Von Neumann - algebras
and the Connes fusion tensor product

H complex Hilbert space
$B(H)$ bounded op's on H

Def.: $M \subseteq B(H)$ is a von Neumann algebra iff it is a unital \ast-subalgebra of $B(H)$ that is closed in the weak operator topology.

Note: weak topology is generated by seminorms $\varphi \mapsto |\langle \psi, \varphi \rangle| \quad \forall \psi, \varphi \in H$

Def.: Given $S \subseteq B(H)$, the commutant S' of S is given by
\[S' = \{ \alpha \in B(H) \mid \forall s \in S \quad \alpha s = s \alpha \} \]

Thm.: (von Neumann - Bicommutant theorem):

$M \subseteq B(H)$ von Neumann algebra $\iff \quad A'' = A$.

("Every von Neumann alg. arises as a commutant of something.")

Ex.: $M = B(H)$ is a von Neumann algebra.

Ex.: Let G be a discrete, countable group. Take $H = L^2(G)$, then
\[M = (CG)'' \quad \text{is a von Neumann algebra} \]

\[\quad \uparrow \text{taken in the bounded op's} \quad \text{on } L^2(G) \]

Ex.: (X, μ) measure space

$H = L^2(X, \mu)$

$M = L^\infty(X, \mu)$ act on H by left multiplication and is a commutative von Neumann algebra

Thm.: Every commutative VN arises in that way for some measure space X.

Philosophy: Think of VN's as a non-commutative version of measure theory.
Factors and Type Classification

Def: The center Z of a vNA M is given by $Z = M \cap M'$ and is itself a commutative vNA.

A von Neumann-algebra with trivial center is called a factor.

Why are factors interesting?

- Z is a comm. vNA $\Rightarrow Z = L^\infty (X, \mu)$

 If μ is discrete, then...

 $$M = \bigoplus_{i \in I} M_i \quad \text{where all } M_i \text{ are factors}$$

 ... else use direct integral decomposition...

 $$M = \int_X M_x \, d\mu(x) \quad \text{where } M_x \text{ is a factor for all } x \in X$$

 \Rightarrow Factors are "building blocks" of general vNA's

- Consider projections $p \in M$ with $p = p^* = p^2$

- Take $x \in M$ self-adjoint element and let

 $$x = \int_a^b dE_\lambda \quad \text{be its spectral decomposition, then } E_\lambda \in M \quad \forall \lambda \in [a, b]$$

 \Rightarrow M always contains projections

 (Indeed: Every vNA is the norm-closed linear span of its projections.)

equivalence of projections: Let $e, f \in M$, be proj.

$$e \sim f \iff \exists u \in M \text{ with } u^* u = e, uu^* = f$$

\uparrow partial isometry

\Rightarrow induce partial ordering on projections

$$e \prec f \iff \exists e_0 \sim e \text{ s.th. } e_0 \text{ is a subproj. of } f$$

Thm: If M is a factor, this is an ordering.
Def.: A projection \(e \in M \) is called finite, if \(e \) is not equivalent to any proper subprojection of \(e \).

Def.: A factor \(M \) is of

- type \(\text{I} \), if there exists a non-zero minimal projection in \(M \),
- type \(\text{II} \), if \(M \) contains non-zero finite projections and is not of type \(\text{I} \),
- type \(\text{III} \), if no non-zero projection in \(M \) is finite.

A factor \(M \) is called finite, if \(1 \in M \) is finite.

Thm: \(M \) finite factor \(\Rightarrow \) \(M \) faithful normal (i.e. weakly continuous) tracial state on \(M \) (for short: a trace on \(M \))

- type \(\text{I}_n \): trace takes discrete values on the proj.
 \[\text{tr} (e) \in \{ 0, \ldots, \dim (e) \} \]
 \(n = \infty \) allowed
- type \(\text{II}_n \): trace takes continuous values on the proj.
 \[\text{tr} (e) \in [0, 1] \]
- For type \(\text{II}_\infty \), there still is a replacement for \(\text{tr} \), that fulfills
 \[\text{tr} (e) \in [0, \infty] \]
- For type \(\text{III} \), no trace at all! But finer classification via modular theory \(\longrightarrow \) leads to type \(\text{III}_\lambda \) with \(\lambda \in [0, 1] \)

Def.: A factor \(M \) is called hyperfinite, if

\[M = \left(\bigcup_{i=1}^{\infty} M_i \right)'' \]

for an increasing sequence \(M_i \subset M_j \subset \ldots \)
of finite dimensional von Neumann algebras

All hyperfinite factors have been classified:

- type \(\text{I}_n \): \(M = B (H) \) with \(n = \dim (H) \)
- type \(\text{II}_n \): Group von Neumann algebras. All isomorphic!
- type \(\text{II}_\infty \): \(\text{I}_\infty \otimes \text{II}_n \)
- type \(\text{III}_\infty \): the Krieger factor
- type \(\text{III}_\lambda \) for \(\lambda \in [0, 1] \): the Powers factor
- type \(\text{III}_n \): The local fermion, defined by Wassermann. All isomorphic
construction of the hyperfinite II_1-factor

start with $M_{4^n \times 4^n}(\mathbb{C})$, embed it into $M_{2^n \times 2^n}(\mathbb{C})$ via
\[x \mapsto \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \]

s.t.h. the trace on $M_{2^n \times 2^n}(\mathbb{C})$ is given by $\text{tr}_2 \circ \iota = \frac{1}{2} \text{tr}_1$

continue like that embedding $M_{2^n \times 2^n}$ into $M_{2^{n+1} \times 2^{n+1}}$

Take weak closure on direct limit

\Rightarrow trace takes values in $[0,1]$
Modular Theory
(aka: Tomita - Takesaki theory)

Def: \(M = \mathcal{B}(H_0) \) \(vNa \). \(H_0 \) is called vacuum representation or standard form, if \(\exists \Omega \in H_0 \) that is cyclic for \(M \) and for \(M^\prime \).

- Consider the (unbounded), anti-linear op. given by
 \[
 S_0 \ a \Omega = a^* \Omega \Rightarrow \text{closable} \ S = S_0^\dagger
 \]

 Take polar decomposition, since \(S \) is anti-linear, this looks like
 \[
 S = J \Delta^\frac{1}{2}
 \]
 with \(J \) anti-unitary
 and \(\Delta \) positive, self-adjoint.

Ex.: For \(M \) being a type \(II_q \)-factor, \(\exists \text{tr}: M \rightarrow \mathbb{C} \)

\[
\text{tr} \ \text{yields a vacuum repr. via the GNS construction, vacuum vec.} \ \Omega
\]
\[
\Omega \ a, b \in M \quad <b \Omega, S^* S \ a \Omega> = <b^* \Omega, a^* \Omega> = \text{tr}(ba^*) = \text{tr}(a^*b)
\]
\[
= \text{tr}(b^*a) = <b \Omega, a \Omega>
\]
\[
\Rightarrow S \text{ is anti-unitary}
\]
\[
= \Delta = 1 \text{ by uniqueness of polar decomp.}
\]

Rem.: \(J^2 = 1 \), functional calculus lets you define \(\Delta^{it} \) and \(\Delta^{-it} \), \(t \in \mathbb{R} \)

Now...

Thm. (Tomita - Takesaki): \(M \ vNa \) with vac. rep. \((H_0, \Omega)\), then

\[
\text{JMJ} = M^\prime
\]
\[
\Delta^{it} M = M \quad \forall t \in \mathbb{R}
\]

Rem.: \(J \) turns \(H_0 \) into an \(M-M \)-bimodule. Let \(\pi \) be the vac. rep. of \(M \), then:

\[
\pi^{op} (a) = J \pi (a)^* J \in M^{op}
\]

- \(J \Omega = \Delta \Omega = \Omega \)

For a dense subset of \(M \) (the entire analytic elements)

\[
\sigma(a) = \Delta^\frac{1}{2} a \Delta^{-\frac{1}{2}} \in M
\]
Now for \(\varphi_\Omega(a) = \langle \Omega, a \Omega \rangle \) one has

\[
\varphi_\Omega(ba) = \varphi_\Omega(\sigma^{-1}(a) \sigma(b)) \tag{\varphi_\Omega \text{ is called vacuum state}}
\]

Thus the modular operator measures "how much" the vacuum state differs from a trace state.

Thm: Iff multiples of \(\Omega \) are the only vectors that are fixed by the modular flow, then \(M \) is a type \(\text{III}_1 \) -factor.

* In analogy to the commutative case, the vac. rep. shall be denoted by \(H_0 = L^2(M) \)

Tensor products of vNA's

* Two Hilbert spaces: \(H_1, H_2 \)

Hilbert space tensor product \(H_1 \otimes H_2 \) is the completion of the algebraic tensor product \(H_1 \odot H_2 \) w.r.t. the norm...

\[
\langle \varphi_1 \otimes \varphi_1, \varphi_2 \otimes \varphi_2 \rangle = \langle \varphi_1, \varphi_2 \rangle_{H_1} \cdot \langle \varphi_1, \varphi_2 \rangle_{H_2}, \quad \varphi_i \in H_i, \quad n_i \in H_i
\]

* Consider two vNA's \(N \) and \(M \), now \(N \otimes M \) inherits a \(* \)-algebraic structure

\[
n_1 \otimes m_1 \cdot n_2 \otimes m_2 = n_1 \cdot n_2 \otimes m_1 \cdot m_2 \quad n_i \in N, \quad m_i \in M
\]

\[
(n \otimes m)^* = n^* \otimes m^*
\]

Now consider \(\pi: N \otimes M \longrightarrow B(H_N \otimes H_M) \) with \(N \subset B(H_N) \) and \(M \subset B(H_M) \)

\[
\pi(n \otimes m)(\varphi_1 \otimes \varphi_2) = n \varphi_1 \otimes m \varphi_2
\]

Now define: \(N \otimes M = \pi(N \otimes M)'' \) - the so-called spatial tensor product of vNA's.
Goal: Find the “right tensor product” for vNa-bimodules

Remember: \(H \) is called an \(M-N \)-bimodule (with two vNas \(H, N \)) if it is a left module over \(M \) and a right module over \(N \), where the module actions are given by weakly continuous, \(*\)-preserving, unital homomorphisms:

\[
\begin{align*}
\pi_M &: M \to B(H) \\
\pi_N^{op} &: N^{op} \to B(H)
\end{align*}
\]

\(\uparrow \) vNa with the opposite multiplication

Tensor product of an \(M-N \)-bimod. \(H_1 \) and an \(N-L \)-bimod. \(H_2 \) should have “nice properties”

ex. of a nice property: \(\exists j \in H_1, \eta \in H_2, n \in N \)

\[
\exists j \in H_1, \eta \in H_2, n \in N \quad \exists j \in H_1, \eta \in H_2, n \in N
\]

First construction by Jones et al. for type II_\(\infty \)-factors \(\to \) relative tensor product

Def.: Let \(H_1 \) be an \(M-N \)-bimodule with actions \(\pi_M, \pi_N^{op} \), then \(H_1 = \{ t : L^2(N) \to H_1 \mid t \cdot \pi_M^{op} = \pi_N^{op} \cdot t \} \)

\(\uparrow \) vacuum rep. of \(N^{op} \)

denote the Intertwiners between \(\pi_M^{op} \) and \(\pi_N^{op} \).

Ex.: \(L^2(N) = \{ t : L^2(N) \to L^3(N) \mid t \cdot \pi_M^{op} = \pi_N^{op} \cdot t \} = N^{\infty} = N \)

\(\pi_M^{op}(n) = \int \pi_M(n) \ast j \, j \in N^{\infty} \)

Note that \(H_1 \) can be turned into a right Hilbert module over \(N \) with inner product...

\[
(t, s) = t^*s \in L^2(N) = N
\]

Def.: Given an \(M-N \)-bimod. \(H_1 \) and an \(N-L \)-bimod. \(H_2 \), then the Connes fusion of the two is given by the completion of \(H_1 \otimes H_2 \) w.r.t. the inner product

\[
\langle t \otimes s, r \otimes \eta \rangle = \langle s, (t,s) \cdot \eta \rangle_{H_2}
\]

It is denoted by \(H_1 \boxtimes H_2 \).
Note that:
\[
\langle t n \otimes \xi - t \otimes n \xi, t n \otimes \xi - t \otimes n \xi \rangle = \langle \xi, (t n, t n) \xi \rangle - \langle n \xi, (t, t n) \xi \rangle - \langle \xi, (t n, t) n \xi \rangle + \langle n \xi, (t, t) n \xi \rangle = 0
\]
\[
\Rightarrow t n \otimes \xi = t \otimes n \xi \quad \text{Connes fusion has "nice property".}
\]

Ex.: Take weakly cont. unital \(*\)-preserving homomorphism of vNa's
\[
\xi : L \rightarrow N.
\]
\[
L^2(\xi) \text{ is } N-N\text{-bimodule } L^2(N) \text{ considered as } L-N\text{-bimodule with left action...}
\]
\[
\xi(\xi) \cdot z \quad \text{for } \xi \in L, z \in L^2(N).
\]
Let \(H\) be an \(N-M\)-bimodule and \(\hat{H}\) be the corresponding \(L-M\)-bimodule with left action
\[
\xi(\xi) \cdot \eta \quad \text{for } \xi \in L, \eta \in H.
\]

Thm: \(L^2(\xi) \boxtimes H \cong \hat{H}.

Proof: \(L^2(\xi) = L^2(N) = N\)
\[
\psi : L^2(\xi) \boxtimes H \rightarrow \hat{H}
\]
\[
\forall \eta \rightarrow \eta = n \otimes \eta
\]
\[
\psi : \hat{H} \rightarrow L^2(\xi) \boxtimes H \quad \text{extend to an isomorphism.}
\]
\[
\eta \rightarrow L \otimes n
\]
Therefore:
\[
L^2(\xi) \otimes L^2(\xi) = L^2(\xi \circ \xi) \quad \text{for } \circ : N \rightarrow M
\]
\[
L^2(N) \otimes H \cong \hat{H}
\]
Taking \(\xi = \text{id}\), \(L = N \Rightarrow L^2(N) \otimes H \cong H
\]
for any \(N-M\)-bimodule \(H\).

Problem: Identify vectors in \(H_1 \otimes H_2\) in terms of the tensor product \(H_1 \otimes H_2\).
Symmetric form of Connes fusion

\mathcal{H}_2 M-N-bimodule

\mathcal{H}_2 N-L-bimodule

$\tilde{\mathcal{H}}_2 = \{ s : L^2(N) \to \mathcal{H}_2 \mid s \pi_{N,0} = \pi_{N} s \}$ therefore: $s_1^* s_2 \in \mathcal{N}^{op}$

Now take completion of...

$\mathcal{H}_1 \otimes \tilde{\mathcal{H}}_2$ w.r.t. inner product

$\langle t_1 \otimes s_1, t_2 \otimes s_2 \rangle = \langle t_2^* t_1, \Omega \cdot s_2^* s_1, \Omega \rangle_{L^2(N)}$

...using the inclusion in one get...

$\mathcal{H}_1 \omega \otimes \tilde{\mathcal{H}}_2 \omega$ with symmetric Connes relation...

$\xi \Delta^\frac{1}{4} \eta = \xi \otimes \Delta^\frac{1}{4} \eta \Delta^{-\frac{1}{4}} \eta$ for $\xi \in \mathcal{H}_1 \omega$

$\eta \in \tilde{\mathcal{H}}_2 \omega$

n entire element in \mathcal{N}

A. Wassermann "four point-formula"
Connes fusion and the algebraic tensor product

- H_1, M, N, bimodule, left action π^L_M, right action π^R_N

Choose cyclic and sep. (vacuum) vector $\Omega \in L^2(N)$

inclusion $i_\Omega : H_1 \rightarrow H_1$

$t \mapsto t \cdot \Omega$ (not canonical, depends on choice of Ω)

Now: $\pi^{\Omega}_N(x) \cdot \Omega = \pi^{\Omega}_N(x) \cdot \Omega = \int \pi^{\Omega}_N(x)^* \cdot \Omega$

intertwining prop.

$= \int \Delta^{\frac{1}{2}} \Delta^{-\frac{1}{2}} \pi^{\Omega}_N(x)^* \cdot \Omega$

invariance of Ω

$= \int \Delta^{\frac{1}{2}} \pi^{\Omega}_N(x)^* \cdot \Omega$

$= \int \Delta^{\frac{1}{2}} \pi^{\Omega}_N(x) \cdot \Omega$

for every entire element $x \in N$

$\Rightarrow i_\Omega(t) \cdot x = i_\Omega(t \cdot \sigma(x))$ with $\sigma(x) = \Delta^{\frac{1}{2}} x \Delta^{-\frac{1}{2}}$

So, instead of above definition, take $H_1 \cdot \Omega \otimes H_2$ with

$H_1 \cdot \Omega \otimes H_2 \cong \mathcal{H}_1 \otimes \mathcal{H}_2$

Connes relation: $\xi \cdot \Omega \otimes \eta = \xi \otimes \sigma(x) \cdot \eta$ $\forall x \in N, \xi \in \text{im } i_\Omega, \eta \in H_2$

Remark: $H_1 \cdot \Omega$ is not H_1, but the set of ω-bounded vectors for

$\omega(n) = \langle \Omega, n \cdot \Omega \rangle_{L^2(N)}$

$\xi \in \text{im } i_\Omega$ is ω-bounded iff $\exists C > 0$, s.t. $\|\xi \cdot \eta\|_{H_1} \leq C \cdot \omega(n \cdot \eta)$

If $\Delta = 1$ (for type I or type II$_1$ factors), then $\sigma = \text{id}$

\Rightarrow Connes fusion reduces to an algebraic tensor product of bimodules.
Remember the bi-category D_n (sketchy)

- objects: 0-dim spin mfd's Z
- morphisms: spin diffeo $Z_1 \rightarrow Z_2$
 - one-dim. spin mfd Y s.th. $\overline{Y} = Z_1 \sqcup Z_2$
- 2-morphisms: either spin diffeo rel. boundary with element $c \in C(Y_1)^{op}$
 - conf. spin surface Σ with $\psi \in F_{alg}(\Sigma)$

enriched elliptic object should functor this to...

The bicategory $\mathcal{V}N$ of von Neumann-algebras

- objects: von Neumann-algebras
- morphisms: A morphism from N to M is an $M-N$-bimodule
 - composition: given by Connes fusion
 \[
 \begin{array}{c}
 M \\ H_1 \\
 \downarrow T \\
 N \\
 \downarrow H_2 \\
 \end{array} = \begin{array}{c}
 M \\
 H_1 \otimes H_2 \\
 \end{array}
 \]
 - trivial element given by $L^2(N)$
 - Connes' fusion is associative up to isomorphisms.

- 2-morphisms:
 Given by Intertwiners: $H, H' \ M-N$-bimodules
 \[T \in \mathcal{B}_{M,N}(H, H') = \{ T : H \rightarrow H' \text{ bounded } | \ T \pi_M = \pi_M^{op} T \text{ and } T \pi_N^{op} = \pi_N^{op} T \} \]

extended gluing lemma: There is a unique unitary isometry of
\[C(Y_3) - C(Y_4) - \text{bimodule}\]
\[F(\Sigma_2) \otimes_{A(\Sigma_2)} F(\Sigma_4) \xrightarrow{\sim} F(\Sigma_3)\]

mapping $\Omega_2 \otimes \Omega_4$ to Ω_3
... further more...

\[\begin{array}{c}
H_4 \otimes H_2 \\
\downarrow T_4 \otimes T_2 \\
M \otimes L \\
\downarrow T_4 \otimes T_2 \\
H_4' \otimes H_2'
\end{array} =
\begin{array}{c}
H_4 \otimes H_2 \\
\downarrow T_4 \otimes T_2 \\
M \otimes L \\
\downarrow T_4 \otimes T_2 \\
H_4' \otimes H_2'
\end{array}
\]

\[x \otimes \xi \in H_4 \otimes H_2 \\
(T_4 \otimes T_2)(x \otimes \xi) = T_4 x \otimes T_2 \xi \]

Adjunction transformations in vN

- three involutions
 \[N \mapsto N^{op} \text{ on objects} \]
 \[H \mapsto \bar{H} \text{ on morphisms, where } \bar{H} \text{ is the conjugate bimodule} \]
- with module actions
 \[n \cdot \bar{\xi} \cdot m = m^* \xi n^* \quad \xi \in H \]

\[T \mapsto T^* \text{ on 2-morphisms with the usual adjunction} \]

In view of the adjunctions in the geometric category we would like to have...

\[vN(C, A_1 \otimes A_2) \to vN(A_1^{op}, A_2) \text{ on morphisms} \]
\[vN(C, F_2 \otimes_A F_4) \to vN(\bar{F}_2, F_4) \text{ on 2-morphisms} \]

For \(F_4 \) a \(A_1 \otimes A_2 \)-\(C \)-bimodule
\(F_2 \) a \(C \)-\((A_1 \otimes A_2)^{op}\)-bimodule, both lying in the pre-image of the first map

set \(A := A_1 \otimes A_2 \)

Consider:

- intertwiners of the \(A \)-action

\[\Theta : F_2 \otimes F_4 \to \mathbb{B}_{A}(\bar{F}_2, F_4) \text{ with } \eta_{x, \overline{y}} = (y, x) \eta \]

Take \(x \) that fulfills
\[x \pi_{A_1}^{op}(a) = \pi_{A_2}^{op}(a) x, \text{ then...} \]
\[\overline{x} \pi_{A_1}^{op}(a) = x f \cdot \pi_{A_2}^{op}(a) x f = \pi_{A_2}^{op}(a) x f \]

\[\Rightarrow \overline{x} \pi_{A_1}^{op}(a) = \pi_{A_2}^{op}(a) \overline{x} \Rightarrow (x \in F_2 \Rightarrow \overline{x} \in F_2) \]
$D_{x,y}(\gamma)$ is A-linear map (simple comp. using definitions)

$\Rightarrow \Theta$ is well-defined

Θ is an isometry (shown in Stolz-Teichner for type III factors)

so...

$\Theta: F_2 \otimes F_\alpha \xrightarrow{\cong} \beta_A(F_2, F_\alpha)$ \[\square]
Interesting subcategories of \(\nu N \)

- Fix an object \(N \in \text{obj}(\nu N) \), type \(III_1 \)-factor

Consider (weakly cont., unital, \(*\)-preserving) endomorphism of \(N \)

\[\varphi : N \to N \]

Each \(\varphi \) induces via \(L^2(\varphi) \) — another \(N-N \)-bimodule

\[\text{fusion} \to \text{composition} \to \text{monoidal or tensor categories} \]

\[\text{direct sum} \to \text{"direct sums" of endomorphisms} \]

leads to fusion rules:

\[2 \circ \varphi = \bigoplus_{\lambda \leq \varphi} N^{\varphi}_{\lambda} \cdot \varphi \]

If you take a net of factors instead of a single and demand localizability of endomorphisms you get so-called "fusion rules" of superselection sectors from algebraic quantum field theory.

- Jones extension

Take two factors \(A \subset B \), where \(B \) arises from \(A \) by the "Jones basic construction" all morphisms generated by iterated fusion of \(L^2(B) \), which is an \(A-B \)-bimodule

subfactor has finite Jones index \(\iff \begin{array}{c} F \otimes_B F \text{ and } F \otimes_A F \end{array} \]

contain the vacuum rep. only once.

\[\text{important for classification of CFTs} \]

\[\text{invariants of 3-mfds.} \]
Local fermions (sketchy)

- \mathcal{H} complex Hilbert space

$\text{Cliff}(\mathcal{H})$ generated by $a(f), f \in \mathcal{H}$

$$a(f) a(g) + a(g) a(f) = 0$$

$$a(f) a(g)^* + a(g)^* a(f) = (f,g)$$

acts on $\Lambda \mathcal{H} \quad \pi(a(f)) \xi = f \Lambda \xi$

$$c(f) = a(f) + a(f)^*$$

fulfill $c(f)c(g) + c(g)c(f) = 2 \Re(f,g)$

Take projection p into \mathcal{H}

representation $\pi_p(a(f)) = \frac{1}{2}(c(f) - i c(i(2P-1)f))$ on $\Lambda \mathcal{H}$

is again irreducible

Now take $\mathcal{H} = L^2(S^1) \otimes V, \quad V = \mathbb{C}^N$

p orthog. proj. onto the Hardy space $H^2(S^1) \otimes V$

π_p corr. irr. rep.

... then $\mathcal{M}(\Gamma) = \pi_p(a(f))''$ with $f \in L^2(\Gamma, V)$

is a (net of) von Neumann algebra(s)

properties:

- $\Gamma^c = S^1 \setminus \Gamma$

 - vacuum vector Ω is cyclic and sep. for each $\mathcal{M}(\Gamma)$
 - modular group acts geometrically

 Let Γ be upper semi-circle,

 $$(u_\tau f)(z) = (z \sinh \tau + \cosh \tau)^{-1} \cdot f \left(\frac{z \cosh \tau + \sinh \tau}{z \sinh \tau + \cosh \tau} \right)$$

 "Möbius flow"

 $\Delta^{it} \pi_p(a(f)) \Delta^{-it} = \pi_p(a(u_\tau f)) \quad \forall f \in \mathcal{H}$

- modular conjugation acts geometrically

 - F is "flip" $F(f(z)) = z^{-1} f(z^{-1})$
 - x Klein transformation (?)

 $$J \pi_p(a(f)) J = x^{-1} \pi_p(a(u_\tau f)) x \quad J \mathcal{M}(\Gamma) J = \mathcal{M}(\Gamma^c)$$