Let F_0 be a fusion system over a finite p-group S. A morphism of fusion systems $F_0 \to F_0'$ is a pair (Φ, ϕ) consisting of a group homomorphism $\Phi : S \to S'$ and a covariant functor $\phi : F_0 \to F_0'$ with the following properties:

- for any subgroup Q of S, we have $\phi(Q) = \Phi(Q)$;
- for any morphism $\phi : Q \to R$ in F_0, we have $\Phi(\phi) = \phi \circ \phi$.

Definition 6 This allows us to define the category of fusion systems over finite p-groups: $\text{FUSION}(p)$ with:

- objects: fusion systems over finite p-groups and
- morphisms: morphisms between corresponding fusion systems.

Definition 7 Let G be a discrete group. A finite p-group $S \leq G$ is called a Sylow p-subgroup of G if all finite p-groups of G are subconjugate to S.

Bemerkungen 1 Infinite discrete groups need not have Sylow p-subgroups. An example can be $C_p \times C_p$.

Definition 8 Let p be a prime. Denote by $\text{GROUP}_{p, q}$, the full subcategory of groups which have a Sylow p-subgroup.

The cohomology of a fusion system is defined as $H^n(F) := \text{lim}_{K} H^n(K)$, where K runs over $\text{GROUP}_{p, q}$.

This generalizes the classical Theorem of Cartan and Eilenberg, see [Cartan-Eilenberg], that the cohomology of a finite group is given as the taking of the cohomology of the Sylow p-subgroup.

Not every fusion system is the fusion system of a finite group. However, in 2007 G. Robinson and I. Leary together with R. Stancu independently constructed groups realizing arbitrary fusion systems, see [Leary-Stancu]. Their models are iterated HNN constructions while Robinson’s models are iterated amalgams of finite groups. [Robinson].

Since it was our goal to associate a classifying space to a saturated fusion system, at least up to F_2-homology, it is a natural question to compare the cohomology of the group models realizing a given fusion system to the cohomology of the fusion system. This will be done by constructing homology decompositions.

Definition 9 A ring homomorphism $\gamma : A \to B$ is called an F-homomorphism in the sense of Quillen, see [Quillen], if every element in the kernel is adjusted and for every element $b \in B$ there exist $k > 0$ such that $b^k \in \text{Im}(\gamma)$.

Throughout this entire discussion we omit the notion of saturation which is a technical condition modelled on the way a Sylow p-subgroup is embedded in a finite group.