HOMOTOPY & COHOMOLOGY

Young Women in Topology

Bonn, June 25 – 27, 2010

E_n -Homology

Stephanie Ziegenhagen

Overview

The notion of an operad emerged in algebraic topology in May's study of iterated loopspaces [May]. Operads model properties of operations such as associativity and commutativity. The operations encoded in a given operad are realized by algebras over this operad.

Let dg-mod denote the category of differential graded modules over a fixed ground ring k. Examples of algebras over operads in dg-mod include A_{∞} -algebras and E_{∞} -algebras, generalizing the concept of associativity and commutativity:

- An A_{∞} -algebra is a differential graded module equipped with a multiplication that is associative up to homotopies of all possible higher degrees.
- An E_{∞} -algebra is a differential graded module with a multiplication which is associative and commutative up to all higher homotopies.

These algebras are algebras over so called E_n -operads, the notion of A_∞ -algebras corresponding to the case n = 1, the example of E_∞ -algebras corresponding to $n = \infty$.

To every (sufficiently good) operad 0 we can associate a homology theory H^0_* and a cohomology theory H^*_0 defined for algebras over the operad 0. In particular, we can associate a homology and a cohomology theory to E_n -operads.

By neglect of structure every ordinary commutative associative algebra A can be thought of as an algebra over an E_n -operad. In particular, the homology and cohomology theories associated to the operad are defined for A.

The cases n = 1 and $n = \infty$ once again provide familiar examples:

For n = 1 we retrieve Hochschild homology and cohomology, the classical theory associated to associative algebras. For $n = \infty$ the homology and cohomology associated to E_{∞} -algebras coincides with André-Quillen homology and cohomology if applied to ordinary commutative associative algebras.

The project described here is concerned with gaining knowledge about the intermediate cases $1 < n < \infty$ by constructing and investigating additional structure of E_n -cohomology of commutative associative algebras.

Operads

Operads were introduced in 1972 by May in his work [May] on iterated loop spaces. We only give a rough definition:

Definition 1 An operad \Box consists of a collection $(\Box(j))_{j\geq 0}$ of objects in a given symmetric monoidal category, so that each $\Box(j)$ is endowed with an action of the symmetric group Σ_j , and of morphisms

$$\gamma_{s,r_1,\ldots,r_s} \colon \mathsf{O}(s) \otimes \mathsf{O}(r_1) \otimes \ldots \otimes \mathsf{O}(r_s) \to \mathsf{O}(r_1 + \ldots + r_s),$$

for every choice of $s, r_1, ..., r_s \ge 0$, such that certain associativity and unit axioms are satisfied.

The intuition behind this concept is that operads encode operations: Roughly speaking, the objects O(j) consist of operations with j inputs and one output, and the morphisms $\gamma_{s,r_1,\ldots,r_s}$ describe the new operation we get if we substitute the s inputs of a given s-ary operation by the outputs of s other given operations.

The prototypical model for the structure of an operad is therefore the endomorphism operad End_X for a given object X in a symmetric monoidal category, with

$$End_X(j) := Mor(X^{\otimes j}, X),$$

where the symmetric group acts by permuting the factors of $X^{\otimes j}$ and the morphisms γ correspond to substitution of arguments as described above.

Definition 2 An object X in the given symmetric monoidal category is called an algebra over O, if it realizes the operations abstractly encoded in the operad, i.e. if there is a morphism of operads $O \rightarrow End_X(j)$.

For example, there is an operad Ass in the category of modules over a ground ring k, so that being an associative k-algebra is equivalent to being an algebra over Ass. Similarly, there is an algebra Comencoding commutative algebras.

May used the *little n-cubes operad* C_n , an operad in the category of topological spaces, in [May] to generalize a result from Boardman and Vogt [BV], proving a recognition principle for iterated loop spaces:

Theorem 1 (May) Let Y be a connected CW complex with nondegenerate basepoint, $1 \le n \le \infty$. If Y is an algebra over C_n , there is a topological space X with $Y \sim \Omega^n X$.

This result holds for a greater class of operads: Instead of the little *n*-cubes operad one can consider any E_n -operad, an operad equivalent in some sense to the little *n*-cubes operad.

Commutative Algebras as E_n -Algebras and their Homology

Commutative Algebras as E_n -Algebras

There is a variant of the notion of an E_n -operad in the category dg-mod of chain complexes. For n = 1and $n = \infty$ one retrieves the notions of A_{∞} - and E_{∞} -algebras, generalizing the notions of associativity and commutativity.

An obvious example of an E_{∞} -algebra is given by any strictly commutative and associative algebra over the ground ring.

One can think of algebras over E_n -operads with arbitrary n as some kind of interpolation between these two cases. In particular, every ordinary commutative associative algebra is an E_{∞} -algebra and therefore an algebra over some E_n -operad for any other n as well.

E_n -Homology

To every E_n -operad one can define a homology and a cohomology theory. Considering a commutative associative algebra as an algebra over an E_n -operad, this particularly defines a homology and a cohomology theory for commutative and associative algebras, retrieving familiar theories in the cases n = 1 and $n = \infty$ as described above.

Recent developments provide new approaches to E_n -homology. In [F] Fresse generalizes the construction of the classical bar complex of differential graded algebras to E_n -algebras. He finds that one can iterate this construction n times for a given E_n -algebra and that the iterated bar complex serves as some sort of delooping:

Theorem 2 (Fresse) If A is a (sufficiently good) algebra over an (sufficiently good) E_n -operad E_n , the E_n -homology of A equals the homology of the n-th desuspension of the n-th iterated bar complex of the chain complex A:

$H^{\mathbf{E}_n}_*(A) \cong H_*(\Sigma^{-n}B^n(A)).$

He also shows that in the case of an ordinary commutative associative algebra the operadic bar construction coincides with the classical bar construction of Eilenberg and Mac Lane [EM].

In [LR] Livernet and Richter observe that E_n -homology of commutative associative algebras may be interpreted as the homology of certain functors. More precisely, they define the E_n -homology of functors $F \colon \operatorname{Epi}_n \to k-\operatorname{mod}$ from the category Epi_n of planar trees with n levels to the category of k-modules by constructing an explicit multicomplex associated to F.

They further show that one can calculate the homology of these functors via derived functors:

Theorem 3 (Livernet-Richter) There exists a functor b_n^{epi} : $Epi_n \to k \mod so$ that for every functor $F: Epi_n \to k \mod so$ that

 $H^{\mathbf{E}_n}_*(F) \cong \operatorname{Tor}^{\operatorname{Epi}_n}_*(b^{\operatorname{epi}}_n,F)$

Additional Structure

The project described is mainly concerned with investigating two possible additional structures on E_n -cohomology:

- For n = 1 and n = ∞, the associated cohomology theories, i.e. Hochschild and André-Quillen cohomology, are equipped with a well known graded lie bracket.
 One aim of this project is to investigate if the approaches to E_n-cohomology described above provide an opportunity to endow E_n-cohomology with a graded lie bracket for arbitrary n.
- Objects expressed via Ext functors naturally allow the definition of cohomology operations. One aim of this project is to construct and understand cohomology operations on E_n -cohomology by utilizing an interpretation of E_n -cohomology in terms of Ext functors similar to the results in [LR].

References

- [BV] J. M. Boardman, R.M. Vogt, Homotopy-everything H-spaces,
 Bulletin of the American Mathematical Society, 74, (1968), S. 1117-1122.
- [EM] S. Eilenberg, S. Mac Lane, On the groups of $H(\Pi, n)$. I, Annals of Mathematics. Second Series, 58, (1953), S. 55-106.
- [F] **B. Fresse**, Iterated bar complexes of E-infinity algebras and homology theories, preprint arXiv:0810.5147.
- [LR] M. Livernet, B. Richter, An interpretation of E_n -homology as functor homology, preprint arXiv:0907.1283v2.
- [May] John P. May, *The geometry of iterated loop spaces*, Lectures Notes in Mathematics, Vol. 271, Springer-Verlag, (1972).

Advisor: B. Richter Universität Hamburg