rs)→ O(r1 + ... + rs),

for every choice of s, r1, ..., rs ≥ 0, such that certain associativity and unit axioms are satisfied.

The intuition behind this concept is that operads encode operations: Roughly speaking, the objects O(j)
consist of operations with j inputs and one output, and the morphisms γs,r1,...,rs describe the new operation
we get if we substitute the s inputs of a given s-ary operation by the outputs of s other given operations.

The prototypical model for the structure of an operad is therefore the endomorphism operad EndX for a
given object X in a symmetric monoidal category, with

EndX(j) := Mor(X⊗j, X),

where the symmetric group acts by permuting the factors of X⊗j and the morphisms γ correspond to
substitution of arguments as described above.

Definition 2 An object X in the given symmetric monoidal category is called an algebra over O, if it real-
izes the operations abstractly encoded in the operad, i.e. if there is a morphism of operads O→ EndX(j).

For example, there is an operad Ass in the category of modules over a ground ring k, so that being
an associative k-algebra is equivalent to being an algebra over Ass. Similarly, there is an algebra Com
encoding commutative algebras.

May used the little n-cubes operad Cn, an operad in the category of topological spaces, in [May] to generalize
a result from Boardman and Vogt [BV], proving a recognition principle for iterated loop spaces:

Theorem 1 (May) Let Y be a connected CW complex with nondegenerate basepoint, 1 ≤ n ≤ ∞. If Y is
an algebra over Cn, there is a topological space X with Y ∼ ΩnX.

This result holds for a greater class of operads: Instead of the little n-cubes operad one can consider any
En-operad, an operad equivalent in some sense to the little n-cubes operad.

Commutative Algebras as En-Algebras and their Homology

Commutative Algebras as En-Algebras

There is a variant of the notion of an En-operad in the category dg-mod of chain complexes. For n = 1
and n = ∞ one retrieves the notions of A∞- and E∞-algebras, generalizing the notions of associativity
and commutativity.
An obvious example of an E∞-algebra is given by any strictly commutative and associative algebra over
the ground ring.

One can think of algebras over En-operads with arbitrary n as some kind of interpolation between these
two cases. In particular, every ordinary commutative associative algebra is an E∞-algebra and therefore
an algebra over some En-operad for any other n as well.

En-Homology

To every En-operad one can define a homology and a cohomology theory. Considering a commutative
associative algebra as an algebra over an En-operad, this particularly defines a homology and a cohomol-
ogy theory for commutative and associative algebras, retrieving familiar theories in the cases n = 1 and
n =∞ as described above.

Recent developments provide new approaches to En-homology. In [F] Fresse generalizes the construction
of the classical bar complex of differential graded algebras to En-algebras. He finds that one can iterate
this construction n times for a given En-algebra and that the iterated bar complex serves as some sort of
delooping:

Theorem 2 (Fresse) If A is a (sufficiently good) algebra over an (sufficiently good) En-operad En, the
En-homology of A equals the homology of the n-th desuspension of the n-th iterated bar complex of the
chain complex A:

HEn
∗ (A) ∼= H∗(Σ

−nBn(A)).

He also shows that in the case of an ordinary commutative associative algebra the operadic bar construc-
tion coincides with the classical bar construction of Eilenberg and Mac Lane [EM].

In [LR] Livernet and Richter observe that En-homology of commutative associative algebras may be in-
terpreted as the homology of certain functors. More precisely, they define the En-homology of functors
F : Epin → k−mod from the category Epin of planar trees with n levels to the category of k-modules by
constructing an explicit multicomplex associated to F .
They further show that one can calculate the homology of these functors via derived functors:

Theorem 3 (Livernet-Richter) There exists a functor bepi
n : Epin → k−mod so that for every functor

F : Epin → k−mod one has

HEn
∗ (F ) ∼= TorEpin

∗ (bepi
n , F )

Additional Structure

The project described is mainly concerned with investigating two possible additional structures on En-
cohomology:

• For n = 1 and n =∞, the associated cohomology theories, i.e. Hochschild and André-Quillen coho-
mology, are equipped with a well known graded lie bracket.
One aim of this project is to investigate if the approaches to En-cohomology described above provide
an opportunity to endow En-cohomology with a graded lie bracket for arbitrary n.

• Objects expressed via Ext functors naturally allow the definition of cohomology operations. One aim
of this project is to construct and understand cohomology operations on En-cohomology by utilizing
an interpretation of En-cohomology in terms of Ext functors similar to the results in [LR].
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