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1. Topology and analysis: the spectral flow

The spectral flow of a continuos path (Dt)t∈[0,1] of bounded selfadjoint Fredholm operators
on a Hilbert space H is defined (Atiyah–Lusztig) as

sf(Dt)t∈[0,1] := the net number of eigenvalues (counting multiplicity)
changing sign from the start of the path to its end.

• The spectral flow is an homotopy invariant
• F sa := {T : H → H bounded selfadjoint Fredholm operators}
has three connected components F sa = F sa+ ∪ F sa− ∪ F sa∗ :
F sa± of essentially positive/negative operators, are contractible.
The nontrivial F sa∗ is a classifying space for K1 and the spectral
flow realizes the isomorphism π1(F sa∗ ) = [S1,F sa∗ ] ' K1(S1) = Z

Equivalent analytic definition of spectral flow given by Phillips: Fredholmness ⇒ ∃0 = t0 < · · · < tn = 1
and a1, a2, . . . an positive so that the spectral projection t→ Pi(t) = χ[−a1,+ai](Dt) is continuos and finite
rank on [ti−1, ti]

sf(Dt)t∈[0,1] =
n∑
k=1

(
dimP+

i (ti)− dimP+
i (ti−1)

)
(1)

Spectral flow and index
(Dt)t∈[0,1] continuos path of Dirac-type operator on a closed manifold M2l+1, then sf(Dt) can be defined
as above (the spectrum specDt is discrete).
The spectral flow is related to the index on the cylinder by the classical equality

sf(Dt)t∈[0,1] = indAPS( ∂
∂t

+Dt)

where the operator ∂
∂t

+Dt on the cylinder has Atiyah–Patodi–Singer boundary conditions.
- proved by Robbin–Salamon via axiomatic approach.
- for Dirac operators, it follows for example from variational formula of the eta-invariant [Me].

Definition 1 The eta-invariant of a Dirac operator D is η(D) :=
1√
π

∫ ∞
0

tr(De−tD
2

)
dt√
t

(Dt)t∈[0,1] path of Dirac operators, for example corresponding to a path of metrics on M . The variational

formula η(D1)− η(D0) = dim KerD1 − dim KerD0 +

∫ 1

0

F (t)ds+ 2 sf(Dt)t∈[0,1]

where F (t) = lim
s→0

(
s

1
2 Tr(Ḋte

−sD2
t )
)

, is actually equivalent to the equality spectral flow = index.

The signature operator on a closed manifold M2l+1 is Dsign = dτ + τd ,
where τφ := il+1+k(k+1) ∗ φ, ∗=Hodge star. (Dsign)2 = ∆ ⇒ by Hodge theory KerDsign ' H∗dR(M) so
that a path of metrics gt on M does not produce spectral flow for the corresponding path Dsign

t

Consequence: let α, β : π1(M) → U(n) be two representations, and Dsign
α , Dsign

β be the operators twisted

by the flat bundles associated with α, β, then: the rho-invariant ρα−β(Dsign) := η(Dsign
α )− η(Dsign

β ) does
not depend on the metric on M (Atiyah–Patodi–Singer).

2. Von Neumann invariants: Galois coverings & measured foliations

Here the geometric operators may have zero in the contin-
uos spectrum, so the usual definitions of index/ spectral flow
do not apply. Yet they are Breuer–Fredholm, affiliated to a
semifinite von Neumann algebra.
a. M̃ →M Galois Γ-covering. A Γ-invariant Dirac operator
D̃ acting on Ẽ → M̃ is affiliated to N = BΓ(L2(M̃, Ẽ))
b. (M,F) foliated manifold with holonomy invariant trans-
verse measure Λ. A tangential Dirac operator D is affiliated
to the von Neumann algebra of the foliation N =W∗(F).

a. On BΓ(L2(M̃, Ẽ)) Atiyah’s L2-trace trΓ gives a natural notion of Γ-dimension. Ker D̃ and Ker D̃∗ have
finite trΓ-dimension ⇒ D̃ is trΓ-Breuer–Fredholm with Γ-index indΓ D̃ := trΓ Pker D̃ − trΓ PKer D̃∗

b. The measure Λ gives a semifinite trace trΛ on the von Neumann algebra N = W∗(F). Connes’ mea-
sured index is defined indΛD = dimΛ KerD − dimΛ KerD∗.
These are both examples of the following general Breuer–Fredholm theory.

Index and spectral flow in the semifinite context
Let N be a von Neumann algebra N ⊂ B(H), endowed with a faithful normal, semifinite trace τ .
K(N ) = ideal generated by projections of finite trace. π : N → N /K(N) = Q(N ) projection to the
Calkin algebra.

Definition 2 A closed, densely defined operator D on H is affiliated to N if its bounded transform

FD = D(1 + D∗D)−
1
2 ∈ N . An unbounded operator D on H is Breuer–Fredholm in N if it is closed,

densely defined, affiliated to N , and π(FD) ∈ Q(N ) is invertible.

The index of a Breuer–Fredholm operator D is defined by indD := τ(χ{0}(D
∗D))− τ(χ{0}(DD

∗)).

Phillips’ definition (1) can be extended to define a real valued spectral flow for paths (Dt)t∈[0,1] of Breuer–
Fredholm affiliated operators with t→ FDt continuos [Ph]

sf(Dt) :=
n∑
i=1

ec(Pi−1Pi)

ec(PQ) := ind(PQ : QH → PH), Pt = χ[0,+∞)(Dt), and 0 = t0 < · · · < tn = 1 so that π(χ[0,+∞)(Dt)) is
splitted so that continuos on t ∈ [ti−1, ti].

Question: prove the relation spectral flow = index in this context

If D is a odd Dirac operator from geometric situations a., b., it has a well defined von Neumann eta-
invariant ητ (D) [CG], appearing in the relevant index formulæ for the boundary case [Rm, An].

Question: can one prove variational formulas for von Neumann eta-invariants?

Question: what are the geometric consequences on measured foliations?

3. Our results

• The equality index = spectral flow on semifinite von Neumann algebras

Let N be a von Neumann algebra, N ⊂ B(H), endowed with a faithful normal, semifinite trace τ .

Theorem 3 Let (Du)u∈[0,1] be a path of selfadjoint operators affiliated to N , with common domain and
resolvents in K(N ). We assume that Du depends continuously on u as a bounded operator from H(D0)
to H (with respect to the operator norm).
Furthermore we assume that the endpoints D0, D1 are invertible. Then

sf((Dt)u∈[0,1]) = ind(∂u +Du) .

When endpoints are not invertible: we consider abstract Atiyah–Patodi–Singer boundary conditions.
Define the unbounded operator (∂u +Du)

APS on L2([0, 1], H) as the closure of ∂u +Du with domain

{f ∈ C∞([0, 1], H(D0)) | P0f(0) = 0, (1− P1)f(1) = 0}

Proposition 4 The operator D̃APS is selfadjoint with resolvents in K(B(L2(I))⊗N ). In particular it is
affiliated to B(L2(I))⊗N and Breuer–Fredholm.

Theorem 5 Let (Du)u∈[0,1] be a path of selfadjoint operators with common domain and with resolvents
in K(N ). We assume that Du depends continuously on u as a bounded operator from H(D0) to H.
Furthermore we assume that the path is constant near each of the endpoints. Then

sf((Du)u∈[0,1]) = ind((∂u +Du)
APS) .

• Applications to geometric operators on a foliated manifold

Let (M,F) be a closed manifold, foliated by an integrable distribution TF ⊂ TM of odd dimension
p = 2l + 1. Assume F is oriented, and assume there exists a holonomy invariant transverse measure Λ.

Consider E := ΛT ∗F ⊗ C, and let τ be the leafwise chirality grading, τφ := il+1+k(k+1) ∗ φ, φ ∈
C∞(Lx,Λ

kT ∗F|Lx) (where ∗ is the leafwise Hodge star operator). The leafwise odd signature operator
Dsign is defined on Ω∗tang(M) = C∞tang(M,E) by Dsign = τd+ dτ.

If (gu)u∈[0,1] is a path of leafwise Riemannian metrics depending smoothly on the parameter: we get a path
of chirality operators τu, and a path of signature operators Dsign

u , correspondingly.

Proposition 6 The spectral flow of the path (Dsign
u )u∈[0,1] is zero.

(M,∂M,F2l) foliated manifold with boundary, with a holonomy invariant
transverse measure Λ (and foliation transverse to the boundary).

Definition [An] The analytic Λ-signature is defined to be the measured L2-index
σΛ,an(M,∂M) := indL2,Λ(Dsign,+) = ind ((Dsign,+)APS) + trΛ(PKerD∂ ), where D∂ is the odd signature
operator induced on the boundary. It coincides with mesured Hodge- and de Rham-signature [An].

Proposition 7 σΛ,an(M,∂M) does not depend on the metric on M .

(all results are joint work with Charlotte Wahl)

4. Methods of proofs

• The equality index = spectral flow, Theorem 3, is proved using properties of spectral flow and index
(homotopy invariance, additivity w.r.t. concatenation of paths and to direct sum) to reduce the statement
to simpler paths. Some basic ideas come from the noncommutative case [LP].

• From the abstract setting of theorems 3 and 5 to the geometric situation of foliations a new phenonemon
appears: the metric, and thus the von Neumann algebra, may depend on the parameter. Therefore we
have to trivialize the path of Hilbert fields.

• The vanishing of the spectral flow, Prop 6 for a path of signature operators uses integral formulas. The
conclusion is based on a beautiful lemma of Cheeger–Gromov [CG] which translates the cohomological
nature of the kernel of Dsign into the following analytic property

lim
s→∞

∫ 1

0

√
s trΛ

(
Ḋsign
u e−s(D

sign
u )2

)
du = 0 (2)

A very direct proof of Prop. 6 could be given if one could show that the projection onto the positive part
of the spectrum of Dsign

u depends continuously on u: such a proof is not known.

• To conclude that the measured analytic signature of (M,∂MF) does not depend on the metric: taken
(gu)u∈[1,2] we prove a gluing formula ind ((Dsign,+

1 )APS) − ind ((Dsign,+
2 )APS) = ind ((∂u + D∂

u)APS). Then
the result follows from Theorem 5 and by the homotopy invariance of trΛ(PKerD∂ ), in [HL].
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