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Motivation

When working with topological spaces, simplicial sets or other categories, we sometimes would like to
consider certain morphisms as invertible, even though they are not isomorphisms. For example, in al-
gebraic topology we are, among other things, interested in the classification of topological spaces up to
homotopy equivalence. The usual approach, namely localizing the category with respect to these mor-
phisms in order to obtain a new category where these morphisms are invertible, does not always work: The
new ‘category’ does not need to be a category i.e. the morphisms between two objects might not form a set.

One way to avoid this problem is to work with model categories, which are categories with additional
structure and have been introduced by Quillen [Qui]: A model category M is a bicomplete category with
three classes of maps, weak equivalences, cofibrations and fibrations, satisfying certain axioms (see [Hov]).
This structure ensures that we can localize a model category with respect to the class of weak equivalences
and obtain a new category, which is called the homotopy category ofM and is denoted by Ho(M). There
are many — not only topological — examples of model categories: (pointed) simplicial sets, (pointed)
topological spaces, chain complexes of modules over a ring R, symmetric spectra, etc.

Two model categories M, M̃ are called Quillen equivalent if there exists an adjunction (F, U, φ) from
M to M̃ which is compatible with the model structure and induces an equivalence on their homo-
topy categories Ho(M) and Ho(M̃). A pointed model category M is stable if the suspension functor
Σ : Ho(M)→ Ho(M), Σ(X) = Hocolim(∗ ← X → ∗) is an equivalence of categories.
An important example of a stable model category is the category of chain complexes Ch(R) with the
weak equivalences being the class of quasi-isomorphisms. Here the suspension functor is given by the shift
functor. The associated homotopy category is the derived category D(R). Another example of a stable
model category is the category of symmetric spectra SpΣ together with the class of stable equivalences
[HSS]. Its homotopy category Ho(SpΣ) is the classical stable homotopy category SHC.
A stable homotopy category Ho(M) can be canonically equipped with the structure of a triangulated
category.

In general, it is not possible to recover the model categoryM from its homotopy category Ho(M) — even
if one also demands that the model categoryM is stable, and hence its homotopy category triangulated.
Therefore, one could raise the following question: Is there a stable model category M such that every sta-
ble model category M̃, whose homotopy category Ho(M̃) is triangulated equivalent to Ho(M), is already
Quillen equivalent to M?
Model categories with this property are called rigid. A ring spectrum R, whose model category of R-
modules is rigid, is also said to be rigid. For example, the sphere spectrum S is rigid, since the stable model
category SpΣ = S-Mod is rigid [Sch07]. Thus, every stable model category, whose homotopy category is
triangulated equivalent to SHC, is Quillen equivalent to SpΣ.

The aim of this project is to prove that the Postnikov sections of the sphere spectrum Pn(S), for n > 0,
and the 2-local real topological K-theory ring spectra ko(2) and KO(2) are rigid. Furthermore, I would like
to find some algebraic criteria for detecting rigidity of ring spectra.

Some known results and one possible approach

If one requires additional technical properties of the model categories, then it is sufficient to consider only

model categories of modules in order to answer the question raised above [SS, Theorem 3.1.1.]:

Theorem 1 (Schwede-Shipley) LetM be a simplicial, cofibrantly generated, proper, stable model cate-
gory with a compact generator P . Then there exists a chain of simplicial Quillen equivalences betweenM
and the model category of EndM(P )-modules, where EndM(P ) denotes the endomorphism ring spectrum
of P .

Theorem 2 (Schwede-Shipley) Let R and S be two symmetric ring spectra. Then the model cate-
gories R-Mod and S-Mod are Quillen equivalent if the category S-Mod has a compact, cofibrant and fibrant
generator P such that R is stably equivalent to the endomorphism ring spectrum EndS-Mod(P ).

In oder to prove that a ring spectrum R is rigid, it thus suffices to show that R is stably equivalent to the
ring spectra R̃ := EndS-Mod(P ) given in Theorem 2 [SS]. The ring of homotopy groups π∗(R̃) of such a
ring spectrum R̃ is isomorphic to π∗(R) for the following reason:
Let R and S be ring spectra and let Φ : Ho(R-Mod)→ Ho(S-Mod) be a triangulated equivalence between
the homotopy categories of modules over these ring spectra. Then the following holds:

π∗(EndS-Mod(P )) ∼= Ho(S-Mod)(P, P )∗ ∼= Ho(R-Mod)(R,R)∗ ∼= π∗(R),

where P := Φ(R)cf is a cofibrant and fibrant replacement of Φ(R) in the model category S-Mod.
Furthermore, this isomorphism preserves the Toda brackets of R and R̃, since triangulated equivalences
preserve Toda brackets.

Therefore, a ring spectrum R is rigid if every ring spectrum R̃, having the same ring of homotopy groups
and the same Toda brackets as R, is stably equivalent to R.

In case that the ring spectrum R is connective, that is πk(R) = 0 for all k < 0, there are two methods for
proving rigidity of R:

(i) The first approach is to find a map of ring spectra f : R→ R̃ such that
f ◦ ι = ι̃, where the maps ι and ι̃ are the unit maps of the ring spectra
R and R̃.
In order to obtain the map f , one can construct the ring spectrum R by
gluing ring spectra cells to the sphere spectrum S and trying to factorize
the map ι̃ inductively through the resulting ring spectra Ri. Then it
remains to show that the resulting map of ring spectra f : R → R̃ is a
stable equivalence.
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Another approach

(ii) The second approach is to consider the two Postnikov towers of the ring spectra R and R̃

· · · // Pn+1(R) // Pn(R) // · · · // P2(R) // P1(R) // P0(R) and

· · · // Pn+1(R̃) // Pn(R̃) // · · · // P2(R̃) // P1(R̃) // P0(R̃)

and to prove inductively that the ring spectra Pn(R) and Pn(R̃) are stably equivalent for every n ≥ 0:
For each natural number n, one has to show that there exists exactly one extension of ring spectra

e : Y // Pn(R)

such that πk(e) is an isomorphism for k ≤ n and such that the ring spectra Y and Pn+1(R) have the
same ring of homotopy groups and the same Toda brackets.

One can do this by using a result of Dugger and Shipley: In [DS], they classify the possible exten-
sions e : Y → C of a cofibrant ring spectrum C := Pn(R)c to a ring spectrum Y by a π0(C)-module
M := πn+1(R) such that

• πi(Y )→ πi(C) is an isomorphism for i ≤ n,

• πn+1(Y ) and M are isomorphic as π0(Y )-bimodules and

• πi(Y ) = 0 for all i > n + 1.

Dugger and Shipley prove that, up to a zig-zag of weak equivalences, all these extensions are classified
by

Ho(S− Alg/C)(C, C ∨ Σ(n+1)+1M)/Aut(M) ∼= THH(n+1)+2(C, M)/Aut(M),

where Ho(S − Alg/C)(A, B) denotes the homotopy mapping space from A to B in the category of
S-algebras over C and THHm(C, M) is the m-th topological Hochschild cohomology group of C with
coefficients in M [DS, Theorem 8.1. and 8.8.].

To give a vague idea of this classification, we will briefly sketch how Dugger and Shipley obtain the
extension Y corresponding to a homotopy class [k] ∈ Ho(S− Alg/C)(C, C ∨ Σn+2M):

We choose a representing homomorphism k : C → (C∨Σn+2M)f

of this k-invariant, where (C ∨ Σn+2M)f denotes a fibrant re-
placement of C ∨ Σn+2M in S − Alg/C . The homotopy fiber of
k, i.e. the homotopy pullback in the category of S-algebras, is
an extension Y of C by M .

Y //

��

C

��

C
k // (C ∨ Σn+2M)f

Unfortunately, this theorem of Dugger and Shipley provides not much information about the product
of two elements x · y ∈ πn+1(Y ) or about Toda brackets which are subsets of πn+1(Y ). In general,
we only know the product x · y ∈ πn+1(Y ) in ‘trivial’ cases, for example if x or y lies in π0(Y ) or if
Y 'M ∨ C.

Remark 1 Using these two methods, one can prove that the ring spectra P4(ko(2)), P8(ko(2)) and P9(ko(2))
are rigid.

Examples

Below, we list some examples of rigid and non-rigid ring spectra:

• The sphere spectrum S is a rigid ring spectrum [Sch07].

• Further examples for rigid ring spectra are the Eilenberg-MacLane ring spectra H(R) for any ring
R [SS, Theorem 5.1.1.]. This holds due to Theorem 2 and since Eilenberg-MacLane ring spectra are
uniquely determined by their homotopy rings π∗(HR).

• The ring spectra Pn(S) = Pn(ko) are rigid for n = 0, 1, 2.

• In contrast, the Morava K-theory ring spectra are not rigid:
Let K(n) be the nth Morava K-theory ring spectrum for a fixed prime p and a natural number n > 0.
Then the homotopy category Ho(K(n)-Mod) is triangulated equivalent to the derived category of
the graded field π∗(K(n)) = Fp [vn, v−1

n ], where |vn| = 2pn − 2. However, the model categories
K(n)-Mod and Fp [vn, v−1

n ] -Mod are not Quillen equivalent (see [Sch01]).
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