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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir den Modulraum Mm
g,1(G)

flacher, punktierter G-Hauptfaserbündel auf Riemannschen Flächen X. Das
Geschlecht von X ist g ≥ 0 und G eine feste Liegruppe. Ferner sind m ≥ 0

permutierbare markierte Punkte und ein gerichteter Basispunkt, d.h. ein
Punkt Q mit einem Tangentialvektor χ 6= 0 in Q, auf X gegeben. Die
kanonische Projektion auf den Modulraum Riemannscher Flächen ergibt
ein Faserbündel, dessen Faser die Darstellungsvarietät in G ist. Es wer-
den die Zusammenhangskomponenten vonMm

1,1(G) für mehrere Liegruppen
beschrieben und die Homologiegruppen für SU (2) sowie U(1) berechnet.
Weiter können für G = SO(3), SU (2) und U (2) einige Homotopiegruppen
bestimmt werden. Im Speziellen beschäftigen wir uns mit Modulräumen von
Überlagerungen auf Riemannschen Flächen. Sowohl im Falle unverzweigter
als auch verzweigter Überlagerungen werden wiederum die Zusammen-
hangskomponenten kombinatorisch beschrieben. Im zweiten Teil der Arbeit
konstruieren wir mittels einer Verallgemeinerung der Hilbertuniformisierung
Riemannscher Flächen eine Zellenzerlegung für den Modulraum M(m)

g,1 (G)

flacher, punktierter G-Hauptfaserbündel auf Riemannschen Flächen X von
Geschlecht g ≥ 0 mit m ≥ 0 permutierbaren Punktierungen (im Gegensatz
zu markierten Punkten) und einem gerichteten Basispunkt. Als Konsequenz
können für einige Beispiele die Homologiegruppen berechnet werden. Zu-
dem wird ein Stratum von filtrierten Barkomplexen bestimmter endlicher
Kranzprodukte mit einer disjunkten Vereinigung von Modulräumen identi-
fiziert. Schließlich untersuchen wir Stabilisierungseffekte der Modulräume.
Zunächst betrachten wir Stabilisierungsabbildungen für g → ∞. Im letzten
Teil der Arbeit berechnen wir die stabilen Homotopiegruppen für G = Sp(k),
SU (k) und Spin(k) für k →∞.



Abstract

In this thesis, we study the moduli spacesMm
g,1(G) of flat pointed principal

G-bundles over Riemann surfaces X. The genus of X is g ≥ 0 and G is a
fixed Lie group. Further, we are given m ≥ 0 permutable marked points
in X and a directed base point, that is, a base point Q ∈ X with a tan-
gent vector χ 6= 0 in Q. The canonical projection onto the moduli space
of Riemann surfaces defines a fiber bundle whose fiber is the representation
variety in G. Connected components of Mm

1,1(G) are described for several
Lie groups G. Homology groups are computed for G = SU (2) and U(1).
Some homotopy groups are determined for G = SO(3), SU (2) and U(2).
In particular, we analyze moduli spaces of coverings of Riemann surfaces.
For ramified and unramified coverings, we combinatorially describe the con-
nected components.
In the second part of this thesis, we construct a cell decomposition for the
moduli space of flat G-bundles as an application of a generalized Hilbert
uniformization. To this end, we consider the moduli spacesM(m)

g,1 (G) of flat
pointed principal G-bundles over Riemann surfaces X of genus g ≥ 0 with
m ≥ 0 permutable punctures (in contrast to marked points) and a directed
base point. As a consequence, homology groups can be computed for some
examples. Moreover, a stratum of filtered bar complexes of certain finite
wreath products of groups can be identified with a disjoint union of mod-
uli spaces. Finally, we investigate stabilization effects of the moduli spaces.
First, we consider stabilization maps for g → ∞. Then we compute stable
homotopy groups for G = Sp(k), SU (k) and Spin(k) as k →∞.
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Einleitung

Eine der wichtigsten mathematischen Problemstellungen ist die Klassifika-

tion von Objekten mit bestimmten gemeinsamen Eigenschaften. Lösun-

gen eines geometrischen Klassifikationsproblems werden durch sogenannte

Modulräume nicht nur parametrisiert, sondern ihre Topologie realisiert ein

Maß, wie unterschiedlich zwei Objekte bezüglich der Klassifikation sind.

Im Fokus dieser Arbeit stehen Modulräume flacher G-Hauptfaserbündel auf

Riemannschen Flächen für eine feste Liegruppe G. Damit parametrisiert

der Modulraum zwei Strukturen: die konforme Struktur der Riemannschen

Fläche sowie die flache G-Hauptfaserbündelstruktur.

Das Modulproblem Riemannscher Flächen geht auf Riemann selbst im Jahr

1857 zurück. Seitdem wurde der Raum mit unterschiedlichsten Methoden

aus der Geometrie, Analysis und Kombinatorik untersucht. Wir betra-

chten hier den Modulraum Mm
g,1 Riemannscher Flächen X von Geschlecht

g ≥ 0 mit m ≥ 0 permutierbaren markierten Punkten und einem

gerichteten Basispunkt, d.h. einem Punkt Q ∈ X mit einem Tangential-

vektor χ 6= 0 in Q. Der Modulraum besteht aus konformen Äquivalenz-

klassen, welche die oben genannte Struktur erhalten. Es ist der Quotient

des Teichmüllerraums T mg,1, der für g ≥ 2 homöomorph zu einem euklid-

schen Raum ist, unter der Wirkung der Abbildungsklassengruppe Γmg,1. Die

Abbildungsklassengruppe ist die Gruppe der Zusammenhangskomponenten
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aller orientierungserhaltender Diffeomorphismen, die den gerichteten Basis-

punkt sowie dessen Tangentialvektor fixieren und die Menge der markierten

Punkte erhalten. Die Wirkung von Γmg,1 auf T mg,1 ist eigentlich diskontinuier-

lich und frei. Insbesondere ist der Modulraum Mm
g,1 ein klassifizierender

Raum von Γmg,1 und eine topologische Mannigfaltigkeit.

Auch die Klassifikation von Bündeln ist ein klassisches Problem. Äquivalenz-

klassen topologischer G-Hauptfaserbündel über einem CW-Komplex X

werden durch Homotopieklassen von X in den klassifizierenden Raum

BG von G parametrisiert. Dagegen ist die Charakterisierung flacher G-

Hauptfaserbündel ein geometrisches Problem und hängt mit dem Begriff

der Holonomie von Hauptfaserbündeln zusammen, welcher von Cartan 1926

eingeführt wurde. Wird eine Riemannsche Fläche X fest gewählt, so

entsprechen Äquivalenzklassen flacher G-Hauptfaserbündel G-Konjugations-

klassen von Darstellungen der Fundamentalgruppe π1(X) nach G. Aus-

gestattet mit der kompakt-offenen Topologie wird die Menge der Darstell-

ungen zu einem topologischen Raum RG(X), der sogenannten Darstell-

ungsvarietät. Aus dieser Beschreibung ist ersichtlich, dass die flache G-

Hauptfaserbündelstruktur nicht von der konformen Struktur der Fläche ab-

hängt. Somit ist ein häufiger Lösungsansatz zur Betrachtung des Modul-

raums flacher G-Hauptfaserbündel auf Riemannschen Flächen die Unter-

suchung des ModulraumsMm
g,1 und der Darstellungsvarietät.

In der vorliegenden Arbeit betrachten wir den ModulraumMm
g,1(G) flacher,

punktierter G-Hauptfaserbündel auf Riemannschen Flächen von Geschlecht

g ≥ 0 mit m ≥ 0 permutierbaren markierten Punkten und einem gerichteten

Basispunkt. Die Flächen werden bis auf konforme Äquivalenz und die Bündel

bis auf glatte Isomorphismen unterschieden. Im ersten Schritt widmen wir

uns der Topologie des Modulraums. Sei hierzu Smg,1 eine orientierte Fläche
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von Geschlecht g ≥ 0 mit m ≥ 0 markierten Punkten und einem gerichteten

Basispunkt. Durch Identifikation von Mm
g,1(G) mit dem Faserprodukt

T mg,1×Γmg,1
RG(Smg,1) als Menge erhält er die Quotiententopologie des direkten

Produkts aus Teichmüllerraum und Darstellungsvarietät. Mehr noch folgt,

dass die kanonische ProjektionMm
g,1(G)→Mm

g,1 ein Faserbündel mit Faser

RG(Smg,1) ist. Eine erste natürliche Frage ergibt sich zur Bestimmung der An-

zahl und Charakterisierung der Zusammenhangskomponenten vonMm
g,1(G).

Da der Teichmüllerraum zusammenhängend ist, muss zur Untersuchung der

Komponenten die Wirkung von Γmg,1 auf RG(Smg,1) sowie die Anzahl der

Zusammenhangskomponenten der Darstellungsvarietät untersucht werden.

Die Bestimmung der Zusammenhangskomponenten von RG(Smg,1) ist ein

schwieriges Problem und wurde für einige Beispiele von Liegruppen und

g ≥ 2 zuerst von Goldman in [26] gelöst. Er stellte dort die Hypothese auf,

dass für zusammenhängende, halbeinfache und kompakte beziehungsweise

komplexe Liegruppen die Zusammenhangskomponenten bijektiv zur Funda-

mentalgruppe π1(G) sind. Mehr noch lässt sich die einzige Obstruktion

gegen Trivialität des Bündels mit einem bestimmten Element aus π1(G)

identifizieren. Diese Vermutung wurde später in [38] bewiesen. Die Beweis-

methoden lassen sich jedoch nicht auf den Fall flacher G-Hauptfaserbündel

auf Flächen von Geschlecht g = 1 übertragen. Daher haben wir mit klassi-

scher Liegruppentheorie die Zusammenhangskomponenten für U(n), SU (n)

und Sp(n) bestimmt, sowie mit Hilfe hyperbolischer Geometrie die Gruppen

PSL(2,R) und SL(2,R) betrachtet.

Als weiteres wichtiges Beispiel wurde der Modulraum Mm
1,1(SO(3)) unter-

sucht. Indem SO(3) mit der Rotationsgruppe des euklidschen Raums identi-

fiziert wird, können die zwei Zusammenhangskomponenten von RSO(3 )(S1,1)

mit Hilfe bestimmter Paare von Rotationen beschrieben werden (siehe [3]).
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Unter Verwendung dieses Resultats lässt sich die folgende Charakterisierung

aufstellen (siehe Satz 1.3.5).

Satz. Der Modulraum Mm
1,1(SO(3)) besteht aus zwei Zusammenhangskom-

ponenten, welche durch die zweiten Stiefel–Whitney-Klassen der zu

den SO(3)-Hauptfaserbündeln assoziierten Vektorraumbündel charakterisiert

werden. Genauer gesagt, besteht eine Komponente aus topologisch trivialen

Bündeln, während die andere Komponente Bündel mit einer nicht trivialen

zweiten Stiefel–Whitney-Klasse enthält. Die Fundamentalgruppe der Zusam-

menhangskomponente des trivialen Bündels ist isomorph zu (Z/2)2 o Γm1,1.

Der Beweis des Satzes basiert auf klassischen Fundamentalgruppentech-

niken. Als Korollar erhalten wir die Fundamentalgruppen der Modulräume

Mm
1,1(SU (2)) undMm

1,1(U (2)).

In der Regel sind konkrete Berechnungen sehr schwierig und lassen sich nur

für Beispielklassen durchführen. Zwei wichtige solche Klassen sind durch

abelsche und endliche Gruppen gegeben. Eine zusammenhängende abelsche

Liegruppe ist isomorph zum direkten Produkt eines Torus und eines euklid-

schen Raums. In diesem Fall gilt dann die folgende Beschreibung für den

Modulraum (siehe Korollar 1.4.2).

Korollar. Sei G eine zusammenhängende abelsche Liegruppe. Dann ist

Mm
g,1(G) ein klassifizierender Raum mit Z2gpoΓmg,1 als Fundamentalgruppe,

wobei p die Dimension des maximalen Torus von G ist.

Zur Untersuchung der Zusammenhangskomponenten des Modulraums K-

blättriger, unverzweigter Überlagerungen Mg,1[K] in Abschnitt 1.5 haben

wir vorwiegend kombinatorische Methoden verwendet. Die Strukturgruppe

ist die symmetrische Gruppe auf K Elementen SK . Die geänderte Notation

ist dadurch begründet, dass die Strukturgruppe SK auf K Punkten und
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nicht auf sich selbst wirken soll. Durch die Zerlegung jeder Fläche in Teil-

flächen der Charakteristik −1 können wir das Problem auf die Spezialfälle

des Torus und der drei Mal berandeten Sphäre reduzieren. Für den Torus

lassen sich die Zusammenhangskomponenten des Modulraums durch bes-

timmte transitive Untergruppen der symmetrischen Gruppe beschreiben. Im

Fall der berandeten Sphäre werden die Zusammenhangskomponenten durch

Bahnen der reinen Zopfgruppe auf den Monodromiedarstellungen identi-

fiziert. Durch zusätzliche Untersuchung der Zusammenhangskomponenten

jeder Überlagerung kann Satz 1.5.5 geschlossen werden. Sei hierzu b0(M) die

Anzahl der Zusammenhangskomponenten eines topologischen Raums M .

Satz. Die Anzahl der Zusammenhangskomponenten b0(Mg,1[K]) ist eine

Funktion von b0(M1,1[K]), b0(H3[K]) und dem Geschlecht g, wobei Hr[K]

der Hurwitzraum K-blättriger Überlagerungen mit r ≥ 1 Verzweigungspunk-

ten ist.

(1) Die Anzahl b0(M1,1[K]) ist eine Funktion der Anzahl der Partitionen

von K und der Anzahl aller transitiver Untergruppen H ≤ SK , für

welche folgendes gilt. Es existieren s, t ∈ N so, dass H eine Unter-

gruppe des Kranzprodukts Z/sZ o Ct für die zyklische Gruppe Ct der

Ordnung t ist.

(2) Die Anzahl b0(Hr[K]) ist gleich der Anzahl der Bahnen der reinen

Zopfgruppe auf der Menge der Monodromiedarstellungen.

Es lassen sich damit für einige Beispiele die Anzahl der Zusammenhangskom-

ponenten explizit berechnen. Als allgemeines Resultat erhalten wir jedoch

eine obere Schranke.

Eine weitere interessante Schlussfolgerung aus Satz 1.5.5 ist die Bestimmung
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der Anzahl der Zusammenhangskomponenten des Modulraums verzweigter

ÜberlagerungenMg,1[K]∗ (siehe Korollar 1.5.6).

Korollar. Der ModulraumMg,1[K]∗ hat unendlich viele Komponenten.

In Anbetracht von (2) aus Satz 1.5.5 wird schließlich in Satz 1.5.11 die

Gruppenwirkung der Zopfgruppe auf der Menge der Monodromiedarstellun-

gen mit kombinatorischen Methoden berechnet.

Schließlich ist die Bestimmung der Homologiegruppen eine zentrale topo-

logische Frage. Da die kanonische Projektion von Mm
g,1(G) auf Mm

g,1

ein Faserbündel ist, kann die Leray–Serre-Spektralsequenz für die Fälle

M1,1(SU (2)) undM1,1(U(1)) aufgestellt werden. Leider hat dieser Ansatz

in vielen anderen Fällen Grenzen, weil die Differentiale unbekannt sind

oder der E2-Term nicht vollständig ermittelt werden kann. Eine typische

alternative Herangehensweise zur Homologieberechnung ist die Konstruk-

tion einer Zellenzerlegung. Dies ist das Hauptziel der Hilbertuniformisierung

und wird in Kapitel 2 durchgeführt. Die Hilbertuniformisierung ist eine auf

Hilbert zurückgehende Methode. Mit Hilfe dieser hat Bödigheimer in [9]

einen Zellenkomplex konstruiert, welcher homotopieäquivalent zum Modul-

raum Riemannscher Flächen Mm
g,1 ist. Eines unserer primären Ziele ist es

diese Methode für Modulräume flacher, punktierter G-Hauptfaserbündel zu

verallgemeinern. Aus technischen Gründen werden wir dies für den Modul-

raumM(m)
g,1 (G) flacher, punktierter G-Hauptfaserbündel über Riemannschen

Flächen von Geschlecht g ≥ 0 mit m ≥ 0 permutierbaren Punktierungen

und einem gerichteten Basispunkt durchführen. Der Grund hierfür ist,

dass die Holonomie um eine Punktierung nicht zwangsläufig trivial ist.

Sei X eine Riemannsche Fläche von Genus g ≥ 0 mit m ≥ 0 Punktier-

ungen P1, . . . , Pm und einem gerichteten Basispunkt (Q,χ). Zu der kon-

formen Klasse F = [X,P1, . . . , Pm, Q, χ] und positiven reellen Konstanten
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b, c1, . . . , cm mit
∑

1≤j≤m
cj = b existiert eine Potentialfunktion u : X → R̄.

Eine Potentialfunktion ist harmonisch auf X − {P1, . . . , Pm, Q} und lokal

bei Q von der Form Re(1
z )− bRe(log(z)) + f(z), wo f harmonisch ist, und

lokal um Pj von der Form cj Re(log(z)) + fj(z) für eine harmonische Funk-

tion fj und 1 ≤ j ≤ m. Mit Hilfe des Gradientenvektorfelds von u kann

der kritische Graph K konstruiert werden. Die Ecken des Graphen sind

durch {P1, . . . , Pm, Q} und die kritischen Punkte von u gegeben. Kanten

zwischen zwei Ecken sind Trajektorien des Gradientenvektorfelds von einem

kritischen Punkt in eine Punktierung oder in Q, oder zwischen zwei kri-

tischen Punkten. Das Komplement X − K ist ein einfach zusammenhän-

gendes Gebiet, auf dem u harmonisch ist. Folglich ist u der Realteil einer

holomorphen Funktion w = u +
√
−1v. Das Bild von w ist die komplexe

Ebene, durch welche parallel zur reellen Achse Schlitze verlaufen, die aus

dem negativ Unendlichen kommen und in C enden. Wir nennen ein solches

Bild ein Parallelschlitzgebiet (siehe Abbildung 2.1). Durch Normierung des

Parallelschlitzgebiets ergeben die Werte der kritischen Punkte von u und

v baryzentrische Koordinaten. Zusätzlich werden durch die Uniformisierung

in ein Parallelschlitzgebiet eindeutige Permutationen σ0, . . . , σq determiniert,

welche als Verklebedaten für die Riemannsche Fläche fungieren. Damit wird

ein Punkt in einer simplizialen Zelle definiert, deren Dimension von der

Eulercharakteristik und der Potentialfunktion abhängt. Andererseits kann

diese Konstruktion umgekehrt werden. Mit Hilfe baryzentrischer Koordi-

naten lässt sich eindeutig ein Parallelschlitzgebiet angeben. Es wird durch

ein Gitter unterteilt, dessen Horizontalen aus den Schlitzen und ihren Ver-

längerungen bestehen, und die Vertikalen durch die Schlitzenden definiert

sind (siehe Abbildung 2.2). Das Parallelschlitzgebiet ist damit in Rechtecke

Ri,j für 0 ≤ i ≤ q, 0 ≤ j ≤ p und q ≤ 2g + m, p ≤ 4g + 2m unterteilt.
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Wir betrachten das sogenannte erweiterte Parallelschlitzgebiet dazu. Es ist

die disjunkte Vereinigung der abgeschlossenen Rechtecke und damit eben-

falls durch das Gitter unterteilt. Nach Wahl von Permutationen σi ∈ S0
p aus

der symmetrischen Gruppe von {0, . . . , p} für 0 ≤ i ≤ q lautet die Verkle-

bevorschrift für das erweiterte Parallelschlitzgebiet, dass die obere Seite von

Ri,j mit der unteren Seite von Ri,σi(j) verklebt wird, und die linke Seite

von Ri,j mit der rechten Seite von Ri+1,j . Natürlich induzieren nicht be-

liebige solche Wahlen eine reguläre Riemannsche Fläche. Es können jedoch

geeignete Bedingungen an die Permutationen gestellt werden. Unter Ver-

wendung dieser Regeln kann schließlich ein Zellenkomplex Pm
g,1 konstruiert

werden, der homotopieäquivalent zuMm
g,1 ist.

Dieses Verfahren wird in Kapitel 2 verallgemeinert, um einen Zellen-

komplex Pm
g,1(G) zu erhalten, welcher homotopieäquivalent zum Modulraum

M(m)
g,1 (G) ist. Die Idee besteht darin, aus jedem flachen G-Hauptfaserbündel

über einer Riemannschen Fläche das triviale G-Hauptfaserbündel über dem

entsprechenden Parallelschlitzgebiet zu konstruieren. Gleichfalls kann diese

Prozedur umgekehrt werden, so dass durch Angabe entsprechender Verklebe-

abbildungen das triviale G-Hauptfaserbündel über einem Parallelschlitzge-

biet zu einem flachen G-Hauptfaserbündel über einer Riemannschen Fläche

identifiziert wird. Sei hierzu π : E → X ein G-Hauptfaserbündel mit flacher

Zusammenhangsform A und u : X → R̄ eine Potentialfunktion auf X. Für

den Kodimension eins Unterraum K∗ = π−1(K) von E ist das Komplement

E−K∗ homöomorph zum direkten Produkt aus dem dazugehörigen Parallel-

schlitzgebiet und der Liegruppe G. Andererseits sei das erweiterte Parallel-

schlitzgebiet Y mit Verklebeabbildungen (σi)i gegeben und in Rechtecke Ri,j

für 0 ≤ i ≤ q und 0 ≤ j ≤ p unterteilt. Sei Rξi,j das Rechteck Ri,j × {ξ} für

ξ ∈ G in Y ×G. Für alle Paare (i, j) seien Elemente γi,j ∈ G gewählt. Dann
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ist die Identifikation für die Umkehrung der Hilbertuniformisierung wie folgt.

Die obere Seite von Rξi,j wird mit der unteren Seite von Rγi,jξi,σi(j)
verklebt, und

die linke Seite von Rξi,j mit der rechten Seite von Rξi+1,j . Erneut müssen

die Elemente (γi,j , σi)i,j Bedingungen erfüllen (siehe Abschnitt 2.2), welche

den Zellenkomplex Pm
g,1(G) charakterisieren. Als Resultat erhalten wir eine

Zellenzerlegung vonM(m)
g,1 (G).

Die genaue Formulierung der Hilbertuniformisierung ist sogar noch stärker.

Sei Hmg,1(G) der Raum bestehend aus allen Äquivalenzklassen [E, π,X,A, u],

wobei [E, π,X,A] ∈ M(m)
g,1 (G) und u eine Potentialfunktion auf X ist. Aus

den Eigenschaften von Potentialfunktionen folgt, dass Hmg,1(G) →M(m)
g,1 (G)

ein affines Bündel ist (siehe [9]). Insbesondere sind Hmg,1(G) und M(m)
g,1 (G)

homotopieäquivalent und es gilt das folgende zentrale Resultat (siehe Satz

2.3.7).

Satz. Die Hilbertuniformisierung definiert einen Homöomorphismus

H(G) : Hmg,1(G)→ Pm
g,1(G).

Unter Verwendung dieser Zellenzerlegung lässt sich für einige einfache

Beispiele die simpliziale Homologie bestimmen (siehe Beispiel 2.3.9).

Beispiel. Für den Modulraum M1,1[2]0 unverzweigter, zusammenhängen-

der 2-blättriger Überlagerungen über dem Torus mit einem Dipolpunkt ist

Hn(M1,1[2]0;Z) ∼=


Z, n = 0, 2

Z2, n = 1

0, sonst.

Trotzdem ergeben sich schnell Schwierigkeiten, obwohl die Hilbertuni-
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formisierung eine konstruktive Methode zur Berechnung der Homologie er-

möglicht. Diese erwachsen aus der numerischen Komplexität des Problems,

denn die Anzahl der Zellen steigt exponentiell mit größer werdenden g, m

und G.

Die Hilbertuniformisierung hat jedoch noch weitere sehr interessante Konse-

quenzen. Es ist möglich, ein Stratum bestimmter filtrierter Barkomplexe

mit einer disjunkten Vereinigung von Modulräumen M(m)
g,1 (G) zu identi-

fizieren. Sei G eine endliche Gruppe der Ordnung |G|, realisiert als Unter-

gruppe der symmetrischen Gruppe auf |G| Elementen S|G|. Dann ist das

Kranzprodukt G o Sp eine Untergruppe von S|G|p für alle p ≥ 0. Wir be-

trachten auf G o Sp die Wortlängennorm bezüglich aller Transpositionen.

Sei B(G o Sp) der Barkomplex, und F(h)B(G o Sp) bestehe aus allen Ele-

menten des Barkomplexes, deren Produktnorm (bezüglich der Wortlängen-

norm) gleich h ∈ N ist. SeiM(m)
g,1 [|G|]G der Modulraum unverzweigter, |G|-

blättriger Überlagerungen mit Strukturgruppe G über einer Riemannschen

Fläche von Geschlecht g ≥ 0 mit m ≥ 0 permutierbaren Punktierungen und

einem gerichteten Basispunkt. Dann induziert die Hilbertuniformisierung

die Homotopieäquivalenz (siehe Satz 2.4.4)

∐
h=|G|(2g+m)

M(m)
g,1 [|G|]G −→ F(h)B(G oS∗).

Dieses Resultat ist insbesondere im Hinblick auf die Arbeit Visys [53] von

Interesse, wo mit Hilfe solcher Normfiltrierungen Komplexe zur Berechnung

der Kohomologie sogenannter faktorabler Gruppen aufgestellt wurden. Alle

Gruppen in unserem Resultat sind faktorabel bezüglich der Norm des semidi-

rekten Produkts, welche durch die triviale Norm auf G und die Wortlän-

gennorm der symmetrischen Gruppe definiert ist. Damit wird eine direkte
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Beziehung zwischen geometrischen Objekten, den Modulräumen, und einem

rein algebraischen Konzept, der Kohomologie von Gruppen, hergestellt. Es

folgt sogar aus unseren Überlegungen, dass F(h)B(G oS∗) homöomorph zu

einer topologischen Mannigfaltigkeit ist (siehe Korollar 1.2.10).

Zuletzt wollen wir auf einen anderen Aspekt eingehen, der für neuere Un-

tersuchungen von Modulräumen Riemannscher Flächen von großer Bedeu-

tung ist. Wir betrachten im letzten Kapitel Stabilisierungseffekte von

Mg,1(G). Die erste wichtige Idee hierbei geht auf Harer [30] zurück.

Er zeigte unter Verwendung bestimmter Stabilisierungsabbildungen für die

Abbildungsklassengruppe Γg,n, dass für g >> 0 die Homologie Hq(BΓg,n)

nicht von g und n abhängt. Hier wird Γg,n als die Abbildungklassengruppe

Riemannscher Flächen von Geschlecht g ≥ 0 mit n ≥ 0 Randkomponen-

ten betrachtet. Mit Hilfe von Harers Ergebnissen hat Tillmann später

nachgewiesen, dass Z×BΓ+
g,n ein unendlicher Schleifenraum ist, wobei BΓ+

g,n

die Plus-Konstruktion bezeichnet (siehe [50]). Beide Resultate wurden in

[17], [18] und [19] für den Modulraum flacher G-Hauptfaserbündel verall-

gemeinert. Ein zentrales Element hierbei ist, dass die Stabilisierungsabbil-

dungen mit Hilfe der zusammenhängenden Summe entlang von Randkompo-

nenten definiert werden. Es sei zusätzlich bemerkt, dass über den Rändern

beide Bündel der Summe trivial sind, und so kanonisch identifiziert werden

können. Damit ergeben sich durch die Basis des Bündels, d.h. die Rie-

mannsche Fläche, Stabilisierungsabbildungen.

Jedoch existiert auf Mg,1(G) eine weitere Stabilisierungsabbildung für be-

stimmte Wahlen der Liegruppe G. Sei hierzu G = G(k) eine der klassischen

Matrixgruppen Sp(k), SU (k) oder Spin(k). Für die klassifizierenden Räume

dieser Gruppen hat Bott eines der ersten großen Stabilitätsresultate gezeigt

(siehe [14]). Unter Verwendung von Methoden aus [5] (siehe Satz 3.2.1)
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folgt, dass für k >> 0 die Homotopiegruppen πq(Mg,1(G(k))) nicht von k

abhängen (siehe Satz 3.2.3).

Satz. Sei X eine kompakte, orientierte und zusammenhängende Fläche von

Geschlecht g ≥ 2. Dann ist Rik : RG(k)(X)→ RG(k+1)(X)

(1) (4k − 4)-zusammenhängend für G(k) = Sp(k).

(2) (2k − 2)-zusammenhängend für G(k) = SU (k).

(3) (k − 3)-zusammenhängend für G(k) = Spin(k).

Zudem lassen sich mit Bott-Periodizität diese stabilen Homotopiegruppen

explizit berechnen (siehe Korollar 3.2.4).

Korollar. Sei hocolim
k
RG(k)(X) = RG∞(X) für G(k) eine der klassischen

Familien zusammenhängender, kompakter, halbeinfacher Liegruppen Sp(k),

SU(k) oder Spin(k). Die Homotopiegruppen von RG∞(X) sind wie folgt.

(1)

πq(RSp∞ (X)) ∼=



Z, q ≡ 0 mod 8

0, q ≡ 1, 2 mod 8

Z2g, q ≡ 3, 7 mod 8

(Z/2)2g × Z, q ≡ 4 mod 8

(Z/2)2g+1, q ≡ 5 mod 8

Z/2, q ≡ 6 mod 8.

(2)

πq(RSU∞ (X)) ∼=


Z, q ≡ 0 mod 2

Z2g, q ≡ 1 mod 2.
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(3)

πq(RSpin∞ (X)) ∼=



(Z/2)2g × Z, q ≡ 0 mod 8

(Z/2)2g+1, q ≡ 1 mod 8

Z/2, q ≡ 2 mod 8

Z2g, q ≡ 3, 7 mod 8

Z, q ≡ 4 mod 8

0, q ≡ 5, 6 mod 8.

Die Arbeit ist wie folgt aufgebaut. Im ersten Kapitel führen wir einige grund-

sätzliche Begriffe zu flachen Zusammenhängen auf Hauptfaserbündeln ein

und betrachten die Topologie des Modulraums. Es werden für die erwähn-

ten Beispiele einige Homologie- und Homotopiegruppen bestimmt sowie

Zusammenhangskomponenten charakterisiert. In Abschnitt 1.5 widmen wir

uns Modulräumen von Überlagerungen unter Verwendung kombinatorischer

Methoden. Das zweite Kapitel wird der Hilbertuniformisierung flacher G-

Hauptfaserbündel auf Riemannschen Flächen gewidmet. Wir geben die Kon-

struktion der Hilbertuniformisierung an und zeigen, dass diese einen Homöo-

morphismus vom Raum flacher G-Hauptfaserbündel mit Potentialfunktion

auf einen Zellenkomplex induziert. Schließlich werden in Abschnitt 2.4 die

Beziehung zur Normfiltrierung F(h)B(G o S∗) hergestellt und in Abschnitt

2.5 mit Hilfe von Parallelschlitzgebieten eine H-Raumstruktur auf einer dis-

junkten Vereinigung von Modulräumen untersucht. Unsere Überlegungen

zur H-Raumstruktur basieren auf Resultaten aus [10]. Im dritten Kapitel

beschäftigen wir uns mit der stabilen Topologie der Modulräume und kon-

struieren in Abschnitt 3.1 Dyer–Lashof-Operationen. Im letzten Teil der Ar-
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beit werden die stabilen ModulräumeMg,1(G(k)) für G(k) = Sp(k), SU (k),

Spin(k) und k →∞ untersucht sowie die stabilen Homotopiegruppen berech-

net.
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Introduction

One of the most important mathematical questions is the classification of

objects with certain common properties and which are subject to a suitable

notion of equivalence. The resulting quotient space usually carries a natu-

ral topology. Solutions of the geometric classification problem are not only

parameterized by so-called moduli spaces but their topology characterizes a

measure to which extent two objects are different. We focus on moduli spaces

of flat principal G-bundles over Riemann surfaces for a fixed Lie group G.

Therefore, the moduli space parameterizes two structures: the conformal

structure of the Riemann surface and the flat G-bundle structure.

The moduli problem of Riemann surfaces goes back to Riemann in 1857.

This space and variations thereof were studied by means of different geo-

metric, analytic and combinatorial methods. In this thesis, we consider the

moduli space Mm
g,1 of Riemann surfaces X of genus g ≥ 0 with m ≥ 0

permutable marked points and a directed base point, that is, a base point

Q ∈ X with a tangent vector χ 6= 0 in Q. The moduli space consists of con-

formal equivalence classes which preserve this structure. It is the quotient

of the Teichmüller space T mg,1, which is homeomorphic to an Euclidean space

for g ≥ 2, under the action of the mapping class group Γmg,1. The latter is

the group of connected components of all orientation preserving diffeomor-

phisms that fix the directed base point with its tangent vector and the set of
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marked points. The action of Γmg,1 on T mg,1 is properly discontinuous and free.

In particular,Mm
g,1 is a topological manifold and a model for the classifying

space BΓmg,1.

Likewise, the classification of bundles is a classical problem. Equivalence

classes of topological principal G-bundles over a CW-complex X are clas-

sified by homotopy classes of maps from X to the classifying space BG of

G. On the other hand, the characterization of flat principal G-bundles is a

geometric problem. It is related to the notion of holonomy which was intro-

duced by Cartan in 1926. If a Riemann surface is fixed equivalence classes

of flat principal G-bundles correspond to G-conjugacy classes of representa-

tions of the fundamental group π1(X) in G. The set of these representations

equipped with the compact-open topology is called the representation vari-

ety RG(X). From this description it follows that the flat G-bundle structure

does not depend on the conformal structure of the Riemann surface. Thus,

a frequent theme in the study of moduli spaces of flat G-bundles will be to

analyzeMm
g,1 and the representation variety.

In this text, we consider the moduli spaceMm
g,1(G) of flat pointed G-bundles

over Riemann surfaces of genus g ≥ 0 with m ≥ 0 permutable marked points

and a directed base point. The surfaces are characterized up to conformal

equivalence and the bundles up to smooth isomorphisms. In a first step, we

draw our attention to the topology of the moduli space. For this, let Smg,1 be

an oriented surface of genus g ≥ 0 with m ≥ 0 marked points and a directed

base point. By identification of Mm
g,1(G) with T mg,1 ×Γmg,1

RG(Smg,1) as a set

it is equipped with the quotient topology of the direct product. Even more,

it follows that the canonical projection Mm
g,1(G) → Mm

g,1 is a fiber bundle

with fiber RG(Smg,1). A natural question to ask is to determine the number

or to characterize the connected components of Mm
g,1(G). Since the Teich-
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müller space is connected we need to determine the connected components

of RG(Smg,1) and how the mapping class group acts upon these. The compu-

tation of the connected components of RG(Smg,1) is a difficult problem. For

some examples of Lie groups, this was solved by Goldman in [26] if g ≥ 2.

There he raised the conjecture that the connected components are in bijec-

tive correspondence with the fundamental group π1(G) for G a connected,

semisimple and complex and compact Lie group, respectively. Even more,

the only obstruction against the triviality of the bundle is a certain element

from π1(G). This conjecture was later proved in [38].

However, the methods of the proof do not work for the case of flat principal

G-bundles over surfaces of genus g = 1. Therefore, we have determined the

connected components for U(n), Sp(n) and SU (n) by classical Lie group

techniques. Moreover, we considered the groups PSL(2,R) and SL(2,R) us-

ing hyperbolic geometry.

A further important example is the moduli spaceMm
1,1(SO(3)). By identify-

ing SO(3) with the rotation group of the Euclidean space the two connected

components of RSO(3)(S1,1) can be described by means of certain pairs of

rotations (see [3]). Applying this result, the connected components are char-

acterized as follows (see Theorem 1.3.5).

Theorem. The moduli space Mm
1,1(SO(3)) consists of two connected com-

ponents which are characterized by the second Stiefel–Whitney classes of the

associated vector bundles to the principal SO(3)-bundles. More precisely,

one component consists of topologically trivial bundles while the other com-

ponent contains bundles with a nontrivial second Stiefel–Whitney class. The

fundamental group of the connected component containing the trivial bundle

is isomorphic to (Z/2)2 o Γm1,1.

As a corollary we obtain the fundamental groups of the moduli spaces
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Mm
1,1(SU (2)) andMm

1,1(U (2)).

In general, concrete computations are hard to carry out and can be done

only for some example classes. Two important classes are given by abelian

and finite groups, respectively. A connected abelian Lie group is isomorphic

to a direct product of a torus and a Euclidean space. In this case, the moduli

space can be described as follows (see Corollary 1.4.2).

Corollary. Let G be a connected abelian Lie group. Then Mm
g,1(G) is a

classifying space with fundamental group Z2gpoΓmg,1 where p is the dimension

of the maximal torus of G.

To examine connected components of the moduli space of pointed, K-sheeted

unramified coveringsMg,1[K] we mostly apply combinatorial techniques (see

Section 1.5). The structure group is the symmetric group on K elements.

We changed the notation for the moduli spaces since the structure group SK

should act on K points and not on itself. By decomposing each surface in

subsurfaces of characteristic −1 we are in a position to reduce the question

to the following special cases. Namely, we get the torus and the sphere with

three boundary components. In case of the torus, the connected components

of the moduli space can be described by means of certain transitive subgroups

of the symmetric group. For the bounded sphere, the connected components

are identified by orbits of the pure braid group acting on all monodromy

representations. Finally, Theorem 1.5.5 follows after examining the number

of connected components of each covering. To state the theorem we denote

by b0(M) the number of connected components of a topological space M .

Theorem. The number of connected components b0(Mg,1[K]) is a function

of b0(M1,1[K]), b0(H3[K]) and the genus g. Here we denote by Hr[K] the

Hurwitz space of K-sheeted coverings with r ≥ 1 branch points.
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(1) The number b0(M1,1[K]) is a function of the number of partitions of

K and the number of all transitive subgroups H ≤ SK satisfying the

following property. There are s, t ∈ N so that H is a subgroup of the

wreath product Z/sZ o Ct for the cyclic group Ct of order t.

(2) The number b0(Hr[K]) equals the number of orbits of the pure braid

group PBr on the set of monodromy representations.

As a consequence, we are in a position to compute the number of connected

components in some cases. In general, we still obtain an upper bound.

A further interesting implication of Theorem 1.5.5 is the computation of the

number of connected components of the moduli space of ramified coverings

Mg,1[K]∗ (see Corollary 1.5.6).

Corollary. The moduli spaceMg,1[K]∗ has infinitely many connected com-

ponents.

Besides, in view of (2) of Theorem 1.5.5 we calculate the group action of the

braid group on the set of monodromy representations by means of combina-

torial methods in Theorem 1.5.11.

Another central question is the calculation of homology groups. Since the

canonical projection of Mm
g,1(G) to Mm

g,1 is a fiber bundle the Leray–Serre

spectral sequence can be applied toM1,1(SU (2)) andM1,1(U (1)). Unfortu-

nately, this technique is limited for other examples since the differentials or

the E2-term are unknown. A typical alternative approach is to construct a

cell decomposition. This is the main goal of the Hilbert uniformization and

is presented in Chapter 2. The Hilbert uniformization is a method which

goes back to Hilbert. It was applied by Bödigheimer in [9] to construct a

cell complex that is homotopy equivalent to the moduli space Mm
g,1. One

of our primary objectives is to generalize this method to moduli spaces of
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flat G-bundles over Riemann surfaces. For technical reasons, we will work

with the moduli space M(m)
g,1 (G) of flat, pointed principal G-bundles over

Riemann surfaces of genus g ≥ 0 with m ≥ 0 permutable punctures and

a directed base point. The reason for this slight change is that the holon-

omy is not necessarily trivial at punctures. Let X be a Riemann surface of

genus g ≥ 0 with punctures P1, . . . , Pm and a directed base point (Q,χ).

Given a conformal class F = [X,P1, . . . , Pm, Q, χ] and positive real con-

stants b, c1, . . . , cm such that
∑

1≤j≤m
cj = b there exists a potential function

u : X → R̄. A potential function is harmonic on X −{P1, . . . , Pm, Q}. Near

Q it is of the form Re(1
z ) − bRe(log(z)) + f(z) for a harmonic function f ,

while near Pj it is of the form cj Re(log(z)) + fj(z) where fj is harmonic for

1 ≤ j ≤ m. By means of the gradient vector field of u, the critical graph K

can be constructed. Its vertices are {P1, . . . , Pm, Q} and the critical points

of u. An edge between two vertices is given by a trajectory of the gradi-

ent vector field from a critical point into Q or into a puncture, or between

two critical points. The complement X − K is a simply connected domain

where u is harmonic. Hence, u is the real part of a holomorphic function

w = u +
√
−1v. The image of w is the complex plane subdivided into slits

along horizontal lines (parallel to the real axis) coming from minus infinity

whose end points lie in C. We call such an image a parallel slit domain (see

Figure 2.1). After normalizing the parallel slit domain the critical points of

u and v yield barycentric coordinates. In addition, permutations σ0, . . . , σq

are uniquely determined from the uniformization process of the parallel slit

domain which serve as gluing functions for the Riemann surface. So a point

is defined in a simplicial cell. The dimension of this cell depends on the Euler

characteristic of the surface and the potential function. On the other hand,

this construction can be reversed. Given barycentric coordinates there is a
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unique parallel slit domain. It is subdivided by a grid whose horizontal lines

are given by the slits and its extensions while the vertical lines are deter-

mined by the slit end points (see Figure 2.2). So the parallel slit domain is

subdivided into rectangles Ri,j for 0 ≤ i ≤ q, 0 ≤ j ≤ p and q ≤ 2g + m,

p ≤ 4g + 2m. We consider the so-called extended parallel slit domain to it.

It is the disjoint union of the closed rectangles and so it is also subdivided

by the grid. After choosing permutations σi ∈ S0
p from the symmetric group

of {0, . . . , p} for 0 ≤ i ≤ q the gluing condition for the extended parallel

slit domain can be stated as follows. The upper side of Ri,j is glued to the

lower side of Ri,σi(j) and the left hand side of Ri,j is glued to the right hand

side of Ri+1,j . Arbitrary choices won’t induce a regular Riemann surface

but there are suitable conditions on the permutations for this. By means of

these identification rules, a cell complex Pm
g,1 can be constructed which is

homotopy equivalent toMm
g,1.

This method is generalized in Chapter 2 in order to obtain a cell complex

Pm
g,1(G) that is homotopy equivalent toM(m)

g,1 (G). The main idea is to con-

struct from every flat principal G-bundle over a Riemann surface the trivial

principal G-bundle over the corresponding parallel slit domain. At the same

time, this procedure can be reversed. Given suitable gluing functions for

the trivial principal G-bundle over a parallel slit domain, a flat principal

G-bundle over the corresponding Riemann surface can be constructed. To

this end, let π : E → X be a principal G-bundle with flat connection form

A and potential function u : X → R̄. For the codimension one subspace

K∗ = π−1(K) of E we have that the complement E − K∗ is homeomorphic

to the direct product of G and the corresponding parallel slit domain. On

the other hand, let Y be the extended parallel slit domain with gluing func-

tions (σi)i and which is subdivided into rectangles Ri,j for 0 ≤ i ≤ q and
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0 ≤ j ≤ p. Let Rξi,j be the rectangle Ri,j × {ξ} for ξ ∈ G in Y × G. For

all pairs (i, j) choose elements γi,j ∈ G. Then the identification to reverse

the Hilbert uniformization is as follows. The upper side of Rξi,j is glued to

the lower side of Rγi,jξi,σi(j)
and the left hand side of Rξi,j is glued to the right

hand side of Rξi+1,j . Again we need to impose conditions on (γi,j , σi)i,j (see

Section 2.2) which characterize the cell complex Pm
g,1(G). Consequently, we

obtain a cell decomposition ofM(m)
g,1 (G).

In fact, the precise implications of the Hilbert uniformization are rather

stronger. Let Hmg,1(G) be the space of all equivalence classes [E, π,X,A, u]

where [E, π,X,A] ∈M(m)
g,1 (G) and u is a potential function on X. By means

of the properties of potential functions, it follows that Hmg,1(G)→M(m)
g,1 (G)

is an affine bundle (see [9]). In particular, Hmg,1(G) and M(m)
g,1 (G) are ho-

motopy equivalent and the following central result is satisfied (see Theorem

2.3.7).

Theorem. The Hilbert uniformization defines a homeomorphism

H(G) : Hmg,1(G)→ Pm
g,1(G).

Applying the cell decomposition the homology of some moduli spaces can be

computed (see Example 2.3.9).

Example. For the moduli spaceM1,1[2]0 of unramified, connected 2-sheeted

coverings of the torus with one dipole point we have

Hn(M1,1[2]0) ∼=


Z, n = 0, 2

Z2, n = 1

0, else.
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Although the Hilbert uniformization provides a constructive method to cal-

culate the homology difficulties arise nevertheless. These are due to the

numerical complexity of the problem since the number of cells grows expo-

nentially with larger g, m and G.

Still, the Hilbert uniformization has a further very interesting consequence.

It is possible to identify a stratum of certain filtered bar complexes with a

disjoint union of moduli spaces M(m)
g,1 (G). Namely, let G be a finite group

of order |G| that is realized as the subgroup of the symmetric group on |G|

elements S|G|. Then the wreath product G oSp is a subgroup of S|G|p for all

p ≥ 0. We consider the word length norm on G oSp with respect to all trans-

positions. Let B(G oSp) be the bar complex and let F(h)B(G oSp) consist

of all elements of the bar complex whose product norm (with respect to the

word length norm) equals h ∈ N. Moreover, let M(m)
g,1 [|G|]G be the moduli

space of pointed, |G|-sheeted unramified coverings with structure group G

of Riemann surfaces of genus g ≥ 0 with m ≥ 0 permutable punctures and

a directed base point. The Hilbert uniformization induces the homotopy

equivalence (see Theorem 2.4.4)

∐
h=|G|(2g+m)

M(m)
g,1 [|G|]G −→ F(h)B(G oS∗).

This result is in particular interesting with regard to the work of Visy [53].

By means of such norm filtrations, he set up complexes to compute the co-

homology of so-called factorable groups. All groups in our statement are

factorable with respect to the norm of the semidirect product induced by

the trivial norm on G and the word length norm on the symmetric group.

Therefore, a direct correspondence between geometric objects, the moduli

spaces, and a purely algebraic concept, the cohomology of groups, is estab-
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lished. Even more, it follows from our considerations that F(h)B(G oS∗) is

homeomorphic to a topological manifold (see Corollary 1.2.10).

Finally, we discuss another aspect of great impact in the present day in-

vestigations of moduli spaces. In the last chapter, we consider stabilization

effects of Mg,1(G). The first important idea here goes back to Harer [30].

He showed using certain stabilization maps for the mapping class group Γg,n

that the homology Hq(BΓg,n) is independent of g and n for g >> 0. Here

Γg,n denotes the mapping class group of a Riemann surface of genus g ≥ 0

with n ≥ 0 boundary components. By means of Harer’s results, Tillmann

proved that Z×BΓ+
g,n is an infinite loop space where BΓ+

g,n denotes the plus

construction (see [50]). Both results were generalized in [17], [18] and [19]

for moduli spaces of flat G-bundles. A central element is the definition of

the stabilization maps. They are constructed by means of connected sums

along boundary components. Note that the bundles of the sum are trivial

on the boundary so that they can be identified canonically. Thus, from the

base of the bundle, that is, the Riemann surface, arise stabilization maps.

Moreover, there is a further stabilization map for certain choices of G. To

this end, let G = G(k) be one of the classical matrix groups Sp(k), SU (k)

or Spin(k). For the classifying spaces of these groups, Bott showed one of

the first deep stabilization results (see [14]). Applying methods from [5] (see

Theorem 3.2.1), it follows that the homotopy groups πq(Mg,1(G(k))) do not

depend on k for k >> 0 (see Theorem 3.2.3).

Theorem. Let X be a compact, oriented and connected surface of genus

g ≥ 2, then Rik : RG(k)(X)→ RG(k+1)(X) is

(1) (4k − 4)-connected for G(k) = Sp(k).

(2) (2k − 2)-connected for G(k) = SU (k).
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(3) (k − 3)-connected for G(k) = Spin(k).

Moreover, we are in a position to calculate these stable homotopy groups

explicitly (see Corollary 3.2.4).

Corollary. Let hocolim
k
RG(k)(X) = RG∞(X) for G(k) being one of the clas-

sical families of connected, compact, semisimple Lie groups Sp(k), SU(k) or

Spin(k). The homotopy groups of RG∞(X) are as follows.

(1)

πq(RSp∞ (X)) ∼=



Z, q ≡ 0 mod 8

0, q ≡ 1, 2 mod 8

Z2g, q ≡ 3, 7 mod 8

(Z/2)2g × Z, q ≡ 4 mod 8

(Z/2)2g+1, q ≡ 5 mod 8

Z/2, q ≡ 6 mod 8.

(2)

πq(RSU∞ (X)) ∼=


Z, q ≡ 0 mod 2

Z2g, q ≡ 1 mod 2.

(3)

πq(RSpin∞ (X)) ∼=



(Z/2)2g × Z, q ≡ 0 mod 8

(Z/2)2g+1, q ≡ 1 mod 8

Z/2, q ≡ 2 mod 8

Z2g, q ≡ 3, 7 mod 8

Z, q ≡ 4 mod 8

0, q ≡ 5, 6 mod 8.

27



The thesis is organized as follows. We introduce some foundations on flat

connections on principal bundles in the first chapter. Moreover, we consider

the topology of the moduli spaces and calculate homotopy and homology

groups for the indicated examples. A large part is devoted to the char-

acterization of connected components. In Section 1.5 we focus on moduli

spaces of coverings by applying combinatorial methods. In the second chap-

ter, the Hilbert uniformization is constructed. It is proven that it defines a

homeomorphism from the space of flat G-bundles with potential function to

a cell complex. Finally, a correspondence between a norm filtration and a

disjoint union of moduli spaces is established in Section 2.4. In Section 2.5

we construct an H-space structure by means of parallel slit domains. Our

considerations on this are based upon [10]. In the third chapter we deal with

the stable topology of the moduli spaces and construct Dyer–Lashof opera-

tions in Section 3.1. In the last part of this thesis, the stable moduli spaces

Mg,1(G(k)) for G(k) = Sp(k), SU (k), Spin(k) and k → ∞ are examined.

In particular, their stable homotopy groups are calculated.
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Chapter 1

Moduli spaces of flat G-bundles

1.1 Introduction to flat G-bundles

In this section we recall some fundamental definitions and properties of flat

principal G-bundles. For a more detailed discussion we suggest [6].

Notation. Let π : E → M be a smooth principal G-bundle over a smooth

manifold M for a fixed Lie group G. The transformation group G acts on

E from the right. A principal G-bundle is denoted by (E, π,M) and we call

it G-bundle for short. We use the notation {Ui, φi} for a bundle atlas and

{Ui, gij} for the corresponding transition functions. More precisely, these

are smooth functions gij : Ui ∩Uj → G satisfying the cocycle condition such

that φj ◦ φ−1
i (x) is left multiplication on G with gij(x) for all x ∈ Ui ∩ Uj .

Definition 1.1.1. Let (E, π,M) be a smooth G-bundle and Tv(Ex) ⊆ TvE

be the tangent space of the fiber Ex at the point x ∈ M for v ∈ Ex. It is

called the vertical tangent space of E at v ∈ E and it is denoted by TVvE.

A complementary subspace is called a horizontal tangent space.

Definition 1.1.2. A connection on a G-bundle (E, π,M) is an assignment

TH : E 3 v 7→ THvE ⊆ TvE, to a linear subspace of the tangent space, such
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that the following conditions are satisfied.

(C1) For all v ∈ E we have TVvE ⊕ THvE = TvE.

(C2) For the right multiplication Rg : E → E by an element g ∈ G holds

∀v ∈ E, g ∈ G : dRg(THvE) = THvgE.

(C3) For all v ∈ E there exists a neighborhood U ⊆ E and smooth local

linearly independent vector fields s1, . . . , sk on U such that THwE is

spanned by {s1(w), . . . , sk(w)} for all w ∈ U .

In Definition 1.1.2 (C1) is the property of being horizontal, (C2) states G-

equivariance and (C3) smoothness of a connection. Connections are central

objects in the of study principal G-bundles from a differential view point.

There are many ways to define connections on principal G-bundles. For this

reason, we will introduce two further approaches which are equivalent to

1.1.2 and which will be helpful later.

Definition 1.1.3. Let Lg and Rg denote the left and right translation on G

by the element g ∈ G, respectively. Each g ∈ G defines a smooth homomor-

phism αg = Lg ◦ R−1
g : G → G, that is, αg(h) = ghg−1 for all h ∈ G. The

conjugation induces a representation Ad : G→ GL(g) by g 7→ (αg)∗, where

g is the Lie algebra of G and (αg)∗ the induced map on g. It is called the

adjoint representation.

For the adjoint representation we have Ad(g)(X) = d
dt(g exp(tX)g−1)|t=0 for

all X ∈ g and g ∈ G. In particular, Ad(g)(X) = gXg−1 for matrix groups.

Definition 1.1.4. For a G-manifold E there is a map g→ X(E), from the

Lie algebra of G to the space of vector fields on E, defined by X 7→ X̃ where
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X̃(v) = d
dt(v exp(tX))|t=0 for all v ∈ E. We call X̃ the fundamental vector

field for X.

The equation π∗X̃(v) = d
dtπ(v exp(tX))|t=0 = d

dtπ(v) = 0 holds for every G-

bundle (E, π,M). Hence, X 7→ X̃(v) defines an isomorphism g→ TVvE for

each v ∈ E. Since the vertical and horizontal tangent space are complemen-

tary the differential dπ of π induces an isomorphism dπv : THvE → Tπ(v)M .

Bearing these geometric considerations in mind the following equivalent def-

inition of a G-bundle connection can be established.

Definition 1.1.5. A connection 1-form A on a G-bundle (E, π,M) is a 1-

form on E with values in g, that is, A ∈ Ω1(E, g), such that the following

conditions are satisfied.

(CF1) For all X ∈ g we have A(X̃) = X.

(CF2) For all g ∈ G we have R∗gA = Ad(g−1) ◦A.

Theorem 1.1.6. Connections are in one-to-one correspondence with con-

nection forms for every G-bundle (E, π,M).

We do not present a proof of this theorem but just introduce the claimed

bijection (see Section 3.1 of [6]). Let TH be a connection on E. Then for

all v ∈ E, X ∈ g and ξ ∈ THvE a connection form is defined by the identity

Av(X̃(v) ⊕ ξ) = X. On the other hand, let A ∈ Ω1(E, g) be a connection

form on E. Then the assignment TH : E 3 v 7→ THvE = ker(Av) defines a

connection on E.

Definition 1.1.7. Let (E, π,M) be a G-bundle, A ∈ Ω1(E, g) a connection

form and s : U → E a local section of E. Then s induces the local connection

form As = A ◦ ds ∈ Ω1(U, g).
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Let {Ui, si}i be a family of local sections of the principal G-bundle (E, π,M)

and let {Ai ∈ Ω1(Ui, g)}i be a family of local 1-forms such that

Ai = Ad(g−1
ij ) ◦Aj + θij (∗)

on all nonempty intersections Ui ∩ Uj where θij(X) = dLg−1
ij (x)(dgij(X)) for

X ∈ Tx(Ui ∩ Uj).

Theorem 1.1.8. For a fixed bundle atlas connection forms are in one-to-

one correspondence with families of local connection forms satisfying (∗) for

every G-bundle (E, π,M).

For a proof we refer to Section 3.1 of [6]. Following Theorems 1.1.6 and 1.1.8

a connection can be characterized by either 1.1.2, 1.1.5 or 1.1.7. For a G-

bundle π : E →M with connection form A we write (E, π,M,A). Moreover,

we denote the set of all connection forms on E by A(E).

Definition 1.1.9. Let (E, π,M,A) be a smooth G-bundle with connection

form A and let ω : [a, b]→M be a path. We assume paths to be continuous

and piecewise smooth. Then ω∗ : [a, b]→ E is called a horizontal lift of ω if

the following conditions are satisfied.

(HL1) For all t ∈ [a, b] we have π(ω∗(t)) = ω(t).

(HL2) For all t ∈ [a, b] we have d
dtω
∗(t) ∈ TH ω(t)E.

Following Section 2.3 in [36] for all v ∈ Eω(a) exists a unique lift ω∗v of ω such

that ω∗v(a) = v.

Definition 1.1.10. Let (E, π,M,A) be a G-bundle with connection form A

and let ω : [a, b] → M be a path in M . The map PAω : Eω(a) → Eω(b) with

v 7→ ω∗v(b) is called parallel transport in E along ω. We write Pω for short if

the connection is clear.

33



Geometrically, a parallel transport specifies how to compare fibers along

a path ω (see Figure 1.1). Moreover, note that a parallel transport on a

principalG-bundle (E, π,M) determines a connection uniquely (see Theorem

3.14 of [6]).

ω(a)

ω(b)

Eω(b)

Eω(a)

v

Pω(v)

ω

ω∗v

Figure 1.1: Parallel transport

Example 1.1.11. Let (M×G, π,M) be the trivial G-bundle with the trivial

connection. The tangent space of a fiber at (x, g) ∈M ×G is isomorphic to

the direct sum of tangent spaces TxM ⊕ TgG. By definition, the horizontal

tangent space is TxM while the vertical tangent space is TgG. The trivial

connection form A(x,g) : TxM⊕TgG→ g is given byX+Y 7→ dLg−1Y . Thus,

the parallel transport for a path ω : [a, b]→M is defined by Pω : g 7→ g. In

particular, it does not depend on the path ω.

Definition 1.1.12. Let (E, π,M) be a principal G-bundle. The gauge group

G(E) is the group of all G-equivariant maps f : E → E such that π ◦ f = π.

We define an action on G(E) on A(E) from the left by pushforwards, that is,

(f,A) 7→ f∗A for f ∈ G(E) and A ∈ A(E). Let (E′, π′,M ′) be a principal G-
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bundle with base point x0 ∈M ′. The group of pointed gauge transformations

G∗(E
′) is the subgroup of G(E′) such that f |E′x0 is the identity.

Note that the pushforward is well-defined since f is a diffeomorphism.

Definition 1.1.13. Let (E, π,M,A) be a principal G-bundle with connec-

tion form A. For every x ∈M we set

Ω(x) = {ω : I →M path|ω(0) = x = ω(1)}.

For x ∈M and v ∈ Ex we define the holonomy group of A by

Holv(A) = {g ∈ G|∃ω ∈ Ω(x) : PAω (v) = vg}.

Definition 1.1.14. We say that a principal bundle (E, π,M) admits a flat

structure or simply that the bundle is flat if it has a connection A such that

one of the following equivalent properties is satisfied.

(1) The parallel transport Pω depends only on the homotopy class of a

path ω : [a, b]→M .

(2) The bundle admits a trivialization of (E, π,M,A) over every simply-

connected open subset of M such that A is trivial, i.e. as in 1.1.11.

(3) There is a bundle atlas with locally constant transition functions.

The subset of all flat connections is denoted by AF (E) ⊆ A(E).

For a proof of the characterizations in 1.1.14 see Section 1.2 of [35]. As the

parallel transport of a flat G-bundle depends only on the homotopy class of

a path by (1) of 1.1.14 we are in a position to make the following definition.
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Definition 1.1.15. Let (E, π,M,A) be a flat principal G-bundle with par-

allel transport PA and let x ∈M and v ∈ Ex be fixed base points. Then we

define the holonomy representation ρA : π1(M,x)→ G by PAω (v) = vρA([ω])

for all ω ∈ Ω(x). We write Holv : AF (E) → Hom(π1(M,x), G) for the

assignment A 7→ ρA and call it the holonomy map or holonomy for short.

We now explain how gauge equivalence classes of flat G-bundles are related

to homomorphisms of the fundamental group of the base space to G.

Let M be a smooth and connected manifold with base point x0 ∈ M . We

write π1 for the fundamental group π1(M,x0). Moreover, let ρ : π1 → G

be a homomorphism and M̃ the universal covering of M . Then M̃ can be

considered as a π1-bundle over M . The representation ρ defines an action of

π1 on M̃ ×G by (x̃, g, γ) 7→ (x̃γ, ρ(γ)−1g) for all x̃ ∈ M̃ , g ∈ G and γ ∈ π1.

Since π1 acts properly and freely on M̃ this also holds for M̃ × G. Thus,

there is an associated G-bundle πρ : Eρ = M̃ ×ρ G→M .

Next we construct a flat connection for (Eρ, πρ,M). Let p2 : M̃ × G → G

be the canonical projection on the second factor. The differential defines

a fiberwise linear map dp2 : T (M̃ × G) → TG . We consider the Maurer–

Cartan form θ : TG → g. It is defined by θ(v) = dLg−1v for v ∈ TgG

(see Definition 1.10 of [6]). Then A0 = θ ◦ dp2 is a flat connection form on

the trivial bundle M̃ × G → M̃ . The left invariance of the Maurer–Cartan

form (see Theorem 1.15 of [6]) implies that A0 is also left invariant. Let

p : M̃ × G → M̃ ×ρ G be the quotient map of the π1-action. Since A0 is

left invariant it defines a connection form Aρ ∈ Ω1(Eρ, g) by p∗Aρ = A0.

More precisely, we have for (x̃, g) ∈ M̃ × G and v ∈ T(x̃,g)(M̃ × G) that

Aρ(v) = A0(v) where p(x̃, g) = [x̃, g] and v = dp(v) ∈ T[x̃,g](M̃ ×ρ G).

Proposition 1.1.16. The 1-form Aρ is a flat connection form on the asso-

ciated bundle (Eρ, πρ,M) and satisfies Hol(Aρ) = ρ.
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Proof. To show that Aρ is a connection form we check only (CF1). (CF2)

follows directly from the G-equivariance of θ with respect to the G-action

from the right (see Theorem 1.15 of [6]). Since the pullback map p∗ is linear

it suffices to check (CF1) for A0. Let X ∈ g with its fundamental vector

field X̃ ∈ X(M̃ ×G) and let (x̃, g) ∈ M̃ ×G. Then

A0(X̃) =θ ◦ dp2(X̃) = θ ◦ dp2(
d

dt
(x̃, g) exp(tX)|t=0)

=θ(
d

dt
g exp(tX)|t=0) = X

for θ is left invariant. As a consequence, Aρ is a connection form.

For the flatness of Aρ we apply (2) of 1.1.14. Let U be an open neighborhood

of M such that M̃ |U is trivial. Then Eρ|U = (U × π1 × G)/π1
∼= U × G.

It follows that Eρ|U and Aρ|U are trivial. Consequently, Aρ is flat. For the

last part we choose a base point x̃0 ∈ M̃x0 of M̃ and consider a loop α in

M based in x0. Let α̃ be the unique lift to M̃ of α in x̃0. It defines a

deck transformation M̃ → M̃ given by x̃ 7→ x̃α−1 where the concatenation

corresponds to composition of paths. Let α∗ be the parallel lift of α with

respect to Aρ with α∗(0) = [x̃0, e] for e ∈ G the identity element of G.

More precisely, α∗ = [α̃, e] = p(α̃, e). Then α∗(1) = [α̃(1), e] = [x̃0α
−1, e] =

[x̃0, ρ([α])]. Consequently, the holonomy representation of Aρ is ρ.

�

In the next lemma we will study the effect of base point changes. It is

illustrated in Figure 1.2.

Lemma 1.1.17. Let (E, π,M,A) be a flat principal G-bundle with base point

x0 ∈ M and let α : I → M be a path such that α(0) = x0 with end point

α(1) = x1. We choose a base point v0 ∈ Ex0 and set v1 ∈ Ex1 for PAα (v0).

Let ρi = Holvi(A) for i = 0, 1.
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(1) For every [ω] ∈ π1 we have ρ1([αωα−1]) = ρ0([ω]).

(2) Let g ∈ G and ρ′ = Holv0g(A). Then ρ′ = g−1ρ0g.

Proof. By Theorem 3.8 of [6] the parallel transport is G-equivariant and

multiplicative with respect to the concatenation of paths. Thus, we have

(1) v1ρ1([αωα−1]) = PAαωα−1(v1) = PAα P
A
ω P

A
α−1(PAα (v0)) = PAα (PAω (v0))

= PAα (v0)ρ0([ω]) = v1ρ0([ω]).

(2) PAω (v0g) = PAω (v0)g = v0ρ0([ω])g = v0g(g−1ρ0([ω])g).

�

x0

x1α
ω

α∗v0

α∗w

v0

w

Pα(w)

ω∗v0
v1 = Pα(v0)

Figure 1.2: Parallel transport and change of base points

Lemma 1.1.18. Let (E, π,M,A) be a flat G-bundle with base points x0 ∈M

and v0 ∈ Ex0 and let f ∈ G(E). Then ρf∗A = gρAg
−1 for g ∈ G defined by

f(v0) = v0g.
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Proof. Let α : [0, 1]→M be a path and let α∗v0,A and α∗v0,f∗A be the unique

horizontal lifts at v0 with respect to A and f∗A, respectively. Applying the

identity P f∗Aα ◦ f = f ◦ PAα (see Theorem 3.8 of [6]) it follows from the

G-equivariance of the parallel transport that

v0ρf∗A([α]) = P f∗Aα (v0) = f(PAα (v0))g−1 = f(v0ρA([α]))g−1

= f(v0)g−1gρA([α])g−1 = v0gρA([α])g−1.

�

Corollary 1.1.19. The pointed gauge group G∗(E) acts trivially on the

holonomy, that is, ρf∗A = ρA for all f ∈ G∗(E) and A ∈ AF (E).

Definition 1.1.20. Let M be a smooth and connected manifold with base

point x0 ∈ M . Its fundamental group π1(M,x0) is denoted by π1. Define

H(π1, G) to be the category whose objects are homomorphisms from π1

to G and whose morphisms are given by conjugation with elements of G.

Further, let H∗(π1, G) be the category having the same objects as H(π1, G)

but with identity morphisms only. We equip the set of objects of H(π1, G)

and H∗(π1, G) with the compact-open topology. The set of morphisms of

H(π1, G) is by definition equal to the Lie group G.

Definition 1.1.21. Let M be a smooth and connected manifold and let

Prin(M,G) denote the set of equivalence classes of principal G-bundles over

M . Let C(M,G) be the category whose set of objects is the disjoint union∐
[E]

AF (E) where [E] ∈ Prin(M,G) denotes the equivalence class of a prin-

cipal G-bundle E over M . A morphism between two objects of C(M,G)

exists if there is a gauge transformation in the sense of Definition 1.1.12 be-

tween them. Analogously, we define the category C∗(M,G) of pointed flat

G-bundles over M whose morphisms are given by the group action of the
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pointed gauge group. We assume for C(M,G) and C∗(M,G) the discrete

topology.

Theorem 1.1.22. The holonomy map defines equivalences of categories

C(M,G)→ H(π1, G) and C∗(M,G)→ H∗(π1, G).

Proof. We first show that given two flat pointed G-bundles (Ei, πi,M,Ai) for

i = 1, 2 the set of their bundle isomorphisms is in one-to-one correspondence

with elements g ∈ G conjugating their holonomy representations ρi.

Let (Ei, πi,M,Ai) be two flat pointed G-bundles over the same base space for

i = 1, 2. We denote the base points by x0 ∈M and vi ∈ Ei,x0 . Let ρi be the

holonomy representation of Ai at vi and let Pi be the corresponding parallel

transport for i = 1, 2. We will construct a bundle isomorphism f : E1 → E2

such that f∗A1 = A2 and f(v1) = v2 under the assumption that ρ1 = ρ2.

First note that by equivariance f has to satisfy f(v1g) = v2g for all g ∈ G

so that f is determined on the fiber E1,x0 .

To construct f on E1 let α : I →M be a path with α(0) = x0 and end point

α(1) = x. We set f |E1,x = P2,α ◦ f |E1,x0
◦P1,α−1 . This is well-defined for the

following reason. Let ω be a loop based in x0. Then

P2,ω◦f |E1,x0
◦P1,ω−1(v1) = P2,ω◦f |E1,x0

(v1ρ1([ω])−1) = P2,ω(v2ρ1([ω])−1) = v2,

where the last equality follows from ρ1 = ρ2. Consequently,

P2,ω ◦ f |E1,x0
◦ P1,ω−1(v1) = f |E1,x0

(v1).

Two different paths starting in x0 with end point x determine a loop and so

f |E1,x does not depend on the choice of α.

It remains to show that f∗A1 = A2. To this end, we apply characterization
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(2) of Definition 1.1.14. Let α : I → M be as before. We consider the

parallel lift α∗1 with respect to A1 in v1 and write α∗1(1) = v ∈ E1,x. Then

f ◦ α∗1(1) = f(v) and f ◦ α∗1 is the parallel lift of α with respect to f∗A1.

Consequently,

P f∗A1
α ◦ f |E1,x0 ◦ P1,α−1(v) = P f∗A1

α (f ◦ α∗1(0)) = f ◦ α∗1(1) = f(v). (1.1)

To prove the assertion let U1, . . . , Un be open neighborhoods in M covering

α([0, 1]) such that Ai|Uj is trivial for all 1 ≤ j ≤ n and i = 1, 2. We assume

that the numbering of the open neighborhoods corresponds to the order of

how α passes them. There is an isomorphism hj : E1|Uj → E2|Uj for all

1 ≤ j ≤ n and hj∗A1 = A2. By subdividing α with respect to the Uj we may

assume that hj = hj+1 on the fiber of the respective subinterval end points.

By equation (1.1) we have f |(E1|Uj ) = hj and so the assumption follows.

Summarizing, we have shown that the holonomy map is surjective by Propo-

sition 1.1.16. Injectivity follows since under the assumption ρ1 = ρ2 we have

constructed a bundle isomorphism f such that f∗A1 = A2.

To finish the proof let E1 and E2 represent the same equivalence class

[E] and let f be an element of G∗(E). Then, the theorem holds for

C(M,G)∗ → H∗(π1, G) by Corollary 1.1.19. By Lemmas 1.1.17 and 1.1.18

the statement is also satisfied for C(M,G)→ H(π1, G).

�

Definition 1.1.23. Let S be a compact, oriented, connected surface and

π1 = π1(S, x0) where x0 ∈ S is a fixed base point. Let G be a Lie group and

letRG(S) be all homomorphisms of π1 to G equipped with the compact-open

topology. We call RG(S) the representation variety of S to G.

Let S be a compact, oriented, connected surface of genus g ≥ 0 with b ≥ 0
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boundary components. We fix a generating set {Ai, Bi, Cj}1≤i≤g,0≤j≤b of the

fundamental group π1(S) of S such that
∏

1≤i≤g
[Ai, Bi]

∏
0≤j≤b

Cj = 1 where we

assume C0 to be trivial. A representation ρ ∈ RG(S) is uniquely determined

by its values on such a generating set {Ai, Bi, Cj}1≤i≤g,0≤j≤b. Hence, RG(S)

is a subset of G2g+b. As a consequence, the topological properties of RG(S)

crucially depend on G. If G is a linear algebraic group then RG(S) admits

a structure of an algebraic set as the zero locus of a polynomial equation.

We always assume G to be algebraic. In particular, RG(S) is a real al-

gebraic variety if G is a real linear algebraic group. Hence, it has finitely

many components (see Section 2.3 of [26]). For semisimple Lie groups G the

automorphism group of the Lie algebra is linear algebraic and the adjoint

representation is a local isomorphism with finite kernel. Therefore, the rep-

resentation variety is an algebraic variety. A special case are abelian groups

G as in this case RG(S) = G2g+b admits the structure of a manifold induced

from G. Moreover, it is a group with a smooth multiplication (see Example

1.1.24).

Example 1.1.24.

(1) Let S be a closed, oriented, connected surface of genus g ≥ 0. The

representation variety for G = R is RR(S) ∼= R2g. If in addition a

complex structure is given on S, that is, S is a Riemann surface X,

then RR(X) ∼= Cg admits an induced complex structure as follows. By

definition RR(X) = Hom(π1(X),R) which is isomorphic to H1(X;R).

The singular cohomology group H1(X;R) is isomorphic to the first de

Rham cohomology H1
dR(X;R). Moreover, H1

dR(X;R) can be identified

with the space of harmonic 1-forms H1(X) (see page 100 in [29]). As

H1(X) admits the structure of a complex space there is an induced

isomorphism RR(X) ∼= Cg. We refer to Sections 2.2 and 7.1 of [28] for
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all details.

(2) LetX be a closed and connected Riemann surface of genus g ≥ 0. Then

RU(1)(X) ∼= H1(X;R)
/
H1(X;Z). As in (1) we identifyH1(X;R) with

H1
dR(X;R) so that RU(1)(X) obtains an induced complex structure.

Indeed, H1(X;R)
/
H1(X;Z) ∼= R2g

/
Z2g = U(1)2g is a 2g-dimensional

torus. Because of the Abel–Jacobi construction this torus is exactly

the Jacobi variety of X. Hence, we may conclude from Theorem 1.1.22

the well-known fact that flat line bundles over Riemann surfaces are

parameterized by the Jacobi variety. See Section 2.2 in [29] for the

Abel–Jacobi construction. Further, see Sections 3.2 and 7.1 of [28] for

more details on this example.

Lemma 1.1.25 ([26]). Let S be an oriented, compact and connected sur-

face of genus g ≥ 0 and let G be a connected Lie group with a covering

p : G̃ → G. We consider the induced map p∗ : RG̃(S) → RG(S) on the

representation varieties. Then for each connected component K of the image

of p∗ the restriction p∗|p−1
∗ (K) : p−1

∗ (K)→ K is a covering with abelian deck

transformation group Rker(p)(S).

Proof. We assume that S is closed because the representation variety is just a

direct product of Lie groups if the boundary of the surface is not empty. Then

RG(S) ∼= {(a1, . . . , ag, b1, . . . , bg) ∈ G2g|
∏
i

[ai, bi] = 1}. Let ξ be a point

(x1, . . . , xg, y1, . . . , yg) ∈ G2g and ξ(t) = (x1(t), . . . , xg(t), y1(t), . . . , yg(t)) a

path in RG(S) such that ξ(0) = ξ. Moreover, let ξ̃ = (x̃1, . . . , x̃g, ỹ1, . . . , ỹg)

be in the fiber of ξ under p∗ such that
∏
i

[x̃i, ỹi] = 1, and
∏
i

[xi, yi] = 1.

Since G̃ is a covering of G there is a unique lift ξ̃(t) of ξ(t) on to G̃2g

starting in ξ̃(0) = ξ̃. Then p(
∏
i

[x̃i(t), ỹi(t)]) = 1 as p is a homomorphism,

thus, ξ̃(t) ⊆ ker(p)2g. On the other hand, ker(p) ≤ π1(G) is discrete and,
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consequently, ξ̃(t) is constant. As we assumed
∏
i

[x̃i, ỹi] = 1 it follows that∏
i

[x̃i(t), ỹi(t)] = 1. So the lift of ξ(t) is a path of homomorphisms. It

remains to check that p∗ induces a covering with deck transformation group

Rker(p)(S). For this let ρ ∈ RG̃(S), κ ∈ Rker(p)(S) and x, y ∈ π1(S). Then

κρ(xy) = κ(xy)ρ(xy) = κ(x)κ(y)ρ(x)ρ(y) = κ(x)ρ(x)κ(y)ρ(y) = κρ(x)κρ(y),

because ker(p) is in the center of G̃. It follows that κρ ∈ RG̃(S), so

that Rker(p)(S) acts on RG̃(S). Moreover, p∗(κρ)(x) = p∗(κ(x))p∗(ρ(x)) =

p∗(ρ(x)), thus, p∗ is invariant under the action of Rker(p)(S).

Now let ρ1, ρ2 ∈ RG̃(S) such that p∗(ρ1) = p∗(ρ2). As ρ1ρ
−1
2 is in ker(p)

there exists an element κ ∈ Rker(p)(S) with ρ1 = κρ2. So κ(x) = ρ1(x)ρ−1
2 (x)

for all x ∈ π1 and since ker(p) is abelian

κ(xy) = ρ1(xy)ρ−1
2 (xy) = ρ1(x)ρ1(y)ρ−1

2 (x)ρ−1
2 (y) =

ρ1(x)ρ−1
2 (x)ρ1(y)ρ−1

2 (y) = κ(x)κ(y).

�

We will mainly study smooth G-bundles or smooth complex G-bundles, that

is, smooth real bundles with a complex structure. More precisely, let G be a

Lie group such that there is a faithful real representation. For each principal

G-bundle exists an associated smooth real vector bundle. If in addition the

representation is complex there exists a complex bundle structure on the

associated vector bundle, i.e. a fiberwise multiplication with
√
−1. This is

equivalent for the fiber to be identified with a complex vector space. Such a

bundle is called a complex vector bundle. On the other hand, we will consider

G-bundles over Riemann surfaces and assume a holomorphic structure on

the base space. Therefore, it is natural to ask for holomorphic structures

44



on the bundles. Note that a holomorphic vector bundle is defined by an

atlas of biholomorphic transition functions (see Section 1.3 of [35]). If G is a

compact and algebraic group it comes with a unitary faithful representation.

Let ρ : π1 → G be a homomorphism of the fundamental group of a connected

complex manifold to G. Then the associated vector bundle to Eρ inherits an

induced Hermitian structure for the unitary representation of the structure

group induces a Hermitian metric. In other words, we may just assume that

the transition functions are unitary. The complexified vector bundle1 Ec with

structure group Gc over a Riemann surface carries an induced holomorphic

structure (see Section 3.2 for further explanations).

All our constructions in Chapter 2 will work without assuming G to be

compact. On the other hand, a deeper analysis of the moduli spaces often

requires this property. We will encounter compact groups and holomorphic

structures in Chapter 3.

1.2 Moduli spaces from a topological viewpoint

In this section we will introduce several moduli spaces which are the main

objects of our study. An emphasis will be put on their topological properties.

Notation. Let Smg,n be a closed, oriented and connected surface of genus g ≥ 0

withm ≥ 0 chosen points P1, . . . , Pm (marked points) and with n ≥ 1 directed

points Q1, . . . , Qn, that is, points with nonzero tangent vectors χi ∈ TQiSmg,n.

We will call such directed points dipole points and fix Q1 as the base point of

the surface. It is assumed that marked points and dipole points are disjoint.

To lighten notation let P = {P1, . . . , Pm} and Q = ((Q1, χ1), . . . , (Qn, χn)).

We denote by X a Riemann surface of topological type Smg,n.

1The complexified vector bundle Ec is the associated bundle with structure group Gc

(the complexification of G).

45



The term dipole point will be explained in Section 2.2 in connection with the

Hilbert uniformization of Riemann surfaces. For further details see Section

3.1 of [9].

Definition 1.2.1. The moduli space of Riemann surfaces Mm
g,n consists of

conformal equivalence classes of Smg,n. Two such surfaces X and X ′ are called

conformally equivalent if there is a conformal homeomorphism φ : X → X ′

such that φ(P) = P ′, φ(Qi) = Q′i and dφ(χi) = χ′i for all 1 ≤ i ≤ n. A point

inMm
g,n is denoted by F = [X,P1, . . . , Pm, (Q1, χ1), . . . , (Qn, χn)] or shortly

by [X,P,Q].

In Definition 1.2.1Mm
g,n is just a set. Its topology will be introduced below

(see Definition 1.2.4). Moreover, note that we assume in Definition 1.2.1 the

marked points to be permutable while the dipole points are fixed pointwise

by conformal homeomorphisms.

Definition 1.2.2. Let M be a smooth manifold with tangent bundle TM .

An almost complex structure onM is a smooth section J ∈ Γ(M,End(TM ))

of the endomorphism bundle over M such that J2 = −id. A pair (M,J)

is called an almost complex manifold and we denote by S(M) the set of all

almost complex structures on M .

We always assume the conformal metric to be compatible with the complex

structure. In the sequel, we consider the notions conformal and biholomor-

phic as being equivalent. Every complex structure induces an almost complex

structure by multiplication with
√
−1 in the tangent space over every point

of M . If M is a 2-dimensional manifold then the converse statement is also

true. The set of all almost complex structures can be equipped with the

C∞-topology and can be identified with the space of smooth sections of a

GL(2,R)/C∗-bundle over the surface M . So we will consider it as the space
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of complex structures. For a more profound discussion see Chapter 2 of [22].

Definition 1.2.3. Let Diff m
g,n be the diffeomorphism group of Smg,n. It is

given by all orientation preserving diffeomorphisms f : Smg,n → Smg,n such

that f(P) = P ′, f(Qi) = Qi and df(χi) = χ′i for 1 ≤ i ≤ n. With the

C∞-topology, Diff m
g,n is a topological group whose multiplication is the com-

position of two diffeomorphisms (see [22]).

Moreover, let Diff m,0
g,n denote the connected component of the identity of

Diff m
g,n. The quotient Γmg,n = Diff m

g,n

/
Diff m,0

g,n is called the mapping class

group of Smg,n. The mapping class group is discrete.

The group Diff m
g,n acts on S(Smg,n) as follows. Let J ∈ S(Smg,n), f ∈ Diff m

g,n

and x ∈ Smg,n then f.Jx 7→ Tf −1JxTf . According to Section 2.4 of [9] and

[22] Diff m
g,n acts properly discontinuously and Diff m,0

g,n acts freely on S(Smg,n).

Definition 1.2.4. The Teichmüller space T mg,n and the moduli space of Rie-

mann surfaces Mm
g,n are defined as the quotients

T mg,n = S(Smg,n)
/

Diff m,0
g,n ,

Mm
g,n = S(Smg,n)

/
Diff m

g,n = T mg,n
/

Γmg,n.

It was proven in [22] that the definitions presented in 1.2.1 and 1.2.4 are

equivalent – we will use the same notation. In the sequel, it is assumed that

the Teichmüller space and the moduli space are equipped with the quotient

topology of the C∞-topology on S(Smg,n). Moreover, T mg,n is homeomorphic

to R6g−6+4n+2m as a consequence of a theorem by Teichmüller. Therefore,

the moduli space of Riemann surfaces with marked points and dipole points

is a topological manifold of the indicated dimension (see also [1] for further

details).

Next we will introduce another description of the Teichmüller space which is
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equivalent to 1.2.4. For a discussion of the geometry of Teichmüller spaces

see [33].

Definition 1.2.5. Let X be a Riemann surface of genus g ≥ 1 with m ≥ 0

marked points and a dipole (Q,χ). A generating set E = {Ai, Bi}1≤i≤g of the

fundamental group π1 = π1(X,Q) satisfying the relation
∏

1≤i≤g
[Ai, Bi] = 1 is

called a marking. Two Riemann surfaces with markings (X, E) and (X ′, E ′)

are called equivalent if there exists a biholomorphic structure preserving map

φ : X → X ′ such that φ∗(E) = E ′. An equivalence class [X, E ] is called a

marked Riemann surface. The space of all marked Riemann surfaces is the

Teichmüller space T mg,1.

We do not make precise how to define the topology of the Teichmüller space

when working with the notion from 1.2.5. For this we refer to Section 1.3 of

[33]. The equivalence of Definition 1.2.4 and 1.2.5 is shown in the indicated

reference.

Definition 1.2.6. Let (E, π,X,A) be a flat pointed G-bundle where X is

a Riemann surface of genus g ≥ 0 with m ≥ 0 permutable marked points

P1, . . . , Pm and a dipole point (Q,χ) which is fixed as the base point. More-

over, let p0 ∈ EQ be the base point of the total space. The moduli space

Mm
g,1(G) consists of equivalence classes of smooth flat pointed G-bundles

over Riemann surfaces with the above structure. Two flat pointed G-bundles

(E, π,X,A,P,Q, p0) and (E′, π′, X ′, A′,P ′,Q′, p′0) are equivalent if the fol-

lowing conditions are satisfied. There exists a conformal homeomorphism

φ : X → X ′ such that φ(P) = P ′, φ(Q) = Q′ and dφ(χ) = χ′. More-

over, there is a fiber preserving diffeomorphism f : E → E′ that satisfies

f(p0) = p′0, f∗A = A′ and π′ ◦ f = φ ◦ π. We callMm
g,1(G) the moduli space

of flat pointed G-bundles over Riemann surfaces with marked points. A point
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inMm
g,1(G) is denoted by [E, π,X,A,P,Q, p0] which we usually abbreviate

as [E, π,X,A].

Definition 1.2.7. Let T mg,1(G) be the Teichmüller space of flat G-bundles

over Riemann surfaces. It consists of equivalence classes of smooth flat

pointed G-bundles over Riemann surfaces endowed with the combinato-

rial information as in Definition 1.2.4. Two such flat pointed G-bundles

(E, π,X, E , A, p0) and (E′, π′, X ′, E ′, A′, p′0) are called equivalent if the fol-

lowing conditions are satisfied. There is a structure preserving biholomorphic

map φ : X → X ′ such that φ∗(E) = E ′ and there is a fiber preserving pointed

diffeomorphism f : E → E′ with f(p0) = p′0, f∗A = A′ and π′ ◦ f = φ ◦ π.

The Teichmüller space T mg,1(G) and the moduli spaceMm
g,1(G) parameterize

the complex structure and the flat G-bundle structure. They differ analo-

gously to T mg,1 andMm
g,1. In order to define a natural topology on both spaces

we have to study the topology of the Teichmüller space and the compact-open

topology on the representation variety simultaneously.

Lemma 1.2.8. The moduli space Mm
g,1(G) is, as a set, the fiber prod-

uct T mg,1 ×Γmg,1
RG(Smg,1). Thus, it inherits the quotient topology of the di-

rect product. The canonical projection Φ(G) : Mm
g,1(G) → Mm

g,1 given by

[E, π,X,A,P,Q, p0] 7→ [X,P,Q] is a fiber bundle with fiber RG(Smg,1) and

structure group Γmg,1.

Proof. We start with showing that T mg,1(G) is bijective to T mg,1 × RG(Smg,1).

Then it remains to analyze the action of the mapping class group on this

product. Let [E, π,X, E , A] ∈ T mg,1(G) then there exists by Theorem 1.1.22

a unique flat G bundle Eρ ∼= E on X with connection Aρ ∼= A where

ρ = Hol(A). So we define an assignment F : T mg,1(G) → T mg,1 × RG(Smg,1)

by F : [E, π,X, E , A] 7→ ([X, E ], ρ). We need to verify that F is a bijection.
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For surjectivity let ([X, E ], ρ) ∈ T mg,1 × RG(Smg,1). Then by Section 1.1

there is a G-bundle πρ : Eρ → X with flat connection Aρ such that

[Eρ, πρ, X, E , Aρ] ∈ T mg,1(G). More precisely, Eρ = X̃ ×ρ G for the universal

covering X̃ of X.

In order to show that F is injective let [Ei, πi, Xi, Ei, Ai] ∈ T mg,1(G) for

i = 1, 2 such that F ([E1, π1, X1, E1, A1]) = F ([E2, π2, X2, E2, A2]). We set

F ([Ei, πi, Xi, Ei, Ai]) = ([Xi, Ei], ρi) for i = 1, 2. Then there exists a biholo-

morphic map φ : X1 → X2 such that φ∗(E1) = E2 where φ∗ is the induced

map on homotopy groups. Thus, ρ1 = ρ2 ◦ φ∗ for the representations. As

a consequence of Theorem 1.1.22 it follows that Eρ1 ∼= Eρ2 and Aρ1 ∼= Aρ2 .

Since Ei ∼= Eρi and Ai ∼= Aρi (see Section 1.1) we have that F is injective.

The mapping class group acts on the representation variety as follows. Let

[f ] ∈ Γmg,1, ρ ∈ RG(Smg,1) and γ ∈ π1, then [f ].ρ(γ) = ρ(f−1
∗ (γ)). Its action on

the Teichmüller space is properly discontinuous by [22]. Hence, there is an

action of Γmg,1 on T mg,1×RG(Smg,1) by ([f ], [X, E ], ρ) 7→ ([X, f∗(E)], [f ].ρ) which

induces an action of the mapping class group on the Teichmüller space of

flat G-bundles by means of F . The canonical projection T mg,1(G)→Mm
g,1(G)

just corresponds to this quotient. It follows that Mm
g,1(G) is bijective to

T mg,1 ×Γmg,1
RG(Smg,1). Thus, we assume the induced topology of the direct

product on T mg,1(G) and the induced quotient topology onMm
g,1(G).

In the last step of the proof we have to analyze the group action of Γmg,1. For

this let Ψ : T mg,1(G)→ T mg,1 be the canonical projection. Then

[f ].Ψ−1([X, E ]) = {([X, f∗(E)], [f ].ρ)|ρ ∈ RG(Smg,1)} = Ψ−1([X, f∗(E)])
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so that the action with [f ] is fiber preserving. Moreover,

Ψ([f ].[E, π,X, E , A]) ∼= Ψ([f ].([X, E ], ρ)) = [X, f∗(E)] = [f ].[X, E ]

= [f ].Ψ([X, E ], ρ) ∼= [f ].Ψ([E, π,X, E , A]),

where we apply the identification of T mg,1(G) with T mg,1 ×RG(Smg,1). Since the

projection Ψ is Γmg,1-equivariant it follows that Φ(G) is a bundle projection

as stated.

�

Remark 1.2.9. The projection Φ(G) of Lemma 1.2.8 possesses a section.

More precisely, let ρ0 ∈ RG(Smg,1) be the trivial representation which maps

any value of π1 to the identity element e ∈ G. Then Mm
g,1 → Mm

g,1(G) is

given by a section Mm
g,1 → T mg,1 ×Γmg,1

RG(Smg,1). More precisely, we define

this section by [X,P,Q] 7→ [X,P,Q, ρ0].

Corollary 1.2.10. The moduli space Mm
g,1(G) admits the structure of a

topological2manifold for any abelian or discrete and countable group G.

Proof. Let F → E → B be a fiber bundle, then E is a manifold if F and B

are manifolds. The moduli spaceMm
g,n is a manifold by [9], [23] and [49]. If

G is abelian then RG(Smg,1) is the product G2g.

On the other hand, if G is discrete and countable so is RG(Smg,1). Hence,

Mm
g,1(G) → Mm

g,1 is a covering. We will discuss this case in more detail in

Section 1.5.

�

So far, we have observed thatMm
g,1(G) is a topological manifold for a large

class of groups G. Yet another natural topological problem is to ask for the
2For a topological manifold we assume that it is second countable, Hausdorff and locally

homeomorphic to a Euclidean space.
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classification or at least the number of connected components of a space.

We will see that for many Lie groups G the solution methods for the case of

genus g ≥ 2 surfaces are different than for g = 1. So the torus case will be

investigated separately in Section 1.3. Let g ≥ 2 and let G be a Lie group

such that π0(G) is abelian. This is for instance true for every semisimple

and algebraic Lie group. Our first step will be the classification of connected

components ofRG(Smg,1). Then it becomes possible to describe the connected

components of the moduli spaces of flat G-bundles by studying the group

action of the mapping class group. For this, we have to identify obstructions

against triviality of the bundles.

First let G be a nonconnected Lie group and let G → π0(G) be the

map from G to its connected components. It induces a natural map-

ping Hom(π1, G) → Hom(π1, π0(G)) ∼= H1(Smg,1;π0(G)) for which we set

ρ 7→ o1(ρ). So if G is for example GL(n,R) or O(n), then it has two com-

ponents which are characterized by the sign of the determinant, i.e. by the

orientation of the bundle Eρ. So the first obstruction against the triviality

of the bundle corresponds to the first Stiefel–Whitney class of the associated

flat vector bundle to Eρ.

If G is connected which implies o1(ρ) = 0, then by classical obstruction the-

ory there can be only the obstruction of liftingG to its universal cover G̃ since

a surface is a finite, compact 2-dimensional CW-complex. Let {Ai, Bi}1≤i≤g

be generators for π1 as introduced in Section 1.1, ρ ∈ RG(Smg,1) and ρ̃(Ai),

ρ̃(Bi) lifts to G̃. Then
∏
i

[ρ̃(Ai), ρ̃(Bi)] is an element of ker(G̃→ G) ∼= π1(G).

As π1(G) is isomorphic to the group of deck transformations of the univer-

sal covering and is contained in the center of G̃ it follows that the element∏
i

[ρ̃(Ai), ρ̃(Bi)] is independent of the choice of a lift. We denote this product

by o2(ρ) which is an element of π1(G) ∼= H2(Smg,1;π1(G)). Moreover, it is
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invariant under the action of the mapping class group since H2(Smg,1;π1(G))

is generated by the orientation class of the surface. We have seen in Section

1.1 that RG(Smg,1) is a real algebraic set for real algebraic groups G. Thus,

it is locally contractible. As a consequence, o2(ρ) is locally constant and so

it is an invariant of the connected components. In the forthcoming example

it will be motivated that for a large class of groups o2(ρ) can be interpreted

in terms of characteristic classes of the associated vector bundles to Eρ.

Example 1.2.11. The obstruction o2(ρ) is the second Stiefel–Whitney class

of the vector bundle associated to Eρ for G = SL(n,R) and n ≥ 3. This is a

direct consequence of the commutativity of the following diagram.

π1
ρ // SL(n,R)

r // SO(n)

S̃L(n,R)
r̃ //

OO

Spin(n)

OO

π1(SL(n,R)) //

OO

Z/2

OO

The two vertical sequences of the diagram are universal coverings. The

horizontal arrow r is a retraction which is covered by a retraction r̃. Both

retractions are not homomorphisms in contrast to all the other mappings

in the diagram. The map of coefficients induces H2(Smg,1;π1(SL(n,R))) →

H2(Smg,1;Z/2), and maps o2(ρ) to the second Stiefel–Whitney class of its

associated vector bundle. Geometrically, it is just the obstruction to the

existence of a spin structure on the vector bundle.

In our previous discussion we followed [26] in many details. In this reference

and in [38] the connected components of RG(Sg) were described in terms

of characteristic classes as in Example 1.2.11. Applying our considerations

to these results we may summarize the number of connected components of
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Mm
g,1(G) if g ≥ 2 in the following table.

Lie group G Cardinality of |π0(Mm
g,1(G))|

PSL(2,R) 4g − 3

SL(2,R) 22g + 2g − 3

connected, compact, semisimple |π1(G)|

connected, complex, semisimple |π1(G)|

The first two results are a consequence of [26] where it is shown that o2 defines

a bijection between the connected components of the representation varieties

and a range of Euler classes. Since the Euler class is invariant under orien-

tation preserving diffeomorphisms the assumption follows by Lemma 1.2.8.

The last two assertions of the table are a consequence of [38] where it was

proven that o2 establishes a bijection between the connected components of

the representation varieties and H2(Smg,1;π1(G)). As the second cohomology

is invariant under orientation preserving diffeomorphisms the assumption

follows again by Lemma 1.2.8. Moreover, as a consequence of Theorem 0.4

of [38] the fundamental group of Mm
g,1(G) is isomorphic to Γmg,1 for simply

connected, semisimple and complex or compact Lie groups G, respectively.

In these cases the representation variety is simply connected.

Remark 1.2.12. Let H ⊆ G be a subgroup of a Lie group G. Then

RH(Smg,1) → RG(Smg,1) is an embedding of a subspace induced from the in-

clusion H2g → G2g. Therefore, Mm
g,1(H) → Mm

g,1(G) is an embedding of

moduli spaces since the inclusion of the corresponding representation vari-

eties is Γmg,1-equivariant. This fact is especially interesting when considering

the inclusion of a compact into a noncompact Lie group. We will see such

examples later.
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1.3 Moduli spaces of flat G-bundles over tori

In this section we investigate flat G-bundles over closed Riemann surfaces

X of genus g = 1. Then RG(X) is isomorphic to {(a, b) ∈ G2|ab = ba}. As

genus one surfaces are tori we will use T to denote the base space.

Lemma 1.3.1. Let G be a Lie group such that each of its abelian subgroups

is contained in a connected abelian subgroup. ThenMm
1,1(G) is connected.

Proof. Let e1, e2 be two generators of Z2, ρ ∈ RG(T ) and ρ(ei) = gi for

i = 1, 2. Since g1g2 = g2g1 there is a connected abelian subgroup A of G

such that gi ∈ A. So there exist smooth paths ωi : I → A with ωi(0) = e and

ωi(1) = gi for i = 1, 2 where e ∈ G denotes the identity element of G. Then

ρt(ei) = ωi(t) are two continuous paths in RG(T ) which define a homotopy

from ρ to the trivial representation. Consequently, RG(T ) is connected and

so isMm
1,1(G).

�

Corollary 1.3.2. If G is a Lie group whose maximal abelian subgroups are

the maximal tori thenMm
1,1(G) is connected.

Example 1.3.3. The Lie groups U(n), SU (n), Sp(n) satisfy Corollary 1.3.2.

Theorem 1.3.4. The representation variety RSO(3)(T ) consists of two con-

nected components. These are characterized by the second Stiefel–Whitney

classes of the associated vector bundles to the flat principal SO(3)-bundles

Eρ for ρ ∈ RSO(3)(T ). More precisely, the component I0 of the trivial rep-

resentation ρ0 is associated with the trivial Stiefel–Whitney class. The other

component I1 contains only representations ρ such that the second Stiefel–

Whitney class of the associated vector bundle to Eρ is nontrivial. The fun-

damental group of I0 is isomorphic to Z/2× Z/2.

55



Proof. First we analyze the connected components of RSO(3)(T ). In a sec-

ond step, we will calculate the fundamental group π1(I0) of the component

I0 containing the trivial representation ρ0 ∈ RSO(3)(T ). Let V (2, 3) be

the Stiefel manifold of orthonormal 2-frames in the 3-dimensional Euclidean

space. Note that SO(3) and V (2, 3) are homeomorphic.

We start with showing that the representation variety RSO(3)(T ) has exactly

two connected components and is homeomorphic to I0∪̇(V (2, 3)
/
Z/2×Z/2).

The action of (Z/2)2 on V (2, 3) is given by ((x1, x2), (ε1, ε2)) 7→ (ε1x1, ε2x2)

for xi ∈ R3, εi ∈ Z/2 and i = 1, 2, while (x1, x2) denotes a 2-frame in R3.

The group SO(3) can be considered as the rotation group of R3. Let x ∈ R3

and let 〈x〉 ⊆ R3 be the linear subspace spanned by the vector x. We denote

a rotation about an angle α ∈ [0, 2π[ with rotation axis 〈x〉 by D(α, x). Ev-

ery nontrivial rotation D(α, x) is uniquely determined by its rotation angle

α and its rotation axis 〈x〉 (this is Euler’s theorem). We denote the iden-

tity element of SO(3) by e. Further, SO(3) is in one-to-one correspondence

with the following quotient of D = [0, 2π[×(R3 − {0}). We divide by an

equivalence relation ∼ which is defined by (α, x) ∼ (β, y) if α = β = 0 or

if α = β 6= 0 and 〈x〉 = 〈y〉. An equivalence class is denoted by [α, x]. In

addition, we write [0] if α = 0. In particular, [0, x] = [0] for all x ∈ R3−{0}.

In other words, the set of representatives of [0] consists of all pairs (0, x) for

x ∈ R3 − {0}. Then there is a bijection F : SO(3) → D
/
∼ by mapping

a nontrivial rotation about the angle α 6= 0 which fixes a linear subspace

〈x〉 ⊆ R3 − {0} to [α, x]. Finally, the identity element e is mapped to [0] by

F . Moreover, F defines a homeomorphism since D
/
∼ is homeomorphic to

the quotient of the solid ball of radius π in R3 whose antipodal points are

identified. But this is the real projective space RP3 which is homeomorphic

to SO(3). Thus, we may identify every element of SO(3) with an equivalence
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class in D
/
∼.

According to [3] (see the proof of Proposition 3.1) two rotations D(α, x)

and D(β, y) about nontrivial rotation axis commute if and only if one of the

following properties is satisfied.

(C1) 〈x〉 equals 〈y〉.

(C2) 〈x〉 is perpendicular to 〈y〉 and α = β = π.

Two elements a, b ∈ SO(3) commute if and only if there are commuting rota-

tions D(α, x) and D(β, y) such that F (a) = [α, x] and F (b) = [β, y]. In view

of the identification defined by F , we say that a and b satisfy (C1) or (C2).

If a = e or b = e then (C1) is satisfied since [0] is represented by rotations

D(0, x) for any x ∈ R3 − {0}.

In order to show that RSO(3)(T ) has exactly two connected components it

remains to verify that all pairs satisfying (C1) are contained in I0 while all

pairs satisfying (C2) lie in I1. Let a, b ∈ SO(3) such that F (a) = [α, x]

and F (b) = [β, y] with 〈x〉 = 〈y〉. Then there are continuous paths

(αt)t∈I , (βt)t∈I ⊆ [0, 2π[ such that α0 = α, β0 = β and α1 = β1 = 0. Namely,

αt = α(1− t) and βt = β(1− t). Let (rt)t∈I be a continuous path in R3−{0}

such that 〈r0〉 = 〈x〉 = 〈y〉. Then there is a path (at, bt)t∈I ⊆ SO(3)2 with

F (at) = [αt, rt] and F (bt) = [βt, rt] which satisfy (F (a1), F (b1)) = ([0], [0])

and atbt = btat for all t ∈ I.

On the other hand, the set of all pairs (a, b) ∈ SO(3)2 satisfying (C2) is

homeomorphic to V (2, 3)
/
Z/2 × Z/2. To this end, let F (a) = [π, x] and

F (b) = [π, y]. Then 〈x〉 is perpendicular to 〈y〉 and so (x, y) ∈ V (2, 3).

Since, [π,−r] = [π, r] for any r ∈ R3 − {0} and V (2, 3) is connected it fol-

lows that its quotient by Z/2× Z/2 is connected and homeomorphic to I1.

In the next step we analyze the connected components I1 and I0. The real

57



algebraic Lie group SO(3) is connected, compact and simple. The torus is

a closed 2-dimensional CW-complex. Consequently, there remains only one

possibly nontrivial obstruction against the triviality of a principal SO(3)-

bundle over T . More precisely, the only possibly nontrivial characteristic

class of a vector bundle associated to an SO(3)-bundle over the torus is the

second Stiefel–Whitney class. Let ρ1, ρ2 ∈ RSO(3)(T ) be two representa-

tions contained in the same connected component. By Proposition 4.2 of

[48] Eρ1 and Eρ2 are topologically isomorphic. In particular, their second

Stiefel–Whitney classes are equal. As a consequence, to classify the con-

nected components I0 and I1 it is sufficient to consider representatives from

each of them. For the trivial representation ρ0 ∈ I0 we have that the associ-

ated vector bundle to Eρ0 is trivial (see Example 1.1.11). Thus, the second

Stiefel–Whitney classes of the associated vector bundles to Eρ for any ρ ∈ I0

are trivial. Let e1 and e2 be generators of π1(T ) as introduced in Section 1.1

and let ρ ∈ I1 be the representation whose values on these generators are

given by

a1 = ρ(e1) =


cos(π) − sin(π) 0

sin(π) cos(π) 0

0 0 1


which is a rotation about π and the z-axis, and

a2 = ρ(e2) =


cos(π) 0 − sin(π)

0 1 0

sin(π) 0 cos(π)


which is a rotation about π and the y-axis.

By our previous considerations a1 and a2 satisfy (C2). Since a2
i equals the
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identity matrix for i = 1, 2, the holonomy group of Eρ has a reduction to Z/2.

Applying a1 and a2 there are transformations of R3 into R⊕R2 with respect

to the standard Euclidean basis. We have to consider the weights of the

induced representation SO(3) → SO(2) (see Section 5.4 in [46]). As SO(2)

is isomorphic to U(1) we will consider R3 as R⊕C. Moreover, let us consider

Z/2 as the multiplicative group consisting of two elements ε1, ε2. Since the

calculation depends on the homomorphism Z/2 → U(1) we consider all

possible maps which are defined by ε1 7→ exp(
√
−1nπ) for n even, and ε2 7→

exp(
√
−1mπ) for m odd. The weights of the representations are the well-

known values (0, 2k + 1) for m = 2k + 1 and k ∈ Z. From Section 9 in [13]

it follows that

c = (1+(2k1 +1)t)(1+(2k2 +1)t) = 1+(2k1 +1)(2k2 +1)t2 +2(k1 +k2 +1)t

for the Chern class c of the associated vector bundle to Eρ. Therefore,

c ≡ 1 + t2 modulo 2 so that the second Stiefel–Whitney class is nontrivial.

Note that we interpret c as an elementary symmetric function. Summarizing,

we may characterize the two connected components of the representation va-

riety by the second Stiefel–Whitney classes of the associated 3-dimensional

vector bundles.

Now we will calculate the fundamental group of I0. Note that I0 is homeo-

morphic to S2×S1×S1
/
∼ where ∼ is the identification (r, λ, µ) ∼ (−r, λ, µ)

and (r, 1, 1) ∼ (r′, 1, 1) for r, r′ ∈ S2 and λ, µ ∈ S1. Here λ is the complex

conjugate of λ. Let [r, λ, µ] be the equivalence class of (r, λ, µ) with respect

to ∼. Set S = S1 × S1 − {(1, 1)} and let I ′ be the complement of the point
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[r, 1, 1] in I0. There is a free Z/2-action on S2 × S1 by

(ε, (r, λ, µ)) 7→ (εr, ελ, εµ) =


(r, λ, µ), if ε = 1

(−r, λ, µ), if ε = −1.

Therefore, Z/2 → S2 × S → I ′ is a covering. It induces a short exact

sequence of homotopy groups

0→ π1(S2 × S)→ π1(I ′)→ Z/2→ 0. (1.2)

The short exact sequence is split because the injection S2 → S2 × S with

respect to the base point (−1,−1) ∈ S and the projection S2 × S → S2

are Z/2-equivariant. Moreover, the composition of this injection and this

projection is the identity and RP2 is a retract of I ′. So the assertion follows

from the commutativity of diagram

Z/2

��

Z/2

��

Z/2

��
S2 //

��

S2 × S //

��

S2

��
RP2 // I ′ // RP2.

By construction, π1(S2 × S) is isomorphic to the free product Z ∗ Z. As

a consequence of the Z/2-action on S2 × S as defined above π1(I ′) has a

representation as
〈
A,B,C|A−1 = AC , B−1 = BC , C2 = 1

〉
.

We are now in a position to determine π1(I0). For this we identify S1 with the

quotient of {exp(
√
−1θ)|θ ∈ [−π, π]} where exp(

√
−1π) and exp(−

√
−1π)

are identified. Let U = {exp(iθ)|θ ∈] − π
2 ,

π
2 [} so that U is invariant un-

der complex conjugation and contractible. Then U × U is a contractible
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neighborhood of (1, 1) in S1 × S1. It follows that V = S2 × U × U
/
∼ is

contractible. Namely, let pN ∈ S2 be the north pole and let [r, λ, µ] ∈ V

such that λ = exp(
√
−1θ) and µ = exp(

√
−1ϑ) for some θ, ϑ ∈] − π

2 ,
π
2 [.

Then Ht([r, λ, µ]) = [ r(1−t)+tpN|r(1−t)+tpN | , exp(
√
−1θ(1 − t)), exp(

√
−1ϑ(1 − t))] de-

fines a homotopy from the identity to the constant map equal to [pN , 1, 1].

Moreover, note that I0 = I ′ ∪ V . We will examine the intersection V ∩ I ′

in order to apply the theorem of Seifert–van Kampen. By construction, this

intersection is S2 × U × U
/
∼ −{[r, 1, 1]}. Thus, it is homotopy equivalent

to S2 × S1
/

(r, λ) ∼ (−r, λ). But this quotient is exactly S2 × S1
/
Z/2 for

which we have already checked that the Z/2-action is free. Consequently,

the short exact sequence

0→ Z→ π1(S2 × S1
/
Z/2)→ Z/2→ 0 (1.3)

implies π1(V ∩ I ′) ∼= Z. Let iV : V → I0, iI′ : I ′ → I0 and iV I′ : V ∩ I ′ → I0

be the natural inclusions. Moreover, let j : I ′ ∩ V → I ′ be the natural

inclusion so that iV I′ = iI′ ◦ j. We fix a generator z of π1(V ∩ I ′), then

iI′∗ ◦ j∗(z) = 1 because V is contractible. From the short exact sequences

(1.2) and (1.3) we obtain the commutative diagram:

0 // Z f1 //

h1
��

π1(I ′ ∩ V )
f2 //

h2
��

Z/2 //

=

��

0

0 // Z ∗ Z g1
// π1(I ′) g2

// Z/2 // 0.

(1.4)

Let x ∈ Z be a fixed generator. Then h1(x) = [A,B] for a generating set

{A,B} of Z ∗ Z and f1(x) = x2. Note that h2 = j∗ and let y be a chosen

generator of π1(V ∩ I ′). Then h2(y)2 = [A,B] by commutativity of the left

square in Diagram (1.4). Moreover, we have f2(y) = ε for 〈ε〉 = Z/2 and
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so g2(h2(y)) = ε. But j∗(y) is of the form Aα1Bβ1 . . . AαpBβpε and j∗(y)2

is Aα1Bβ1 . . . AαpBβpA−α1B−β1 . . . A−αpB−βp . Hence, j∗(y)2 = ABA−1B−1

if and only if p = 1, α1 = 1 and β1 = 1. As Diagram (1.4) commutes

we obtain the relations for π1(I0) by the theorem of Seifert–van Kampen,

that is,
〈
A,B,C|AC = A−1, BC = B−1, C2 = 1, ABC = 1

〉
. This group is

isomorphic to Z/2 × Z/2. It is a well-known representation of the Klein

four-group.

�

We are in a position to say more about the connected component I1. Its

fundamental group is isomorphic to the quaternionic group Q. This is a

consequence of the geometric characterization given in the beginning of the

proof of Theorem 1.3.4. More precisely, the space V (2, 3)/(Z/2)2 is homeo-

morphic to S3/Q. Since Q→ S3 → S3/Q is the universal covering of S3/Q

it follows that π1(I1) = Q. We refer to Proposition 6 of [25] for all further

details on this computation.

Theorem 1.3.5. The moduli space Mm
1,1(SO(3)) consists of two connected

components which are characterized by the second Stiefel–Whitney classes of

the associated vector bundles to the principal SO(3)-bundles. More precisely,

one component consists of topologically trivial bundles while the other com-

ponent contains bundles with a nontrivial second Stiefel–Whitney class. The

fundamental group of the connected component containing the trivial bundle

is isomorphic to (Z/2)2 o Γm1,1.

Proof. By Lemma 1.2.8RSO(3)(T )→Mm
1,1(SO(3))→Mm

1,1 is a fiber bundle

whose structure group is the mapping class group Γm1,1. Thus, we can cal-

culate π0(Mm
1,1(SO(3))) by means of the long exact sequence of homotopy

groups. Since Mm
1,1 is connected it remains to study the group action of
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Γm1,1 on the two components of RSO(3)(T ) (see Theorem 1.3.4) to determine

π0(Mm
1,1(SO(3))).

In Theorem 1.3.4 we established a one-to-one correspondence between

π0(RSO(3)(T )) and the Stiefel–Whitney classes of the associated vector bun-

dles to Eρ for ρ ∈ RSO(3)(T ). Let ρ ∈ RSO(3)(T ) and let Vρ be the as-

sociated vector bundle to Eρ. The mapping class group acts by means of

orientation preserving diffeomorphisms. Thus, for any [f ] ∈ Γm1,1 we have

w2(Vρ) = f∗w2(Vρ) = w2(f∗Vρ). Note that this equation is well-defined as

Vρ is a vector bundle over the torus. The last equality is a consequence of the

naturality of characteristic classes. But by construction of Eρ in Section 1.1

f∗Vρ and V[f ].ρ are isomorphic vector bundles so that w2(Vρ) = w2(V[f ].ρ).

It follows that I0 and I1 are invariant under the action of the mapping class

group, that is, for j = 0, 1, any [f ] ∈ Γm1,1 and ρ ∈ Ij we have that [f ].ρ ∈ Ij .

As a consequence, Mm
1,1(SO(3)) has two connected components. One com-

ponent consists of topologically trivial bundles while the other component

contains bundles whose associated vector bundles have a nontrivial Stiefel–

Whitney class.

The assertion on the fundamental group of the moduli space follows from

Theorem 1.3.4 and the long exact sequence of homotopy groups since the

bundle projection Φ(SO(3)) possesses a section by Remark 1.2.9.

�

Corollary 1.3.6.

(1) The map Φ(SU (2))∗ : π1(Mm
1,1(SU (2))) → π1(Mm

1,1) is an isomor-

phism.

(2) The fundamental group π1(Mm
1,1(U (2))) ∼= Z2 o Γm1,1.
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Proof.

(1) By identifying SU (2) with S3 and SO(3) with the real projective space

RP3 we see that SU (2) is a double covering of SO(3). Hence, there is

the short exact sequence

0 −→ π1(RSU (2)(T )) −→ π1(I0) −→ (Z/2)2 −→ 0

by Lemmas 1.1.25 and 1.3.1. For π1(I0) ∼= (Z/2)2 (by Theorem 1.3.4)

it follows that π1(RSU (2)(T )) ∼= 0. Then Lemma 1.2.8 and Remark

1.2.9 imply that Φ(SU (2))∗ is an isomorphism.

(2) The map SU (2) × R → U(2) defined by (A, λ) 7→ exp(
√
−1λπ)A for

A ∈ SU (2) and λ ∈ R is a covering with fiber Z. Thus, we can deduce

from (1) and Corollary 1.3.2 the short exact sequence

0 −→ π1(RSU (2)×R(T )) −→ π1(RU (2)(T )) −→ π0(RZ(T )) −→ 0.

It follows that π1(RU(2)(T )) ∼= Z2 so that π1(Mm
1,1(U (2))) is isomor-

phic to Z2oΓm1,1 as a consequence of Remark 1.2.9 and Theorem 1.3.5.

�

Proposition 1.3.7. If G = PSL(2,R) or G = SL(2,R) the moduli spaces

Mm
1,1(G) are connected for all m ≥ 0.

Proof. In analogy to the Proof of Theorem 1.3.4 we consider SL(2,R) as a

group of linear transformations of R2. Moreover, SL(2,R) acts isometrically

on the upper half plane H. This action factors through PSL(2,R). Every

element
(
a b
c d

)
∈ PSL(2,R) can be uniquely identified with a Möbius transfor-

mation µ : C→ C, that is, µ(z) = az+b
cz+d . To each element A ∈ SL(2,R) with
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A =
(
a b
c d

)
we may associate the Möbius transformation µA = az+b

cz+d . Note

that this correspondence is not one-to-one because the matrices A =
(
a b
c d

)
and B =

(−a −b
−c −d

)
define the same Möbius transformation. On the other

hand, this is the only ambiguity.

Every element A ∈ SL(2,R) is contained in one of the following subsets.

These will be referred to as

elliptic if A is conjugate to a matrix
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
for some θ ∈ [0, 2π[.

hyperbolic if A is conjugate to a matrix
(
λ 0
0 λ−1

)
for λ 6= 0.

parabolic if A is conjugate to a matrix ( 1 x
0 1 ) for x ∈ R.

Note that the identity element is the only one which is contained in all three

subsets.

In order to determine the commuting pairs of SL(2,R) we consider the appro-

priate Möbius transformations. More precisely, we say that z0 ∈ H∪R∪{∞}

is a fixpoint of a Möbius transformation µ(z) = az+b
cz+d if az0+b

cz0+d = z0. By Chap-

ter 2 of [34] two elements A,B ∈ SL(2,R) commute if and only if µA and µB

have the same fixpoint set. Moreover, it is shown in the indicated reference

that by solving the equation az+b
cz+d = z for a nonidentity element A ∈ SL(2,R)

the following is satisfied. If A is

elliptic then µA has exactly one fixpoint in H.

hyperbolic then µA has exactly two fixpoints in R ∪ {∞}.

parabolic then µA has exactly one fixpoint in R ∪ {∞}.

It follows that two nonidentity elements A,B ∈ SL(2,R) commute only if

they are both elliptic, both parabolic or both hyperbolic. In this case, there
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is a unique matrix C which transforms A and B simultaneously in the form

indicated above. The Möbius transformation µC has the following form.

If A and B are elliptic, and µA and µB fix x0 ∈ H then µC : i 7→ x0.

If A and B are hyperbolic, and µA and µB fix x0, y0 ∈ R ∪ {∞} then

µC : 0 7→ x0 and µC :∞ 7→ y0.

If A and B are parabolic, and µA and µB fix x0 ∈ R ∪ {∞} then

µC :∞ 7→ x0.

Now we will verify that from each commuting pair of SL(2,R) there exists a

path to the pair of identity elements (e, e) ∈ SL(2,R)2 whose image lies in

the same class.

So let A,B ∈ SL(2,R) be elliptic such that AB = BA. Assume that µA and

µB fix a point x0 ∈ H. There exists a matrix C as described above such that

A = C−1A′C and B = C−1B′C where

A′ =

 cos(α) − sin(α)

sin(α) cos(α)

 and B′ =

 cos(β) − sin(β)

sin(β) cos(β)


for suitable angles α, β ∈ [0, 2π[. Moreover, there are paths αt = α(1 − t)

and βt = β(1 − t) in [0, 2π[, that is, α0 = α and β0 = β with end points

α1 = 0 = β1. We denote by A′t and B′t the rotation matrices about αt and

βt, respectively. Let At = C−1A′tC and Bt = C−1B′tC. Then the paths

At and Bt consist of elliptic elements, commute pointwise and end in the

identity element e ∈ SL(2,R). Since H is path connected, for all x ∈ H

exists a continuous path ω : I → H with ω(0) = x0 and ω(1) = x. There

is a path Cs ⊆ SL(2,R) such that µCs : i 7→ ω(s). Then the double paths

As,t = C−1
s A′tCs and Bs,t = C−1

s B′tCs consist of elliptic elements for all
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s, t ∈ I, commute pointwise and end in the identity element e ∈ SL(2,R).

So the subset of commuting elliptic pairs is connected and contains the pair

of identity elements (e, e). Now we will check the same for parabolic and

hyperbolic elements applying the analogous strategy.

Let A,B ∈ SL(2,R) be hyperbolic elements such that AB = BA. Assume

that µA and µB have fixpoints x0, y0 ∈ R ∪ {∞}. There exists a matrix

C ∈ SL(2,R) as described such that A = C−1A′C and B = C−1B′C where

A′ =

 ν 0

0 ν−1

 and B′ =

 λ 0

0 λ−1


for suitable elements λ, ν 6= 0. Since R ∪ {∞} is homeomorphic to S1 it is

path connected. Hence, for each pair of points (x, y) ∈ (R ∪ {∞})2 there

exists a continuous path ω : I → (R ∪ {∞})2 with ω(0) = (x0, y0) and

ω(1) = (x, y). Furthermore, there is a path Cs ⊆ SL(2,R) such that C0 = C

and µCs maps 0 to the first coordinate of ω(s) and maps ∞ to the second

coordinate of ω(s). Let νt and λt be paths in R − {0} which end in 1 ∈ R

and let A′t and B′t be matrices analogous to A′ and B′ defined by νt and λt,

respectively. Then the paths As,t = C−1
s A′tCs and Bs,t = C−1

s B′tCs consist

of hyperbolic elements for all s, t ∈ I, commute pointwise and end in the

identity element e ∈ SL(2,R). So the subset of commuting hyperbolic pairs

is connected and contains the pair of identity elements (e, e).

Let A,B ∈ SL(2,R) be parabolic elements such that AB = BA. Assume

that µA and µB fix a point x0 ∈ R ∪ {∞}. There is a matrix C ∈ SL(2,R)

as described above such that A = C−1A′C and B = C−1B′C where

A′ =

 1 α

0 1

 and B′ =

 1 β

0 1
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for suitable elements α, β ∈ R. The argumentation works as before. For each

x ∈ R ∪ {∞} exists a continuous path ω : I → R ∪ {∞} with ω(0) = x0 and

ω(1) = x that induces a path Cs ⊆ SL(2,R) with µCs : ∞ 7→ ω(s). On the

other hand, let αt and βt be paths in R with α0 = α and β0 = β and whose

end point is 0 ∈ R. We define As,t and Bs,t as before. Then these are two

paths in SL(2,R) consisting of parabolic elements for all s, t ∈ I, commuting

pointwise and ending in the identity element e ∈ SL(2,R). Hence, the subset

of commuting parabolic pairs is connected and contains the pair of identity

elements (e, e).

Consequently, RSL(2,R)(T ) and hence RPSL(2,R)(T ) (see Lemma 1.1.25) are

connected. Since M1,1(G) → M1,1 is a fiber bundle with fiber RG(T ) for

G = SL(2,R) and G = PSL(2,R) by Lemma 1.2.8 we can deduce the asser-

tion from the long exact sequence of homotopy groups.

�

After the computation of homotopy groups we next turn to homology groups

of some moduli spaces of flat G-bundles.

Example 1.3.8.

Hp(M1,1(SU (2))) ∼=


Z, if p = 0, 1

Z/2, if p = 4, 5

0, else.

Proof. The integral cohomology ofM1,1 was calculated in [1]: Hp(M1,1) ∼= Z

for p = 0, 1 and it is trivial in all other degrees. The integral cohomology of
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RSU (2)(T ) was determined in Theorem 1.4 of [3]:

Hq(RSU (2)(T )) ∼=



Z, if q = 0, 2,

0, if q = 1 or q ≥ 5,

Z2, if q = 3,

Z/2, if q = 4.

By Lemma 1.2.8 we can apply the Leray–Serre spectral sequence to the fiber

bundleM1,1(SU (2))→M1,1 with fiber RSU (2)(T ). Its E2-term is given by

Hp(M1,1;Hq(RSU (2)(T ))). As the moduli spaceM1,1 is homotopy equiva-

lent to BΓ1,1 we will calculate the group cohomology of Γ1,1 with local coeffi-

cients Hq(RSU (2)(T )). For this, we first consider the cohomology of SL(2,Z)

with local coefficients since Z → Γ1,1 → SL(2,Z) is an extension. For the

computation of the E2-term Ep,q2 = Hp(SL(2,Z);Hq(RSU (2)(T ))) we apply

the Hochschild–Serre spectral sequence to Z/2→ SL(2,Z)→ PSL(2,Z). For

all oncoming calculations note that the action of the mapping class group

on the cohomology of the representation variety is nontrivial and factors

through the symplectic group Sp(2,Z) (see Section 3 of [55]). As a conse-

quence, SL(2,Z) acts nontrivially on the local coefficients Hq(RSU (2)(T )).

The group SL(2,Z) admits Z/2 as a normal subgroup where Z/2 is considered

as the multiplicative group {1,−1}. Thus, Z/2 acts as a scalar group diago-

nally on Z2 by multiplication. More precisely, let ε ∈ Z/2 and (z1, z2) ∈ Z2,

then the action is defined by (ε, (z1, z2)) 7→ (εz1, εz2). This Z/2-action in-

duces the structure of a direct sum of two nontrivial Z/2-modules of rank 1

on Z2.

Moreover, SL(2,Z) acts nontrivially on Z by a unique homomorphism. To

this end, note that any homomorphism SL(2,Z)→ Z/2 has to factor through
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the abelianization of SL(2,Z). The abelianization is isomorphic to Z/12.

But there exists only one nontrivial homomorphism Z/12 → Z/2. Conse-

quently, the nontrivial group action SL(2,Z) → Aut(Z) ∼= Z/2 is uniquely

defined. Having described the group actions on the local coefficients it fol-

lows that H0(Z/2;Z2) = 0, H0(Z/2;Z) = 0, H1(Z/2;Z2) = (Z/2)2 and

H1(Z/2;Z) = Z/2. The quotient group SL(2,Z)
/
Z/2 is isomorphic to

PSL(2,Z). By means of the homomorphism SL(2,Z)
/
Z/2 → SL(2,Z/2),

it acts on (Z/2)2 and Z/2. Consequently, H0(PSL(2,Z);H1(Z/2;Z2)) and

H0(PSL(2,Z);H1(Z/2;Z)) are trivial. Then from the Hochschild–Serre

spectral sequence we have thatHp(SL(2,Z);Hq(RSU (2)(T ))) = 0 for q = 2, 3

and p ≥ 0. In particular, it follows that Ep,q2 = 0 for q = 2, 3 and p ≥ 0.

Moreover, Ep,12 = 0 forH1(RSU (2)(T )) = 0. Further, it was shown in Lemma

1.3.1 that RSU (2)(T ) is connected. Thus, Ep,02 is just the ordinary cohomol-

ogy Hp(SL(2,Z);Z) for all p ≥ 0. Finally, the action of Z/2 on itself is

trivial. Hence, Ep,42 is also just the ordinary cohomology Hp(SL(2,Z);Z/2)

for all p ≥ 0.

Summarizing these consideration, the E2-term Ep,q2 is shown in Figure 1.3.

We see from the diagram in Figure 1.3 that this spectral sequence collapses

in the E2-term. To finish the proof we apply the Hochschild–Serre spectral

sequence to the extension Z → Γ1,1 → SL(2,Z). By executing the analo-

gous computations as above (we have already computed the cohomology of

SL(2,Z) with local coefficients) the assertion follows.

�

As we do not introduce spectral sequence techniques here we refer to Chap-

ter 5 for the Leray–Serre spectral sequence and to Section 12.1 for the

Hochschild–Serre spectral sequence of [43].
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4 Z/2 Z/2

3 0 0

2 0 0

1 0 0

0 Z Z

0 1

Figure 1.3: E2-term for Hp(M1,1(SU (2)))

1.4 Moduli spaces of flat G-bundles for abelian

groups

As we have mentioned before, moduli spaces Mm
g,1(G) enjoy special prop-

erties if G is abelian. In particular, if G is connected, then Mm
g,1(G) is a

classifying space.

Proposition 1.4.1. The moduli space Mm
g,1(U(1)) is a classifying space

whose fundamental group is isomorphic to Z2g o Γmg,1.

Proof. The representation variety RU(1)(S
m
g,1) is isomorphic to U(1)2g, that

is, a torus. Thus, it is a classifying space since U(1)2g a model for BZ2g.

By Lemma 1.2.8, Mm
g,1(U(1)) is homotopy equivalent to EΓmg,1 ×Γmg,1

BZ2g.

In general, for two groups H and K with a group action H → Aut(K) we

have that B(K o H) is homotopy equivalent to EH ×H BK . This follows

from the fact that these two bundles which are given by the two projections

B(K o H) → BH and EH ×H BK → BH are isomorphic in view of the
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universality of the classifying space. Consequently,Mm
g,1(U(1)) is homotopy

equivalent to B(Z2goΓmg,1). As Z2goΓmg,1 is discrete, the moduli space is an

Eilenberg–Mac Lane space of type (Z2g o Γmg,1, 1).

�

Corollary 1.4.2. Let G be a connected abelian Lie group. Then Mm
g,1(G)

is a classifying space with fundamental group Z2gp o Γmg,1 where p is the

dimension of the maximal torus of G.

Proof. Every connected abelian Lie group is the product of an Euclidean

space and a torus, that is, U(1)p×Rq. Thus,RG(Smg,1) is homotopy equivalent

to U(1)2gp, that is, BZ2gp. The assertion follows as in Proposition 1.4.1.

�

Remark 1.4.3. Let X be a Riemann surface. We have seen in Example 1.1.24

that RU(1)(X) can be identified with the Jacobi variety of X. In particular,

it is a complex manifold. It was shown in Theorem 1.1 of [27] that the

mapping class group preserves any volume form on RU(1)(X). Consequently,

the mapping class group acts orientation preserving on this representation

variety.

Example 1.4.4.

Hp(M1,1(U(1))) ∼=


Z, if p ≤ 3

0, else

Proof. We proceed similarly as in Example 1.3.8. The integral cohomology of

M1,1 was calculated in [1] and RU(1)(S1,1) is the torus T = U(1)2. Because

of Lemma 1.2.8 we can apply the Leray–Serre spectral sequence to the fiber

bundle RU(1)(S1,1) → M1,1(U(1)) → M1,1 with structure group Γ1,1. Its
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E2-term is given by Hp(M1,1;Hq(RU(1)(S1,1))). So it follows immediately

from the calculations in [1] that Ep,q2 = 0 for p ≥ 2 and q ≥ 3.

Since T is connected Ep,02 is isomorphic to the cohomology Hp(M1,1;Z)

with constant coefficients. Further, we have noticed in Remark 1.4.3 that

the mapping class group acts orientation preserving on RU(1)(X) for every

[X,P,Q] ∈ M1,1. Consequently, Ep,22 is also isomorphic to Hp(M1,1;Z)

with constant coefficients. It follows that Ep,q2
∼= Z for p = 0, 1 and q = 0, 2.

It remains to determine the groups E0,1
2 and E1,1

2 . The moduli spaceM1,1

is homotopy equivalent to BΓ1,1. Hence we will calculate the group coho-

mology of Γ1,1 with local coefficients H1(RU(1)(S1,1)). To this end, we first

consider the group cohomology of SL(2,Z) since Z → Γ1,1 → SL(2,Z) is

an extension. For its computation we apply the Hochschild–Serre spectral

sequence to Z/2 → SL(2,Z) → PSL(2,Z) as in Example 1.3.8. Recall that

H i(PSL(2,Z);Hj(Z/2;Z2)) = 0 for j = 0, 1. It follows for the E2-term of

our Leray–Serre spectral sequence that Ep,12 = 0 for p = 0, 1. For all further

details of the computation see Example 1.3.8. Now the E2-term has the form

as shown in Figure 1.4.

2 Z Z

1 0 0

0 Z Z

0 1

Figure 1.4: E2-term for Hp(M1,1(U(1)))

As a consequence, the spectral sequence collapses in the E2-term and the
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result follows as desired.

�

Remark 1.4.5. By means of the calculations in the proof of 1.4.4, we

are in a position to determine the generators of each cohomology group

Hp(M1,1(U(1))). AsM1,1 (see [1]) and the torus T are orientable and the

mapping class group acts orientation preserving on the representation variety

(see Remark 1.4.3) the orientability ofM1,1(U(1)) follows. All cohomology

groups are torsion free. As a consequence of the universal coefficient theorem

we may consider homology groups by duality. Let x0 and x1 be generators

of H0(M1,1) and H1(M1,1), respectively. The class x1 is the fundamental

class. It was shown in [1] that it is represented by a Dehn twist along a

simple closed curve. Let yi be a generator of Hi(T ) for i = 0, 2 and y1, y
′
1

two generators of H1(T ). We identify RU(1)(S1,1) with the torus U(1)2 = T

as the following considerations do not depend on the choice of such an identi-

fication. Then y2 is represented by the fundamental class of the torus, while

y1 and y′1 are represented by a pair of simple closed curves in T intersect-

ing transversally. It follows from the E2-term of the Leray–Serre spectral

sequence (see Example 1.4.4) that x0 ⊗ y0 generates H0(M1,1(U(1))) and

is represented by the connected component of this moduli space. Note that

we have seen in Example 1.3.3 as well as Proposition 1.4.1 thatM1,1(U(1))

is connected. The class x1 ⊗ y2 generates H3(M1,1(U(1))) and determines

the fundamental class of M1,1(U(1)). Furthermore, x0 ⊗ y2 is a generator

of H2(M1,1(U(1))) represented by the fiberwise orientation of the fibers in

terms of Lemma 1.2.8. In the same vein, x1⊗ y0 generates H1(M1,1(U(1))).

Geometrically, this class can be interpreted as follows. The bundle projec-

tion Φ(U(1)) admits a section by Remark 1.2.9 which is defined by means of

the trivial representation ρ0. The mapping class group fixes ρ0 when acting
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on RU(1)(S1,1). As a consequence, a Dehn twist representing x1 can be lifted

to the total spaceM1,1(U(1)) at the point ρ0. Such a Dehn twist represents

x1 ⊗ y0.

1.5 Moduli spaces of coverings

In this section we consider a very special class of moduli spaces of fiber bun-

dles, namely where the fiber and structure group are discrete or even finite.

These coverings are flat bundles since their structure group is discrete. As

we will see in the sequel these can often be treated by means of combinatorial

methods in contrast to general principal G-bundles.

Proposition 1.5.1. Let H ≤ G be a subgroup of a discrete group G. Then

Mm
g,1(H) consists of components ofMm

g,1(G).

Proof. As G and H are discrete RG(Smg,1) and RH(Smg,1) are discrete spaces.

The inclusion RH(Smg,1) → RG(Smg,1) is Γmg,1-equivariant. Consequently,

Mm
g,1(H) → Mm

g,1(G) is a continuous inclusion. By Lemma 1.2.8, Φ(H)

and Φ(G) are covering projections onto the moduli spaceMm
g,1.

Let C ⊆ Mm
g,1(H) be a connected component. Then there is a connected

component C ′ ofMm
g,1(G) such that C ⊆ C ′. It remains to show that C = C ′.

To this end, let x0, x1 ∈ Mm
g,1 and let ω : I → Mm

g,1 be a continuous path

with ω(0) = x0 and ω(1) = x1. Consider yi ∈ Φ(G)−1(xi)∩C for i = 0, 1. As

Φ(G) is a covering projection there exists a lift ω̃ : I →Mm
g,1(G) of ω with

ω̃(0) = y0 and ω̃(1) = y1. The image of ω̃ is contained in C ′. Moreover, ω̃

defines a deck transformation f :Mm
g,1(G)→Mm

g,1(G) such that f(y0) = y1.

But f ′ = f |Mm
g,1(H) is a deck transformation of Φ(H) with f ′(y0) = y1. Then

each path which is homotopic to ω̃ is contained in C ′ ∩ Mm
g,1(H). Thus,

there is a path component C ′′ ⊆ Mm
g,1(H) with C ′ ⊆ C ′′. Consequently,
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C ⊆ C ′ ⊆ C ′′ and so C = C ′′. It follows that C = C ′.

�

Notation. The moduli space Mm
g,1[K]G is defined in the sense of 1.2.6 for

K ≥ 1: it consists of equivalence classes of K-sheeted, unramified, pointed

coverings of Riemann surfaces with structure group G. We denote by

Mm
g,1[K]G0 the moduli space of connected, K-sheeted, unramified, pointed

coverings with structure group G. ThenMm
g,1[K]G0 ⊆Mm

g,1[K]G. Moreover,

we setMm
g,1[K]G∗ for the moduli space of K-sheeted, pointed coverings with

structure group G with a finite number (unequal zero) of branch points. We

drop the superscript G, that is, we writeMm
g,1[K],Mm

g,1[K]0 andMm
g,1[K]∗

in case G equals the full symmetric group SK .

Lemma 1.5.2. Let G ≤ SK be a subgroup of the symmetric group. Then

the following canonical projections are coverings of the moduli spaceMm
g,1.

(1) Φ(K)G :Mm
g,1[K]G →Mm

g,1

(2) Φ(K)G0 :Mm
g,1[K]G0 →Mm

g,1

(3) Φ(K)G∗ :Mm
g,1[K]G∗ →Mm

g,1

Proof. A covering is a flat bundle since its holonomy group is discrete.

Moreover, coverings of Riemann surfaces can be characterized by representa-

tions of the fundamental group in its structure group. The structure group

G ≤ SK acts on K points of the fiber. The number of equivalence classes of

pointed coverings with structure group G then corresponds to the number of

homomorphisms in Hom(π1, G). Because of Proposition 1.5.1 it is sufficient

to prove the assertions for G = SK .

The fundamental group π1 is finitely generated and SK is a finite group
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for all K ≥ 1. A representation is uniquely determined by its values on a

fixed generating set of π1. Thus, there are only finitely many representations

ρ : π1 → SK . It follows that the number of equivalence classes of unramified,

K-sheeted, pointed coverings of a Riemann surface is finite. Moreover, this

number depends only on the topological type of the surface. The number of

equivalence classes of connected, unramified, K-sheeted, pointed coverings of

a Riemann surface is given by those representations ρ for which ker(ρ) ≤ π1 is

a subgroup of index K. Analogous to Lemma 1.2.8Mm
g,1[K]G is a fiber bun-

dle overMm
g,1 with structure group Γmg,1. More precisely,Mm

g,1[K]G is in one-

to-one correspondence with T mg,1 ×Γmg,1
RG(Smg,1). The topology ofMm

g,1[K]G

is defined by means of this identification. As the structure group is discrete

and the fiber is finite (1) and (2) hold.

The number of equivalence classes of ramified coverings corresponds to

the number of tuples (α1, . . . , αg, β1, . . . , βg, δ1, . . . , δr) in S2g+r
K such that∏

1≤i≤g
[αi, βi]

∏
1≤j≤r

δj = 1. Here r denotes the number of branch points on the

surface. This characterization of ramified coverings arises from the theory

of monodromy representations that we have considered in Section 1.1. The

monodromy is not trivial at the branch points. In addition, the number of

tuples (δ1, . . . , δr) parameterizing the monodromy at the branch points is fi-

nite. So it follows analogously to the unramified case thatMm
g,1[K]G∗ →Mm

g,1

is a covering projection.

�

For the exact number of sheets for Φ(K), Φ(K)0 and Φ(K)∗ we refer to the

survey [37].

Remark 1.5.3. Let G be a finite group whose order we denote by |G|. Let

us choose a labeling of the elements of G such that G = {gj}1≤j≤|G|. We

consider the action of G on itself by left multiplication. This induces a
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permutation of the index set {1, . . . , |G|}. Thus, G acts as a permutation

group on itself and can be considered as a subgroup of the symmetric group

S|G|. We obtain a homeomorphism Mm
g,1(G) → Mm

g,1[|G|]G. In particular,

Mm
g,1(G) consists of components ofMm

g,1[|G|] by Proposition 1.5.1.

Definition 1.5.4. The Hurwitz space Hr(X)[K] of X is the moduli space

of K-sheeted, ramified, pointed coverings of a Riemann surface X with r ≥ 1

branch points p1, . . . , pr ∈ X. We set Hr[K] = Hr(CP1)[K] for the Riemann

sphere CP1.

Note that since the fundamental group of CP1 is trivial there are no nontrivial

unramified coverings of the Riemann sphere. It is therefore reasonable to

assume r ≥ 1 in Definition 1.5.4.

In order to state the main theorem of this section we first introduce the

following notations.

Notation.

(1) Let M be a topological space. We denote by b0(M) the number of

connected components of M .

(2) We write Π(K) for the number of partitions of the natural number

K ∈ N. For further details on the partition function Π see for instance

Chapter 1.2 of [4].

(3) We set Ck for the cyclic group of order k ∈ N.

(4) Let G and H be two finite groups. Then we denote by H oG the wreath

product H |G| oG where G acts on itself as a permutation group from

the left (compare with Remark 1.5.3).

Theorem 1.5.5. The number of connected components b0(Mg,1[K]) is a

function of b0(M1,1[K]), b0(H3[K]) and the genus g.
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(1) The number b0(M1,1[K]) is a function of Π(K) and the number of all

transitive subgroups H ≤ SK satisfying the following property. There

are s, t ∈ N so that H is a subgroup of the wreath product Z/sZ o Ct.

(2) The number b0(Hr[K]) equals the number of orbits of the pure braid

group PBr on the set of monodromy representations for r ≥ 1.

Corollary 1.5.6. The moduli spaceMg,1[K]∗ has infinitely many connected

components.

Since the proof of Theorem 1.5.5 is very long and technical we will just

sketch the main ideas. To this end, we have to explain how the moduli space

of Riemann surfaces with boundary components is related to the moduli

space of Riemann surfaces with dipole points. For this reason, we intro-

duce the following notation and present a brief account on the relationship

between surfaces with boundary components in contrast to surfaces with

dipole points.

Notation. By Fg,n we denote a compact, connected, oriented surface of genus

g ≥ 0 with n ≥ 0 boundary components. We set as usual Fg for Fg,0. The

surface Fg,n is constructed from Fg by considering the complement of n open,

pairwise disjoint disks.

The mapping class group Γ(Fg,n) of Fg,n is given by all orientation pre-

serving diffeomorphisms Diff (Fg,n) of Fg,n which fix the boundary compo-

nents pointwise up to isotopies fixing the boundary pointwise. The following

lemma from Section 1.3 of [9] legitimizes the transfer between the Riemann

surface model with boundary components and dipole points.

Lemma 1.5.7. The mapping class group Γg,n is isomorphic to Γ(Fg,n) and

Diff g,n is homotopy equivalent to Diff (Fg,n).
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As a consequence of Lemma 1.5.7, the classifying spaces BΓg,n and BΓ(Fg,n)

are homotopy equivalent. Thus, we will utilize the notation Γg,n and Diff g,n

in both cases. Moreover, the connected components of Diff g,n are con-

tractible for g ≥ 2 (see [22]). So the classifying spaces of Γg,n = π0(Diff g,n)

and Diff g,n are homotopy equivalent.

Next we sketch the proof of Theorem 1.5.5 and Corollary 1.5.6.

Proof. By means of the same arguments as in the proof of Lemma 1.5.2 it

follows that b0(Mg,1[K]) equals the number of Γg,1-orbits of the Γg,1-action

on Tg,1×RSK (Sg,1). Thus, it remains to determine the number of Γg,1-orbits

of the Γg,1-action on RSK (Sg,1).

First we explain why b0(Mg,1[K]) is a function of b0(M1,1[K]), b0(H3[K])

and the genus g. Let π : E → X be a K-sheeted, unramified covering of a

Riemann surface X of genus g ≥ 2. We consider a subsurface decomposition

of X as in Section 3.8 of [26]. Then X is decomposed into g subsurfaces

homeomorphic to a torus with one boundary component and g − 2 subsur-

faces homeomorphic to a pair-of-pants. As E is a Riemann surface itself

there is an induced subsurface decomposition of E which is lifted from the

subsurface decomposition of X. The decompositions are respected by the

action of the mapping class group in the following sense. Let f be an orien-

tation preserving diffeomorphism of X and let X ′ = f(X). The subsurface

decomposition of X defines a subsurface decomposition of X ′. Moreover,

there is an induced orientation preserving diffeomorphism F of E satisfying

the following properties. Let E′ = F (E), then E′ has a subsurface decom-

position from E which agrees with the lifted subsurface decomposition of X ′

to E. In addition, we have F ◦π = π ◦f . Thus, we may consider the number

of connected components of the moduli spaces of unramified coverings of the

subsurfaces.
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To (1): Let ρ ∈ RSK (S1,1) and let O(ρ) be the orbit of the Γ1,1-action of ρ.

If τ ∈ O(ρ) then b0(Eτ ) = b0(Eρ). Thus, b0(M1,1[K]) is a function

of Π(K). As any connected component of a covering is a covering it

remains to determine b0(M1,1[K]0). To this end, we fix a generating

set e1, e2 of π1(S1,1) as introduced in Section 1.1. To determine O(ρ)

for ρ ∈ RSK (S1,1) we identify ρ with its image on e1 and e2. So let

αi = ρ(ei) for i = 1, 2. Then (α1, α2) is a commuting pair of SK and

the monodromy group 〈α1, α2〉 generated by α1 and α2 is transitive if

and only if Eρ is connected. We assume that Eρ is connected. Note

that 〈α1, α2〉 is contained in the centralizers C(αi) for i = 1, 2. But

both centralizers are isomorphic to a wreath product Z/sZ o Ct for

some s, t ∈ N (see Section 14 of [39]). Let τ ∈ O(ρ) and βi = τ(ei)

for i = 1, 2. Then 〈α1, α2〉 is isomorphic to 〈β1, β2〉. Since by Theorem

1.1.22 every transitive subgroup of the symmetric group is realized

as the monodromy group of an unramified, K-sheeted covering the

assumption follows as desired.

To (2): Ramified coverings of the sphere S2 with r ≥ 1 branch points are in

one-to-one correspondence with unramified coverings of F0,r, that is,

the sphere S2 with r boundary components. The ramification type of

the ramified covering equals the monodromy type of the unramified

covering. After fixing a generating set of π1(F0,r) we identify every

representation of RSK (F0,r) with its image in Sr
K . Then the action of

Γ0,r on RSK (F0,r) determines an action of the braid group Br on the

set of monodromy types. Since we have fixed a labeling of the branch

points the number of orbits of the pure braid group equals b0(Hr[K]).

To Corollary 1.5.6: Two coverings with a different number of branch points
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or ramification points are not contained in the same connected component

of Mg,1[K]∗. Let Mg,1[K, r]∗ be the moduli space of ramified, K-sheeted

coverings of Riemann surfaces of genus g ≥ 1 with r ≥ 1 branch points. By

reducing the problem to the unramified case it follows that b0(Mg,1[K, r]∗)

is a function of b0(H3[K]), b0(M1,1[K]), Π(K) and g as well as r by Theo-

rem 1.5.5. But b0(Mg,1[K]∗) =
∑
r≥1

b0(Mg,1[K, r]∗) and so the assumption

follows.

�

Of course, the previous statements are qualitative in character. The exact

calculation of the number of connected components remains an interesting

task. Nevertheless, we can say more in some special cases. To this end,

note that a method is given on how to construct transitive subgroups of

the symmetric group in [32]. The described algorithm (see Section 5 of this

reference) can be changed to construct transitive subgroups we are looking

for in (1) of Theorem 1.5.5. Using Table 1 of Section 12 in [32] we obtain

the following results.

Corollary 1.5.8.

(1) We have b0(M1,1[2]0) = 1 and b0(M1,1[2]) = 2. By means of our con-

siderations in the proof of Theorem 1.5.5 we are in a position to say

more about the two connected components ofM1,1[2]. One component

is M1,1[2]0 (see also Lemma 1.5.2). The other connected component

contains equivalence classes of the trivial 2-sheeted coverings of Rie-

mann surfaces of topological type S1,1. Thus, this latter component is

homeomorphic to M1,1. The moduli space M1,1[2]0 will be considered

in Example 2.3.9 in more detail.

(2) We have b0(M1,1[3]0) = 1 and b0(M1,1[3]) = 3.
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(3) We have b0(M1,1[4]0) = 4 and the four components are characterized

by the three conjugates of C4 and the Klein four-group H. These are

C4
∼= {e, (1, 2, 3, 4), (1, 4, 2, 3), (1, 3)(2, 4)},

C4
∼= {e, (1, 3, 2, 4), (1, 4, 2, 3), (1, 2)(3, 4)},

C4
∼= {e, (1, 3, 4, 2), (1, 2, 4, 3), (1, 4)(2, 3)},

H ∼= {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

Motivated by Theorem 1.5.5 we will calculate the action of the braid group

on the set of monodromy representations explicitly. But before doing so

let us review some facts on braid groups following [8] (applying a slightly

different notation). For a connected topological space M , let C̃r(M) denote

the space {(x1, . . . , xr) ∈ M r|∀i 6= j : xi 6= xj}. It is called the r-th

ordered configuration space ofM . The symmetric groupSr acts on C̃r(M) by

permuting the r points. Its quotient C̃r(M)
/
Sr is called the r-th unordered

configuration space and is denoted by Cr(M). The fundamental group of

C̃r(M) is the pure braid group PBr(M). The fundamental group of Cr(M)

is the braid group Br(M).

In the next step we study an explicit generating set of the braid group

Br(X). In Section 1.4 of [8], the generators of the pure braid group were

determined as follows. Let h : Y → X be a K-sheeted, ramified, pointed

covering of a Riemann surface X of topological type Sg,1 for g ≥ 0 with

branch points p1, . . . , pr ∈ X disjoint from the dipole point Q. Further, let

X ′ = X −
⋃

1≤i≤r
Di where Di are open pairwise disjoint disks containing pi

but not the dipole Q. The dipole point is fixed as the base point. Let ai, bi

and cj be curves in X ′ representing generators Ai, Bi and Cj of π1(X ′, Q)

for 1 ≤ i ≤ g and 1 ≤ j ≤ r as introduced in Section 1.1. We assume

cj negatively oriented for making future calculations more tractable. As a
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consequence,
∏

1≤i≤g
[Ai, Bi] =

∏
1≤j≤r

Cj . Let ui,j be a simple closed curve

through pj cutting ai transversally, and analogously let vi,j be a simple

closed curve through pj cutting bi transversally so that ui,j and vi,j are

oriented in opposite directions. The curve ui,j is positively oriented while

vi,j is negatively oriented with respect to the orientation of X. Moreover,

ui,j and vi,j are constructed so that they do not intersect any other branch

point. Let wj,k be a simple closed curve which is based in pj and encloses

only the branch point pk such that neither pl for l 6= k nor the dipole point

are enclosed. The elements of PBr(X) represented by ui,j , vi,j and wj,k are

denoted by Ui,j , Vi,j and Wj,k, respectively (see Figure 1.5).

pj

pk

ai

bi

a−1
i

b−1
i

wjk

uij vij

Figure 1.5: Generators of the braid group

Proposition 1.5.9 ([8]). The elements Ui,j, Vi,j and Wj,k generate PBr(X)

for 1 ≤ j < k ≤ r and 1 ≤ i ≤ g.

Next let us consider a deformation of the surface X as shown in Figure 1.6.

Here, each path ωi is homotopic to a loop which starts and ends in the base

point Q, encloses only pi as a branch point and does not intersect any pj for

i 6= j. Let hj : I → X be the map which interchanges the branch points pj
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p1
p2

p3

Q

ω1 ω2

ω3

p1
p3

p2

Q

ω1

ω2

ω3

Figure 1.6: Commuting branch points

and pj+1 and is defined by a deformation as in Figure 1.6. Then hj represents

an element Hj of PBr(X). In Section 1.4 of [8] the identities

Ui,j+1 = HjUi,jH
−1
j

Vi,j+1 = HjVi,jH
−1
j

Wj,k = H−1
k . . . H−1

j−2H
2
j−1Hj−2 . . . Hk

were calculated. Because of Proposition 1.5.9 and the short exact sequence

0→ PBr(X)→ Br(X)→ Sr → 0

the braid group Br(X) is generated by Ui,j , Vi,j and Hk for 1 ≤ i ≤ g,

1 ≤ j ≤ r and 1 ≤ k ≤ r − 1 (see Section 1.4 of [8]). Now the central

idea to describe the action of the braid group on the set of monodromy

representations is to determine the action of each generator of the braid

group. To this end, we will prove the following proposition.

Proposition 1.5.10. Let h : Y → X be a K-sheeted, ramified and pointed

covering with branch points p1, . . . , pr where the dipole point Q ∈ X is fixed

as the base point. We assume that Q 6= pj for all 1 ≤ j ≤ r. Moreover, let

Ai = [ai], Bi = [bi] and Cj = [cj ] be generators of the fundamental group of
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X ′ as before. We denote by di the product [a1, b1] . . . [ai, bi] for 1 ≤ i ≤ g.

Then for all 1 ≤ i ≤ g, 1 ≤ j ≤ r and 1 ≤ k ≤ r − 1 the paths ui,j, vi,j

and hk induce homotopies of X such that ai, bi and cj are transformed by

homotopies ai,t, bi,t and cj,t whose end points ai,1, bi,1 and cj,1 are as follows.

(1) For 1 ≤ i ≤ g, 1 ≤ j ≤ r and ui,j the following identities are satisfied.

al ∼= al,1 for all 1 ≤ l 6= i ≤ g and ai,1 = yi,jcjy
−1
i,j ai,

bi ∼= bi,1 for all 1 ≤ i ≤ g,

cl′ ∼= cl′,1 for all 1 ≤ l′ 6= j ≤ r and cj,1 ∼= yi,jcjy
−1
i,j

where yi,j ∼= d−1
i−1c1 . . . cj−1 and yi,j ∼= cj+1 . . . crd

−1
g dibid

−1
i−1c1 . . . cj−1.

(2) For 1 ≤ i ≤ g, 1 ≤ j ≤ r and vi,j the following identities are satisfied.

ai ∼= ai,1 for all 1 ≤ i ≤ g,

bl ∼= bl,1 for all 1 ≤ l 6= i ≤ g and bi,1 ∼= zi,jcjz
−1
i,j bi,

cl′ ∼= cl′,1 for all 1 ≤ l′ 6= j ≤ r and cj,1 ∼= zi,jcjz
−1
i,j

where zi,j ∼= (c1 . . . cj−1)−1di−1aid
−1
i dg(cj+1 . . . cr)

−1 and

zi,j ∼= d−1
i dg(cj+1 . . . cr)

−1.

(3) For 1 ≤ k ≤ r − 1 and hk the following identities are satisfied.

al ∼= al,1 and bl ∼= bl,1 for all 1 ≤ l ≤ g,

cl′ ∼= cl′,1 for all l′ 6= k, k + 1,

ck,1 ∼= ck+1 and ck+1,1
∼= c−1

k+1ckck+1.

Proof.

(1) The deformation of the loops cj for 1 ≤ j ≤ r can be described as

follows. The branch point pj is translated along ui,j for 1 ≤ i ≤ g.
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Thus, the loop cj is moved into the direction of ai since it encloses

only the branch point pj . Before cj,t intersects ai the path ai has to be

deformed since for every t ∈ I there is no intersection between cj,t and

ai,t. But this deformation changes only cj and ai while all the other

paths are preserved (see Figure 1.7).

ai bi

a−1
i

b−1
i

di

di−1

Q

Figure 1.7: Deformation along ui,j in direction of ai

The transformation for ai,1 is now as follows. As pj is not a point of ai

we may consider a loop κi,j starting in ai and enclosing pj in positive

direction (see Figure 1.8). Recall that ui,j was defined to be positively

oriented.

The multiplication of consecutive loops cj gives a big loop enclos-

ing corresponding branch points in positive direction. So κi,j can

be expressed in terms of the loops cj , that is, di−1κi,jd
−1
i−1 equals

c1 . . . cj−1c
−1
j (c1 . . . cj−1)−1. Thus, the formula for yi,j is satisfied (see

Figure 1.9).

For yi,j the considerations are similar, that is, we have to express yi,j in
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Q

pj

κij

di−1

Figure 1.8: Loop κi,j

terms of the given loops. Let li,j be a loop that intersects ai transver-

sally and does not intersect any branch points while pj is passed in

negative direction and pj+1 in positive direction. Then li,j is given by

(c1 . . . cj)
−1dibid

−1
i−1c1 . . . cj . Consequently, the identity for yi,j holds

when applying the equation c1 . . . cr = dg.

(2) The calculations for (2) work analogously by interchanging ai with bi

and reversing the direction of the constructed loops.

(3) Since only cj and cj+1 are interchanged the formulas follow by the

same considerations as in (2) of Theorem 1.5.5.

�

By means of Proposition 1.5.10, we are in a position to characterize the ac-

tion of the braid group on the set of monodromy representations. For tech-

nical reasons, we identify every monodromy representation with its image

(α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr) on the fixed generating set of the funda-

mental group π1(X ′).
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ai

bi

a−1
i

b−1
i

di

di−1

p1 pj pj+1 pr

Q

Figure 1.9: Representing κi,j

Theorem 1.5.11. The group generated by Ui,j, Vi,j and Hk acts on the

set of all monodromy types (α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr) as follows. In

particular, the orbits of this action correspond to the connected components

of Hr(X)[K]. We set δi = [α1, β1] . . . [αi, βi] and we denote by αi,1, βi,1 and

γi,1 the transformed entries of the monodromy type.

(1) For 1 ≤ i ≤ g, 1 ≤ j ≤ r and Ui,j the following identities are satisfied.

αl = αl,1 for all 1 ≤ l 6= i ≤ g and αi,1 = ηγjη
−1αi,

βi = βi,1 for all 1 ≤ i ≤ g,

γl′ = γl′,1 for 1 ≤ l′ 6= j ≤ r and γj,1 = ηγjη
−1

where η = δ−1
i−1γ1 . . . γj−1 and η = γj+1 . . . γrδ

−1
g δiβiδ

−1
i−1γ1 . . . γj−1.
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(2) For 1 ≤ i ≤ g, 1 ≤ j ≤ r and Vi,j the following identities are satisfied.

αi = αi,1 for all 1 ≤ i ≤ g,

βl = βl,1 for all 1 ≤ l 6= i ≤ g and βi,1 = ξγjξ
−1βi,

γl′ = γl′,1 for all 1 ≤ l′ 6= j ≤ r and γj,1 = ξγjξ
−1

where ξ = (γ1 . . . γj−1)−1δi−1αiδ
−1
i δg(γj+1 . . . γr)

−1 and

ξ = δ−1
i δg(γj+1 . . . γr)

−1.

(3) For 1 ≤ k ≤ r − 1 and Hk the following identities are satisfied.

αi,1 = αi and βi,1 = βi for all 1 ≤ i ≤ g,

γj,1 = γj for all j 6= k, k + 1,

γk,1 = γk+1 and γk+1,1 = γ−1
k+1γkγk+1.

The proof of this theorem follows directly from Proposition 1.5.10.
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Chapter 2

The Hilbert uniformization of

flat G-bundles

2.1 Preliminaries to the Hilbert uniformization

In this section we will introduce moduli spaces of flat pointed G-bundles over

Riemann surfaces with a dipole point and a finite number of punctures.

Remark 2.1.1. Surfaces with punctures arise from compact surfaces with

marked points by deleting them. More precisely, let S be a compact surface

with m ≥ 1 marked points P1, . . . , Pm. Then we call S′ = S − {P1, . . . , Pm}

a surface with punctures P1, . . . , Pm. The mapping class groups of S and

S′ are isomorphic. In fact, a conformal homeomorphism h′ : S′1 → S′2 be-

tween two surfaces with m ≥ 1 punctures has an extension to a conformal

homeomorphism h : S1 → S2 between the respective surfaces with marked

points (see Theorem 17.3 of [52]). The map h fixes the set of marked points

not necessarily pointwise. Since h may permute the marked points we call

the punctures of the conformal equivalence class permutable and say that h′

preserves punctures.
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The reason for introducing surfaces with punctures in this chapter in con-

trast to the previous sections where we considered marked points is that

the holonomy around a puncture is not necessarily trivial. Every arbitrarily

small neighborhood of a puncture is not simply connected. On the other

hand, there is always a sufficiently small open simply connected neighbor-

hood of a marked point so that the holonomy has to be trivial there.

Finally, we should point out the difference between surfaces with punctures to

surfaces with boundary components. Let S be a closed surface with marked

points P1, . . . , Pm and let S′ = S − {P1, . . . , Pm}. For each 1 ≤ i ≤ m let

Di be an open disk containing Pi such that D̄i ∩ D̄j = ∅ for all i 6= j. Then

S′′ = S −
∐

1≤i≤m
Di is a compact surface with m boundary components.

The surfaces S′ and S′′ are neither diffeomorphic nor are their mapping

class groups isomorphic. We assume representatives of mapping classes to

fix boundary components pointwise but to permute punctures. In addition,

representatives of mapping classes may rotate a neighborhood of a puncture

while they have to fix boundary components. Without going into further de-

tails we refer to Section 17 of [52] and [7] for a discussion from an analytical

viewpoint.

Definition 2.1.2. Let S
(m)
g,n be a connected, oriented surface of genus

g ≥ 0 with m ≥ 0 punctures P1, . . . , Pm and n ≥ 1 directed points

(Q1, χ1), . . . , (Qn, χn). To lighten notation we set P = {P1, . . . , Pm} and

Q = ((Q1, χ1), . . . , (Qn, χn)). The moduli spaceM(m)
g,n consists of conformal

equivalence classes of 2-dimensional, oriented, connected manifolds with this

data. Two such surfaces X and X ′ are equivalent if there exists a conformal

homeomorphism φ : X → X ′ such that φ preserves punctures, φ(Qi) = Q′i

and dφ(χi) = χ′i for all 1 ≤ i ≤ n. Then a point in M(m)
g,n is denoted by

F = [X,P1, . . . , Pm, (Q1, χ1), . . . , (Qn, χn)] or shortly by F = [X,P,Q] as
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in Definition 1.2.1.

Using the same notation in Definition 1.2.1 and Definition 2.1.2 is justified

by Remark 2.1.1.

Definition 2.1.3. Let (E, π,X,A) be a flat pointed G-bundle where X

is a Riemann surface of genus g ≥ 0 with m ≥ 0 permutable punctures

P1, . . . , Pm and a dipole (Q,χ) which is fixed as the base point. Moreover,

let p0 ∈ EQ be a base point. The moduli spaceM(m)
g,1 (G) consists of equiva-

lence classes of smooth, flat, pointed G-bundles over Riemann surfaces with

the above structure. Two flat pointed G-bundles (E, π,X,A,P,Q, p0) and

(E′, π′, X ′, A′,P ′,Q′, p′0) are equivalent if the following conditions are sat-

isfied. There exists a conformal homeomorphism φ : X → X ′ such that φ

preserves punctures, φ(Qi) = Q′i and dφ(χi) = χ′i for all 1 ≤ i ≤ n. More-

over, there is a fiber preserving pointed diffeomorphism f : E → E′ such

that f∗A = A′ and π′ ◦ f = φ ◦ π. We callM(m)
g,1 (G) the moduli space of flat

G-bundles over Riemann surfaces with punctures. A point in M(m)
g,1 (G) is

denoted by [E, π,X,A,P,Q, p0] which we usually abbreviate as [E, π,X,A].

The topology ofM(m)
g,1 (G) is defined analogously as the topology ofMm

g,1(G)

in Section 1.2. According to Remark 2.1.1 the moduli spacesMm
g,1 andM(m)

g,1

are homeomorphic. Applying the same arguments as in Lemma 1.2.8 it fol-

lows that M(m)
g,1 (G) is as a set in one-to-one correspondence with the fiber

product T mg,1 ×Γmg,1
RG(S

(m)
g,1 ). Hence, we assume on M(m)

g,1 (G) the quotient

topology of the direct product of the Teichmüller space and the representa-
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tion variety. As a consequence, the diagram

RG(Smg,1)

��

// RG(S
(m)
g,1 )

��

Mm
g,1(G)

Φ(G)

��

//M(m)
g,1 (G)

Φ(G)
��

Mm
g,1

//M(m)
g,1

commutes. The vertical sequences are fiber bundles and the horizontal ar-

rows are inclusions so that the following Lemmas are satisfied. As no con-

fusion is possible we call the projection to the moduli space of Riemann

surfaces Φ(G) in both cases.

Lemma 2.1.4. The inclusion Mm
g,1(G) → M(m)

g,1 (G) is an embedding of

moduli spaces. This mapping is a homeomorphism for m = 0.

Lemma 2.1.5. The canonical projection Φ(G) : M(m)
g,1 (G) → M(m)

g,1 is a

fiber bundle with fiber G2g+m−1 if m ≥ 1 and RG(Sg,1) for m = 0.

Proof. For m = 0 the assertion follows from Lemmas 1.2.8 and 2.1.4.

Therefore, let us assume that m ≥ 1 so that RG(S
(m)
g,1 ) is isomorphic

to {(A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cm)|
g∏
i=1

[Ai, Bi]
m∏
j=1

Cj = 1} after fixing

a generating set for π1(S
(m)
g,1 ). From this representation it follows that

RG(S
(m)
g,1 ) is isomorphic to G2g+m−1.

�

Corollary 2.1.6. The moduli space M(m)
g,1 (G) is a topological manifold if

m ≥ 1 or if the conditions of Corollary 1.2.10 are satisfied.
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2.2 Construction of the Hilbert uniformization

By means of the Hilbert uniformization of Riemann surfaces, a simplicial

complex was constructed in [9] which is homotopy equivalent to the moduli

spaceMm
g,1. One of our central objectives is to generalize this method to the

Hilbert uniformization of flat G-bundles over Riemann surfaces in order to

construct a simplicial complex which is homotopy equivalent to M(m)
g,1 (G).

Then the Hilbert uniformization of Riemann surfaces will correspond to the

case of G being the trivial group. First we will repeat the most important

facts about the Hilbert uniformization of Riemann surfaces. For further de-

tails see [9], or [23] for a more general approach.

Let X be a Riemann surface of genus g ≥ 0 with m ≥ 0 punctures

P1, . . . , Pm and a dipole Q ∈ X with a nonzero tangent vector χ. Re-

call that X arises from a closed Riemann surface with a dipole point for

which m marked points are deleted. A conformal equivalence class is de-

noted by F = [X,P1, . . . , Pm, Q, χ] as in Definition 2.1.2. For each Riemann

surface with this data given and positive real constants b, c1, . . . , cm such

that
∑

1≤j≤m
cj = b there exists a potential function u : X → R. A poten-

tial function is characterized by the following properties. It is harmonic on

X−{P1, . . . , Pm, Q}. Let (U, z) be a chart of Q with z(Q) = 0 and dz (χ) = 1

then u is locally of the form

u(z) = Re(
1

z
)− bRe(log(z)) + f(z),

where f : U → R is harmonic. Moreover, for each 1 ≤ j ≤ m let (U, z) be a

chart of Pj with z(Pj) = 0 then u is locally the form

u(z) = cj Re(log(z)) + fj(z),
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where fj : U → R is harmonic. A potential function is uniquely determined

by the above data up to an additive constant (see Section 3.1 of [9]).

Definition 2.2.1. The moduli space of potential functions on Riemann sur-

faces Hmg,1 consists of equivalence classes of Riemann surfaces X of genus

g ≥ 0 withm ≥ 0 punctures P1, . . . , Pm, a dipole pointQ ∈ X with a nonzero

tangent vector χ, and a potential function u : X → R. Two surfaces with

potential function (X,P1, . . . , Pm, Q, χ, u) and (X ′, P ′1, . . . , P
′
m, Q

′, χ′, u′) are

equivalent if the following conditions are satisfied. There is a confor-

mal homeomorphism φ : X → X ′ which preserves the set of punctures,

φ(Q) = Q′, dφ(χ) = χ′ and u′ ◦ φ = u.

The following result is the starting point for the Hilbert uniformization (see

Section 5.1 of [9]).

Lemma 2.2.2. The canonical projection Hmg,1 → Mm
g,1 is an affine bundle

of dimension m+ 1. In particular, Hmg,1 is homotopy equivalent toMm
g,1.

For a potential function u, let ξ = −grad(u) be the gradient vector field of u.

The punctures P1, . . . , Pm are sinks of the gradient vector field. Moreover,

trajectories leave the dipole point Q in direction of χ. By means of these

considerations, we define the following notion.

Definition 2.2.3. The critical graph K has {P1, . . . , Pm, Q} and the critical

points of u as the set of vertices. The set of edges is given by the trajectories

of the gradient vector field from a critical point into the dipole or into a

puncture, or into another critical point. More precisely, an edge exists be-

tween two of these vertices if there is a trajectory between them, which is a

flow line of the gradient vector field ξ of u.

The extended critical graph K̂ has the same set of vertices as the critical
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graph K. Edges are induced by the trajectories from the dipole into a criti-

cal point, between two critical points or from a critical point into the dipole

or into a puncture.

The sets of edges leaving and entering the same vertex admit cyclic orderings

which are induced by the orientation of the surface. The complement X−K

is a simply connected domain where u is harmonic. By the lemma of Poincaré

u is the real part of a holomorphic function w = u+
√
−1v which is uniquely

determined up to an additive constant. The image of w is a so-called parallel

slit domain (PSD). It is the complex plane cut along horizontal slits (parallel

to the x-axis) that come from minus infinity and end in some point z in the

complex plane. An example of a parallel slit domain is shown in Figure 2.1.

x

y

z1

z2

z3

z4

Ri,j

Figure 2.1: Parallel Slit Domain

Since u is the real part and v the imaginary part of w, the values of the

critical points of u and v correspond to the x-values and y-values of the slit

end points, respectively. Note that v is defined as a function only on X −K.

On the other hand, we may consider v as a differential form on the whole
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space X so that the notion of critical points of v is also meaningful in this

sense. In the generic case, we assume that all critical points are nondegener-

ate, lie on different critical levels and every trajectory of ξ which comes from

a critical point goes directly into the dipole without passing another critical

point. Hence, the slits occur in pairs and do not intersect (see Figure 2.1).

In the nongeneric case, several pairs of slits may lie on the same level or slits

may intersect.

We subdivide the PSD into polygons by means of a grid consisting of hor-

izontal and vertical lines in the complex plane. For reasons which become

apparent later we call these polygons rectangles although not all of those

have this shape. The horizontal lines of the grid are defined by the slits and

their prolongations to plus infinity, while the vertical lines pass through the

slit ends parallel to the y-axis. We number the columns of the grid from the

right hand side to the left hand side and the rows from the bottom to the

top starting in both cases with zero. The rectangle lying in the i-th column

and j-th row is denoted by Ri,j for 0 ≤ i ≤ q and 0 ≤ j ≤ p while the

possible ranges are 0 ≤ q ≤ h and 0 ≤ p ≤ 2h where h = 2g +m (see [1] for

a precise discussion of the dimensions). In the generic case we have q = h

and p = 2h (see Figure 2.1). From the surface geometry we obtain unique

permutations σi ∈ S0
p for each column of the grid (0 ≤ i ≤ q) which can

be applied to reglue the parallel slit domain into a Riemann surface. More

precisely, we consider a so-called extended parallel slit domain which is the

disjoint union of all closed rectangles defined by the grid. Then the gluing

rules are as follows.

The upper side of Ri,j is glued to the lower side of Ri,σi(j) and the left hand

side of Ri,j is glued to the right hand side of Ri+1,j . Finally, one point must

be added at infinity which is the dipole point.
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x

y

Ri,j

σ2 σ1 σ0

z1

z2

z3

z4

Figure 2.2: Gluing rules of a PSD

For instance, the gluing process is visualized for a generic configuration in

Figure 2.2. In this example, z1 and z3 as well as z2 and z4 are identified to

one nondegenerate critical point of u in each case. The permutations σ0, σ1

and σ2 represent the combinatorial data of the surface. Note that the de-

composition of a PSD into p+1 stripes with respect to the horizontal lines of

the grid is the complement of the extended critical graph X − K̂. Now, the

construction can be reversed by gluing the rectangles of an extended PSD

(as described above) to obtain a Riemann surface. The extended PSD and

the gluing permutations cannot be chosen arbitrarily. We will discuss the

precise conditions shortly.

In Chapter 4 of [9], a complex atlas for the surface X was constructed using

the grid on the corresponding PSD. Since we do not go into details of this

construction we discuss the main ideas by means of Figure 2.3 exemplarily.

The following cases have to be distinguished. For the point z in the interior

of a rectangle a chart W is established by the interior of this rectangle. It
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is mapped homeomorphically into C by a homeomorphism φ : W → V ⊆ C

where V is an open rectangle. The set W is redly colored in Figure 2.3.

Next we consider a point z′ lying in the interior of a rectangle’s edge (see

Figure 2.3). It is identified with the point z′′ to one point x ∈ X. The

two blue semicircles as in Figure 2.3 may be used to construct a chart con-

taining x ∈ X. They are mapped homeomorphically into C. After possibly

translating the images in the complex plane they are identified along their

diameters to an open disk. The homeomorphisms on each semicircle deter-

mine a common homeomorphism from an open disk containing x ∈ X to

an open disk in C. For points z1 and z3 which are identified to one point

x′ ∈ X and lie on the corners of rectangles as in Figure 2.3 we proceed

analogously. We consider the two yellow slit disks that are mapped home-

omorphically into C by ζ 7→ ζ2. The images are two semicircles which are

identified along their diameters to an open disk (after possibly translating

them appropriately). Such homeomorphisms on each slit disk determine a

homeomorphism from an open disk containing x′ ∈ X to an open disk in

C. The chart of the dipole point Q is constructed similarly. To this end, we

consider the green region in Figure 2.3. It is fully contained inside all rectan-

gles having nonempty intersection with Q. It is mapped homeomorphically

to C where the sides of the rectangles are identified as prescribed by the per-

mutations Σ = (σq, . . . , σ0). By adding one point at infinity we obtain the

chart of Q. This point at infinity will be the dipole point. Finally, charts can

be constructed analogously for each puncture by considering exactly those

rectangles which contain the puncture. So in case of the punctures, the con-

struction details are omitted. We denote such a complex atlas obtained by

means of the Hilbert uniformization by {Wα, φα}.

In the next step we will indicate how to construct a simplicial space which
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Figure 2.3: Complex atlas

is homeomorphic to Hmg,1. For this, it will be necessary to explain how to

define the simplices and to state the right conditions imposed on the gluing

permutations. As motivated geometrically the identification of the simplices

will be given by the gluing conditions of the extended parallel slit domains.

First we will determine the simplices. We identify R with the open unit

interval. The extended PSD is transformed into a slit unit square whose

horizontal slits start on the left hand side and end in some point in the

interior of the unit square. In the generic case, the slits occur in pairs of

equal lengths and do not intersect. The values of the critical points of u and

v induce barycentric coordinates (ai, bj)i,j by computing their differences.

They will serve as coordinates of the simplices we are looking for. The

indices range as 0 ≤ i ≤ q, 0 ≤ j ≤ p while 0 ≤ q ≤ h and 0 ≤ p ≤ 2h.

We consider the grid described above on the slit unit square (see Figure

2.4). We denote again by Ri,j the rectangle lying in the i-th column and

j-th row of the grid as depicted in Figure 2.4. The slit unit square with the
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grid, barycentric coordinates and gluing permutations (as shown in Figure

2.4) is called a parallel slit model (PSM). It encodes the combinatorial type

of a Riemann surface with potential function. So we will sometimes refer

to a PSM as the combinatorial surface type. Let S0
p denote the symmetric

group on {0, . . . , p}. Assume that for 0 ≤ q ≤ h and 0 ≤ p ≤ 2h barycentric

coordinates (ai, bj)i,j for 0 ≤ i ≤ q, 0 ≤ j ≤ p and permutations σi ∈ S0
p are

given. Note that this data determines a PSM and thus an extended PSD

uniquely.

Ri,j

σ2 σ1 σ0

Figure 2.4: Parallel Slit Model

The gluing permutations Σ = (σq : . . . : σ0) cannot be chosen arbitrarily

as we have noted before. To determine the permitted configurations we

introduce the following definition.

Definition 2.2.4. A normed group is a pair (G,N) where G is a group and

N : G→ N0 is a function such that the following conditions are satisfied.

(NG1) For all g ∈ G we have N(g) = 0 ⇒ g = 1.

(NG2) For all g ∈ G we have N(g) = N(g−1).
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(NG3) For all g1, g2 ∈ G we have N(g1g2) ≤ N(g1) +N(g2).

Example 2.2.5. Let Sn be the symmetric group on {1, . . . , n} and let S0
n

be the symmetric group on the set {0, . . . , n}. The set of all transpositions is

a generating set for both groups. The so-called word length norm wl(σ) for

σ ∈ Sn or σ ∈ S0
n is defined as the minimal number of transpositions whose

product is σ. The word length norm is a norm in the sense of Definition

2.2.4.

Using the word length norm of Example 2.2.5, we define the norm N of

Σ = (σq : . . . : σ0) by N(Σ) = wl(σq ◦ σ−1
q−1) + . . . + wl(σ1 ◦ σ−1

0 ). Let

ncyc(σ) be the number of cycles from the disjoint cycle decomposition of the

permutation σ. The first two conditions imposed on Σ = (σq : . . . : σ0) are

the following.

(NZ1) For all Σ = (σq : . . . : σ0) we have N(Σ) ≤ h.

(NZ2) For all Σ = (σq : . . . : σ0) we have ncyc(σq) ≤ m+ 1.

Remark 2.2.6. Let Σ = (σq : . . . : σ0) and τi = σi ◦ σ−1
i−1 for 1 ≤ i ≤ q.

We call T = (τq| . . . |τ1) the inhomogeneous notation and Σ = (σq : . . . : σ0)

the homogeneous notation. Then (NZ1) and (NZ2) are equivalent to the

following conditions which will be sometimes more natural to work with.

(NIZ1) For all T = (τq| . . . |τ1) we have
q∑
i=1

wl(τi) ≤ h.

(NIZ2) For all T = (τq| . . . |τ1) we have ncyc(τq . . . τ1σ0) = ncyc(σq) ≤ m+ 1.

Notation. Let Dj : S0
p+1 → S0

p be the map which deletes the figure j from

each cycle of a permutation and re-indexes it afterwards for 0 ≤ j ≤ p. To be

precise, let dj : {0, . . . , p} → {0, . . . , p+1} and sj : {0, . . . , p} → {0, . . . , p−1}

be the standard simplicial maps. Then Dj(α) = sj ◦ (α(j), j) ◦ α ◦ dj for
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α ∈ S0
p and satisfy the simplicial identities for 0 ≤ j ≤ p.1 Note that the

maps Dj are not group homomorphisms.

Definition 2.2.7. Let Pp,q be the free abelian group generated by elements

of (S0
p)
q+1 which satisfy (NZ1) and (NZ2). Set P =

⊕
Pp,q for 0 ≤ p ≤ 2h

and 0 ≤ q ≤ h where h = 2g + m. Then P obtains the structure of a chain

complex if equipped with a boundary map ∂ = ∂′ + (−1)q∂′′ given by

∂′ =

q∑
i=0

(−1)i∂′i, where ∂
′
i(σq : . . . : σ0) = (σq : . . . : σ̂i : . . . : σ0),

∂′′ =

p∑
j=0

(−1)j∂′′j , where ∂
′′
j (σq : . . . : σ0) = (Dj(σq) : . . . : Dj(σ0)).

The maps ∂′i and ∂
′′
j satisfy the simplicial identities. Hence, (Pp,q, ∂′i, ∂′′j )p,q,i,j

establishes a bisimplicial set. We denote by Parmg,1 its geometric realization.

It admits the natural topology of a simplicial space (see Section 14 of [41]).

Note that the maps ∂′ and ∂′′ commute so that 2.2.7 is well-defined. In the

next step, we will specify a homeomorphism between a subset of Parmg,1 and

Hmg,1. This homeomorphism is called the Hilbert uniformization of Riemann

surfaces. For further details we refer to Section 5 in [9]. Since there ex-

ist configurations which induce degenerated surfaces the whole space Parmg,1

cannot be homeomorphic to Hmg,1. See Section 4.4 of [11] for numerous coun-

terexamples. It remains to exclude wrong gluing permutations. For this we

introduce the following conditions according to [1].

(S1) For all 0 ≤ i ≤ q we have σi(p) = 0.

(S2) The permutation σ0 is the cycle ωp = (0, . . . , p).
1The j-th degeneracy map S0

p → S0
p+1 introduces the figure j as a fixpoint for each

permutation and re-indexes it afterwards.
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(S3) For all 0 ≤ i ≤ q we have σi+1 6= σi.

(S4) There is no j ∈ {0, . . . , p− 1} such that σi(j) = j+ 1 for all 0 ≤ i ≤ q.

Definition 2.2.8. Let Par′mg,1 be the subcomplex consisting of elements of

Parmg,1 which do not satisfy all of (S1)-(S4). We call Par′mg,1 the complex of

degenerated cells and its complement Pm
g,1 the nondegenerated part of Parmg,1.

It was shown in Chapter 4 of [9] that Par′mg,1 is a subcomplex so that Pm
g,1 is

open.

Theorem 2.2.9 ([9]). The moduli space Hmg,1 is homeomorphic to Pm
g,1 for

all g ≥ 0 and m ≥ 0.

See also [23] for an extension and [49] for further discussion of this theorem.

Now we will generalize the Hilbert uniformization to investigate the moduli

spaceM(m)
g,1 (G) for a fixed Lie group G. The idea is analogous to the Hilbert

uniformization of Riemann surfaces except that the flat principal G-bundle

structure has to be considered. More precisely, we will introduce a method

to transform flat G-bundles over Riemann surfaces into the trivial G-bundle

over the corresponding parallel slit domains. For the inversion of this uni-

formization, we introduce gluing conditions for the trivial G-bundle over an

extended parallel slit domain in order to construct a flat principal G-bundle

over a Riemann surface. The gluing data will determine the flat G-bundle

structure and complex structure of the surface uniquely.

Let Z ∈ Parmg,1, that is, Z is of the form ((ai, bj)i,j ,Σ) where (ai, bj)i,j are

barycentric coordinates and Σ = (σq : . . . : σ0) for σi ∈ S0
p where 0 ≤ p ≤ 2h

and 0 ≤ q ≤ h. If Z ∈ Pm
g,1 there is an extended PSD Y such that Y

/
∼

is a Riemann surface with m punctures and one dipole point. The identifi-

cation ∼ corresponds to the gluing along the upper and lower sides of the
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rectangles given by Σ as described before. We consider the product Y × G

and elements γi,j ∈ G for 0 ≤ i ≤ q and 0 ≤ j ≤ p. Let Rξi,j be the rectangle

Ri,j × {ξ} ⊆ Y ×G for ξ ∈ G. The upper side of Rξi,j is identified with the

lower side of Rγi,jξi,σi(j)
. The left hand side of Rξi,j is identified with the right

hand side of Rξi+1,j . We denote this identification by ≈. Next we have to

find the gluing conditions for Z and (γi,j)i,j such that Y × G
/
≈ is a flat

G-bundle over Y
/
∼.

To this end, let S be an element of the wreath product G oS0
p = Gp+1 oS0

p

such that S = (γp, . . . , γ0;σ) with γj ∈ G for 0 ≤ j ≤ p and σ ∈ S0
p. The

symmetric group S0
p acts from the left on Gp+1 by

σ.(γp, . . . , γ0) = (γσ(p), . . . , γσ(0))

where σ ∈ S0
p and γj ∈ G for 0 ≤ j ≤ p. In fact, for all further wreath

products we shall assume actions from the left. Moreover, the group G acts

on itself by left multiplication. We define an action of GoS0
p on {0, . . . , p}×G

by S.(j, ξ) = (σ(j), γjξ) for γj , ξ ∈ G, 0 ≤ j ≤ p and σ ∈ S0
p. The canonical

projection of groups is denoted by Π : G o S0
p → S0

p. Then the additional

gluing conditions are as follows.

(F1) Let Σ̃ ∈ (G oS0
p)
q+1 with Σ̃ = (Sq, . . . , S0) and Si = (γi,p, . . . , γi,0;σi)

for 0 ≤ i ≤ q. Then Si acts on {0, . . . , p}×G by Si.(j, ξ) = (σi(j), γi,jξ)

so that Π(Si) satisfy (S1)-(S4) for 0 ≤ i ≤ q.

(F2) For all 0 ≤ j ≤ p we have S0.(j, ξ) = (j + 1, ξ).

(F3) For all 0 ≤ i ≤ q we have Si.(p, ξ) = (0, ξ).

(F4) For all 1 ≤ i ≤ q over each cycle of length l of τi from its disjoint cycle

decomposition lie only orbits of length l of Ti = Si ◦ S−1
i−1 with respect
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to Π.

Given a trivial bundle over a PSD, Figure 2.5 visualizes the construction of

a flat G-bundle over a Riemann surface from given gluing functions.

Remark 2.2.10.

(1) Condition (F2) is equivalent to γ0,j = e for all 0 ≤ j ≤ p. Here e ∈ G

denotes the identity element of G.

(2) Condition (F3) is equivalent to γi,p = e for all 0 ≤ i ≤ q.

(3) According to the theorem of Ambrose–Singer the holonomy group of a

flat G-bundle over a compact manifold is discrete if G is a Lie group

(see 9.2 of [36]). Since each principal G-bundle can be reduced to its

holonomy bundle we may apply methods from combinatorial topol-

ogy. Although this statement is mathematically not precise it suggests

why a generalization of the Hilbert uniformization to flat G-bundles in

contrast to general fiber bundles is feasible.

Remark 2.2.11. By definition of Ti for 1 ≤ i ≤ q we have Sq = Tq . . . T1S0.

Condition (F2) implies that there exist only orbits of length wl(σ0) of S0. It

follows from (F4) that over each disjoint cycle of σq of length l lie only orbits

of length l of Sq with respect to Π. We denote this property of Sq by (FC).

Notation. All gluing conditions, that is, (NZ1)-(NZ2) or (NZI1)-(NZI2),

(S1)-(S4) and (F1)-(F4) are denoted by (Hilb).

Proposition 2.2.12. Let (E, π,X,A) be a flat pointed G-bundle where X

is a Riemann surface of genus g ≥ 0 with m ≥ 0 punctures P1, . . . , Pm and

a dipole (Q,χ) chosen as the base point. Moreover, let p0 ∈ EQ be the base

point of the total space, u : X → R a potential function with gradient vector

field ξ and let K∗ = π−1(K) for the critical graph K of ξ. Then there exists
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G

Figure 2.5: Gluing rules of the trivial bundle over a PSD
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Σ̃ = (Sq : . . . : S0) with Si ∈ G oS0
p for 0 ≤ i ≤ q which satisfies (Hilb) such

that the quotient Y ×G
/
≈ is diffeomorphic to E. Here we denote by Y the

extended PSD of X while ≈ is the identification with respect to Σ̃.

Proof. By Theorem 2.2.9 we may assume that all axioms except possibly

(F1)-(F4) are satisfied. Let (E, π,X,A) be a flat pointed principal G-bundle

as in the assumption. Then there exists a unique Σ = (σq : . . . : σ0) with

σi ∈ S0
p for 0 ≤ i ≤ q such that Y

/
∼= X with respect to Σ by 2.2.9.

Since X −K is simply connected the complement E −K∗ is homeomorphic

to (X − K) × G and the bundle π|E−K∗ is trivial as a flat G-bundle (see

Example 1.1.11). Therefore, it remains to show that there is a continuous

map Y ×G→ E such that the diagram

Y ×G pr1 //

≈
��

Y

∼
��

E
π // X

(2.1)

commutes. The horizontal arrows correspond to the bundle projections. The

vertical arrows are the quotient maps with respect to ≈ (left arrow) and ∼

(right arrow). The dotted arrow will be constructed by gluing the blocks

Ri,j ×G of Y ×G across K∗.

More precisely, for the moment let us consider a space Ŷ which is constructed

from Y in the following way. The upper side of R0,j is glued to the lower side

of R0,j+1 for all 0 ≤ j ≤ p− 1 and the left hand side of Ri,j is glued to the

right hand side of Ri+1,j for all 0 ≤ i ≤ q and 0 ≤ j ≤ p. As a consequence,

Ŷ is simply connected and there exists a continuous map ĥ : Ŷ → X which is

defined by identifying the remaining upper and lower sides of the rectangles

as described above for ∼. Namely, we glue the upper side of Ri,j to the lower

side of Ri,σi(j) for 0 ≤ i ≤ q and 0 ≤ j ≤ p and one point is added at infinity.
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The technical advantage of working with Ŷ instead of Y is that Ŷ is simply

connected while Y is disconnected. We consider the pullback diagram

π∗Ŷ //

Ĥ
��

Ŷ

ĥ
��

E
π // X

(2.2)

where we denote the continuous map π∗Ŷ → E by Ĥ.

Recall that there is a complex atlas {Wα, φα} of X which was constructed

by means of the Hilbert uniformization (see Figure 2.3 as a reminder). We

choose a pointed atlas {Wα, ψα} of the flat bundle π : E → X, that is, if

(Wβ, ψβ) is a chart containing the dipole point Q ∈ X then ψβ(p0) = (Q, e).

Here e ∈ G is the identity of the Lie group. Since the bundle connection is

flat we may assume the transition functions to be locally constant (see (3)

of Definition 1.1.14). As Ŷ is simply connected we obtain a pointed home-

omorphism Ψ̂ : Ŷ × G → π∗Ŷ . Consequently, by Diagram (2.2) there is a

continuous map Ŷ ×G→ E which is defined by gluing the blocks Ri,j ×G

of Ŷ × G in the following way. To obtain X from Ŷ we glue the upper

side of each rectangle Ri,j to the lower side of Ri,σi(j) for 0 ≤ i ≤ q and

0 ≤ j ≤ p. By construction of the atlas {Wα, φα}, for each pair (i, j) there

is an element γi,j ∈ G given by the constant value of the respective transi-

tion function to the atlas {Wα, ψα}. It describes the parallel displacement

from Ri,j to Ri,σi(j). More precisely, the gluing functions of the fiber G are

determined by the action of the structure group. As the structure group can

be reduced to the holonomy group of the bundle the gluing functions must

be determined by the holonomy. Then the element γi,j describes the paral-

lel displacement of a continuous path segment from Ri,j to Ri,σi(j). Thus,

the γi,j are uniquely determined by the passage from Ri,j to Ri,σi(j) and we
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have to identify the upper side of Rξi,j with the lower side of Rγi,jξi,σi(j)
. As a

consequence, we assign the element γi,j ∈ G to the upper side of Ri,j .

Next we need to show that the gluing functions Si are elements of the wreath

product G oS0
p for 0 ≤ i ≤ q. The group G acts on itself by left multiplica-

tion and at the same time every element of Σ acts on {0, . . . , p}. These two

actions define an action of Gp+1×S0
p on {0, . . . , p}×G which has to satisfy

the following property. Each element of Σ has to preserve the fiber G and the

action of each element of G has to preserve the labeling {0, . . . , p} of the grid

of Y columnwise since this grid induces the atlas {Wα, φα} of X. This claim

has to be made as π is locally trivial and G-equivariant. Consequently, the

gluing function is an element of the wreath product G oS0
p for each column

of the extended PSD. The identification ≈ is therefore given by an element

of (G oS0
p)
q+1 and (F1) follows.

Let Ŷ 0 ⊆ Ŷ be the subset defined by coordinates whose real part is larger

than the maximum of the real parts of all slit end points. Then Ŷ 0 is a con-

tractible domain in C (see Figure 2.1). So the parallel transport restricted

to Ŷ 0 is trivial (see (2) of Definition 1.1.14). Consequently, γ0,j = e for all

0 ≤ j ≤ p, so that (F2) follows by (1) of Remark 2.2.10.

Let VQ be a small, open, simply connected neighborhood of the dipole such

that there exists β with VQ ⊆Wβ . By construction of Wβ there are neither

critical points of u nor punctures in VQ. Let ζQ = (0, n1, . . . , ns, p) be the cy-

cle of σq from its disjoint cycle decomposition containing the numbers 0 and

p. Then the rectangles Rq,0, Rq,n1 , . . . , Rq,ns , Rq,p, Ri,p, Ri,0 for 0 ≤ i ≤ q

and R0,j for 0 ≤ j ≤ p have nonempty intersection with VQ (see Figure

2.3). It follows from (S1) that Si.(p, ξ) = (0, γi,pξ) for all 0 ≤ i ≤ q. Let us

consider the base point of the bundle p0. The chart (Wβ, ψβ) containing Q

satisfies ψβ(p0) = (Q, e). Thus, the transition functions at Q are uniquely

111



defined by gα,β = e. Consequently, γi,p = e for all 0 ≤ i ≤ q and so (F3) is

satisfied.

Each disjoint cycle of τi represents a critical point of u for every 1 ≤ i ≤ q be-

cause the end points of the slits numbered by the entries of each disjoint cycle

of some τi are identified to one critical point. The word length norm of each

disjoint cycle of some τi is equal to the Morse index of the critical point. If

there exists an orbit ζ̃ of Ti whose length is greater than of the corresponding

cycle Π(ζ̃) of τi then the bundle projection is not locally trivial. To see this,

let V be a small, open, simply connected neighborhood of a critical point R

so that no further critical points, punctures or the dipole are in V . Let ζ

be a cycle from the disjoint cycle decomposition of some τi representing R.

The complement V − K̂ consists of 4 wl(ζ) connected components. In other

words, V intersects a finite number of rectangles given by the grid of Y (see

Figure 2.4 for a visualization). On the other hand, π−1(V − K̂) intersects

a greater number of rectangles Rξi,j for (j, ξ) ∈ ζ̃ where ζ̃ is an orbit of Ti

such that Π(ζ̃) = ζ. The exact number is determined by the length of ζ̃. As

V is simply connected but π is not injective in V it follows that π cannot

be locally trivial. Note that by definition of the wreath product there is no

orbit of smaller length of Ti over a cycle of τi with respect to Π.

�

In the next proposition we show that the inverse of 2.2.12 is satisfied.

Proposition 2.2.13. Let (ai, bj)i,j be barycentric coordinates for 0 ≤ i ≤ q,

0 ≤ j ≤ p and (γi,j , σi)i,j ∈ (G o S0
p)
q+1 so that Z = ((ai, bj)i,j ,Σ) with

Σ = (σq : . . . : σ0) is an element of Parmg,1. Assume that (Hilb) is satisfied for

(γi,j , σi)i,j. Let Y be the extended PSD with combinatorial type Z, X = Y
/
∼

with respect to Σ and E = Y ×G
/
≈ with respect to Σ̃ = (Sq : . . . : S0) with
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Si = (γi,j ;σi) for 0 ≤ j ≤ p and 0 ≤ i ≤ q. Then the induced projection

π : E → X is a flat pointed G-bundle with connection form A determined by

(γi,j)i,j.

Proof. By Theorem 2.2.9 X is a Riemann surface which is homeomorphic

to S(m)
g,1 . Thus, it remains to prove the assertion concerning the flat bundle

structure. For this, we proceed in two steps. First a bundle atlas will be

constructed such that the induced projection is smooth and locally trivial.

Then we specify the parallel transport which determines the connection form

A uniquely by Section 1.1.

Let {Wα, φα} be the complex atlas of X established by means of the Hilbert

uniformization. We have explained in the beginning of this section how to

construct charts {Wα, φα} (see Figure 2.3 as a reminder). We will use these

open neighborhoods {Wα} to construct a smooth bundle atlas. Exemplarily,

we will execute the construction for a point in the interior of a rectangle’s

edge. Let z′ be a point on the upper side of a rectangle Ri,j (as in Figure 2.3).

As we have seen in the beginning of this section critical points, punctures

and the dipole point have to be handled separately. There exists a semicircle

H ′ around z′ (see Figure 2.3) and a homeomorphism φ′ : H ′ ↪→ C. Let η′

be the map φ′ × id : H ′ × G ↪→ C × G. By definition of the identification

∼ for Y there exists a point z′′ in the interior of the lower edge of Ri,σi(j)

which is identified with z′ to a point x′ ∈ X. Moreover, there is a semicircle

H ′′ around z′′ of equal diameter as H ′ with a homeomorphism φ′′ : H ′′ ↪→ C

(see Figure 2.3). Let η′′ be the map φ′′ × id : H ′′ × G ↪→ C × G. Then

by construction of {Wα, φα} we have that φ′(z′) = 0 ∈ C and points on the

upper side of Ri,j are mapped by φ′ to R. The analogous properties are

satisfied for φ′′. We set V ′ = η′(H ′ ×G) and V ′′ = η′′(H ′′ ×G). Moreover,

let Ṽ ′ = {(x+
√
−1y, ξ) ∈ V ′|y = 0} and Ṽ ′′ = {(x+

√
−1y, ξ) ∈ V ′′|y = 0}.
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Then V ′ and V ′′ are reglued along Ṽ ′ and Ṽ ′′ to an open subset W ′ ⊆ C×G

the following way. The point (ζ, ξ) ∈ Ṽ ′ is identified with (ζ ′, ξ′) ∈ Ṽ ′′ if

ζ = ζ ′ and ξ′ = γi,jξ. We denote the quotient map V ′ t V ′′ → W ′ by

f ′. By construction of the sets {Wα} there exists a smooth diffeomorphism

η : W ′ → Wα × G induced by f ′ ◦ (η′ t η′′) where Wα is a chart contain-

ing x′ ∈ X. Consequently, pairs of the form (Wα, η) define smooth bundle

charts for points in the interior of a rectangle’s edge. The other cases work

analogously using the explicit construction of the atlas {Wα, φα}. We de-

note these smooth bundle charts by {Wα, ψα}. In particular, {Wα, ψα} has

locally constant transition functions as their values are given by γi,j ∈ G. To

finish the first part of the proof, it remains to show that π is locally trivial

with respect to {Wα, ψα} so that the constructed charts establish a smooth

bundle atlas for π : E → X.

To this end, we need again to discuss several cases of points in Y . If z ∈ Y

is an interior point of a rectangle then there is a chart Wα 3 z which is the

interior of a rectangle. Thus, π−1(Wα) = Wα × G and π is locally trivial

at every interior point of a rectangle. Let z′ ∈ Y be a point in the inte-

rior of some rectangle’s edge and let z′′ ∈ Y be the corresponding point

which is identified with z′ to x′ ∈ X by ∼. If z′ ∈ Y0 there is a chart

Wα′ 3 x′ with π−1(Wα′) = Wα′ × G by (F1) and (F2) since γ0,j = e for

all 0 ≤ j ≤ p. If z′ ∈ Y − Y0 then there is a chart Wα′ 3 x′ and a dif-

feomorphism ψα′ : π−1(Wα′) → Wα′ × G as a consequence of the previous

construction which we executed explicitly. Note that we applied (F1) to

construct (Wα′ , φα′) using the Hilbert uniformization of Riemann surfaces.

Let ζ = (t1, . . . , tr) be a cycle from the disjoint cycle decomposition of τi for

some 1 ≤ i ≤ q and let ztj ∈ Y be the rectangle vertices which are identified

to a critical point R ∈ X for 1 ≤ j ≤ r. Then there is a chart (Wβ, ψβ)
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with R ∈Wβ that was constructed by gluing disk segments each of which is

situated around each point ztj appropriately. Each disk segment lies within

those rectangles having ztj as a vertex for 1 ≤ j ≤ r (see Figure 2.3 as a

reminder). We need to show that π is injective and surjective in Wβ . As

was already noted in the proof of Proposition 2.2.12 there are exactly 4 wl(ζ)

rectangles having nonempty intersection with Wβ so that Wβ−K̂ consists of

4 wl(ζ) connected components. By (F4) there are only orbits of Ti of length

wl(ζ) which lie over ζ with respect to Π. Let ζ̃ be an orbit of Ti such that

Π(ζ̃) = ζ. Then there are exactly 4 wl(ζ) rectangles Rξi,j having nonempty

intersection with π−1(Wβ) for (j, ξ) ∈ ζ̃. As the restriction of π to each

rectangle is injective it follows from the construction of Wβ that π|π−1(Wβ) is

injective. On the other hand, there is no orbit ζ̃ of Ti whose length is smaller

than of the cycle Π(ζ̃) of τi by (F1). Thus, by the analogous argument π is

surjective in Wβ and its local triviality around each critical point follows.

To show local triviality of π around the dipole point we consider the cy-

cle ζQ = (0, n1, . . . , ns, p) from the disjoint cycle decomposition of σq. Let

(Wβ, ψβ) be the chart containing Q. Then Rq,0, Rq,nk , Rq,p, Ri,p, Ri,0, R0,j

for 1 ≤ k ≤ s, 0 ≤ i ≤ q and 0 ≤ j ≤ p are the only rectangles having

nonempty intersection with Wβ (see Figure 2.3). Every orbit ζ̃Q of Sq with

Π(ζ̃Q) = ζQ is of length wl(ζQ) by (FC). Moreover, by (F2) and (F3) we have

γi,p = e and γ0,j = e. Consequently, for each such orbit ζ̃Q there are exactly

wl(ζQ) + 2q + p − 1 rectangles Rξi,j intersecting π−1(Wβ) nontrivially. This

implies that π is injective in Wβ applying the analogous argumentation as

for critical points. On the other hand, by a similar argument as for critical

points π is surjective in Wβ since there is no orbit ζ̃Q with Π(ζ̃Q) = ζQ and

whose length is smaller than wl(ζQ) by (F1). So its local triviality around

the dipole point follows.
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It remains to check that π is locally trivial around the punctures. Each

puncture is contained in a unique chart (Wγ , ψγ). Moreover, there exists a

cycle ζ = (m1, . . . ,mt) from the disjoint cycle decomposition of σq such that

Rq,m1 , . . . , Rq,mt are the only rectangles having nonempty intersection with

Wγ . By (FC) every orbit ζ̃ of Sq with Π(ζ̃) = ζ is of length wl(ζ). Thus,

we may apply the same argumentation as for the dipole point or the critical

points to show that π is injective and surjective around each puncture. As

a consequence, the local triviality of π follows.

We have verified that {Wα, ψα} establishes a smooth bundle atlas for

π : E → X. Let (Wβ, ψβ) be the chart containing Q ∈ X. Then we choose

the point p0 ∈ EQ as the base point of the bundle so that ψβ(p0) = (Q, e) is

satisfied. As a consequence, the bundle is pointed.

In the second part of the proof we will specify the flat structure of the bun-

dle. In fact, it is evident that the transition functions of {Wα, ψα} are locally

constant and their values are equal to the elements γi,j ∈ G. To make the

flat connection form A more precise we will construct the parallel transport

of the bundle. Then A is uniquely determined by Theorem 3.11 of [6]. After

having constructed the parallel transport we will show that it depends only

on the homotopy class of a path so that A is flat.

Let ω : I → X be a continuous path with end points ω(0) = x0 and

ω(1) = x1. Then there are only finitely many rectangles Ri1,j1 , . . . , Ril,jl

which are intersected by ω. We choose the numbering of the rectangles in

the order how ω passes them. For simplification, we set Rλ for Riλ,jλ , Oλ

for the upper side of Rλ and Oλ for the lower side of Rλ where 1 ≤ λ ≤ l.

Any such path ω is homotopy equivalent to a piecewise continuous path |ω|

which is defined as follows. The starting point |ω|(0) is the middle point of

R1 and the end point |ω|(1) is the middle point of Rl. Moreover, |ω| consists
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only of path segments which are either parallel to the x-axis or to the y-axis.

Further, |ω| is minimal in the sense that the number of its horizontal and

vertical path segments within a rectangle should be minimal. In fact, |ω| can

be considered a simplicial approximation of ω with respect to the rectangles.

Note that |ω| may intersect more rectangles than ω and it is not unique. Two

simplicial approximations of the same path are clearly homotopy equivalent.

Let R′1, . . . , R′k be the rectangles which are cut by a simplicial approximation

|ω| of ω and let O′κ, O
′
κ be the upper and lower sides of R′κ for 1 ≤ κ ≤ k,

respectively. Again we choose the numbering of the rectangles in the order

how |ω| passes them.

In the next step we will calculate the parallel transport P|ω|. Afterwards we

will show that P|ω|1 = P|ω|2 for two simplicial approximations |ω|1 and |ω|2

of ω. It follows from the construction of the bundle atlas that Pω = P|ω|. As

a consequence, the parallel transport depends only on the homotopy class of

a path. Let us consider ω with some |ω| as introduced previously. If O′1 is

identified with O′2 then the parallel displacement of the first path segment of

|ω| equals γi1,j1 . On the other hand, if O′1 is identified with O′2 then the par-

allel displacement of the first path segment of |ω| equals γ−1
i1,j1

. Inductively,

we may deduce that there exist sequences γκ = γiκ,jκ and εκ ∈ {1,−1} for

1 ≤ κ ≤ k such that P|ω| = γεkk . . . γε11 .

To finish the proof of the proposition it remains to show that this equation

does not depend on the choice of a simplicial approximation for ω. To this

end, we will distinguish the following path types of ω. As any path is the

composition of these path types the proposition will follow.

(1) Let x0, x1 ∈ R1 and assume that ω does not intersect any edge of R1.

Then ω is either homotopy equivalent to the middle point of R1 or to a

loop which does not cut any edge of R1. In the first case, |ω| is defined
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as the middle point of R1. In the second case, |ω| bounds a rectangle

inside the interior of R1. In both cases, the parallel transport is trivial

(see Example 1.1.11) and depends only on the homotopy class of the

path.

(2) Let x0 ∈ R1, x1 ∈ R2 and assume that ω intersects R1 and R2 in

the interior of a common edge. In particular, we assume that the

intersection point is neither a corner of R1 nor of R2. The path |ω| is

a path segment from the middle point of R1 to the middle point of R2

which is either parallel to the x-axis or to the y-axis. If the common

edge of R1 and R2 is vertical then the parallel transport P|ω| is trivial.

If the common edge is horizontal then P|ω| = γε1 for some ε ∈ {1,−1}.

In both cases we have Pω = P|ω|.

(3) Let x0 ∈ R1, x1 ∈ R2 and assume that ω intersects R1 and R2 in a

common vertex which is not part of a critical point. Then there are two

ways how to construct a simplicial approximation of ω. These paths

|ω|1 and |ω|2 are depicted in Figure 2.6.

x0

x1

ω

|ω|1

|ω|2
Ri1+1,j1

Ri1+1,j1+1

Ri1,j1

Ri1,j1+1

Figure 2.6: Path through a vertex

We apply the notation from Figure 2.6 in the ongoing argumentation.

As the vertex point is not part of a critical point (j1 + 1) is a trivial

cycle of τi1+1. Consequently, we have that γi1+1,j1γ
−1
i1,j1

= e by (F4).
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It follows for the parallel displacement P|ω|1 = γi1,j1 = γi1+1,j1 = P|ω|2 .

Thus, the parallel transport Pω does not depend on the choice of the

simplicial approximation for ω.

(4) Let x0 ∈ R1, x1 ∈ R2 and assume that ω intersects R1 and R2 in a

common vertex which is part of a nondegenerate critical point. The

argumentation for critical points of higher Morse index works analo-

gously and will be mentioned shortly in the end. There are two ways

how to construct simplicial approximations |ω|1 and |ω|2 for ω (see

Figure 2.7).

x0

x1

|ω|1

|ω|2
ω

Ri1,j1 Ri1−1,j1

Ri1,j1+1 Ri1−1,j1+1

Ri1,j2−1

Ri1,j2

Ri1−1,j2−1

Ri1−1,j2

Figure 2.7: Path through a critical point

We apply the notation from Figure 2.7 in the ongoing argumentation.

By (F2) and (F4) we have γi,j1 = e and γi,j2−1 = e for all i < i1

since either these values equal γ0,j for j ∈ {j1, j2 − 1} or (j1 + 1) and

(j2) are trivial cycles of τi for all i < i1. The second claim holds as
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σi(j1) = j1 + 1 and σi(j2 − 1) = j2 for all i < i1. As we have seen

in (2) the parallel displacement of all horizontal path segments of |ω|1

and |ω|2 is trivial. Consequently, P|ω|1 = γ−1
i1,j2−1 and P|ω|2 = γi1,j1 . By

(F4) we have γi1,j1γi1,j2−1 = e because (j1 + 1, j2) is a disjoint cycle of

τi1 . It follows that P|ω|1 = P|ω|2 .

For critical points of higher Morse index the considerations are anal-

ogous. We just have to consider disjoint cycles ζ of each τi whose

length is greater than two. Then the simplicial approximations inter-

sect 4 wl(ζ) rectangles and we apply the formula for P|ω| as calculated

above.

(5) It remains to consider the cases where the path ω goes through the

dipole point or into a puncture. The idea of proof is in both cases very

similar. So let ω be a continuous path in X as before for which we

assume that it passes Q ∈ X. If ω is not a loop then it is sufficient to

consider a composition of path segments as described in (2). Thus, it

remains to discuss the case where ω is a loop through Q. Moreover,

we may assume that ω neither intersects a vertex point of a rectangle

as this case was discussed in (3) and (4) nor ω goes into a puncture

(see below for the puncture case). Let ζQ = (0, n1, . . . , ns, p) be the

cycle from the disjoint cycle decomposition of σq which contains 0 and

p. We need to distinguish simplicial approximations |ω|1 and |ω|2 of ω

as shown in Figure 2.8.

On the one hand, |ω|1 intersects all rectangles Rq,nj for 1 ≤ j ≤ s.

On the other hand, |ω|2 intersects none of these rectangles. Then

P|ω|1 = γq,pγq,ns . . . γq,n1γq,0 = e by (FC) and P|ω|2 = e by (F2). It

is clear that P|ω| = e for every simplicial approximation |ω|. As a

consequence, Pω depends only on the homotopy class of ω.
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|ω|1 |ω|2

Figure 2.8: Path through the dipole point

The argumentation for punctures is analogous so that we abstain from

all details. Let ω be a path in X that goes into a puncture P ∈ P but

neither passes the dipole point nor a critical point of u. Moreover, we

may assume as in the dipole case that ω is a closed path up to P . Let

ζ = (m1, . . . ,mr) be a cycle from the disjoint cycle decomposition of σq

such that the rectangles Rq,m1 , . . . , Rq,mr have nonempty intersection

with P . Then the path |ω| has to intersect all of these rectangles so

that P|ω| = γq,mr . . . γq,m1 . This equals to e ∈ G by (FC). It is clear

that for any path that is homotopic to |ω| the parallel transport is

trivial.

Since an arbitrary continuous path ω in X is the composition of paths as

described in (1)-(5) it follows that the parallel transport Pω depends only on

the homotopy class of ω.

�

Definition 2.2.14. Let Hmg,1(G) be the moduli space of flat, pointed G-

bundles over Riemann surfaces of topological type S
(m)
g,1 with a poten-

tial function. It consists of equivalence classes of flat pointed G-bundles

(E, π,X,A, u,P,Q, p0) where X is a Riemann surface of genus g ≥ 0 with
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m ≥ 0 punctures P = {P1, . . . , Pm} and a dipole point Q = (Q,χ) fixed as

a base point, and a potential function u : X → R. Moreover, let p0 ∈ EQ be

the base point of the bundle. Two flat pointed G-bundles with potential func-

tions (E, π,X,A, u,P,Q, p0) and (E′, π′, X ′, A′, u′,P ′,Q′, p′0) are equivalent

if the following conditions are satisfied. There exists a conformal homeo-

morphism φ : X → X ′ such that φ fixes the set of punctures, φ(Q) = Q′,

dφ(χ) = χ′ and u′ ◦ φ = u. Moreover, there is a fiber preserving diffeomor-

phism f : E → E′ such that π′ ◦ f = φ ◦ π, f(p0) = p′0 and f∗A = A′. We

call Hmg,1(G) the moduli space of flat G-bundles over Riemann surfaces with

potential function. A point in Hmg,1(G) is denoted by [E, π,X,A, u,P,Q, p0]

which we usually abbreviate as [E, π,X,A, u].

In view of Lemma 1.2.8, the moduli space Hmg,1(G) can be identified with

the product of the space of potential functions Potmg,1 on S
(m)
g,1 , S(S

(m)
g,1 )

and RG(S
(m)
g,1 ) divided by the action of the diffeomorphism group, that is,

Potmg,1 ×S(S
(m)
g,1 )×RG(S

(m)
g,1 )

/
Diff m

g,1. We shall make use of the topology of

Potmg,1 which was introduced in [23] without further comments. Moreover,

note that the forgetful map Hmg,1(G) → M(m)
g,1 (G) is continuous. Since we

have previously seen that Hmg,1(G) can be represented as a fiber product the

following assertion is a consequence of Lemmas 1.2.8 and 2.2.2. In particular,

Hmg,1(G) andM(m)
g,1 (G) are homotopy equivalent.

Lemma 2.2.15. The following square is a commutative diagram of four fiber

bundles. The fiber of the horizontal projections is the representation variety

RG(S
(m)
g,1 ). The vertical maps are affine bundles of dimension m+ 1.

Hmg,1(G) //

p(G)
��

Hmg,1

p
��

M(m)
g,1 (G)

Φ(G) //M(m)
g,1
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Definition 2.2.16. Let Pp,q(G) be the space of all elements from the Lie

group (G o S0
p)
q+1 which satisfy (NZ1) and (NZ2). We denote

∐
p,q
Pp,q(G)

by P(G) for 0 ≤ p ≤ 2h and 0 ≤ q ≤ h where h = 2g + m. There are

face and degeneracy maps of P(G) as follows. Let S ∈ G o S0
p, that is,

S = (γp, . . . , γ0;σ) and let

D′′j (S) =


(γp, . . . , γσ−1(j)γj , . . . , γ̂σ−1(j), . . . , γ0;Dj(σ)), if j ≥ σ−1(j)

(γp, . . . , γ̂σ−1(j), . . . , γσ−1(j)γj , . . . , γ0;Dj(σ)), if j ≤ σ−1(j).

The maps D′′j satisfy the simplicial identities.2 The horizontal face maps

d′i : Pp,q(G)→ Pp,q−1(G) are given by

d′i(Sq, . . . , S0) = (Sq, . . . , Ŝi, . . . , S0),

for 0 ≤ i ≤ q and the vertical face maps d′′j : Pp,q(G)→ Pp−1,q(G) are

d′′j (Sq, . . . , S0) = (D′′j (Sq), . . . , D
′′
j (S0))

for 0 ≤ j ≤ q. All face and degeneracy maps are continuous with respect to

the topology of G so that (Pp,q(G), d′i, d
′′
j )p,q,i,j defines a bisimplicial space.

Its geometric realization is denoted by Parmg,1(G). Note that by definition of

the geometric realization the topology of G is taken here into account (see

for instance Section 14 of [41]). Moreover, let Par′mg,1(G) consist of those cells

which do not satisfy (Hilb) and let Pm
g,1(G) be the complement of Par′mg,1(G)

in Parmg,1(G). We call Pm
g,1(G) the nondegenerated part of Parmg,1(G).

Let G be a finite group which we think of as a subgroup of a symmetric
2The j-th degeneracy map is defined by introducing j as a fixpoint of each permutation

from S0
p−1 and then setting e on the j-th entry of the (p− 1)-tuple of elements from G.
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group SK for some sufficiently large K ∈ N. We define Pp,q(G) as the free

abelian group generated by all elements from (G oS0
p)
q+1 which satisfy (NZ1)

and (NZ2). We set P(G) =
⊕
p,q
Pp,q(G) for 0 ≤ p ≤ 2h and 0 ≤ q ≤ h where

h = 2g +m.

If G equals the full symmetric group SK we denote Pp,q(G) by Pp,q[K] and

P(G) by P[K]. Now P[K] establishes a chain complex when equipped with

the boundary operator d = d′ + (−1)qd′′ which is defined as follows. We

have d′ =
q∑
i=0

(−1)id′i and d′′ =
p∑
j=0

(−1)jd′′j . The geometric realization of

the bisimplicial space (Pp,q[K], d′i, d
′′
j )p,q,i,j is denoted by Parmg,1[K]. More-

over, let P′[K] consist of those elements which do not satisfy (Hilb) and let

Par′mg,1[K] be the appropriate subspace of Parmg,1[K]. We denote by Pm
g,1[K]

the complement of Par′mg,1[K] in Parmg,1[K]. It is called the nondegenerated

part of Parmg,1[K].

Note that Parmg,1[K] equals Parmg,1(SK) so that both definitions of 2.2.16

agree for symmetric groups. Since Parmg,1(G) is the geometric realization

of a bisimplicial space its topology is defined (see Section 14 of [41]). The

face maps d′i and d′′j commute with the canonical projection to Parmg,1 (see

Definition 2.2.7). More precisely, for the projections Πp,q : Pp,q(G) → Pp,q

we have Πp,q ◦ d′i = ∂′i ◦Πp,q and Πp,q ◦ d′′j = ∂′′j ◦Πp,q.

For the Hilbert uniformization of flat G-bundles over Riemann surfaces we

will focus on Pm
g,1(G) for which the central assertion of Theorem 2.2.19 is

satisfied.

Remark 2.2.17. The construction of Proposition 2.2.12 leads to a map

H(G) : Hmg,1(G)→ Pm
g,1(G),

H(G)([E, π,X,A, u]) = ((ai, bj)i,j , Σ̃)

where (ai, bj)i,j are barycentric coordinates and Σ̃ = (Sq : . . . : S0) with
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Si = (γi,j ;σi) ∈ G o S0
p. We call H(G) the Hilbert uniformization of flat

G-bundles.

Proof. As this was already proven in 2.2.12 we just repeat the most important

ideas briefly. Let [E, π,X,A, u] be an equivalence class from Hmg,1(G) so that

X −K is a PSD which defines uniquely a PSM with barycentric coordinates

(ai, bj)i,j ∈ ∆q × ∆p. By means of the decomposition, we obtain gluing

permutations (σi)i ∈ (S0
p)
q+1 for the extended PSD to X − K. Since the

connection A is flat it determines a parallel transport depending only on

the homotopy class of a path and locally constant transition functions, thus

elements γi,j ∈ G with Si ∈ (G o S0
p)
q+1. Then by 2.2.12 ((ai, bj)i,j , Σ̃)

satisfies (Hilb). All construction details can be found in 2.2.12.

�

Remark 2.2.18. The construction of Proposition 2.2.13 leads to a map

G(G) : Pm
g,1(G)→ Hmg,1(G),

G(G)((ai, bj)i,j , Σ̃) = [E, π,X,A, u]

where (ai, bj)i,j are barycentric coordinates and Σ̃ = (Sq : . . . : S0) with

Si = (γi,j ;σi) ∈ GoS0
p. We call G(G) the inverse of the Hilbert uniformization

of flat G-bundles.

Proof. As this was already proven in 2.2.13 we just repeat the most important

ideas briefly. Let ((ai, bj)i,j , Σ̃) be a point in Pm
g,1(G). Then there exists a

unique PSM with barycentric coordinates (ai, bj)i,j and gluing data Σ such

that gluing the corresponding extended PSD Y by ∼ leads to a Riemann

surface X with potential function u. The identification of Y × G by ≈

with respect to Σ̃ determines a pointed principal G-bundle π : E → X.

Moreover, (γi,j)i,j defines a unique parallel transport which depends only on
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the homotopy class of a path and induces a flat connection form A. This is

shown in detail in Proposition 2.2.13.

�

In the next theorem we will verify that the maps H(G) and G(G) are inverses

as indicated by their namings. We will show that both maps are continu-

ous in Section 2.3. A consequence is that the Hilbert uniformization is a

homeomorphism.

Theorem 2.2.19. The maps H(G) and G(G) are inverses.

Proof. In Chapter 5 of [9] and later in Chapter 3 of [23] it was verified that

H = H(〈e〉) and G = G(〈e〉) are inverses for the trivial group G = 〈e〉. We

will now generalize this claim to arbitrary Lie groups G.

First we show that H(G) ◦G(G) is the identity. Let ((ai, bj)i,j , Σ̃) ∈ Pm
g,1(G)

then H(G) ◦ G(G)((ai, bj)i,j , Σ̃) = H(G)([E, π,X,A, u]). The parallel trans-

port PA to A is representable solely by means of the elements γi,j ∈ G as we

have seen in Proposition 2.2.13. In fact, these γi,j ∈ G define locally constant

transition functions of the flat G-bundle structure (see Proposition 2.2.13).

Since H([X,u]) = ((ai, bj)i,j ,Σ) and the locally constant transition functions

γi,j ∈ G define gluing maps for the fiber by Proposition 2.2.12 it follows that

H(G)([E, π,X,A, u]) = ((ai, bj)i,j , Σ̃). As a consequence, H(G)◦G(G) = id .

For the opposite direction let [E, π,X,A, u] ∈ Hmg,1(G) and let

G(G) ◦ H(G)([E, π,X,A, u]) = G(G)((ai, bj)i,j , Σ̃) = [E′, π′, X ′, A′, u′].

By Theorem 2.2.9 it follows that [X,u] = [X ′, u′] and there exists a conformal

homeomorphism f : X → X ′. It remains to show on the one hand that E

and E′ are diffeomorphic and on the other hand that π : E → X and
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π′ : E′ → X ′ are isomorphic flat G-bundles. From the combinatorial data

((ai, bj)i,j , Σ̃) we obtain the trivial bundle E′′ over the PSD X−K by means

of the Hilbert uniformization H. As described in Proposition 2.2.12 we may

construct the trivial bundle Ê → Ŷ from E′′ with an inclusion ν : E′′ → Ê.

Moreover, we have seen in this proposition that we obtain a homeomorphism

h : E′′ → E −K∗. Hence, there are continuous maps ψ′ : E −K∗ → E′ and

ψ̂ : Ê → E′ by definition of G(G) such that ψ′ ◦ h = ψ̂ ◦ ν. Let {Vλ, χλ}

be a fixed atlas of the Lie group G and let {W ′α, ψ′α} be the bundle atlas

of E′ as constructed in Proposition 2.2.13. We set Wα = f−1(W ′α). There

exists an extension of ψ̂ onto each chart having nonempty intersection with

an upper or lower edge of a rectangle. Thus, ψ′ is extendable to K∗. More

precisely, for any y ∈ K∗ there exists α with π(y) ∈ Wα. We denote the

atlas given by the Hilbert uniformization by {Wα, φα} as before. Then we

define the desired extension ψ : E → E′ for y ∈ K∗ by π′−1 ◦ f ◦ π(y). As

a consequence, we obtain a diffeomorphism ψ : E → E′ with respect to the

charts {Wα × Vλ, φα × χλ} for E and {W ′α × Vλ, (φα ◦ f−1)× χλ} for E′.

It remains to show that ψ is a flat bundle isomorphism, that is, the diagram

E
ψ //

π
��

E′

π′

��
X

f
// X ′

should commute and ψ∗A = A′. By construction of {W ′α, ψ′α} it follows that

{Wα, ψ
′
α ◦ f} defines a bundle atlas for π : E → X. We write ψα for ψ′α ◦ f .

Since π′ ◦ ψ ◦ π−1(Wα) = W ′α it follows that ψ is fiber preserving and in

particular f ◦π = π′ ◦ψ. As a consequence, ψ preserves the locally constant
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transition functions. More precisely,

(f−1 × id) ◦ ψ′β ◦ ψ ◦ ψ−1
α ((Wα ∩Wβ)×G) = ψβ ◦ ψ−1

α ((Wα ∩Wβ)×G)

ψ′β ◦ ψ ◦ ψ−1
α ◦ (f−1 × id)((W ′α ∩W ′β)×G) = ψ′β ◦ ψ′−1

α ((W ′α ∩W ′β)×G)

on every nonempty intersectionWα∩Wβ . Thus, ψ′β◦ψ′−1
α (x′) = (x′, gα,β) and

ψβ ◦ψ−1
α (x) = (x, gα,β) for every x ∈ X and x′ = f(x). As a consequence, we

have ψ∗A = A′ for the flat connection forms and finally G(G) ◦ H(G) = id .

�

2.3 Topology of the Hilbert uniformization

In this section our main objective is to prove that the Hilbert uniformization

H(G) as well as its inverse G(G) are continuous for all Lie groups G. To

this end, we first introduce simplicial fiber bundles in order to show that

the projection PP : Pm
g,1(G) → Pm

g,1 is a topological fiber bundle with fiber

RG(Smg,1). The continuity proofs for H(G) and G(G) will rely on this fact.

An introduction to simplicial sets can be found in Section 1 of [41].

Notation. Let T be a topological space and let S∗(T ) be the simplicial set

of singular simplices σ : ∆n → T with the standard simplicial maps. We

denote by ∆[n] ⊆ S∗(∆
n) the subsimplicial set which is defined as follows.

Let e0, . . . , en be the vertices of ∆n. Then the k-th face ∆[n]k of ∆[n] consists

of k-simplices σ = 〈ei0 . . . eik〉 for 0 ≤ i0 ≤ . . . ≤ ik ≤ n. Here we denote by

〈ei0 . . . eik〉 the k-simplex spanned by ei0 , . . . , eik .

Note that for every simplicial set A and any simplex σ ∈ An where n ≥ 0

there exists a simplicial map fσ : ∆[n]→ A with fσ(id∆n ) = σ (see Section

5 of [41]).

Let ψ : A→ B be a simplicial map of two simplicial sets and let σ ∈ B be a
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simplex. Then we may define the fiber product A ×B ∆[n] as follows. It is

the universal simplicial set which makes the following diagram commute.

A×B ∆[n] //

��

∆[n]

fσ
��

A
ψ // B

Definition 2.3.1. A simplicial map ψ : A → B of two simplicial sets is a

simplicial fiber bundle with fiber C if for all n ≥ 0 and all σ ∈ Bn there

exists a commutative diagram

C ×∆[n]
∼= //

p1 %%

A×B ∆[n]

p2yy
∆[n]

where p1 and p2 are the projections on the first and second factor, respec-

tively. The horizontal map is an equivalence of simplicial sets. Note that the

fiber C is a simplicial set.

Lemma 2.3.2. Let ψ : A → B be a simplicial fiber bundle with fiber C.

Then the geometric realization |ψ| : |A| → |B| is a topological fiber bundle

with fiber |C|.

Proof. By Section 17 of [41] we have |A ×B ∆[n]| = |A| ×|B| |∆[n]| for the

geometric realizations. Thus, there is the pullback diagram

|A×B ∆[n]| //

��

|∆[n]|

|fσ |
��

|A|
|ψ| // |B|
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of topological spaces. Moreover, for all n ≥ 0 and simplices σ ∈ Bn

|∆[n]× C|
∼= //

|p1| %%

|A×B ∆[n]|

|p2|xx
|∆[n]|

is a commutative diagram of continuous maps. Consequently, by universality

of the pullback, |ψ| is a fiber bundle with fiber |C| over each cell of |B|.

Finally, it follows from Lemma 2.3.3 that |ψ| : |A| → |B| is a fiber bundle

with fiber |C|.

�

Lemma 2.3.3. Let f : E → B be a continuous map of CW-complexes and

let χα : enα → B be the characteristic maps of B. Assume that for all n ≥ 0

and all α the pullbacks enα ×B E → enα are fiber bundles with fiber F . Then

f : E → B is a fiber bundle with fiber F .

�

Lemma 2.3.3 can be proven by an induction argument on the k-skeleton of

B. We will omit the details.

Corollary 2.3.4. The projection PP(G) : Pm
g,1(G) → Pm

g,1 is a fiber bundle

with fiber RG(S
(m)
g,1 ).

Proof. By definition, Pm
g,1(G) and Pm

g,1 are open subsets of Parmg,1(G) and

Parmg,1, respectively. To apply Lemma 2.3.2 we set An =
∐

p+q=n
Pp,q(G) and

Bn =
∐

p+q=n
Pp,q. The forgetful maps ψn : An → Bn define a simplicial fiber

bundle with fiber C given by Cn =
∐

p+q=n
G(p+1)(q+1). Hence, the forgetful

map of the G-structure Parmg,1(G)→ Parmg,1 is a fiber bundle by Lemma 2.3.2.

Let P̄ ⊆ Parmg,1(G) consist only of those elements which satisfy (F1)-(F4).
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By the same argument, it follows that the forgetful map of the G-structure

P̄ : P̄ → Parmg,1 is a fiber bundle. The fiber is a subspace of |C|. Then

by definition of the degenerated cells of Parmg,1(G) and Parmg,1 we have

P̄−1(Pm
g,1) = Pm

g,1(G). Consequently, PP(G) : Pm
g,1(G)→ Pm

g,1 is a fiber bun-

dle. On the other hand, it follows from Propositions 2.2.12 and 2.2.13 that

the fiber of PP(G) is in one-to-one correspondence with RG(S
(m)
g,1 ). Hence,

PP(G) : Pm
g,1(G)→ Pm

g,1 is a topological fiber bundle with fiber RG(S
(m)
g,1 ).

�

Now we will use Corollary 2.3.4 in order to prove that H(G) and G(G) are

continuous maps. To this end, let us first remind of the notation which was

introduced during the last sections. An element of Hmg,1(G) is given by the

equivalence class [E, π,X,A, u,P,Q, p0]. Here π : E → X is a flat pointed

G-bundle with connection form A over a Riemann surface X of genus g ≥ 0

with m ≥ 0 punctures P = {P1, . . . , Pm} and a dipole point Q = (Q,χ).

The dipole Q ∈ X is fixed as the base point and p0 ∈ EQ is the base point of

the fiber bundle. We abbreviate such an element by [E, π,X,A, u]. A point

in Pm
g,1(G) is denoted by ((ai, bj)i,j , Σ̃). Here (ai, bj)i,j are the barycentric

coordinates of the point and Σ̃ = (Sq : . . . : S0) denotes the cell where it is

contained in. We have Si = (γi,j ;σi) ∈ G oS0
p for 0 ≤ i ≤ q and 0 ≤ j ≤ p.

Recall that ((ai, bj)i,j ,Σ) is an element of Pm
g,1 where Σ = (σq : . . . : σ0).

Moreover, we write PP(G) : Pm
g,1(G) → Pm

g,1 and PH(G) : Hmg,1(G) → Hmg,1

for the forgetful maps of the G-structure.

Proposition 2.3.5. The Hilbert uniformization H(G) : Hmg,1(G)→ Pm
g,1(G)

is continuous.

Proof. First we show that the diagram
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Hmg,1(G)
H(G) //

PH(G)

��

Pm
g,1(G)

PP(G)

��
Hmg,1

H // Pm
g,1

(2.3)

of bundles with fiber RG(S
(m)
g,1 ) given by the projections PH(G) and PP(G)

is commutative. By means of this result and Theorem 2.2.9, that is, H is a

homeomorphism, we will be in a position to show the continuity of H(G).

Let [E, π,X,A, u] ∈ Hmg,1(G), then

H ◦ PH(G)([E, π,X,A, u]) = H([X,u]) = ((ai, bj)i,j ,Σ)

= PP(G)((ai, bj)i,j , Σ̃) = PP(G) ◦ H(G)([E, π,X,A, u]).

Consequently, Diagram (2.3) commutes. Moreover, H(G) is fiber preserving

since PP(G) and PH(G) are just the forgetful maps of the G-structure. Next,

we show that H(G) is continuous.

Let {Uα, φα} be a bundle atlas of PH(G) : Hmg,1(G) → Hmg,1 and let {U ′λ, φ′λ}

be a bundle atlas of PP(G) : Pm
g,1(G) → Pm

g,1. Here we choose the neigh-

borhoods {Uα} and {U ′λ} sufficiently small so that there are charts {Uα, χα}

and {U ′λ, χ′λ} which establish atlases for the topological manifolds Hmg,1 and

Pm
g,1, respectively. Then there are neighborhood bases {Vr} and {V ′s} of Hmg,1

and Pm
g,1 respectively satisfying the following properties. For every r there

exists α such that V̄r ⊆ Uα and for every s there exists λ such that V̄ ′s ⊆ U ′λ.

In addition, for every s there exists r with H−1(V ′s ) = Vr. For the first

part we may choose {Vr} and {V ′s} sufficiently small while the second part

is a consequence of Theorem 2.2.9. After fixing such neighborhood bases

φ′λ ◦ H(G) ◦ φ−1
α |Vr×RG(S

(m)
g,1 )

is of the form (h1, h2) where h1 : Vr → V ′s is a

homeomorphism and h2 : RG(S
(m)
g,1 ) → RG(S

(m)
g,1 ). It remains to show that
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h2 is continuous. Let y ∈ RG(S
(m)
g,1 ) and set y′ = h2(y). By commutativity

of Diagram (2.3), we have

φ′λ ◦H(G) ◦ φ−1
α |Vr×RG(S

(m)
g,1 )

= φ′λ ◦PP(G)−1 ◦H ◦PH(G) ◦ φ−1
α |Vr×RG(S

(m)
g,1 )

.

The maps φα, φ′λ and H are homeomorphisms while PP(G) and PH(G) are

continuous. Moreover, PH(G) is the forgetful map

Potmg,1 × S(S
(m)
g,1 )×RG(S

(m)
g,1 )

/
Diff m

g,1 → Potmg,1 × S(S
(m)
g,1 )

/
Diff m

g,1.

So by definition of the quotient topology on these direct products and since

any canonical projection is an open map it follows for every small open

neighborhood N ⊆ RG(S
(m)
g,1 ) of y′ that PP(G)−1 ◦H ◦PH(G) ◦φ−1

α (Vr ×N)

is open.

Consequently, φ′λ ◦ H(G) ◦ φ−1
α (Vr × N) is open and so h−1

2 (N) is an open

set of RG(S
(m)
g,1 ). This implies the continuity of h2. Then the restriction of

H(G) to all sets of the form PH(G)−1(Vr) is continuous. But since {Vr} is a

neighborhood basis of Hmg,1 such that for every r there exists α with V̄r ⊆ Uα

the Hilbert uniformization H(G) is continuous on the whole space Hmg,1(G).

�

Proposition 2.3.6. The inverse mapping of the Hilbert uniformization

G(G) : Pm
g,1(G)→ Hmg,1(G) is continuous.

Proof. The proof works analogously as for Proposition 2.3.5. First we show

that the diagram
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Pm
g,1(G)

G(G) //

PP(G)

��

Hmg,1(G)

PH(G)

��
Pm
g,1

G // Hmg,1

(2.4)

of bundles with fiber RG(S
(m)
g,1 ) given by the projections PP(G) and PH(G) is

commutative. Using this fact and that G is a homeomorphism (see Theorem

2.2.9) the proposition will follow. Let ((ai, bj)i,j , Σ̃) ∈ Pm
g,1(G), then

PH(G) ◦ G(G)((ai, bj)i,j , Σ̃) = PH(G)([E, π,X,A, u]) = [X,u]

= G((ai, bj)i,j ,Σ) = G ◦ PP(G)((ai, bj)i,j , Σ̃).

Consequently, Diagram (2.4) is commutative. Moreover, G(G) is fiber pre-

serving as PH(G) and PP(G) are the forgetful maps of the G-structure. Now

we are in a position to show that G(G) is continuous.

Let {Uα, φα} be a bundle atlas of PH(G) : Hmg,1(G) → Hmg,1 and let {U ′λ, φ′λ}

be a bundle atlas of PP(G) : Pm
g,1(G) → Pm

g,1. As in the proof of the pre-

vious proposition we choose the neighborhoods {Uα} and {U ′λ} sufficiently

small so that there are charts {Uα, χα} and {U ′λ, χ′λ} which establish at-

lases for the topological manifolds Hmg,1 and Pm
g,1, respectively. Then there

are neighborhood bases {Vr} and {V ′s} of Hmg,1 and Pm
g,1 respectively satis-

fying the same properties as in Proposition 2.3.5. In particular, for every

r there exists s such that G−1(Vr) = V ′s . After fixing such neighborhood

bases φα ◦ G(G) ◦ φ′−1
λ |V ′s×RG(S

(m)
g,1 )

is of the form (g1, g2). Here g1 : V ′s → Vr

is a homeomorphism and g2 : RG(S
(m)
g,1 ) → RG(S

(m)
g,1 ) is a map for which

we need to show its continuity. Let y ∈ RG(S
(m)
g,1 ) and set y′ = g2(y). By
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commutativity of Diagram (2.4), we have

φα ◦ G(G) ◦φ′−1
λ |V ′s×RG(S

(m)
g,1 )

= φα ◦PH(G)−1 ◦ G ◦PP(G) ◦φ′−1
λ |V ′s×RG(S

(m)
g,1 )

.

The maps φα, φ′λ and G are homeomorphisms while PH(G) and PP(G) are

continuous. Moreover, PP(G) is the forgetful map of the G-structure which

is defined by means of the the projection maps Πp,q : Pp,q(G) → Pp,q for

all 0 ≤ p ≤ 2h and 0 ≤ q ≤ h (see Section 2.2). The maps Πp,q are

just canonical projections. So by definition of the topology given by the

geometric realization and since any canonical projection is an open map

it follows for every small neighborhood N ⊆ RG(S
(m)
g,1 ) containing y′ that

PH(G)−1◦G◦PP(G)◦φ′−1
λ (V ′s×N) is open. Hence, φα◦G(G)◦φ′−1

λ (V ′s×N) is

open and so g−1
2 (N) is an open set of RG(S

(m)
g,1 ). This implies the continuity

of g2. Then the restriction of G(G) to sets of the form PP(G)−1(V ′s ) is

continuous. But since {V ′s} is a neighborhood basis of Pm
g,1 such that for all

s there is λ with V̄ ′s ⊆ U ′λ the inverse of the Hilbert uniformization G(G) is

continuous on the whole space Pm
g,1(G).

�

According to Lemma 2.2.15, Hmg,1(G) is homotopy equivalent to M(m)
g,1 (G).

For this reason, we obtain the following result for the moduli spaces of flat

G-bundles over Riemann surfaces. It summarizes our key conclusions for the

Hilbert uniformization of flat G-bundles and is at the heart of our combina-

torial considerations.

Theorem 2.3.7.

(1) The Hilbert uniformization H(G) : Hmg,1(G)→ Pm
g,1(G) is a homeomor-

phism.
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(2) The moduli space M(m)
g,1 (G) is homotopy equivalent to Pm

g,1(G) for a

fixed Lie group G, m ≥ 0 and g ≥ 0.

Proof.

(1) follows from Theorem 2.2.19, Propositions 2.3.5 and 2.3.6.

(2) follows from Lemma 2.2.15 and (1).

�

Remark 2.3.8. If m ≥ 1 or G is either an abelian or countable and discrete

Lie group then Pm
g,1(G) is a topological manifold.

Proof. The remark follows from Corollary 2.1.6 and (2) of Theorem 2.3.7.

�

Example 2.3.9. We will apply (2) of Theorem 2.3.7 for the computation

of the homology of the moduli space of 2-sheeted, unramified, pointed, con-

nected coverings of the torus which has neither marked points nor punctures

but one dipole pointM1,1[2]0. Notice that we can follow from Lemma 1.5.2

and Corollary 1.5.8 thatM1,1[2]0 is a 3-sheeted connected covering ofM1,1.

In analogy to Figure 6 of [1] all cells of P1,1[2]0 are depicted in Figure 2.9.

We adapt our notation to [1].

By definition, Par1,1[2] is the geometric realization of the bisimplicial space

(Pp,q[2], d′i, d
′′
j )p,q,i,j for 0 ≤ p ≤ 2 and q ∈ {0, 1} as introduced in Definition

2.2.16. Hence, we may use the cellular chain complex given by (P[2],P′[2]) in

order to calculate the cohomology of the nondegenerated part P1,1[2]0. The

moduli space M1,1[2]0 is oriented since M1,1 is oriented and the action of

the mapping class group on the fiber is orientation preserving. AsM1,1[2]0

is homotopy equivalent to P1,1[2]0 by Theorem 2.3.7 we may deduce the

cohomology ofM1,1[2]0 from the cohomology of P1,1[2]0.
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Σ1,1 Σ1,2 Σ1,3

Σ2,1 Σ2,2 Σ2,3

Σ3,1 Σ3,2 Σ3,3

Σ4,1 Σ4,2 Σ4,3

Σ5,1 Σ5,2 Σ5,3

Σ6,1 Σ6,2 Σ6,3

Σ7,1 Σ7,2 Σ7,3

Σ8,1 Σ8,2 Σ8,3

Figure 2.9: Cells ofM1,1[2]0
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The dimension of the cell Σj,i in Figure 2.9 equals the dimension of the cell

Σi in Figure 6 of [1] for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 8. For i = 1, 2, 3 we have

d′(Σ1,i) = −Σ3,i, d′(Σ2,i) = −Σ3,i,

d′(Σ3,i) = 0, d′(Σ4,i) = −Σ7,i,

d′(Σ5,1) = −Σ7,3, d′(Σ6,1) = −Σ7,2,

d′(Σ5,2) = −Σ7,1, d′(Σ6,2) = −Σ7,3,

d′(Σ5,3) = −Σ7,2, d′(Σ6,3) = −Σ7,1,

d′(Σ7,i) = 0, d′(Σ8,i) = 0.

(2.5)

The results for d′′ are given by

d′′(Σ1,1) = −Σ6,1 + Σ4,3 − Σ4,1, d′′(Σ2,1) = Σ5,1 − Σ5,3 − Σ6,3,

d′′(Σ1,2) = −Σ6,2, d′′(Σ2,2) = Σ5,3 − Σ5,1 − Σ6,1,

d′′(Σ1,3) = −Σ6,3 + Σ4,1 − Σ4,3, d′′(Σ2,3) = −Σ6,2,

d′′(Σ3,1) = −Σ7,3 + Σ7,2 + Σ7,1, d′′(Σ4,1) = −Σ8,1,

d′′(Σ3,2) = Σ7,3, d′′(Σ4,2) = −Σ8,2,

d′′(Σ3,3) = Σ7,3, d′′(Σ4,3) = −Σ8,3,

d′′(Σ5,1) = Σ8,3, d′′(Σ6,1) = Σ8,1 − Σ8,3,

d′′(Σ5,2) = Σ8,2, d′′(Σ6,2) = 0,

d′′(Σ5,3) = Σ8,1, d′′(Σ6,3) = Σ8,3 − Σ8,1,

d′′(Σ7,i) = 0, d′′(Σ8,i) = 0.

(2.6)

for i = 1, 2, 3 and we obtain the cellular chain complex

0 −→ Z6 −→ Z12 −→ Z6 −→ 0 (2.7)

with differential d = d′+ (−1)qd′′ (see Definition 2.2.16). Note that by (2.5)

and (2.6) there are only nonzero entries in degrees four, five and six. Thus,
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we abstain in (2.7) from writing chains in all degrees. Further, we set

A1 = Σ1,1 − Σ2,1, B1 = Σ4,1 − Σ5,2, C1 = Σ4,1 − Σ6,3,

A2 = Σ1,2 − Σ2,2, B2 = Σ4,2 − Σ5,3, C2 = Σ4,2 − Σ6,1,

A3 = Σ1,3 − Σ2,3, B3 = Σ4,3 − Σ5,1, C3 = Σ4,3 − Σ6,2.

Then d′(Ai) = 0, d′(Bi) = 0 and d′(Ci) = 0 for all i = 1, 2, 3. So the

remaining cycles of the d′-complex are Ai in degree 6, Bi and Ci in degree

5 and Σ8,i in degree 4 for i = 1, 2, 3. Hence, we may consider the cellular

chain complex

0 // Z3 f // Z6 g // Z3 h //// 0.

Since d′′(A1 + A2 + A3) = 0 it follows that the kernel of f is isomorphic to

Z and generated by A1 + A2 + A3. The kernel of h is generated by Σ8,i for

i = 1, 2, 3. On the other hand, the image of g is isomorphic to Z2 while it is

generated by −Σ8,1 − Σ8,2 and Σ8,3. As a consequence, the quotient of the

kernel of h and the image of g is isomorphic to Z.

It remains to calculate the quotient of the kernel of g and the image of f . To

this end, note that it follows from our previous calculations that the kernel of

g is generated by B1−B2, C1−C3, C2−B2 +C1 and B3−C3−C1 while the

image of f is generated by C1−C3, C2−C1 +B3−B2 and C3−C2 +B2−B3.

Consequently, their quotient is isomorphic to Z2 and generated by B1 −B2

and C1 + C2 − B2. Then all these results imply that the homology Hj of

(P[2]0,P′[2]0)3 is Z if j = 0, 2, Z2 if j = 1 and trivial in all other cases. Thus,

the cohomology of P1,1[2]0 and consequently the cohomology ofM1,1[2]0 is

equal to these results. Since the cohomology groups of the moduli space are
3The subscript 0 denotes the part whose geometric realization is Par1,1[2]0.
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torsion-free we may follow by means of the universal coefficient theorem that

Hi(M1,1[2]0;Z) ∼=


Z, i = 0, 2

Z2, i = 1,

0, else.

We have already seen in Corollary 1.5.8 by means of purely combinatorial

considerations thatM1,1[2]0 is connected, that is, H0(M1,1[2]0) = Z. More-

over, from the multiplicativity of the Euler characteristic χ and from Lemma

1.2.8 it follows without any further computations that χ(M1,1[2]0) = 0 since

χ(M1,1) = 0 (see [1]). On the other hand, we obtain the same result from

this homology computation.

Summarizing, we see that the Hilbert uniformization provides a constructive

method to compute homology groups of the moduli spaces of flat G-bundles.

However, due to the numerical complexity which arises from the huge number

of cells of Pm
g,1[K] the computation becomes difficult for large K and g. In

[1] the cells were counted for K = 1 in some cases and there are examples

of a dramatic increase in the number of cells. Furthermore, according to

[37] the complexity of the cell complex grows exponentially with the number

of sheets K. Nevertheless, it would be an interesting task to compute the

homology groups for further moduli spaces by means of computer algebra

programs.

2.4 Stratification of moduli spaces of flat G-bundles

In the previous section a cell decomposition was constructed by means of the

Hilbert uniformization. Bearing this cell decomposition in mind, we specify

a stratum of filtered classifying spaces which we can identify with a disjoint
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union of moduli spaces of flat G-bundles. A strong motivation for studying

such a filtration is that it provides a method to calculate the cohomology

of a large class of certain groups. We will explain this later in more detail.

First let us recall the bar construction to realize the classifying space of a

group G.

Definition 2.4.1. Let G be a topological group and let Y and Z be a left

and right G-space, respectively. We define a simplicial space B(Y,G,Z) by

taking Y ×Gn × Z as the n-simplices Bn(Y,G,Z). We write n-simplices in

the form (y|gn| . . . |g1|z) for y ∈ Y , z ∈ Z and gi ∈ G for 1 ≤ i ≤ n. The

reason for the reversed numbering will become apparent in the sequel. The

face maps di are defined on Bn(Y,G,Z) as

di(y|gn| . . . |g1|z) =


(y|gn| . . . |g1z), i = 0

(y|gn| . . . |gi+1gi| . . . |g1|z), 1 ≤ i ≤ n− 1

(ygn| . . . |g1|z), i = n.

Moreover, the degeneracy maps are given by

si(y|gn| . . . |g1|z) = (y|gn| . . . |gi+1|e|gi| . . . |g1|z)

for 0 ≤ i ≤ n. We set En(G) for the space of n-simplices Bn(∗, G,G) and

E(G) = B(∗, G,G) where ∗ denotes the one-point space. The geometric

realization EG of E(G) is defined as the quotient
∐
n≥0

En(G)×∆n
/
∼, where

the identification ∼ is given by (dixn, tn+1) ∼ (xn, δitn+1) and (sixn, tn−1) ∼

(xn, σitn−1) for all xn ∈ En(G), tn+1 ∈ ∆n+1, tn−1 ∈ ∆n−1.

The maps δi and σi are the standard face and degeneracy maps on the

standard n-simplex ∆n, that is, δi(tn, . . . , t0) = (tn, . . . , ti+1 + ti, . . . , t0) and

σi(tn, . . . , t0) = (tn, . . . , ti, 0, ti−1, . . . , t0).
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The quotient BG = EG/G is the classifying space of G. Here we divide by

the G-action from the right on itself by multiplication. The space BG is the

geometric realization of B(∗, G, ∗) where we denote by Bn(G) the space of

n-simplices Bn(∗, G, ∗). For a cell of EG and BG we write (gk : . . . : g0) and

[gk : . . . : g0], respectively. In the inhomogeneous notation a cell is denoted

by (gk| . . . |g0) for EG and [gk| . . . |g0] for BG .

Definition 2.4.2. Let G be a finite group which we think of as a subgroup of

a symmetric group SK for an appropriate K ∈ N. Then G oS0
p is considered

as a subgroup of SK(p+1). Using the word length norm wl on the symmetric

group with respect to all transpositions (see Example 2.2.5) we define

N((aq : . . . : a0)) = N((aqa
−1
q−1| . . . |a1a

−1
0 )) = wl(aqa

−1
q−1) + . . .+ wl(a1a

−1
0 )

for every cell (aq : . . . : a0) of E(G oS0
p) and

N([aq : . . . : a0]) = N([aqa
−1
q−1| . . . |a1a

−1
0 ]) = wl(aqa

−1
q−1) + . . .+ wl(a1a

−1
0 )

for every cell [aq : . . . : a0] of B(G oS0
p) where p ≥ 0 and q ≥ 0. Moreover,

we define the following filtrations and strata, respectively:

FhE(G oSp) =
⋃
q≥0
{(aq : . . . : a0)|ai ∈ G oSp, N((aq : . . . : a0)) ≤ h},

FhB(G oSp) =
⋃
q≥0
{[aq : . . . : a0]|ai ∈ G oSp, N([aq : . . . : a0]) ≤ h},

F(h)B(G oSp) = FhB(G oSp)−Fh−1B(G oSp).

Lemma 2.4.3. The projection p(h) : F(h)E(G o Sp) → F(h)B(G o Sp) is a

trivial bundle.

Proof. To show the assertion it is sufficient to find a global section of p(h).

For every cell [aq : . . . : a0] of B(G oS0
p) where p ≥ 0 and q ≥ 0 and every
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g ∈ G the norm N satisfies

N([aqg : . . . : a0g]) = wl(aqgg
−1a−1

q−1)+. . .+wl(a1gg
−1a−1

0 ) = N([aq : . . . : a0]).

Thus, a global section s(h) : F(h)B(G oSp)→ F(h)E(G oSp) can be defined

as follows. Let x ∈ F(h)B(G oSp) that we denote by ((tk)k≥0, [aq : . . . : a0])

where (tk)k≥0 are the barycentric coordinates of x. Then a global section of

p(h) is given by s(h)(x) = ((tk)k≥0, (aq : . . . : a0)a−1
0 ).

�

Notation. We consider the geometric realization
∐
p,q

(G oS0
p)
q+1×∆p×∆q

/
∼

where ∼ is the identification with respect to the face maps d′i and d′′j of

Definition 2.2.16 and 0 ≤ q ≤ h, 0 ≤ p ≤ 2h for h = 2g +m.

Let F(h)B(G oS∗) be the space of those cells whose norm N equals h. Note

that in contrast to the stratum of Definition 2.4.2 the index of the symmetric

group is not fixed. More precisely, we consider here a whole family of wreath

products of symmetric groups.

Theorem 2.4.4. The Hilbert uniformization H(G) induces the homotopy

equivalence ∐
h=|G|(2g+m)

M(m)
g,1 (G) −→ F(h)B(G oS∗)

for a finite group G of order |G|.

Proof. The theorem holds in the case of the trivial group G = 〈e〉 by [12].

Hence, there is a homotopy equivalence between the stratum F(h)BS∗ of

symmetric groups and a disjoint union of moduli spaces of Riemann surfaces.

The centerpiece of the proof for general finite groups G is the homeomor-

phism given by the Hilbert uniformization. More precisely, we will show that∐
h=|G|(2g+m)

Pm
g,1(G) is in bijection with F(h)B(G oS∗) so that the assertion
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will follow from Theorem 2.3.7.

Let C ∈ Pm
g,1(G) with C = ((ai, bj)i,j , Σ̃) where Σ̃ = (Sq : . . . : S0) and Si =

(γi,p, . . . , γi,0;σi) for 0 ≤ i ≤ q as before. We use the inhomogeneous nota-

tion for Σ̃ in order to define a map F :
∐

h=|G|(2g+m)

Pm
g,1(G)→ F(h)B(G oS∗).

So we set Ti = Si ◦S−1
i−1. Then [Tq| . . . |T1] defines a cell in F(h)B(G oS∗) by

(F1) and (F4) so that ((ai, bj)i,j , [Tq| . . . |T1]) is an element of F(h)B(G oS∗).

This defines F for which we have to show injectivity and surjectivity.

First we show that F is injective. Using the same notation as above let

((ai, bj)i,j , [Tq| . . . |T1]) = ((a′i, b
′
j)i,j , [T

′
q| . . . |T ′1]). Then (ai, bj)i,j = (a′i, b

′
j)i,j

and [Tq| . . . |T1] = [T ′q| . . . |T ′1]. Thus, Ti = T ′i and so Si ◦ S−1
i−1 = S′i ◦ S

′−1
i−1

for all 1 ≤ i ≤ q. Because of (F2) S0 = (e, . . . , e;ωp) = S′0 so that it follows

inductively that Si = S′i for all 1 ≤ i ≤ q. Consequently, F is injective for

((ai, bj)i,j , Σ̃) = ((a′i, b
′
j)i,j , Σ̃

′).

To show the surjectivity of F let [Vq| . . . |V1] ∈ F(h)B(G oS∗). Then there is

p ≥ 0 with [Vq| . . . |V1] ∈ F(h)B(G oSp). As the theorem holds in case of the

trivial group (F1) is satisfied. Because of (F2) we choose S0 = (e, . . . , e;ωp)

where e ∈ G is the identity element. Then the formula Si = Vi ◦ Si−1 de-

fines Si ∈ G o S0
p for all 1 ≤ i ≤ q. Since Vi ∈ G o Sp it can be considered

as an element of G o S0
p fixing every element of the form (0, ξ) for ξ ∈ G.

Moreover, S0(p, ξ) = (0, ξ) for every ξ ∈ G and it follows inductively that

Si(p, ξ) = (0, σi(ξ)) for all 1 ≤ i ≤ q. It remains to show (F4). Each Vi

is of the form (hi,p, . . . , hi,1; νi) where hi,j ∈ G and νi ∈ Sp for 1 ≤ i ≤ q

and 1 ≤ j ≤ p. As G is a finite group of order |G| we think of G as a

subgroup of S|G|. Hence, we may identify Vi with an element of S|G|p for

all 1 ≤ i ≤ q. Let νi = µ
(i)
1 . . . µ

(i)
ri be the disjoint cycle decomposition of νi.

We write (m
(i)
α,1, . . . ,m

(i)
α,sα) for the cycle µ(i)

α for 1 ≤ α ≤ ri and 1 ≤ i ≤ q.

Analogously, let Vi = µ̃
(i)
1 . . . µ̃

(i)
ti

be the disjoint cycle decomposition of Vi as
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an element of S|G|p. Then µ̃
(i)
j is of the form

(m
(i),β1
α,1 , . . . ,m(i),β1

α,sα , . . . ,m
(i),βj
α,1 , . . . ,m

(i),βj
α,sα ) (2.8)

if Π(µ̃
(i)
j ) = µ

(i)
α for 1 ≤ j ≤ ti. It follows that wl(µ̃

(i)
j ) ≥ wl(µ

(i)
α ). Note

that for each cycle µ(i)
α there is a maximal number of |G| cycles µ̃(i)

j with

Π(µ̃
(i)
j ) = µ

(i)
α . Hence,

∑
1≤i≤q

wl(Vi) =
∑
i,j

wl(µ̃
(i)
j ) ≥ |G|

∑
i,α

wl(µ(i)
α ) = |G|(2g +m). (2.9)

By assumption, we have wl(V1) + . . .+ wl(Vq) = |G|(2g +m) and it follows∑
j

wl(µ̃
(i)
j ) = |G|

∑
α

wl(µ
(i)
α ). Thus, each µ̃

(i)
j has the same length as µ(i)

α

if Π(µ̃
(i)
j ) = µ

(i)
α . Otherwise, Equation (2.9) would be a strict inequality

because of the cycle form of µ̃(i)
j given in (2.8). Consequently, over each

disjoint cycle of νi of length l lie only cycles of length l of Vi.

�

Corollary 2.4.5. The following statements hold for any finite group G.

(1) The stratum F(h)B(G oS∗) is homeomorphic to a topological manifold.

(2) The stratum F(h)B(G o S∗) is homotopy equivalent to the coproduct∐
h=2g|G|

Mg,1[|G|]G.

Proof.

(1) follows from Theorem 2.3.7 and Theorem 2.4.4.

(2) follows from Theorem 2.4.4 and Lemma 2.1.4 asMg,1[|G|]G is homeo-

morphic toMg,1(G).

�
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Remark 2.4.6. Let [Tq| . . . |T1] be a cell of Parmg,1(G) in the inhomogeneous

notation and let G be a finite group of order |G|. For Ti = (δi,j ; τi) which

we consider as an element of S|G|p the condition wl(Ti) ≥ |G|wl(τi) is satis-

fied. It follows from Theorem 2.4.4 that the induced coverings are ramified if

N([Tq| . . . |T1]) is greater than |G|N([τq| . . . |τ1]). On the other hand, by def-

inition of the wreath product N([Tq| . . . |T1]) < |G|N([τq| . . . |τ1]) can never

hold. Consequently, elements of the filtration which correspond to degener-

ated cells of Parmg,1(G) can be identified with ramified coverings or coverings

of surfaces with a finite number of singularities. See Section 4.4 of [11] for

various examples how such singularities can arise in the context of the Hilbert

uniformization.

Initiated by the work [1], the filtration F(h)BG (as in Definition 2.4.2) was

studied for so-called factorable groups G in [53] in order to construct com-

plexes for the calculation of the group cohomology of G. To this end, by

means of the norm filtration, a spectral sequence was constructed which

converges to the cohomology of the group. One outstanding property of

factorable groups is that the spectral sequence collapses in the E2-term.

The groups of Theorem 2.4.4 are factorable with respect to the norm of the

semidirect product induced by the trivial norm on G and the word length

norm on the symmetric group with respect to the generating set of all trans-

positions (see Section 3.2 and 3.3 of [53]). Consequently, this theorem estab-

lishes an interesting connection between the moduli spaces of flat G-bundles

and the group cohomology of certain wreath products.

As a further consequence we obtain a large class of groups for which the

norm filtration is a topological manifold. See also Section 5 of [1] for similar

considerations.

146



2.5 H-space structure of the moduli space of flat

G-bundles

In this section we will show that the disjoint union of moduli spaces∐
g≥0
Mg,1(G) inherits an H-space structure. Further, we will consider its

homology ring which is a Pontryagin ring. To this end, we will construct a

multiplication on
∐
g≥0

Pg,1(G). For reasons of simplification we assumem = 0

for the rest of this section, that is, there are neither marked points nor punc-

tures on the surfaces. Many of the methods we apply in the following were

developed in [10].

Lemma 2.5.1. For every Lie group G there exists a continuous product

m : RG(Sg1,1)×RG(Sg2,1)→ RG(Sg1+g2,1).

Proof. The fundamental group of Sg,1 equals the fundamental group of a

closed, oriented surface Sg of genus g. It can be represented as the free group

F2g on 2g generators {ai, bi}1≤i≤g divided by the relation
∏

1≤i≤g
[ai, bi] = 1.

To define m we proceed as follows. Let Sg1,1#Sg2,1 denote the connected

sum of Sg1,1 and Sg2,1 along small disks around the dipole points. The

explicit construction of the connected sum of Sg1,1 and Sg2,1 is given below in

this section. Let {Ai, Bi}1≤i≤g1 and {A′j , B′j}1≤j≤g2 be fixed free generating

sets of π1(Sg1,1) and π1(Sg2,1) as introduced in see Section 1.1, respectively.

Then there is an induced generating set of π1(Sg1,1#Sg2,1). For this, let

hν : Sgν ,1 → Sg1,1#Sg2,1 be the natural maps from the gluing construction

for ν = 1, 2. We consider simple closed curves αi and βi in Sg1,1 whose

homotopy class equalsAi andBi for all 1 ≤ i ≤ g1, respectively. Analogously,

we denote by α′j and β
′
j simple closed curves in Sg2,1 representing A′j and B

′
j
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in the fundamental group for all 1 ≤ j ≤ g2. The set of homotopy classes

{[h1(αi)], [h1(βi)], [h2(α′j)], [h2(β′j)]} for 1 ≤ i ≤ g1 and 1 ≤ j ≤ g2 defines a

generating set of π1(Sg1,1#Sg2,1). We set

A′′k =


[h1(αi)], k = i

[h1(α′j)], k = j + g1

and B′′k =


[h1(βi)], k = i

[h1(β′j)], k = j + g1.

By the theorem of Seifert–van Kampen there exists a homomorphism

ϕ : π1(Sg1,1) ∗ π1(Sg2,1)→ π1(Sg1,1#Sg2,1)

given by

ϕ(C) =



A′′k, C = Ai and k = i

B′′k , C = Bi and k = i

A′′k, C = A′j and k = j + g1

B′′k , C = B′j and k = j + g1.

(2.10)

For every pair (ρ1, ρ2) in RG(Sg1,1)×RG(Sg2,1) we define m(ρ1, ρ2) by

m(ρ1, ρ2)(A′′k) =


ρ1(Ai), k = i

ρ2(A′j), k = j + g1,

m(ρ1, ρ2)(B′′k) =


ρ1(Bi), k = i

ρ2(B′j), k = j + g1.
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In particular, the equation

∏
k

[m(ρ1, ρ2)(A′′k),m(ρ1, ρ2)(B′′k)] =
∏
i

[ρ1(Ai), ρ1(Bi)]
∏
j

[ρ2(A′j), ρ2(B′j)] = 1

(2.11)

is satisfied as desired. Moreover, m is continuous. For this note thatRG(Sg,1)

is equipped with the quotient topology of G2g after having chosen a gener-

ating set of π1(Sg,1). On the one hand, we divide by the relation given on

the left hand side of (2.11). On the other hand, we divide out the relation

given on the right hand side of (2.11). Since the set

{(Aλ, Bλ)1≤λ≤g ∈ G2g|
∏

1≤λ≤g1

[Aλ, Bλ] = 1,
∏

g1+1≤λ≤g1+g2=g

[Aλ, Bλ] = 1}

is contained in the set {(Aλ, Bλ)1≤λ≤g ∈ G2g|
∏

1≤λ≤g
[Aλ, Bλ] = 1} the as-

sumption on the continuity follows.

�

Lemma 2.5.2. The operation m is associative.

Proof. By construction of m in Lemma 2.5.1 and after choosing appropriate

generating sets as described in the proof of Lemma 2.5.1, the associativity

of m is a consequence of the commutativity of the diagram

π1(Sa,1) ∗ π1(Sb,1) ∗ π1(Sc,1)
ϕ∗id //

id∗ϕ
��

π1(Sa,1#Sb,1) ∗ π1(Sc,1)

ϕ

��
π1(Sa,1) ∗ π1(Sb,1#Sc,1)

ϕ // π1(Sa,1#Sb,1#Sc,1)

where a, b and c are natural numbers.

�

Then the next evident lemma describes the neutral element.
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Lemma 2.5.3. The neutral element for m is defined by the single point

RG(S0,1).

�

Notation. We set RG for
∐
g≥0
RG(Sg,1) and P(G) for

∐
g≥0

Pg,1(G).

Bearing the construction idea for m in mind we will specify a product for

P(G) which is compatible with m. To simplify the notation we introduce the

following conventions where we partially follow [10]. For every C ∈ Pg,1(G),

there exists an extended PSD Y (C) with gluing functions determined by C.

On the other hand, every extended PSD Y with appropriate gluing functions

induces an element C(Y ) ∈ Pg,1(G). In the sequel, we will assume without

further remarks that Y (C) is equipped with all gluing functions (γi,j , σi)i,j .

Let {xi}0≤i≤q and {yj}0≤j≤p be the values of the critical points of u and v,

respectively and let {zi,j}0≤i≤q,0≤j≤p be the induced grid points of Y . The

numbers y+(Y ) = max
j
{yj} and y−(Y ) = min

j
{yj} denote the y-coordinate of

the highest and lowest slit end point in the plane, respectively. Analogously,

we define x+(Y ) = max
i
{xi} and x−(Y ) = min

i
{xi}. For z ∈ C denote by

Y + z the translated PSD such that the coordinates of the grid points are

given by zi,j + z while rY is the PSD whose grid points have coordinates

rzi,j for a positive real number r.

Let Y and Y ′ be two PSDs such that C = C(Y ) and C ′ = C(Y ′) are con-

tained in Pg,1(G) and Pg′,1(G), respectively. Then C = ((ai, bj), (γi,j , σi))

for 0 ≤ i ≤ q, 0 ≤ j ≤ p and C ′ = ((a′k, b
′
l), (γ

′
k,l, σ

′
k)) for 0 ≤ k ≤ q′,

0 ≤ l ≤ p′. We define a new PSD by transforming Y into Y −
√
−1(y−(Y )− 1

2)

and Y ′ into Y ′ −
√
−1(y+(Y ′) + 1

2). Then all slits of Y lie in the upper half

plane while all slits of Y ′ are contained in the lower half plane. Finally, Y ′

is moved to the right so that no slit end points of Y and Y ′ lie on the same
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levels. We obtain a new assembled extended PSD Y + Y ′. The forthcoming

figure illustrates the geometric idea of this description (see Figure 2.10).

More precisely, the barycentric coordinates (a′′α, b
′′
β) for 0 ≤ α ≤ p + p′ and

0 ≤ β ≤ q + q′ of C(Y + Y ′) are given by

a′′α =



a′α
3 , 0 ≤ α ≤ q′ − 1

a′q+a0+1

3 , α = q′

aα−q′
3 , q′ + 1 ≤ α ≤ q + q′,

b′′β =



b′β
3 , 0 ≤ β ≤ p′ − 1

b′
p′+b0+1

3 , β = p′

b′
β−p′
3 , p′ + 1 ≤ β ≤ p+ p′.

This PSD is well-defined since y+, y− and x+ are continuous and it deter-

mines an element C(Y + Y ′) in Parg+g′,1(G). We will show that C(Y + Y ′)

is nondegenerate because it is defined by two nondegenerate elements. To

this end, the new gluing functions (γ′′α,β, σ
′′
α) need to be made precise.

σ′′α(β) =



σ′α(β), 0 ≤ β < p′, 0 ≤ α′ ≤ q′

σ0(β − p′), p′ ≤ β ≤ p+ p′, 0 ≤ α′ ≤ q′

σ′q′(β), 0 ≤ β < p′, q′ ≤ α ≤ q′ + q

σα−q′(β − p′), p′ ≤ β ≤ p+ p′, q′ ≤ α ≤ q′ + q,

(2.12)
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′

Figure 2.10: Assembling two PSDs
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γ′′α,β =



γ′α,β, 0 ≤ α < q′, 0 ≤ β < p′

γ′q′,β, q′ ≤ α ≤ q′ + q, 0 ≤ β < p′

γ0,β−p′ , 0 ≤ α < q′, p′ ≤ β ≤ p′ + p

γα−q′,β−p′ , q′ ≤ α ≤ q′ + q, p′ ≤ β ≤ p′ + p.

(2.13)

Since σ′′α acts on p+ p′
0
by σi and σ′k it follows that (γ′′α,β, σ

′′
α) is an element

of (G o S0
p+p′)

q+q′+1. Condition (F4) is satisfied because the norm of T ′′

equals the sum of the norms of T and T ′ where we use T , T ′ and T ′′ for the

inhomogeneous notation of S, S′ and S′′, respectively. Moreover, (F2) holds

by Remark 2.2.10 since

γ′′0,β =


γ′0,β, 0 ≤ β < p′

γ0,β, p′ ≤ β ≤ p′ + p

 = e,

σ′′0(β) =


σ′0(β), 0 ≤ β < p′

σ0(β − p′), p′ ≤ β ≤ p+ p′.

Finally, (F3) is satisfied as

γ′′α,p+p′ =


γ0,p, 0 ≤ α < q′

γ′α−q′,p, q′ ≤ α ≤ q′ + q

 = e,

σ′′α(p+ p′) =


σ0(p), 0 ≤ α < q′

σ′α−q′(p
′), q′ ≤ α ≤ q + q′.

Consequently, C(Y + Y ′) ∈ Pg+g′,1(G) and we write C(Y ) + C(Y ′) for

C(Y + Y ′). Thus, + is well-defined for any two elements of P(G). For a
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geometric illustration of the construction of the gluing functions consider

Figure 2.11.

Motivated by the previous construction we introduce the following definition.

Definition 2.5.4. For every Lie group G and g, g′ ≥ 0 define

µ : Pg,1(G)×Pg′,1(G)→ Pg+g′,1(G),

µ : (C,C ′) 7→ C + C ′.

In view of the homeomorphism given by the Hilbert uniformization we may

interpret the operation of 2.5.4 geometrically in terms of flat G-bundles over

Riemann surfaces. As this was carried out for the trivial group G = 〈e〉 in

Chapter 1 of [10] we will focus on the flat G-bundle structure. To simplify

technical details we assume that G is connected.

Let C ∈ Pg,1(G) and C ′ ∈ Pg′,1(G) such that G(G)(C) = [E, π,X,A, u]

and G(G)(C ′) = [E′, π′, X ′, A′, u′] are elements of Hg,1(G) and Hg′,1(G),

respectively. As was discussed in Section 2.2, there are holomorphic functions

w = u+
√
−1v and w′ = u′+

√
−1v′ whose images are the parallel slit domains

associated with X and X ′, respectively. The surfaces X and X ′ are glued

together along two disks D and D′ which are defined by v < y−(Y )− 1
2 and

v′ > y+(Y ′) + 1
2 where Y = Y (C) and Y ′ = Y (C ′). The resulting surface

X ′′ is of genus g + g′ with a dipole (Q′′, χ′′) which is determined by (Q,χ)

and (Q′, χ′). See Chapter 1 of [10] for all details. Figure 2.12 visualizes this

construction.

Since D and D′ are simply connected it follows that the restrictions of the

bundles E and E′ to D and D′ are trivial. There exists an isomorphism

E|D → E′|D′ by means of which the bundles can be glued together. The

equivalence class of the resulting bundle does not depend on the isomorphism

since we have fixed base points for E and E′. More precisely, the trivial-

izations of E|D and E′|D′ are determined by the choice of base points. To
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Figure 2.11: Assembling two PSDs with gluing functions
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v = y−(Y )− 1
2

v′ = y+(Y ′) + 1
2

X

χ

X ′

χ′

Figure 2.12: Identification along two boundary disks

see this, we describe the construction only for the bundle E since it works

for E′ by analogy. Denote by X0 the complement X − {Q} and let D0 be

D − {Q}. The restricted bundle E|X0 is trivial. This follows from the CW-

structure of X and that G is a connected Lie group. Thus, there are no

obstructions against the triviality of the bundle (see Section 1.2). Any fixed

trivializations of E|D and E|X0 define a transition function η : D0 → G. Let

ς be a generator of π1(D0) and let η∗ be the map induced by η on homotopy

groups. Then η∗(ς) ∈ π1(G) is independent of the trivialization of E|D and

E|X0 for the following reason. Changing the trivializations we have maps

h1 : D → G and h2 : X0 → G so that η transforms into the transition func-

tion η′ = h−1
2 ηh1, that is, η′(x) = h−1

2 (x)η(x)h1(x) in G for all x ∈ D0. The

map h1|D0 is homotopic to the constant map equal to the identity element

e ∈ G since it extends to a simply connected space. Moreover, the same

holds for h′2 = h2|D0 since π1(D0) is in the commutator subgroup of π1(X0)

and π1(G) is abelian. Consequently, h′2∗(ς) is trivial. Hence, η′ is homotopic

to η. Finally, the extension of every such transition function η to Q is defined
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by the choice of p0. As a consequence, we have induced trivializations which

determine the equivalence class of the common glued bundle. In order to

prescribe an atlas and a flat connection on this resulting bundle we apply

the following more general construction.

Let T1 and T2 be two compact manifolds with intersection T ′ = T1 ∩ T2

and principal G-bundles pi : Pi → Ti for i = 1, 2 such that there is an

isomorphism ψ : P1|T ′ → P2|T ′ . Let P1∪̇P2

/
∼=: P1 ∪ψ P2 be defined so

that ∼ is the identification of every y1 ∈ P1|T ′ with ψ(y1) ∈ P2|T ′ . Then

p : P1 ∪ψ P2 → T1 ∪T ′ T2 =: T is a principal G-bundle. For this we have

to show that p is locally trivial. First note, that p is locally trivial for the

bundle restricted to T − T ′ as

P1 ∪ψ P2|T−T ′ P1|T1−T ′∪̇P2|T2−T ′
p1∪̇p2 // T − T ′.

Let x ∈ T ′ and Z1 be a closed, simply connected neighborhood of x in T1.

Then p1|Z1 is trivial and so there exists an isomorphism θ1 : P1|Z1 → Z1×G.

We set θ′1 = θ1|Z1∩T ′ and θ
′
2 = ψ ◦ θ′1. Since ψ is an isomorphism there is a

closed, simply connected neighborhood Z2 of x in T2 with an isomorphism

θ2 : P2|Z2 → Z2 ×G such that θ2|Z2∩T ′ = θ′2. Consequently, θ1 ∪ψ θ2 defines

a local isomorphism on Z1 ∪Z2 so that p is locally trivial. The isomorphism

class of P1 ∪ψ P2 depends only on the homotopy class of ψ.

As we have seen above there is an isomorphism E|D → E′D′ by means of the

trivializations at the base points. We obtain a principal G-bundle E′′ over

X ′′ from this construction. Moreover, the restricted connections A and A′ are

trivial on E|D and E′|D′ by 1.1.14 and so they agree locally. According to the

characterization given by Theorem 1.1.8 the connection forms A and A′ fit to

a global connection A′′ on E′′. The corresponding holonomy representation
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Hol(A′′) is exactly the sum of Hol(A) and Hol(A′) in the sense of Definition

2.5.1.

Lemma 2.5.5. The operation µ is homotopy associative.

Proof. Let Ci ∈ Pgi,1(G) and let Yi = Y (Ci) for i = 1, 2, 3. Then the

extended PSD Y1 + (Y2 + Y3) is homotopic to (Y1 + Y2) + Y3 since it follows

from Equations (2.12) and (2.13) that the gluing functions of (Y1 + Y2) + Y3

depend only on the order of implantation of each PSD into the complex

plane. The same holds for the barycentric coordinates of the associated PSM.

Hence, the gluing functions and coordinates of the grid of (Y1 +Y2) +Y3 and

of Y1 + (Y2 + Y3) are equal to the gluing functions and coordinates of the

grid of Y1 + Y2 + Y3.

�

Remark 2.5.6. A neutral element for µ is given by the single element of

P0,1(G) which consists of the empty configuration with no gluing functions

for the fiber (see also 2.5.3). We denote this element by [∅] in analogy with

Section 1.1 of [10].

The next corollary is implied by Lemma 2.5.5 and Remark 2.5.6.

Corollary 2.5.7. The space P(G) is a homotopy associative disconnected

H-space with a homotopy neutral element.

Corollary 2.5.8. Let R be a commutative ring with unit. Then µ induces

on the homology H∗(P(G);R) of P(G) with R-coefficients a multiplication

which is defined by the composition

H∗(P(G))⊗H∗(P(G))
× // H∗(P(G)×P(G))

µ∗ // H∗(P(G)) (2.14)
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where H∗(−;R) = H∗(−), × denotes the exterior homology product and µ∗

the map induced by µ on homology.

In view of Corollary 2.5.7, H∗(P(G);R) is an associative algebra over R with

neutral element. The multiplication defined in (2.14) is called the Pontryagin

product. In the next step, we will consider a stabilization operation for the

spaces Pg,1(G).

Notation. Let Y ∗ be the extended PSD given by the following data. The

coordinates of the slit ends are z∗s =
√
−1s for 1 ≤ s ≤ 4, τ∗1 = (1, 3)(2, 4)

and γr,s = e for all 0 ≤ r ≤ 1 and 0 ≤ s ≤ 4. So Y ∗ represents the trivial

flat G-bundle over the Euclidean torus and we set C∗ = C(Y ∗).

Definition 2.5.9. Let σ : Pg,1(G) → Pg+1,1(G) be the map defined by

σ(C) = µ(C,C∗). Then we define P∞(G) = lim
σ

Pg,1(G).

Proposition 2.5.10. The following maps are homotopic.

(1) µ ◦ (σ × id) ' σ ◦ µ.

(2) µ ◦ (id × σ) ' σ ◦ µ.

(3) µ ◦ (σ × σ) ' σ2 ◦ µ.

Proof. First we introduce a meaningful notion of moving some C ∈ Pg,1(G)

around C∗ by moving the respective extended PSDs. We will make this

notion precise shortly. Using then the homotopy associativity of µ shown in

Lemma 2.5.2 we will obtain homotopies as stated in (1)-(3). We write as

usually C = ((ai, bj)i,j , Σ̃) with Σ̃ = (Sq : . . . : S0) and Si = (γi,p, . . . , γi,0;σi)

for Si ∈ G oS0
p where 0 ≤ i ≤ q and 0 ≤ j ≤ p. The barycentric coordinates

(ai, bj)i,j uniquely determine the slit end points zj for 1 ≤ j ≤ p of Ŷ (C).

Here Ŷ (C) is the region which was constructed in Proposition 2.2.12 from

Y (C). By definition of C∗, we have σ∗1 = (0, 3, 2, 1, 4) for σ∗1 = τ∗1σ0 where
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σ0 = ω4.

Figuratively speaking, we would like to move the PSD Ŷ = Ŷ (C) around

Ŷ ∗ = Ŷ (C∗). To this end, let us introduce the center of Ŷ by

c(Ŷ ) =
1

2
(x+(Ŷ )− x−(Ŷ )) +

i

2
(y+(Ŷ )− y−(Ŷ )).

Then we say that Ŷ is moved along a path ω : I → C if ω(0) = c(Ŷ ) and

there is a family of extended PSDs (Ŷt)t∈I with Ŷ0 = Ŷ and c(Ŷt) = ωt. By

moving the center of Ŷ in the plane the end points of the slits are moved

appropriately. More precisely, each slit end point zj of Ŷ is moved along

θj ◦ ω for an appropriate translation θj : C → C with 1 ≤ j ≤ p. Since the

gluing functions stay fixed the notion of moving a PSD is meaningful.

Let ω : I → C be a continuous closed simple curve through c(Ŷ ) that

encloses c(Ŷ ∗) (see Figure 2.13). We will study the reparameterization of

the gluing functions of Ŷ when it is moved around Ŷ ∗ along the path ω.

For an illustration of the reparameterization of the gluing functions σi for

0 ≤ i ≤ q consider Figure 3.3.4 of [10]. Exact calculations were already

executed in Sections 3.4 and 3.5 of [10] for G being the trivial group. For

this reason, we will focus on the reparameterization of the gluing functions

of the fiber γi,j ∈ G for 0 ≤ i ≤ q and 0 ≤ j ≤ p. For the geometric idea see

Figure 2.13.

The parallel slit domains are indicated as rectangles of infinite length. Each

such rectangle marks the region where all slits are contained. We denote by

Ri,j the rectangles of Y (C) for 0 ≤ i ≤ q and 0 ≤ j ≤ p and we set R∗r,s

for the rectangles of Y ∗ where 0 ≤ r ≤ 1 and 0 ≤ s ≤ 4. Now let us move

Ŷ along ω as depicted in Figure 2.13. We assume that the highest slit of Ŷ

lies below the highest slit of Ŷ ∗ as shown in the figure. This assumption is
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Ŷ

Ŷ ∗
c(Ŷ ∗)

c(Ŷ )

ω

x

y

Figure 2.13: Moving Ŷ around Ŷ ∗

just made to simplify the technicalities of the proof. In fact, it will become

evident how to change the calculations if the highest slit of Ŷ lies above the

highest slit of Ŷ ∗. In this case, we have to describe how Ŷ moves along a

path around Ŷ ∗ having the opposite orientation as ω.

By assumption, there is a family (Ŷt)t∈I with Ŷ = Ŷ0 and c(Ŷt) = ω(t).

Let s′ ≤ 4 be the smallest number such that there is some t ∈ I so that Ŷt

intersects rectangles R∗r,s for all s ≤ s′ and some r ≤ 1. If Ŷ ∗ and Ŷ intersect

nontrivially then t = 0. When Ŷ moves along ω then the upper sides of Ri,p

pass the upper sides of R∗r,s′ for some i ≤ q and r ≤ 1. Then all gluing

functions γi,j do not change except possibly γi,σi(p). More precisely, γi,σi(p)

is transformed to (γ∗r,s′)
−1γi,σi(p) if the upper side of Ri,p intersects the upper

side of R∗r,s′ . But γ∗r,s′ = e by definition so that (γ∗r,s′)
−1γi,σi(p) = γi,σi(p).

Now we apply this argument inductively to all other rectangles Ri,j and

gluing functions γi,j of Ŷ for 0 ≤ i ≤ q and 0 ≤ j ≤ p − 1. Hence, we may

deduce that the gluing functions of the fiber for Ŷt are independent of t ∈ I.
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More precisely, they are equal to (γi,j)i,j . We see that there is a homotopy

F : Pg,1(G)×I → Pg+1,1(G) such that F0 = µ(C∗, ·) and F1 = µ(·, C∗). This

gives the desired homotopies of the proposition as follows. Let C ∈ Pg,1(G)

and let C ′ ∈ Pg′,1(G) then we have

(1) µ ◦ (σ × id)(C,C ′) = µ(σ(C), C ′) = µ(µ(C,C∗), C ′)

(ASS)7→ µ(C, µ(C∗, C ′)) 7→ µ(C, µ(C ′, C∗))

(ASS)7→ µ(µ(C,C ′), C∗) = σ ◦ µ(C,C ′).

(2) µ ◦ (id × σ)(C,C ′) = µ(C, σ(C ′)) = µ(C, µ(C ′, C∗))

(ASS)7→ µ(µ(C,C ′), C∗) = σ ◦ µ(C,C ′).

(3) µ ◦ (σ × σ)(C,C ′) = µ(µ(C,C∗), µ(C ′, C∗))
(ASS)7→ µ(µ(µ(C,C∗), C ′), C∗)

= σ ◦ µ(µ(C,C∗), C ′)
(ASS)7→ σ ◦ µ(C, µ(C∗, C ′))

7→ σ ◦ µ(C, µ(C ′, C∗))
(ASS)7→ σ ◦ µ(µ(C,C ′), C∗)

= σ2 ◦ µ(C,C ′).

Here (ASS) means that we apply the associativity of Lemma 2.5.2 while

7→ without any caption is given by the homotopy F which was constructed

above.

�

Corollary 2.5.11. The space P∞(G) is an H-space.

Proof. Using the multiplication µ and Proposition 2.5.10 it follows that there

exists a product µ∞ : P∞(G)×P∞(G)→ P∞(G). The homotopy associa-

tivity of µ∞ is a consequence of Lemma 2.5.2 and Proposition 2.5.10. The

neutral element is the infinite limit of the single element in P0,1(G).

�
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Corollary 2.5.12. Let R be a commutative ring with unit. Then µ∞ induces

on the homology H∗(P∞(G);R) of P∞(G) with R-coefficients a multiplica-

tion which is defined by the composition

H∗(P∞(G))⊗H∗(P∞(G))
× // H∗(P∞(G)×P∞(G))

µ∞,∗ // H∗(P∞(G))

where H∗(−;R) = H∗(−), × denotes the exterior homology product and µ∞,∗

the map induced by µ∞ on homology.
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Chapter 3

Stable moduli spaces of flat

G-bundles

3.1 Stabilization of the moduli space of flat G-

bundles

In this section we will analyze the homology of P∞(G) which serves as a

model for the stable moduli space of flat G-bundles. To this end, we consider

the spaces Sg,n,∂(BG) which were introduced in [18]. These are defined by

continuous maps from surfaces with certain boundary conditions to BG ,

the so-called background space. The homology of Sg,n,∂(BG) stabilizes for

g >> 0 in the same vein as Harer stability, see [18] and [19]. For this reason,

these spaces are more convenient for the questions we address in this section

than the space of parallel slit domains which we considered in the previous

chapter. The spaces Sg,n,∂(BG) are defined for oriented, connected, compact

surfaces of genus g ≥ 0 with n ≥ 0 boundary components. The relationship

between surfaces with boundary components in contrast to surfaces with

dipole points was made precise in Section 1.5. In fact, we will see that the
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moduli space of flat, pointed G-bundles over a Riemann surface of genus

g with one boundary component and certain fixed boundary conditions is

homotopy equivalent to the moduli space of flat, pointed G-bundles over a

Riemann surface of genus g with one dipole point. In the first part of this

section we will relate our work to other developments on the parameterization

question of flatG-bundles over Riemann surfaces. The second part is devoted

to an explicit construction of the Dyer–Lashof operations of P∞(G).

We assume for the rest of this section that G is a connected and compact

Lie group if not specified otherwise.

Definition 3.1.1 ([18]). Let G be a connected and compact Lie group and

let λ :
∐
n
S1 → BG be a continuous map. The space Sg,n,λ(BG) consists of

orientation preserving diffeomorphism classes of quadruples (F, (a, b), ϕ, f)

where (a, b) ∈ R2 with a ≤ b and F is a smooth, oriented surface of topo-

logical type Fg,n embedded neatly in R∞ × [a, b] such that its boundary

∂F ⊆ R∞ × {a} ∪R∞ × {b}. Further, ϕ :
∐
n
S1 → ∂F is a parameterization

(an orientation preserving diffeomorphism) of the boundary and f : F → BG

is a continuous map with f |∂F ◦ϕ = λ. We denote an element of Sg,n,λ(BG)

by [F, (a, b), ϕ, f ].

For the definition of a neat embedding we suggest Section 1.4 of [31]. If the

boundary of the surface F is not empty then we set ∂inF for ∂F ∩(R∞×{a})

and ∂outF for the boundary components ∂F ∩ (R∞×{b}). Further, the con-

nected components of ∂F are labeled by ∂0F, . . . , ∂n−1F such that ∂0F is

contained in ∂inF . In Definition 3.1.1 the boundary components admit two

orientations. Indeed, one is induced by the orientation of the surface while

the second is given by the parameterization ϕ. These two orientations agree

on ∂outF and disagree on ∂inF .

The topology of Sg,n,λ(BG) is given by the following description. Let X be a
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fixed surface of genus g with n boundary components and let η :
∐
n
S1 → ∂X

be a fixed parameterization of the boundary of X. The space E(X,R∞) of

embeddings of X into R∞ × [a, b] (cf. Definition 3.1.1) equipped with the

compact-open topology is contractible (see e.g. Section 15 of [45] for a proof).

Moreover, E(X,R∞) possesses a free action of Diff ∂(X) by composition.

Here we denote by Diff ∂(X) the group of orientation preserving diffeomor-

phisms of X fixing the boundary components pointwise. Let Mapλ(X,BG)

be the space of continuous maps h : X → BG satisfying h|∂X ◦ η = λ

equipped with the compact-open topology. The group Diff ∂(X) acts by

composition on Mapλ(X,BG). We see that Sg,n,λ(BG) is as a set in one-

to-one correspondence with R× R+
0 × E(Fg,n,R∞)×Diff g,n

Mapλ(Fg,n, BG)

by mapping a class [X, (a, b), η, h] to ((a, b − a), [X, η, h]). So Sg,n,λ(BG)

will be topologized by means of this bijection. Since the action of Diff g,n

on E(Fg,n,R∞) is free the fiber product EDiff g,n×Diff g,n
Mapλ(Fg,n, BG) is

homotopy equivalent to Sg,n,λ(BG).

We are interested in studying the homotopy type of Sg,n,λ(BG). To this

end, let Sg,n(BG) be the moduli space which is analogously defined as

Sg,n,λ(BG) but where the boundary conditions are omitted. Let LM be

the free loop space of a space M , that is, LM = Map(S1,M). The fiber of

the evaluation map (restriction to the boundary) Sg,n(BG)→ (LBG)n over

λ = (λ0, . . . , λn−1) is Sg,n,λ(BG) for every λ ∈ (LBG)n. As G is connected

by assumption, its classifying space is simply connected and LBG is con-

nected. Consequently, the homotopy type of Sg,n,λ(BG) does not depend

on λ ∈ (LBG)n. We denote by Sg,n,∂(BG) the space Sg,n,λ(BG) for λ the

constant loops equal to the base point p0 ∈ BG . Then Sg,n,∂(BG) is homo-

topy equivalent to EDiff g,n×Diff g,n
Map∂(Fg,n,BG) where Map∂(Fg,n,BG)

is the space of all continuous maps f : Fg,n → BG such that f |∂Fg,n = p0. It
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is equipped with the compact-open topology.

Definition 3.1.2. For a compact surface X let Map∗(X,BG) denote the

mapping space of pointed maps from X to BG . Then the classifying map

B : RG(X) →Map∗(Bπ1(X),BG) is defined as the adjoint of the quotient

map of RG(X)×
∐
α≥0

π1(X)α ×∆α →
∐
α≥0

Gα ×∆α.

Note that the classifying map is continuous by definition of the compact-open

topology on RG(X). For further details on adjoint maps and the geometric

realization see Section 16 of [41].

Let G be a compact, connected and semisimple Lie group and g ≥ 2. Then

there exists a map V(G) : Mg,1(G) → Sg,1(BG) which is k-connected for

some k = k(g,G). It is defined by the classifying map B from Definition

3.1.2 in conjunction with Lemma 1.2.8:

Mg,1(G)
V(G) //

'
��

Sg,1(BG)

'
��

EDiff g,1 ×Diff g,1
RG(Sg,1) // EDiff g,1 ×Diff g,1

Map∗(Bπ1(Sg,1),BG).

(3.1)

The number k was first introduced in [5] and made precise in [17]. We will

examine this map in more detail in the next section using methods from [5].

Moreover, the preimage of Sg,1,∂(BG) in Mg,1(G) under V(G) is denoted

by Mg,1,∂(G). Using the homotopy equivalence (3) in Theorem 2.3.7 we

will analogously consider the component Pg,1,∂(G) of Pg,1(G), that is, the

preimage ofMg,1,∂(G) under p(G) ◦ H(G).

The connected components ofMg,1(G) and Sg,1(BG) are in one-to-one cor-

respondence with π1(G). This statement was discussed in Section 1.2 for

π0(Mg,1(G)). To see this for Sg,1(BG), let [X, (a, b), ϕ, f ] be an element of

Sg,1(BG). We denote by [X] the orientation class of the surface X. Then
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f∗([X]) ∈ H2(BG) where f∗ is the map on homology induced by f . As BG

is simply connected there is an isomorphism H2(BG) ∼= π1(G) such that

f∗([X]) can be considered as an element of π1(G). For further details see

[17]. Note that it was shown in Section 6 of [38] that the classifying map

respects these connected components so that B induces a bijection between

π0(Mg,1(G)) and π0(Sg,1(BG)). See also Section 2.2 of [17] on this point.

Next we will examine the stable homotopy type of Sg,1,∂(BG). In [18] and

[19] it was shown that the following maps induce homological stability for

Sg,1,∂(BG) if g >> 0.

Definition 3.1.3. Let G be a connected and compact Lie group. We fix a

base point p0 ∈ BG . Moreover, for n ≥ 1 let [X, (a, b), ϕ, f ] ∈ Sg,n,∂(BG) be

given.

(SM1) Let T ⊆ R3 × [0, 1] ⊆ R∞ × [0, 1] be a torus with two boundary

components ∂inT = ∂0T and ∂outT = ∂1T . By Definition 3.1.1, X is

embedded in R∞ × [a, b] for a closed interval [a, b]. We translate T so

that it is embedded in R∞× [a−1, a]. Then we identify ∂1T with ∂0X

by means of the fixed parameterization. For each boundary component

of ∂inX other than ∂0X we glue in a cylinder S1 × [a− 1, a] using the

given parameterization. The resulting surface is of genus g + 1 with n

boundary components and is embedded in R∞ × [a− 1, b]. The given

parameterization of ∂X induces a parameterization of the boundary

of the resulting surface. The map f : X → BG can be continuously

extended to T and the cylinders by the constant mapping to the base

point which we denote by p0. Hence there is a map

TG : Sg,n,∂(BG) −→ Sg+1,n,∂(BG).
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(SM2) Let P ⊆ R3 × [0, 1] ⊆ R∞ × [0, 1] be a sphere with three boundary

components such that ∂inP = ∂0P ∪ ∂1P and ∂outP = ∂2P . We

translate P so that it is embedded in R∞× [a−1, a]. Then we identify

∂2P with ∂0X by means of the fixed parameterization. For the other

boundary components of ∂inX we proceed as in (SM1). Consequently,

as in (SM1) there is a map

PG : Sg,n,∂(BG) −→ Sg,n+1,∂(BG).

(SM3) Let D be a disk D2 embedded in R∞× [0, 2] such that ∂D ∈ R∞×{0}.

We translate D so that it is embedded in R∞ × [b, b + 2]. Then we

identify ∂n−1X with ∂D by means of the fixed parameterization. For all

other boundary components of ∂outX we glue in a cylinder S1×[b, b+1].

Analogously to (SM1) and (SM2) there exists a map

DG : Sg,n,∂(BG) −→ Sg,n−1,∂(BG).

Note that the maps of Definition 3.1.3 are continuous. To this end, we

assumed in Definition 3.1.1 that the surfaces are neatly embedded in the

Euclidean space. Then we have collars of the surfaces’ boundary components

to reglue them along the boundary as described in (SM1)-(SM3). For details

on the collar construction see Section 8.2 of [31]. For the maps of Definition

3.1.3, the following central theorem was shown in [18] and [19].

Theorem 3.1.4. The induced maps on homology Hq(TG), Hq(SG) and

Hq(DG) are isomorphisms for 2q + 4 ≤ g.

This theorem which is a generalization of Harer’s stability theorem is

quite surprising. On the one hand side, we previously mentioned that
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EDiff g,n ×Diff g,n
Map∂(Fg,n,BG) is homotopy equivalent to Sg,n,∂(BG). So

we have the fibration Map∂(Fg,n,BG) → Sg,n,∂(BG) → BDiff g,n. The ho-

mology of BDiff g,n
∼= BΓg,n is independent of g and n for g >> 0. On the

other hand, this does not hold for the homology of Map∂(Fg,n,BG). The

reason for this ambiguity is that the mapping class group acts nontrivially

on the homology of Map∂(Fg,n,BG). For further details we refer to [18]

and [19]. Now let S∞,n,∂(BG) = hocolim
TG

Sg,n,∂(BG) be the homotopy limit

defined by TG.

Theorem 3.1.5 ([18]). Let G be a connected and compact Lie group, then

there is a homology equivalence Z × S∞,n,∂(BG) → Ω∞(CP∞−1 ∧ BG+) on

integral homology.

The spectrum CP∞−1 is the Madsen–Weiss spectrum (see [40] for its construc-

tion). Using the map V(G) :Mg,1(G)→ Sg,1(BG) and Theorem 3.1.5 from

[18] and [19] we obtain the following corollary for P∞,∂(G) = hocolim
σ

Pg,1,∂ .

Corollary 3.1.6. Let G be a connected, compact and semisimple Lie group.

Then Hq(Pg,1(G)) does not depend on g for 2q + 4 ≤ g. Moreover, there

is a homology equivalence Z × P∞,∂(G) → Ω∞(CP∞−1 ∧ BG+) on integral

homology.

Proof. Applying Theorem 3.1.5 it remains to show that the diagram

Pg,1,∂(G)
U(G) //

σ

��

Mg,1,∂(G)
V(G) //

σ̂
��

Sg,1,∂(BG)

TG
��

Pg+1,1,∂(G)
U(G) //Mg+1,1,∂(G)

V(G) // Sg+1,1,∂(G)

(3.2)

commutes up to homotopy. Here we denote by U(G) the composition

Pg,1,∂(G)
H(G)−→ Hg,1,∂(G)

p(G)−→Mg,1,∂(G).

170



The map σ̂ is defined by gluing the trivial flat G-bundle over the torus

(ε, πε, T, Aε) to each representative (E, π,X,A) of an element fromMg,1(G).

This kind of gluing construction was carried out in Section 2.5. Finally, the

space Hg,1,∂(G) is the image H(G)(Pg,1,∂(G)). For C ∈ Pg,1,∂(G) we have

σ̂ ◦ U(G)(C) = σ̂ ◦ p(G) ◦ H(G)(C) = σ̂ ◦ p(G)([E, π,X,A, u])

= σ̂([E, π,X,A]) = [E#ε, π̂,X#T, Â]

where π̂ is the bundle projection E#ε → X#T and Â is the reglued flat

connection form from A and Aε. On the other hand,

U(G)◦σ(C) = U(G)(µ(C,C∗)) = p(G)◦H(G)(µ(C,C∗)) = [E#ε, π̂,X#T, Â]

by the gluing construction of Section 2.5. It follows that the left square of

Diagram (3.2) commutes.

Next we show the commutativity of the right square up to homotopy. Let

[E, π,X,A] be fromMg,1(G) and let ρA be the holonomy representation to

A. We denote by f : X → BG the classifying map of the principal bundle

π : E → X. Then V(G) ◦ σ̂([E, π,X,A]) = V(G)([E#ε, π̂,X#T, Â]) and

ρÂ = m(ρA, ρ0). So V(G)([E#ε, π̂,X#T, Â]) = [X#T, (0, b′), f ′, ϕ′] where

b′ > 0 is determined by the conformal structure of X (by definition of V(G)

in Equation (3.1)). Moreover, f ′ : X#T → BG is the classifying map of the

bundle E#ε. Since ε is trivial the restriction of f ′ to T is homotopic to the

constant value p0 ∈ BG and so f ′ ' f#p0. Further, ϕ′ is a parameterization

of the boundary given by f ′|∂(X#T ) ◦ ϕ′ = p0. On the other hand,

TG ◦ V(G)([E, π,X,A]) = TG([X, (0, b), f, ϕ]) = [X#T, (−1, b), f ′, ϕ′]
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where f ′ ' f#p0 and ϕ is given by the equation f |∂(X#T ) ◦ ϕ = p0. More-

over, ϕ′ is determined by ϕ as described in (SM1). We have b = b′ − 1

that is determined by the conformal structure of X. Thus, the right square

commutes up to homotopy.

�

Theorem 3.1.5 of [18] shows that S∞,n,∂(BG) is homology equivalent to an

infinite loop space. The proof applies methods which were developed in [50].

Next, we will prove using different techniques that the group completion of

S∞,n,∂(BG) is weakly homotopy equivalent to an infinite loop space. One

might expect that the two loop space structures agree since this was verified

in [54] for G being the trivial group. The proof could carry over to the general

case. The advantage of this second method is the natural explicit construc-

tion of the Dyer–Lashof operations. The main idea which was introduced

in [51] is that the operad of Riemann surfaces (see Example 3.1.9) detects

infinite loop spaces. More precisely, in analogy with the recognition principle

of [42], for a group completion of a space to be an infinite loop space it has

to be checked that the operad of Riemann surfacesM (see Example 3.1.9)

acts upon it. To this purpose, we introduce briefly the theory of topological

monoids. A detailed discussion of this topic is for instance contained in [2].

LetM be a topological monoid for which we always assume that it is a strictly

associative CW-complex with a two-sided strict unit. Its classifying space

BM is defined as the geometric realization of the bar construction associated

with M . See for instance Section 2.5 of [2] for more details. There exists

an inclusion from the suspension of M into the classifying space BM whose

adjoint defines a map j : M → ΩBM . Further, j is a homotopy equivalence

if π0(M) is a group. For example, this condition is satisfied for every topo-

logical group. We call a map f : M → N between two topological monoids a
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group completion if π0(f) is an algebraic completion, that is, π0(N) is abelian

and universal with respect to maps from π0(M) to homotopy groups given by

morphisms of monoids. Moreover, f∗ : H∗(M) → H∗(N) is the localization

of H∗(M) at π0(M). The monoid N is characterized uniquely up to homo-

topy (see Section 3.2 of [2]). We denote it by GM and call it also the group

completion of M . This notation is motivated by the fact that every discrete

monoid possesses a group completion, the so-called Grothendieck construc-

tion. It can be constructed as the quotient of the free group on M and

the subgroup generated by elements m1 ∗m2 ∗m−1
3 such that m1m2 = m3.

Here ∗ denotes the concatenation in the free group on M . For instance,

GN = Z. Morally, ΩBM can be considered as a topological generalization

of the algebraic Grothendieck construction since for topological monoids we

have π0(ΩBM ) = Gπ0(M).

Now let M =
∐
α
Mα be a disconnected monoid with connected components

Mα. Note that ΩBM splits as π0(ΩBM ) × Ω0BM where Ω0 denotes the

component of the constant loop. The induced map j∗ : π0(M)→ π0(ΩBM )

defines a map Mα → ΩBM j∗(α). Multiplication by α in π0(M) defines a

map α : Mβ →Mαβ . Hence, we obtain the commutative diagram

H∗(Mβ) //

��

H∗(Mαβ)

��
H∗(ΩBM j∗(β)) // H∗(ΩBM j∗(αβ)).

For the homotopy colimit M∞ of {Mα}α∈π0(M) the following theorem from

[44] is satisfied.

Theorem 3.1.7 ([44]). Let M be a topological monoid for which left multi-

plication by any element defines an isomorphism on H∗(M∞). Then there is
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an isomorphism hocolim
α∈π0(M)

H∗(Mα)→ H∗(Ω0BM ).

Assume that M =
∐
n≥0

Mn is the disjoint union of connected components

labeled by n ≥ 0 and that multiplication with an element fromM1 takesMn

toMn+1 as above. LetM∞ be the homotopy colimit with respect to n→∞.

As π0(M) = N and π0(ΩBM ) is a group completion, the components of ΩBM

are indexed by Z. By the previous theorem M∞ is homology equivalent to

Ω0BM . Consequently, there is a homology equivalence Z×M∞ → ΩBM .

Note that in general two homology equivalent spaces are not automatically

homotopy equivalent. On the other hand, by means of the so-called plus

construction due to Quillen the homotopy groups of Z×M∞ and ΩBM can

be related. The plus construction can be applied to topological spaces Y if

its fundamental group possesses a perfect normal subgroup P . The latter

determines a number of 2-cells and 3-cells to be glued into Y from which

a space Y + can be constructed such that there is a homology equivalence

Y → Y + and π1(Y +) is abelian. The topological space Y + is called the plus

construction of Y .

After this foundational material on monoids we will give a brief introduction

on operads, for these are important objects to study stability phenomena in

algebraic topology.

Definition 3.1.8. An operad O is a sequence of topological spaces {On}n≥0

with distinguished elements 1 ∈ O1 and ∗ ∈ O0 such that for every n ≥ 0

there is a right action of the symmetric group Sn on On. Moreover, for all

k ≥ 1, jα ≥ 0 and 1 ≤ α ≤ k there exists a product map

γ : Ok ×Oj1 × . . .×Ojk −→ Oj1+...+jk

such that the following properties are satisfied.
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(O1) For all k ≥ 1, 1 ≤ α ≤ k, a ∈ Ok, bα ∈ Oα and ciβ ∈ Oiβ we have

γ(γ(a; b1, . . . , bk), c1, . . . , cj) = γ(a; d1, . . . , dk)

where j = j1 + . . . + jk, dα = γ(bα; cj1+...+jα−1+1, . . . , cj1+...+jα) and

dα = cα if jα = 0.

(O2) For all a ∈ Ok and b ∈ Oj we have γ(1; b) = b and γ(a;1, . . . ,1︸ ︷︷ ︸
k−fold

) = a.

(O3) For all a ∈ Ok, bα ∈ Ojα , σ ∈ Sk and τα ∈ Sjα we have

γ(c.σ; b1, . . . , bk) = γ(c; bσ−1(1), . . . , bσ−1(k)).σ(j1, . . . , jk)

γ(c; b1.τ1, . . . , bk.τk) = γ(c; b1, . . . , bk).(τ1 ⊕ . . .⊕ τk),

where σ(j1, . . . , jk) ∈ Sj1+...+jk permutes j1 + . . . + jk blocks of the

size jα by means of σ, and τ1 ⊕ . . . ⊕ τk corresponds to the image of

(τ1, . . . , τk) under the natural inclusion Sj1 × . . .×Sjk → Sj1+...+jk .

An important example of an operad is the operad of Riemann surfaces M

which we present next. It will be used to detect infinite loop spaces. We just

sketch the construction ofM briefly. We suggest [51] for all further details.

Example 3.1.9 ([51]). Analogous to Definition 3.1.3 we pick three surfaces,

that is, the torus T with two boundary components, a pair-of-pants P̂ and a

disc D. For T , P̂ and D we fix collars of the boundary components. More-

over, we assume that ∂inT as well as ∂outT are nonempty and that ∂out P̂

consists of two components. We construct a connected groupoid Eg,n,1 (a cat-

egory where every morphism is invertible) as follows. The objects of Eg,n,1

are pairs (F, η) where F is a surface of topological type Fg,n+1 with fixed

collars of its boundary and η is a parameterization of ∂F which agrees with

the collars on the boundary. Further, F is manufactured from T , P̂ and D
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by gluing the boundary ∂0 of one of these surfaces to ∂out of another of these

surfaces using the given parameterizations. Note that then ∂inF = ∂0F

and ∂outF consists of ∂1F, . . . , ∂nF . The set of morphisms Γ(F, F ′) between

(F, η) and (F ′, η′) are homotopy classes of orientation preserving diffeomor-

phisms which preserve the parameterizations and the boundary components

pointwise. By permuting the index set of the n boundary components of

∂outF there is an action of Sn on Eg,n,1. Moreover, the classifying space

BEg,n,1 is homotopy equivalent to BΓg,n+1 (see [51]).

The gluing of surfaces along boundary components as described before in-

duces associative and S-equivariant maps of categories which determine the

following maps of classifying spaces:

γ : BEg,k,1 ×BEg1,n1,1 × . . .×BEgk,nk,1 −→ BEg+g1+...+gk,n1+...+nk,1.

The maps γ are associative and S-equivariant. Unfortunately, the spaces∐
g≥0

BEg,n,1 do not form an operad for there is no unit element ((O2) is not

satisfied). In order to obtain an operadic structure we have to divide by two

relations.

To this end, let ψ1 : γ(P̂ ;D, ·)→ γ(P̂ ; ·, D) and ψ2 : γ(P̂ ; ·, P̂ )→ γ(P̂ ; P̂ , ·)

be two isotopies relative to the collars. We say that two surfaces are equiv-

alent if there is an isotopy between them defined by the composition of

ψ1, ψ2 or their inverses on the constituting subsurfaces. Then there is a

unique representative F0 in each such equivalence class containing no subsur-

faces of type γ(P̂ ;D, ·) or γ(P̂ ; ·, P̂ ). Moreover, ψ1 and ψ2 define an isotopy

ψF : F → F0 for every F lying in the equivalence class of F0. We define

structure maps γ0 on objects by taking the unique representative of the im-

age of γ. On morphisms we have γ0(h;h1, . . . , hk) = ψF ′γ(h;h1, . . . , hk)ψ
−1
F

176



where F and F ′ are in the source and the target of the maps h, respectively.

Furthermore, let ψ : γ(P̂ ; ·, D)→ S1 × [0, 1]→ S1 be the composition of an

isotopy relative to the collar followed by the projection on the first factor.

For every surface F let F̂ be the surface which results from F by replacing

every subsurface of the form γ(P̂ ; ·, D) by S1. This is realized with a ho-

motopy F → F̂ defined by means of ψ. We identify Γ(F, F ′) with Γ(F̂ , F̂ ′)

using such homotopies F → F̂ and F ′ → F̂ ′. Let Êg,n,1 be the category after

quotienting Eg,n,1 with respect to these two equivalence relations (induced by

ψ1, ψ2 and ψ). The maps γ0 define structure maps γ̂0 for Êg,n,1. Note that

γ̂0 has now a unit element which is given by the single object S1 in Ê0,1,1.

We denote the disjoint union of the classifying spaces
∐
g≥0

BÊg,n,1 by Mn.

It was shown in [51] that {Mn}n≥0 forms an operad with structure maps

defined by γ̂0. In particular,Mn is homotopy equivalent to
∐
g≥0

BΓg,n+1 for

all n ≥ 0.

Definition 3.1.10. For an operad O, a pointed space (X,x∗) is called an

O-space or we say that an operad O acts on (X,x∗) if for all k ≥ 0 there are

so-called structure maps ϑ : Ok×Xk → X such that the following conditions

are satisfied.

(OS1) For all ak ∈ Ok, bα ∈ Ojα and xi ∈ X with j = j1 + . . .+ jk we have

ϑ(γ(a; b1, . . . , bk);x1, . . . , xj) = ϑ(a;x1, . . . , xk)

while xα = ϑ(bα;xj1+...+jα−1+1, . . . , xj1+...+jα) for 1 ≤ α ≤ k.

(OS2) For all x ∈ X we have ϑ(1;x) = x and ϑ(∗;x∗) = x∗.

(OS3) For all a ∈ Ok, xα ∈ X and σ ∈ Sk we have

ϑ(a.σ;x1, . . . , xk) = ϑ(a;xσ−1(1), . . . , xσ−1(k)).
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Notation. For an operad O and a pointed space (X,x∗) we set O(X)

for
∐
k≥0

Ok ×Sk X
k
/
∼, where ∼ is the following relation. For k ≥ 0,

α ∈ {0, . . . , k}, a ∈ Ok and xα ∈ X let sα(a) = γ(a;1α) while we set

1α = (1α, ∗,1k−α−1) from Oα1 × O0 × Ok−α−1
1 and tα(x1, . . . , xk−1) =

(x1, . . . , xα−1, x∗, xα, . . . , xk−1) from Xk. Then (sα(a);x1, . . . , xk−1) ∼

(a; tα(x1, . . . , xk−1)).

Now we are in a position to state the following theorem from [51] in order

to show that S+
∞,1,∂(BG) is an infinite loop space.

Theorem 3.1.11 ([51]). The group completion GX is homotopy equivalent

to an infinite loop space for everyM-space X.

The space M(∗) is the monoid M0 =
∐
g≥0

BΓg,1. The monoid product is

given by the pair-of-pants product (see [51]).

Proposition 3.1.12. For every connected and compact Lie group G, the

operad of Riemann surfacesM acts on S1,∂(BG) =
∐
g≥0
Sg,1,∂(BG).

Note thatM carries the same data as S1,∂(BG) except that for each element

of S1,∂(BG) we have a continuous map from the surface to the background

space BG satisfying certain boundary conditions. In fact, this continuous

map codifies the flat G-bundle structure.

As a consequence of Corollary 3.1.6 and Proposition 3.1.12 the following

result is satisfied.

Corollary 3.1.13. For every connected, compact and semisimple Lie group

G, the induced map Z×P+
∞,∂(G)→ Ω∞(CP∞−1 ∧BG+) is a weak homotopy

equivalence.

It remains to prove Proposition 3.1.12.
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Proof. The space S1,∂(BG) is a topological monoid whose product is induced

by the pair-of-pants product. More precisely, let [Xj , (aj , bj), ϕj , fj ] be an

element from Sgj ,1,∂(BG) for j = 1, 2. The product of [X1, (a1, b1), ϕ1, f1]

and [X2, (a2, b2), ϕ2, f2] is defined as follows. We consider a pair-of-pants

P̂ embedded into R3 × [0, 1] ⊆ R∞ × [0, 1] so that ∂0P̂ = ∂in P̂ and

∂out P̂ = ∂1P̂ ∪∂2P̂ . The surface Xj is embedded in R∞× [aj , bj ] for aj < bj

and j = 1, 2. We set l = max
j
{bj−aj}. Then we write a = min

j
{aj |l = bj−aj}

and b = bj if a = aj . We glue a cylinder S1 × [aj − (l − bj + aj), aj ] to the

boundary component ∂0Xj as described in the beginning of this section. If

l = bj − aj then we do not glue any cylinder. Then translate these new

surfaces X̂j for j = 1, 2 so that both are embedded in R∞ × [a, b]. The

parameterizations of the boundary ϕ̂j of ∂X̂j are defined by means of ϕj

while fj is extended onto the cylinders constantly by p0 to a map f̂j . Then

translate P̂ so that it is embedded into R∞ × [a − 1, a]. Finally, ∂0X̂j is

glued to ∂jP̂ using ϕ̂j . The resulting surface X is of genus g1 + g2 with one

boundary component and embedded in R∞× [a− 1, b]. Moreover, we define

f : X → BG by f |X̂j = f̂j for j = 1, 2 and f |P̂ = p0. Then f is well-defined

as f̂j |∂X̂j = p0.

Next we make the action of M on S1,∂(BG) precise. Let (Y, η) be a rep-

resentative of an equivalence class from Mk, that is, a surface Y of genus

g with k + 1 boundary components for which a parameterization η is fixed.

There is an embedding of Y into R∞ × [0, c] for some c > 0 such that the

distinguished boundary component ∂0Y lies in R∞ × {0}. Note that the

number c > 0 is determined uniquely by Y (see the construction of M in

Example 3.1.9). Let [Xj , (aj , bj), ϕj , fj ] ∈ S1,∂(BG) for 1 ≤ j ≤ k. Again

we set l = max
j
{bj − aj}. Moreover, we write a = min

j
{aj |l = bj − aj} and

b = bj if a = aj . As in the previous construction, we glue to each boundary
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component ∂0Xj the cylinder S1× [aj − (l− bj +aj), aj ] by means of ϕj and

translate these so that all surfaces are embedded in R∞ × [a, b]. These new

surfaces X̂j admit parameterizations of the boundary ϕ̂j determined by ϕj .

We define maps f̂j : X̂j → BG by extending fj constantly onto the cylinders

for all 1 ≤ j ≤ k. Finally, we translate Y so that ∂outY ⊆ R∞ × {a} and

∂0Y ⊆ R∞ × {a − c}. Then X̂j is glued to Y by identifying ∂0X̂j with

∂jY using the fixed parameterizations. We obtain a new surface X ′ of genus

g+ g1 + . . .+ gk with one boundary component embedded in R∞× [a− c, b].

Moreover, define a map f ′ : X ′ → BG by f ′|X̂j = f̂j and f ′|Y = p0. It is

well-defined as f̂j |∂X̂j = p0.

Since the connected sum along the boundary is associative (see e.g. Section

2.3 of [24]) condition (OS1) of Definition 3.1.10 follows. By construction

of the unit element of M it is a direct consequence that (OS2) is satis-

fied. It remains to verify (OS3). For this let σ ∈ Sk and let Yσ be the

surface which arises from Y by permuting the index set of the boundary

components ∂1Y, . . . , ∂kY by means of σ. We explained the action of the

symmetric group on M in Example 3.1.9. Let [X ′, (a′, b′), ϕ′, f ′] be the el-

ement of S1,∂(BG) by gluing X1, . . . , Xk to Yσ as described above. On the

other hand, let [X ′′, (a′′, b′′), ϕ′′, f ′′] be the element of S1,∂(BG) which is con-

structed by gluingXσ−1(1), . . . , Xσ−1(k) to Y . It follows from the construction

that [X ′, (a′, b′), ϕ′, f ′] = [X ′′, (a′′, b′′), ϕ′′, f ′′] as f ′|X̂j = fj = f ′′|X̂σ−1(j)
and

X ′ as well as X ′′ are of the same diffeomorphism type having one boundary

component.

So there is an operad action ofM on S1,∂(BG) and the assertion follows.

�

In fact, it is possible to show that P+
∞,∂(G) is weakly homotopy equivalent

to an infinite loop space by using an analogous method as in Theorem 3.1.11.
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For the natural generalization of Definition 2.2.8, namely the space of non-

degenerated parallel slit domains of genus g ≥ 0 with n ≥ 1 dipole points

Pg,n(G), it was shown in [11] that Pn =
∐
g≥0

Pg,n+1 is an operad. On the

other hand, by means of the Hilbert uniformization there is a homotopy

equivalence Pg,n+1 → BΓg,n+1. This map defines a homotopy equivalence of

spaces
∐
g≥0

Pg,n+1 →
∐
g≥0

BΓg,n+1 which determines a homotopy equivalence

Pn → Mn respecting the monoid products. Hence, there is an equivalence

of operads P →M and the ideas of [51] can be transfered to P in the sense

that P detects infinite loop spaces. More precisely, the theorem analogous

to 3.1.11 holds for P. Consequently, we have the following corollary.

Corollary 3.1.14. Let G be a connected, compact and semisimple Lie group.

Then H∗(P∞,∂(G);Fp) and H∗(S∞,1,∂(BG);Fp) are isomorphic Pontryagin

rings as algebras over the Dyer–Lashof algebra.

For a description of the Dyer–Lashof algebra see Definition 5.5 of [21]. In

view of Corollary 3.1.14, it is sufficient to construct explicit Dyer–Lashof

operations for S∞,1,∂(BG) in order to show that there are homology opera-

tions on the stable space of parallel slit domains P∞,∂(G). For the following

construction we generalize methods from [16].

Let Γg,n+1 be the mapping class group of a compact, connected, oriented

surface F of topological type Fg,n+1. The boundary components of F are

labeled as above by means of a fixed parameterization. There is an induced

map Γg,n+1 → Γg+1,n+1 by attaching a torus T with two boundary compo-

nents ∂0T and ∂1T to any such surface F and extending every orientation

preserving diffeomorphism to T by the identity. As described before, ∂1T is

identified with the boundary component ∂0F by fixing collars of the bound-

ary and using the fixed parameterization. Since we discussed this construc-

tion in the beginning of this section we omit any further details. Now this

181



map of mapping class groups defines a continuous map of their classifying

spaces which is equivariant under the action of the cyclic group Cn. It acts

on BΓg,n+1 by cyclically permuting the index set of the n boundary com-

ponents ∂1F, . . . , ∂nF (see Example 3.1.9). This induces a Cn-equivariant

map Sg,n+1,∂(BG) → Sg+1,n+1,∂(BG). Indeed, as was shown in the con-

struction of Sg,n,∂(BG), the cyclic group Cn acts on Sg,n+1,∂(BG) by cycli-

cally permuting the index set of the n boundary components ∂1X, . . . , ∂nX

for any element [X, (a, b), ϕ, f ] ∈ Sg,n+1,∂(BG). Further, there is a map

Sg,1,∂(BG)p → Spg,∂(BG) for all p ≥ 1 by gluing p surfaces of genus g to

a sphere with p boundary components and then extending the classifying

maps constantly. The cyclic group Cp acts on Sg,1,∂(BG)p by permuting the

entries of each p-tuple. Then Sg,1,∂(BG)p → Spg,∂(BG) is Cp-equivariant

and there is a continuous map

θ : ECp ×Cp Sg,1,∂(BG)p → Spg,∂(BG).

For the rest of this section we assume all homology groups and chain com-

plexes with Fp-coefficients. The cyclic group Cp is a subgroup of the sym-

metric group Sp of index (p− 1)!. As (p− 1)! is coprime to p it is invertible

in Fp. Consequently, there is the following map of Fp-complexes which is

defined by the transfer map:

ϑ : C∗(ESp)⊗Sp C∗(Sg,1,∂(BG))⊗p → C∗(ECp)⊗Cp C∗(Sg,1,∂(BG))⊗p.

Note that we identify BC p with ESp/Cp and BSp with the quotient

ESp/Sp. For details on the transfer map see Section III.9 of [15]. The
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continuous map θ defines a map of chain complexes

θ′ : C∗(ECp)⊗Cp C∗(Sg,1,∂(BG))⊗p → C∗(Spg,∂(BG)). (3.3)

Let W∗ be the standard free minimal resolution of the cyclic group Cp (see

Section I.5 of [15]). It follows from Section II of [21] that for every subgroup

H of Sp, free H-complex V and every space M there is an isomorphism

H∗(V ⊗H H∗(M)⊗p) ∼= H∗(V ⊗H C∗(M)⊗p).

Consequently, we have the following commutative diagram

H∗(W∗ ⊗Cp C∗(Sg,1,∂(BG))⊗p) // H∗(Spg,∂(BG))

H∗(W∗ ⊗Cp H∗(Sg,1,∂(BG))⊗p)

∼=

OO

H∗(Spg,1,∂(BG))

∼=

OO

where the right vertical arrow is an isomorphism for 2∗ ≤ gp − 4 by the

stability theorem 3.1.4 from [18] and [19]. The top arrow is defined by θ′ of

(3.3) and a morphism of Cp-complexesW∗ → C∗(ESp) which exists because

of the minimality ofW∗ (see [40]). Thus, we obtain the so-called Dyer–Lashof

operations

Qi : Hq(Sg,1,∂(BG);Fp)→ Hpq+i((Spg,1,∂(BG));Fp)

defined by Qi(x) = θ̄∗(ei⊗x⊗p) where ei is the generator ofW∗ in dimension i

and θ̄∗ is the composition of the two maps

H∗(W∗ ⊗Cp H∗(Sg,1,∂(BG))⊗p) ∼= H∗(W∗ ⊗Cp C∗(Sg,1,∂(BG))⊗p)

H∗(W∗ ⊗Cp C∗(Sg,1,∂(BG))⊗p)→ H∗(Spg,1,∂(BG)).
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As was previously mentioned analogous homology operations exist on

P∞,∂(G). In the next step, we will show that these stable operations com-

mute with the Dyer–Lashof operations of the stable moduli space of Riemann

surfaces.

Proposition 3.1.15. The Dyer–Lashof operations {Qi} commute with the

canonical projection S+
∞,1,∂(BG)→ BΓ+

∞,1, where in each case the plus con-

struction is taken with respect to the fundamental groups.

Proof. To verify the proposition we have to show that the diagram

C∗(ESp)⊗Sp C∗(Sg,1,∂(BG))⊗p //

ϑ
��

C∗(ESp)⊗Sp C∗(BΓg,1)⊗p

tr
��

C∗(ECp)⊗Cp C∗(Sg,1,∂(BG))⊗p //

θ′

��

C∗(ECp)⊗Cp C∗(BΓg,1)⊗p

��
C∗(Spg,∂(BG)) // C∗(BΓpg)

is commutative. Since Γg,1 is a group it holds that C∗(ESp)⊗SpC∗(BΓg,1)⊗p

is isomorphic to C∗(Γg,1oSp). The Cp-action of the middle row corresponds in

both cases to a cyclic permutation of the boundary components. Moreover,

the transfer map tr : C∗B(Γg,1 oSp)→ C∗B(Γg,1 oCp) is split over Fp. Indeed,

the chain complex has Fp-coefficients and ESp/Sp gets identified with BSp

while ESp/Cp can be identified with BCp. Consequently, C∗B(Γg,1 o Sp)

is a direct factor of C∗B(Γg,1 o Cp). Each horizontal arrow is a canonical

projection, that is, the forgetful map with respect to the G-structure. Thus,

they commute on chain level and in particular with the split projection.

Hence, the whole diagram commutes up to homotopy.

�

So far we have mostly compared our results on stable moduli spaces of flat
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G-bundles over Riemann surfaces with current and previous developments in

this field. In particular, we focused on the comparison between the methods

using parallel slit domains in contrast to surfaces with boundary components.

For instance, we applied the stability results from [18] and [19] to describe

Pg,1(G) for g →∞. The infinite loop space structure of Theorem 3.1.5 and

Corollary 3.1.13 is a heritage of the moduli spaces of Riemann surfaces. But

as we have already mentioned this cannot be assumed from the beginning

on since neither the limit of the mapping spaces Map∂(Fg,n,BG) nor the

the limit of representation varieties carry an infinite loop space structure

with respect to g → ∞. On the other hand, we will show in the next

section that there exists a further stabilization structure coming from the

structure group G for some classical families of Lie groups. More precisely,

we use the fact that for example the usual inclusions of general linear groups

GL(n,R)→ GL(n+1,R) induce an infinite loop space structure on BGL(R).

3.2 Further stable structures

Let G(k) be one of the classical compact, connected, semisimple Lie groups

Sp(k), SU (k) or Spin(k)1 for k ≥ 2. The usual embedding of Lie groups

ik : G(k)→ G(k + 1) induces an embedding Rik : RG(k)(X)→ RG(k+1)(X)

for every connected surface X. We will analyze these maps in order to find

further stable structures for the moduli spaces of flat G-bundles.

In a first step, let us review some central results from [5]. Let π : E → X

be a principal G-bundle over a connected surface of genus g where G is a

connected, compact and semisimple Lie group. We denote by Ad(E) the ad-

joint bundle of E, that is, the associated vector bundle E×Ad g where G acts

by means of the adjoint representation Ad on its Lie algebra g. The space
1We assume k ≥ 2 for Spin(1) ∼= Z/2 is not connected.
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of connections A(E) on E is an affine space on the vector space of 1-forms

Ω1(X,Ad(E)). As a consequence, it is contractible. The action of the gauge

group G(E) on A(E) is in general not free. On the other hand, the group

of pointed gauge transformations G∗(E) acts freely on A(E). Moreover, the

embedding AF (E) → A(E) is G∗(E)-equivariant. In particular, the holon-

omy map is G∗(E)-invariant. We have shown this in Corollary 1.1.19. For

all details and proofs see Chapter 2 of [5].

Recall that we have discussed the relation between holomorphic bundles and

compact structure groups in the end of Section 1.1. In addition, it was shown

in [5] that every connection on E determines a holomorphic connection on its

complexification Ec. On the other hand, for each holomorphic Gc-principal

bundle with a reduction to G there exists a unique connection on this re-

duced principal G-bundle. Therefore, A(E) can be identified with Ω(Ec), the

space of holomorphic structures on Ec. Note that such a principal G-bundle

depends on the reduction map. By means of Morse theoretic methods, a

stratification of Ω(Ec) was constructed and the relative codimensions of the

strata were calculated. For these ideas we refer to Chapter 10 of [5].

The space of flat connections is homotopy equivalent to the substratum of

semistable holomorphic bundles under the identification of A(E) and Ω(Ec)

(see [47] for a proof). By calculating the codimensions of the strata it can

be shown that the inclusion AF (E) → A(E) is 2(g − 1)r-connected where

r = min
H
{1

2 dim(G/H)|H � G} and H ranges over all proper, connected,

compact subgroups of maximal rank. This description was given in [17].

Consequently, AF (E) is a 2(g − 1)r-connected space. The representation

variety RG(X) parameterizes all flat connections on a pointed principal G-

bundle over X. Recall from Section 1.1 that the holonomy defines an isomor-

phism AF (E)
/
G∗(E) → RG(X). Bearing this in mind we will next prove
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the following theorem.

Theorem 3.2.1. Let G be a compact, connected, semisimple Lie group and

X an oriented, compact, connected surface of genus g ≥ 2. Then the map

B : RG(X) −→Map∗(X,BG) is 2(g − 1)r-connected.

Proof. Recall that B was introduced in Definition 3.1.2. We assume that X

is closed since otherwise the assertion follows from the homotopy equivalence

G → ΩBG . First note that the assumption of the theorem is satisfied for

π0(RG(X)) → π0(Map∗(X,BG)). Each connected component of the rep-

resentation variety as well as the mapping space can be uniquely identified

with an element from π1(G) while the classifying map respects these identi-

fications. We have discussed this fact in the beginning of the previous sec-

tion. Hence, it remains to show the statement for the connected component

Map∗(Bπ1,BG)0 of the constant map to the identity element e ∈ G on the

one hand and the connected component RG(X)0 of the trivial representation

ρ0 on the other hand. Note that RG(X)0 is equal to B−1(Map∗(Bπ1,BG)0).

Let x0 ∈ X, p0 ∈ E be base points and π : E → X a topologically trivial

pointed flat G-bundle. We abbreviate AF (E), G(E) and G∗(E) by AF , G

and G∗ as these spaces are isomorphic on the identity component. Now we

will construct a map AF → Map∗(X,BG)0 which commutes with B ◦ Hol.

This map will be an important ingredient of the proof.

The universal covering X̃ → X can be considered as a pointed π1-principal

bundle after choosing a base point x̃0 ∈ X̃x0 . Thus, there is a pointed map

ψ : X → Bπ1 which lifts to a unique pointed map ψ̃ : X̃ → Eπ1. The map

ψ induces a homotopy equivalence ψ∗ : Map∗(Bπ1,BG) → Map∗(X,BG)

since X is homotopy equivalent to Bπ1. We consider the trivial bundle

X ×G. Let A ∈ AF (X ×G) and ρ = Hol(x0,e)(A). Then Eρ is a flat bundle

with induced connection form Aρ such that Hol(x0,e)(Aρ) = ρ by Theorem
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1.1.22. Thus, there exists a bundle isomorphism fA : X×G→ Eρ satisfying

fA∗(A) = Aρ. Let Ẽρ be the associated bundle Eπ1×ρG→ Bπ1. The repre-

sentation ρ induces a map ψ̃ρ : Ẽρ → EG and ψ̃ induces a map ε : Eρ → Ẽρ

such that the diagram

Eρ
ε //

��

Ẽρ
ψ̃ρ //

��

EG

��

X ×G

fA
;;

pr1

##
X

ψ
//σ

UU

Bπ1
Bρ
// BG

(3.4)

commutes. The map pr1 is the canonical projection on the first factor while

σ is the zero section with respect to the identity element e ∈ G. The vertical

maps are the flat G-bundle projections that were considered above. Since

Diagram (3.4) commutes there is a map κ : AF → Map∗(X,EG) which is

given by κ(A) = ψ̃ρ◦ε◦fA◦σ. This map is pointed for every connection form

A ∈ AF as a composition of pointed maps. As the holonomy is continuous

the continuity of κ follows. For this note that ρ depends continuously on A.

Hence A 7→ ψ̃ρ and A 7→ fA are continuous assignments. We do not discuss

the geometry of AF here and instead refer to [20]. By Proposition 2.4 of [5],

there exists a fibration

Map∗(X,G)→Map∗(X,EG)→Map∗(X,BG)0. (3.5)

Even better, Atiyah and Bott showed that G∗ acts continuously on AF and

AF → AF /G∗ is a principal G∗-bundle. On the other hand, RG(Bπ1)0 is

homeomorphic to AF /G∗ by Theorem 1.1.22. So Hol induces a G∗-principal

bundle. Moreover, it is shown in the same Proposition of [5] that BG∗ is

homotopy equivalent to Map∗(X,BG)0. Summarizing what we have so far
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from the beginning of this section and this proof, we get the commutative

diagram

G∗ //

'
��

AF Hol //

κ

��

RG(Bπ1)0

ψ∗◦B
��

Map∗(X,G) //Map∗(X,EG) //Map∗(X,BG)0.

(3.6)

The horizontal sequences are fibrations and ψ∗ is a homotopy equivalence.

Thus, κ and B have the same rank of connectivity by the five lemma. Since

κ is 2(g − 1)r-connected as mentioned in the introduction of this section we

obtain the assertion.

�

Although Theorem 3.2.1 holds for general connected, compact and semisim-

ple Lie groups we will focus on the three examples G(k) what will be justified

by Theorem 3.2.3. The number r and the rank of connectivity of B are calcu-

lated for these in the following example. Note that the proper, connected and

compact subgroups of maximal rank of simple Lie groups are fully classified

(see for instance Table 5.1 in Chapter V.7 of [46]).

Example 3.2.2.

(1) For G(k) = Sp(k) we have r = k(k+1)
2 since the proper, connected,

compact subgroup of maximal rank of Sp(k) is U(k). Hence, B is

k(k + 1)(g + 1)-connected.

(2) For G(k) = SU (k) we have r = k − 1 since the proper, connected,

compact subgroup of maximal rank of SU (k) is SU (k − 1). So B is

2(k − 1)(g − 1)-connected.

(3) For G(k) = Spin(k) we have r = k − 2 for even k ≥ 8, and r = k−1
2

for odd k since the proper, connected, compact subgroups of maximal
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rank of Spin(k) are Spin(k−2)×Spin(2) and Spin(k−1), respectively.

Then B is 2(k− 2)(g− 1)-connected for even k ≥ 8 and (k− 1)(g− 1)-

connected for odd k. Since we are in particularly interested in these

values for large k we do not calculate r or the connectedness of B for

even k < 8.

Theorem 3.2.3. Let X be a compact, oriented and connected surface of

genus g ≥ 2, then Rik : RG(k)(X)→ RG(k+1)(X) is

(1) (4k − 4)-connected for G(k) = Sp(k).

(2) (2k − 2)-connected for G(k) = SU (k).

(3) (k − 3)-connected for G(k) = Spin(k).

Proof. We assume again that X is closed since otherwise the assertion follows

from the classical fibrations for G(k).

Let G∗(k) be the pointed gauge group of principal G(k)-bundles and let

AF (k) be the space of flat G(k)-connections. The commutative Diagram

(3.6) induces the commutativity of the diagram

BG∗(k)
Bjk // BG∗(k + 1)

Map∗(X,BG(k))0
(Bik)∗ //

'

OO

Map∗(X,BG(k + 1))0

'

OO

Map∗(X,EG(k))
(Eik)∗ //

OO

Map∗(X,EG(k + 1))

OO

AF (k)
αk //

κk

OO

Hol
��

AF (k + 1)

κk+1

OO

Hol
��

RG(k)(X)0
Rik // RG(k+1)(X)0.

(3.7)
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The maps (Bik)∗, (Eik)∗ and Rik are induced by ik. Moreover, κk and κk+1

are the maps κ in Diagram (3.6) in dimensions k and k+ 1, respectively. In

other words, κk and κk+1 are the maps which were constructed in the proof

of Theorem 3.2.1. Since every G(k)-principal bundle determines a G(k+ 1)-

principal bundle there are induced maps Bjk from the natural inclusion

jk : G∗(k) → G∗(k + 1) and αk. The unlabeled vertical maps arise from

the fibration (3.5). The rank of connectivity of AF (k) follows in each of the

three cases from Example 3.2.2, namely AF (k) is

(1) k(k + 1)(g − 1)-connected for Sp(k).

(2) 2(k − 1)(g − 1)-connected for SU (k).

(3) 2(k − 2)(g − 1)-connected for even k ≥ 8 and Spin(k).

(4) (k − 1)(g − 1)-connected for odd k and Spin(k).

The horizontal sequences in (3.6) are fibrations. As a consequence of (3.7),

the map AF (k) → BG∗(k) is equally connected as stated in the previous

enumeration. Since g ≥ 2, the lower bounds of connectivity are given by

(1) k(k + 1) for Sp(k).

(2) 2(k − 1) for SU (k).

(3) 2(k − 2) for even k ≥ 8 and Spin(k).

(4) (k − 1) for odd k and Spin(k).

Because of the fibrations of Lie groups G(k)→ G(k + 1) we have that

(1) Sp(k)→ Sp(k + 1) is (4k − 3)-connected.

(2) SU (k)→ SU (k + 1) is (2k − 1)-connected.
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(3) Spin(k)→ Spin(k + 1) is (k − 2)-connected.

See for example Section II.3 of [46] for these numbers. We remind of the

classical fact from homotopy theory that for any k-connected map of CW-

complexes f : M → N and finite d-dimensional CW-complex Z the in-

duced map Map∗(Z,M) → Map∗(Z,N) is (k − d)-connected. As X is a

2-dimensional CW-complex, Map∗(X,BG(k))0 →Map∗(X,BG(k + 1))0 is

(1) (4k − 4)-connected for Sp(k).

(2) (2k − 2)-connected for SU (k).

(3) (k − 3)-connected for Spin(k).

Since 4k−4 ≤ k(k+1), 2k−2 ≤ 2(k−1) and k−3 ≤ min
k
{2(k−2), k−1} for

all k ≥ 0 these numbers determine lower connectivity bounds. As Diagram

(3.7) commutes the maps Rik realize these degrees of connectivity.

�

Corollary 3.2.4. Let hocolim
k
RG(k)(X) = RG∞(X) for G(k) being one of

the classical families of connected, compact, semisimple Lie groups Sp(k),

SU(k) or Spin(k). The homotopy groups of RG∞(X) are as follows.

(1)

πq(RSp∞ (X)) ∼=



Z, q ≡ 0 mod 8

0, q ≡ 1, 2 mod 8

Z2g, q ≡ 3, 7 mod 8

(Z/2)2g × Z, q ≡ 4 mod 8

(Z/2)2g+1, q ≡ 5 mod 8

Z/2, q ≡ 6 mod 8.
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(2)

πq(RSU∞ (X)) ∼=


Z, q ≡ 0 mod 2

Z2g, q ≡ 1 mod 2.

(3)

πq(RSpin∞ (X)) ∼=



(Z/2)2g × Z, q ≡ 0 mod 8

(Z/2)2g+1, q ≡ 1 mod 8

Z/2, q ≡ 2 mod 8

Z2g, q ≡ 3, 7 mod 8

Z, q ≡ 4 mod 8

0, q ≡ 5, 6 mod 8.

Proof. The lower bound for q is calculated in Theorem 3.2.3. We have the

homotopy equivalence hocolim
k
RG(k)(X) ' hocolim

k
Map∗(X,BG(k)) from

Theorem 3.2.1. Moreover, hocolim
k

Map∗(X,BG(k)) is homotopy equiva-

lent to Map∗(X,BG(∞)). Applying the cell decomposition of X as a CW-

complex it follows that Map∗(X,BG(∞)) has the same homotopy type as

Z × G(∞)2g × BG(∞). For Sp(k), SU (k) and Spin(k) Bott periodicity is

satisfied and the results follow. See for example Table 4.1 in IV.6 of [46] for

an explicit calculation of the stable homotopy groups of these Lie groups by

means of Bott periodicity.

�

Using this corollary and Lemma 1.2.8 we may determine (see Corollary 3.2.5)

the stable homotopy groups of the homotopy colimit hocolim
k
Mg,1(G(k))

which we note asMG,∞
g,1 .

This limit is defined by identifyingMg,1(G(k)) with EΓg,1×Γg,1RG(k)(Sg,1)
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(see Lemma 1.2.8). ThenMg,1(G(k))→Mg,1(G(k + 1)) is defined by

Ik : EΓg,1 ×Γg,1 RG(k)(Sg,1) −→ EΓg,1 ×Γg,1 RG(k+1)(Sg,1)

which is induced by Rik. The map Ik is well-defined since Rik com-

mutes with the Γg,1-action. To this end, let [f ] ∈ Γg,1, ρ ∈ RG(k)(Sg,1)

and γ ∈ π1(Sg,1). Then [f ].Rik(ρ)(γ) = Rik(ρ)(f−1
∗ (γ)) =

(
ρ(f−1
∗ (γ)) 0

0 1

)
=
(

[f ].ρ(γ) 0
0 1

)
= Rik([f ].ρ)(γ). For this calculation we use the fact that G(k)

is linear algebraic so that every element of G(k) is canonically representable

as a matrix.

Corollary 3.2.5. The stable homotopy groups of MG,∞
g,1 are given by the

results of Corollary 3.2.4 for q ≥ 2 in the stated ranges. In particular, the

homotopy groups πq(Mg,1(G(k))) are independent of k for q ≥ 2 and

(1) q ≤ 4k − 4 for G(k) = Sp(k).

(2) q ≤ 2k − 2 for G(k) = SU (k).

(3) q ≤ k − 3 for G(k) = Spin(k).

Remark 3.2.6. The bounds for the maps Rik of Example 3.2.2 are optimal

in each case in the sense that they are not higher connected. To see this,

we consider πq(Bik) because of the commutativity of Diagram (3.7). These

maps are not surjective for q = 4k − 3, q = 2k − 1 and q = k − 2 in the

case of Sp(k), SU (k) and Spin(k), respectively. Since by assumption X is a

closed surface its CW-decomposition induces the homotopy fiber sequence

Ω2BG(k) −→Map∗(X,BG(k)) −→ (ΩBG(k))2g.

More precisely, the right map of the sequence is defined by restricting the
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based maps from X to BG(k) to the 1-skeleton of X. This homotopy fiber

sequence defines a long exact sequence of homotopy groups. By V.6 of [46],

π4k−2(Sp(k)), π4k−1(Sp(k)), π2k(SU (k)), π2k+1(SU (k)), πk−1(Spin(k)) and

πk(Spin(k)) are not torsionfree. In 6.14 of Chapter V of [46] these homotopy

groups are explicitly calculated. In particular, it follows that πq(Bik) is not

surjective, and consequently nor is the map πq(Rik).
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