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Factorability of Groups

Homology of Groups

The group homology is an algebraic invariant which enables the study of groups and, most notably, group
actions. It allows to apply methods from other branches of mathematics, for example with topological
methods or methods from homological algebra. (You can use ‘cohomology’ as well, dualizing all defini-
tions.) The topological definition uses the ‘classifying space’ BG of a group G (where ‘classifying’ refers
to G-principal bundles, and the space is well-defined up to homotopy equivalence), setting

H.(G) := H.(BG;7Z).

One also can add, as usual, coefficients, using any G-module, i.e. any abelian group with compatible
G-action. For doing so, one assigns to a G-module M a local coefficient system M on BG which takes
into account the G-action, and defines

H.(G;M) := H.(BG; M).
(This definition reduces to the first one for the special case of G-module Z with trivial G-action.)

In some cases, the homotopy type of BG is represented by rather easy spaces: For example, B(Z") ~ T",
the n-dimensional torus, and the homology is easily computed. Yet, these spaces are in general rather
complicated. For braid groups B, one can use the unordered configuration spaces C,,(R?) as a model for a
classifying space. Their cohomology with Z/2-coefficients was computed by Fuks ([Fuks]) by means of an
involved calculation. For the symmetric group &,,, the classifying space can be modelled by the unordered
configuration space C,(R>) whose cohomology is still not described in a manageable form. (There are
some results concerning the cohomology of symmetric groups, cf. e.g. [Adem].)

Thus, we may benefit from another definition of group homology. In homological algebra, one considers
the category of G-modules as the abelian category of modules over the (non-commutative) group ring ZG
and defines for any G-module M

H.(G; M) := Tor’® (7, M)

Thus, one needs for the computation of the homology a projective resolution of Z as a trivial ZG-module.
Sometimes, it is possible to find very convenient projective resolutions; this allows, for instance, a simple
computation of homology of cyclic groups. In general, there is a ‘standard’ resolution that can be con-
structed for any group G, the so-called ‘bar resolution’. We give here only the definition of the normalized
bar complex in the bar-notation (i.e. the result of tensoring the bar resolution with Z over ZG since we're
going to consider here only Z-coefficients): the ¢-th group of this complex B, is a free abelian group on
the generators [g,] ... |g1], which are 1 if at least one g; = 1. The differential is given by d = >_(—1)%d;
with

[gg] - ]ga] if i =0
di([9q] - - -191]) = S [9q| - - - |git10i] - - - |gn] i 0 <@ < g
[gg—1] - |n] ifi=¢q

Some Examples and Coxeter Groups

Note that the factorability structure depends not only on the group itself but also on the norm chosen.
Here are several examples:

1. Every group G is factorable with respect to the trivial norm via n(g) = (1, g) for all ¢ € G. Note
that in this case the theorem above is true for trivial reasons; the computation of the homology from
the spectral sequence is just the computation of homology of bar complex.

2. For Z = (t), we can consider the word length norm with respect to the generating system {¢,¢7'}.
This normed group is factorable in the obvious way.

3. On the other hand, if we consider cyclic group Z/mZ = (t|t™ = 1) with the word length norm with
respect to the generating system {t,¢#7'}, then this normed group does not admit a factorability
structure for m > 3.

4. Factorability structures are quite well-behaved: a direct product as well as a free product of two
factorable normed groups carries a natural norm and a factorability structure obtained from the
ones of the factors. Furthermore, the semi-direct product also carries a factorability structure with
respect to a naturally defined norm if the action defining the semi-direct product is norm-preserving.

5. On the symmetric group G,,, there are two generating systems of particular interest: the one of sim-
ple transpositions (i.e. of the form (7,7 + 1)) and the one of all transpositions. It can be shown that
the symmetric group &,, with the word length norm of the first system does not carry a factorability
structure. B. Visy defines a factorability structure on &,, with respect to the second norm ([Visy]).

As a generalization, one can explore the existence of (non-trivial) factorability structures on Coxeter groups
and on braid groups.

A Coxeter group is a group which has a presentation with a set of generators S and only relations of
the type

(st)™t) =1

for all s,t € S, where m(s,s) =1, m(s,t) = m(t,s) > 2 for s # t and the value oo (‘unrelated’) is allowed.
Some examples of Coxeter groups are given by symmetric groups and dihedral groups (generated by simple
reflections and two reflection, respectively). The Coxeter groups are of particular interest in this context
since on the one hand, they are known to have good properties of word length with respect to S, also called
‘Coxeter length’, and on the other hand, the groups themselves are of interest, e.g. as all Weyl groups are
finite Coxeter groups. By ‘good properties’, we mean here some theorems concerning the reduced words
for an element. Those can be found in any textbook on Coxeter groups, e.g. [Davis].

Unfortunately, one can show that almost all Coxeter groups (those which have at least one relation as
above with 2 < m(s,t) < oo) with the Coxeter length as a norm do not admit a factorability structure.

On the other hand, one can consider the generating system R of all conjugates of S, which are often called
‘reflections’. In the case of symmetric groups, these are exactly the transpositions, and the corresponding
normed group admits a factorability structure. For the dihedral groups with the word length norm with
respect to all reflections, a factorability structure can also be constructed easily. Thus, it is quite natural
to investigate whether every Coxeter group admits a factorability structure with respect to word length
norm of reflections.

The Visy-Complex and Factorability Structure

In general, the modules of the bar resolution and the resulting bar complex are rather huge, so one tries
to find smaller complexes to compute group homology. With this goal in mind, we consider some further
structure on groups.

First, we deal with the notion of a ‘norm’ on a group: A function N: G — N is a norm on G if for all
g,h € G, we have

e N(g)=0sg=1.
e N(g-h) < N(g)+ N(h) (triangle inequality).
e N(g7!) = N(g) (symmetry).

As an example, each group carries the constant norm given by N(g) = 1 for all ¢ € G\ {1}. More
interesting norms are word-length norms with respect to a given generating set (closed under inversion
to ensure the symmetry), defined as the smallest number of generators needed to write a given element,
counted with multiplicity.

Any norm N yields a filtration on the bar complex above by setting N([g,] ... |g1]) = N(gy) + ...+ N(g1)
and considering all elements of norm < h as F,B,G, the norm filtration. One obtains for each h a
complex N, (G)[h] with N,(G)|h] = Fr,B,G/Fn-1B,G and the induced differential. These complexes are
part of a spectral sequence (of a filtered complex) which computes the homology of G. The following the-
orem simplifies this spectral sequence considerably and should motivate the definition of a ‘factorability
structure’ on a normed group:

Theorem 1 (Bédigheimer, Visy) If (G,N,n) is a factorable normed group, then the homology of
N.(G)[h] is concentrated in degree h.

Loosely speaking, the factorability structure postulates the existence of a normal form, a preferred reduced
expression (in elements of minimal norm) chosen. More precisely:

Definition 1 (Boédigheimer, Visy) Let (G,N) be a normed group, and T(G) the set of elements of
minimal positive norm. A factorability structure is a function n = (7,7'): G — G X G with the
following properties:

(F1) For all g € G, we have g =7(g)n'(g).
(F2) For all g € G, we have N(g) = N(7(g)) + N(1'(g)).
(F3) For all g € G\ {1}, ' (g9) € T(G).

Furthermore, 0 has to satisfy the following additional properties, which ensures connect the group multi-
plication with the factorability map: Write for short (a) = a and n'(a) = a’. Then n must satisfy for any
aceGandbeT(G):

(F4) N(ab) + N((ab)") = N(a) + N(b) < N(a- a’b) + N((a'b)’) = N(a) + N(b).
(F5) N(ab) + N((ab)") = N(a) + N(b) implies (ab, (ab)') = (@ - a'b, (a'D)").

It would be also interesting to see how the spectral sequence above for a norm admitting factorability
structure looks like in the constructed examples. More generally, one can ask which norms allow a fac-
torability structure that simplify the calculation of the group homology. Here, the considerations were
restricted to Z-coefficients for simplicity, but coefficients may also be involved in this context, after adding
a ‘norm’ structure to them. Again, one can ask under which circumstances this structure makes the ho-
mology calculation easier.

A further point to consider is the question when homomorphisms of factorable groups exist. For example,
the notion of factorability is not well-behaved under taking subgroups and quotients, yet one can try to
find conditions under which subgroups and quotients have a factorability structure.

Furthermore, it could be studied whether some variations of the definition of factorability structure are as
well appropriate to show the theorem above and whether these structures then are easier to construct.

We are also interested on the norm-filtration itself, in particular for the symmetric groups. Indeed, the
geometric version of the bar complex is a possible construction for a classifying space, and we obtain thus
a norm filtration of a classifying space. One can try to identify this filtration on the other model of the
classifying space for the symmetric groups mentioned above: the unordered configuration space C,,(R>).
Furthermore, the homology of the filtration quotients (in the geometric version) builds the Fj-term of
a spectral sequence converging to the homology of certain moduli spaces. One can hope to win some
information from this rather unexpected connection.

References

[Adem]  A.Adem, R.Milgram, Cohomology of Finite Groups,

Springer-Verlag, 1994

[Davis] M.Davis, The Geometry and Topology of Cozeter Groups,
London Mathematical Society Monographs, Princeton University Press, 2008
[Fuks] D.Fuks, Cohomologies of the group cos mod 2,
Funct. Anal. Appl., 4, (1970), pp. 143-151.
[Visy] B.Visy, Homology of Normed Groups and of Graph Complexes, applied to Moduli Spaces,

thesis (in preparation)

Advisor: Prof. Dr. Bédigheimer

Universitat Bonn




