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On rigidity of the ring spectra P,,S(,) and ko

Katja Hutschenreuter

We study the rigidity question for modules over certain ring spectra. A stable model
category is rigid if its homotopy category determines the Quillen equivalence type of the
model category. Amongst others, we prove that the model category Mod-S is rigid if S
is the m** Postnikov section of a p-localized sphere spectrum for a prime p and for a
sufficiently large integer m. Moreover, we prove that the underlying spectrum of the ring
spectrum ko is determined by the ring 7, (ko) and certain Toda brackets.

Contents
Introduction 3
1 Prerequisites 7
1.1 Notation and conventions . . . . . . .. .. ... L L e 7
1.2 Model categories and rigidity . . . . . . .. ... L Lo 8
1.2.1  Model categories and Quillen adjunctions . . . . . . ... ... ... ... .. 8
1.2.2 Triangulated categories . . . . . . . . ... L 9
1.2.3 Rigidity of model categories and ring spectra . . . . . . . ... ... ... 12
1.3 Postnikov sections of spectra and ring spectra . . . . . . ... ..o oo 14
2 On rigidity of some Postnikov sections P,,S ;) 17
2.1 General statements about rigidity of P,S(,) for all primesp . . . . ... ... ... .. 18
2.2 The ring spectra P, (S(g)) are rigid forallm >0 . . .. .. ............... 21
2.3 The ring spectra P, (S(y)) are rigid for odd primes p and m > pPg—1 ... ... ... 23
2.3.1 Coherent M-modules . . . . . . . . . . ... 24
2.3.2  The morphism ¢ is a T<gp_o-isomorphism for m > p?(2p—2) -1 . . . . .. .. 26
3 Towards rigidity of the real connective K-theory ring spectrum 32
3.1 Cell-approximation of ko, Pyko and Psko . . . . . . . . . . . .. .. .. ... ..... 32
3.1.1 Gluing ring spectra cells to a ring spectrum . . . . . . ... ... 33
3.1.2  Approximation of Pyjko: Killing the element v € m5(S) . . . . .. ... ... .. 36
3.1.3 Approximation of Psko and Poko . . . . . . . . . ... 43
3.2 Cohomology of R with Z/2-coefficients . . . . . . . ... ... .. ... .. ... 47
3.3 The ring spectra koj and R% are stably equivalent as spectra . . . . . .. ... . ... 56






Introduction

One main goal of algebraic topology is to understand and classify spaces up to homotopy equivalence.
Depending on the context there are different definitions of homotopy, as for example homotopy between
two maps of topological spaces or between two maps of simplicial sets. Moreover, the notion of
homotopy does not only occur in topology but also in algebra, for example as a chain homotopy
between two maps of chain complexes.

In order to generalize and axiomatize these different definitions of homotopy, Quillen developed model
categories [Qu]. An important part of the structure of a model category is a certain class of morphisms,
the weak equivalences. Using the model structure one can define a notion of homotopy between two
maps in a model category such that all weak equivalences between so-called bifibrant objects are
homotopy equivalences. There are model structures on the category of topological spaces, the category
of simplicial sets and the category of unbounded chain complexes of modules over a ring R, whose
definitions of homotopy coincide with the classical ones on certain full subcategories. For example,
the category of topological spaces can be endowed with a model structure whose weak equivalences
are the morphisms that induce isomorphisms on all homotopy groups. The resulting new definition
of homotopy coincides with the classical definition on all maps between cell complexes.

The structure of a model category M ensures that it is possible to localize M with respect to its
class of weak equivalences. Thereby, one obtains a new category Ho(M) which is called the homotopy
category of M.

In this process one usually looses ‘higher homotopy information’ about the model category such as its
algebraic K-theory and the homotopy types of its mapping spaces. An example for the former is given
by Schlichting [SI]. He considers the category of finitely generated R-modules for the rings (Z/p)[z] /x>
and Z/p? where p is an odd prime. These categories can be endowed with stable model structures
such that their triangulated homotopy categories are triangulated equivalent. Moreover, the model
categories have different algebraic K-theories and hence are not Quillen equivalent. An example for
two model categories with equivalent homotopy categories and different homotopy types of mapping
spaces can be constructed by using the n** Morava K-theory ring spectrum K (n) for a fixed prime p
and a positive integer n (see [Sc01]): The category of K (n)-modules and the category of differential
graded (K (n))-modules admit stable model structures such that their homotopy categories are
triangulated equivalent. However, all mapping spaces of the model category of differential graded
7 (K (n))-modules have the homotopy types of wedges of Eilenberg-MacLane spectra. This is not the
case for the model category of K(n)-modules. In particular, these two model categories can not be
Quillen equivalent.

In general, an equivalence between the homotopy categories of two model categories does not imply
that the model categories themselves are Quillen equivalent. As we have seen above, this is not even
the case if we additionally require the model categories to be stable and their homotopy categories
to be triangulated equivalent. However, Schwede shows in [Sc07] that the stable model category of
spectra Sp in the sense of Bousfield and Friedlander [BF] is rigid. That is, every stable model category
N whose homotopy category is triangulated equivalent to the homotopy category Ho(Sp") is Quillen
equivalent to Sp". Another example of a rigid model category is the category of K (2)-local spectra,
L1 Sp" [Roi07]. In these proofs, one uses that the homotopy categories Ho(Sp") and Ho(L,Sp") are
triangulated categories and have one compact generator S and L;S, respectively. In particular, the
proofs are based on the rings of graded self maps of these generators and on Toda bracket relations
between graded endomorphisms of S and LS, respectively.

In this thesis, we consider model categories Mod-S of right S-modules for certain symmetric ring
spectra S. As in the two examples above, the model category Mod-S has one compact generator,
the right S-module S itself. In particular, every stable model category whose homotopy category
is triangulated equivalent to the homotopy category Ho(Mod-S) also has a compact generator. By



a result of Weiner, a stable model category with one compact generator is Quillen equivalent to the
model category of modules over a certain ring spectrum [We]. Thus, the question if the model category
Mod-S is rigid reminds us of the problem of Morita theory. There, for two rings R and S the categories
of right R-modules and right S-modules are equivalent if and only if there exists a small projective
generator T in the category of right R-modules whose endomorphism ring is isomorphic to .S. Schwede
and Shipley generalize this to homotopy theory [ScSh03]: They prove that for two ring spectra S and
R the model categories Mod-S and Mod-R are Quillen equivalent if there exists a compact, cofibrant
and fibrant generator T' of Mod-R such that its endomorphism ring spectrum Endyeq.g (7)) is stably
equivalent to the ring spectrum S. It turns out that the model category Mod-S is rigid if the ring
spectrum S is determined by its ring of homotopy groups 7, (S) and some Toda bracket relations.

In the following, we call a ring spectrum S rigid if the model category Mod-S is rigid. Examples
of rigid ring spectra are the sphere ring spectrum S and the p-localized sphere spectrum S, for all
primes p [Sc07]. Moreover, the Eilenberg-MacLane spectra HR are also rigid for all rings R [ScSh03].
Since the p-localized sphere spectrum and its zeroth Postnikov section are rigid, we want to know
if the other Postnikov sections P,,,S;,) of S(,) are also rigid. That is, we want to know if these ring
spectra are determined by their homotopy group rings and some Toda bracket relations. With the
following two theorems, we are able to prove that this is the case if the integer m is large enough:

Theorem 2.2.3. The ring spectra P,,,(S)) are rigid for all integers m > 0.

Theorem 2.3.11. Let p be an odd prime. Then the ring spectra P, (S(y) are rigid for all integers
m > p?(2p —2) — 1.

Moreover, we consider the 2-localized real connective K-theory ring spectrum ko). Its ring of
homotopy groups 7, (ko(2y) and its Toda brackets seem to be sufficiently rich to expect that the ring
spectrum kog) is rigid. We are able to prove that the ring spectrum ko s is determined as a spectrum
by its homotopy group ring and its triple Toda brackets:

Theorem 3.3.7. Let R be a ring spectrum whose ring of homotopy groups m.(R) is isomorphic to the
ring 7. (ko)) by an isomorphism which preserves Toda brackets (see Def. 1.2.14). Then there exists
a stable equivalence of spectra F': R — ko).

A result of Patchkoria suggests that for an odd prime p the p-localized real connective K-theory
ring spectrum ko, should not be rigid. In [Pa], he proves that the homotopy category of right ko(p)-
modules is equivalent to the derived category of the homotopy ring m.(ko(,)). However, the question
whether this equivalence is triangulated remains open.

Organization In the next section, we fix some notation and conventions and recall some necessary
prerequisites for the proof of the three theorems above. In particular, we give the exact definition
of rigidity of model categories and ring spectra and we recall constructions for Postnikov sections of
spectra and ring spectra.

In the second section we prove that all Postnikov sections of the 2-localized sphere spectrum are rigid
(Thm. 2.2.3) and that for an odd prime p the m** Postnikov section of the p-localized sphere spectrum
is rigid if the integer m is at least p?(2p — 2) — 1 (Thm. 2.3.11). In the first part of the last section,
we approximate the ring spectrum ko) by attaching ring spectrum cells to the sphere spectrum.
Using this method, we are able to prove that the 4*" and 9** Postnikov section of ko(gy are rigid.
Afterwards, we prove Theorem 3.3.7 by calculating the cohomology of R with Z/2-coefficients for
every ring spectrum R whose ring of homotopy groups is isomorphic to m.(ko(s)) by an isomorphism
which preserves triple Toda brackets.
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1 Prerequisites

First, we will fix some notation and conventions for this thesis. Afterwards, we define rigidity of model
categories and ring spectra. Moreover, we recall a a characterization of rigid ring spectra. In the end
of this section, we recall constructions for Postnikov sections of connective spectra and ring spectra.

1.1 Notation and conventions

In this thesis, we use the stable model structure on the category of symmetric spectra Sp> which was
introduced by Hovey, Shipley and Smith in [HSS, §3.4]. For an integer n, we define the n-dimensional
sphere spectrum S™ by
N8 ifp > 1,
St=¢ S if n =0, and (1.1)
F_,8° ifn< -1,

where %>° K denotes the symmetric suspension spectrum of a pointed simplicial set K and the free
functor F,: sSet, — Sp~, m > 0, is the left adjoint of the evaluation functor Ev,,: Sp~ — sSet,
at level m [HSS, Def. 2.2.5]. For an integer n, we define the n'* stable homotopy group m,(X) of
a symmetric spectrum X as the group [S", X]H°(5P R
Ho(Sp*).

More generally, let X and Y be two objects in a model category M. Throughout this thesis, M(X,Y")
denotes the set of morphism from X to Y in M and [X, Y]HO(M) denotes the group of morphisms in
the homotopy category Ho(M). Suppose that the model category M is stable and enriched over the
model category of symmetric spectra Sp*. We define the graded homotopy group of morphisms from

X toY by [X, Y]SO(M) _ [S" AL X, Y]HO(M)-
In the following, we fix a ring structure on the graded group [X, X]iIO(M) for every object X in the

model category M. One can choose isomorphisms v, ,: S™t" — S™ AL S m,n € Z, in the stable
homotopy category Ho(Sp*) such that the following properties hold for all integers [, m and n:

of morphisms from S™ to X in the category

1. The morphisms a,, o and ag ,, are inverse to the right and left unit morphisms, respectively.
2. The following diagram commutes in the homotopy category Ho(Sp>).

Al+m,n

Sl+m+n

Sl+m /\L sn

iaznwn la,,m/\LS”
StAE

sl AL gmtn _ 2R A gl AL (S™ALSP) = (S ALS™) AL ST

3. The diagram

—1)ymn
S7rL+7L L Sn+m

\Lam,n \Lan,m

sm /\L SK o SK /\L S
commutes in Ho(Sp*).
For objects X, Y and Z in the stable model category M, composition induces a morphism

Ho(M)
n+m

Ho(M Ho(M
v, Zno™ x (X, Yt ——————— [X, Z]

(fig)——————>=fo(S™ AE 9) © (m,n NF X).
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This defines a ring structure on the graded group [X, X ]EO(M) for every object X in the model category
M. Moreover, the graded group 7, (X) is a right 7. (S)-module for every symmetric spectrum X.

Let R be a symmetric ring spectrum. The ring structure of the graded group [R, R]EO(MOd'R) induces a
ring structure on 7, (R) due to the Quillen adjunction — As R: Mod-S &= Mod-R :U which is induced

by the unit ¢: S — R of the ring spectrum R (see Example 1.2.5(3)):

’]T*(R) = [57 R}I;Io(Mod—S) A [R, R]I*{o(Mod-R) )

1.2 Model categories and rigidity

In this subsection, we define rigidity of model categories and ring spectra (Def. 1.2.12). Before, we
give some examples of model categories and Quillen adjunctions (§1.2.1) and recall the definitions of
a compact generator of a triangulated category and of Toda brackets (§1.2.2).

1.2.1 Model categories and Quillen adjunctions

Model categories were defined by Quillen in order to axiomatize homotopy theory [Qu]. We mostly
refer to Hovey’s book [Ho| about model categories as a reference. A model category M is a bicomplete
category with three classes of maps, namely weak equivalences (=), cofibrations (—) and fibrations
(=), which satisfy certain axioms (see [Ho, Def. 1.1.3]). This structure ensures that we can localize M
with respect to the class of weak equivalences and obtain a new category, which is called the homotopy

category of M and is denoted by Ho(M) (see [Ho, Def. 1.2.1]).

Notation 1.2.1. Let M be a model category and let X and Y be two objects in M. Throughout

this thesis, M(X,Y") denotes the set of morphism from X to Y in M and [X, Y]HO(M) denotes the
group of morphisms in the homotopy category Ho(M).

Definition 1.2.2. An adjunction
F-M—=N:U

between two model categories M and N is a Quillen adjunction if the left adjoint functor F' preserves
cofibrations and acyclic cofibrations (e.g. [Ho, Def. 1.3.1]). In particular, it induces an adjunction

Ho(M) ——=Ho(N)

on the homotopy categories. A Quillen adjunction is a Quillen equivalence if it induces an equivalence
of the homotopy categories. Two model categories are called Quillen equivalent if there exists a zig-zag
of Quillen equivalences between them.

Example 1.2.3. The category of (pointed) topological spaces can be endowed with a model structure,
where a morphism f: X — Y is a weak equivalence if the maps m,(f,z): m,(X,z) — m, (Y, f(x))
are isomorphisms for all integers n > 0 and all points € X, and the fibrations are the Serre fibrations
(e.g. [Ho, §2.4]). Moreover, the category of (pointed) simplicial sets admits a model structure, where
the weak equivalences are all morphisms whose geometric realizations are weak equivalences in Top,,,
and the fibrations are Kan fibrations (e.g. [Ho, §3]). These model categories are Quillen equivalent by
the adjunction
-|: sSet(,y ——= Topy,, : S,

where |-| is the geometric realization functor and S is the singular functor.



1.2 Model categories and rigidity

A model category is called pointed if the map from the initial object to the terminal object is
an isomorphism. Recall that one can define a suspension functor ¥ together with a right adjoint
loop functor © on the homotopy category of a pointed model category ([Qu, Thm. 1.2.2] or see [Ho,
Def. 6.1.1]).

Definition 1.2.4. A stable model category M is a pointed model category such that the suspension
functor and the loop functor are inverse equivalences on the homotopy category Ho(M).

Example 1.2.5.

1. An important example of a stable model category is the category of chain complexes C'h(R)
with the weak equivalences being the quasi-isomorphisms. Here, the suspension functor is given
by the shift functor. The associated homotopy category is the derived category D(R).

2. The category of symmetric spectra over simplicial sets Sp* admits several stable model struc-
tures, where the weak equivalences are the stable equivalences. In this thesis, we work with a
stable model structure defined by Hovey, Shipley and Smith [HSS, §3.4]. This model category
is proper, cofibrantly generated, monoidal and satisfies the monoid axiom. Furthermore, the
sphere spectrum is a compact generator of Sp¥ (Def. 1.2.9) since the functors m,.(—) = [S, -],
preserve arbitrary coproducts and detect trivial objects. We call an object in the category of
symmetric spectra sz symmetric spectrum or spectrum.

3. Thus, for any monoid S in Sp* the category of right S-modules Mod-S admits a stable model
structure, where a map is a fibration or weak equivalence if and only if it is a fibration or weak
equivalence in the underlying category Sp* ([HSS, Cor. 5.5.2] or [ScSh00, Thm. 4.1]). Moreover,
a morphism f: S — R of ring spectra induces a Quillen adjunction

— Ag R: Mod-S ——= Mod-R :U

which is a Quillen equivalence if f is a stable equivalence, by [HSS, Thm. 5.5.9] or [ScSh00,
Thm. 4.3]. Due to the Quillen adjunction induced by the unit of the ring spectrum S, the right
S-module S is a compact generator of the model category Mod-S.

4. If R is a commutative monoid in Sp*, then there is a model structure on the category of R-
algebras, where a map is a weak equivalence or fibration if and only if it is one in the underlying
category Sp>. Moreover, any cofibration of R-algebras whose source is cofibrant as an R-module
is also a cofibration of R-modules [ScSh00, Thm. 4.1]. In particular, the category of S-algebras
admits a model structure like above since the monoid S is commutative.

Notation 1.2.6. In this thesis, a (commutative) monoid in the category of symmetric spectra is
also called a (commutative) ring spectrum. Note that the category of S-algebras and the category of
monoids in Sp* are isomorphic since the category of S-modules is isomorphic to Sp*.

Definition 1.2.7. Two (ring) spectra are called stably equivalent if there exists a zig-zag of stable
equivalences of (ring) spectra between them.

1.2.2 Triangulated categories

The homotopy category Ho(M) of a stable model category can canonically be equipped with the
structure of a triangulated category (see [Ho, Prop. 7.1.6]).

Remark 1.2.8. Let M be a stable model category which is enriched over the model category of
symmetric spectra Sp¥. For a cofibrant object X in M the suspension of X is isomorphic to the
object S! A X in the homotopy category Ho(M). We choose an isomorphism S!' AL X = X for
every object X in M.
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Definition 1.2.9. Let T be a triangulated category which has infinite coproducts. An object P in
the category T is called compact if the canonical map of abelian groups

Dicr [P Xi] — [Pv Dicr Xi]

is an isomorphism for every family {X;};cr of objects in T

A localizing subcategory of the triangulated category 7 is a full triangulated subcategory of 7 which
is closed under coproducts. An object P of T is a generator if every localizing subcategory of 7 which
contains P is all of T.

Recall that a stable model category M is cocomplete and its homotopy category thus has infinite
coproducts. An object P of a stable model category M is called compact or a generator if its image
in the triangulated category Ho(M) is.

Definition 1.2.10.

1. Let 2: X — Y, y:' Y — Z and z: Z7 — W be composable morphisms in a triangulated
category such that yz = 0 = zy. Then the Toda bracket {(z,y,x) is defined to be the subset of
[XX, W] containing all morphisms ¥X — W which can be constructed in the following way

X Y C, X

| | (N

| | | N

v y y )i \
v-lo, v Z Cy | €(zy,2)

| I /

| ‘ I v

\ \ \ e
Yl ——=3 0, ——= 7 ——=W,

where the horizontal lines are exact triangles. This set (z,y,z) C [XX, W] is a coset of the group
XY, W]o (Xx) + z 0 [2X, Z], which is called the indeterminacy of the Toda bracket.

2. Let S be a ring spectrum and M a right S-module. The unit ¢ of S induces an adjunction
— AL S: Ho(Mod-S) ——= Ho(Mod-S) :U

as we have seen in Example 1.2.5(3). Using this adjunction, we now define Toda brackets in
m(M): Let 2,9 € m.(S) and Z € m.(M) be elements of homotopy groups of S and M and
denote their adjoint morphisms by x, y and z, respectively. Moreover, suppose that the Toda
bracket

(2, By, Sz ¢ (s, ppieters)

is defined, where ‘|z|” denotes the degree of a morphism 2. The Toda bracket
<,§,g7:f> c W*(M)

is defined as the image of this set under the isomorphism .(M) = [S, M ]HO(MOd_S), which is
induced by the adjunction above. The indeterminacy of this Toda bracket is defined similarly.

Later, we will need the so-called juggling formulas:
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1.2 Model categories and rigidity

Theorem 1.2.11. Let X Y 4 Z 5 W 25V be composable morphisms in a triangulated category
T. Then the following inclusions hold if the involved Toda brackets are defined:

|

g

(e]

©

=

8
L E2EEE
NN i nNnnN

B

N

<

~

o

¥

o

The author does not know a reference for these well-known facts. Some references for similar
statements are: [Ko, Prop. 5.7.4], [Ra, Thm. A1.4.6] and [To62, equations (3.5) and (3.6)].
Proof. These statements hold due to the axioms of triangulated categories. As an example, we prove
the third statement of this theorem.
We consider the following diagram, where the horizontal triangles are exact.

X—" sy "0, Pevyx (1.2)

| | [N

| |a b N

A -1 . Y

X7 py Y iy \

s-ic, ¥ >z Cy | E(zp.)

| I /

| le I d s

\ »1i, Y v1p, Yy -
Sy s-lo, — gz oy’

W—=V

In particular, the composite w o (d o b) is an element of the set w o (z,y,x). We define the element
wodo (—=b) = fo(Xc)o (Xx) of the set (w, z,y) o (Xx) by rotating the two lower exact triangles in
the diagram (1.2) above and by using the morphisms a, b, ¢ and d, which are defined in diagram (1.2):

DX —2> 3y (1.3)
[
b
Y iy (}/ —Py 1
Y A y Y'Y
‘ [ [N
le | d | Se N .
\ -1 Y . \i
27102 3T pe A z W iz C. /I e(w,z,y)
\ I |
| le I f 4
v Zilpw v T w \i /,/
yly ——=¥-1¢C, w V.

The signs in this diagram arise from the rotation of the two lower exact triangles in the diagram (1.2).
It follows that every element of the set —w o (z,y, ) lies in (w, z,y) o (Xz). Similarly, one shows the
inclusion (w, z,y) o () C —wo (z,y,z). O

11
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1.2.3 Rigidity of model categories and ring spectra

The stable model category of symmetric spectra (see Example 1.2.5(2)) is special in the sense that one
does not ‘loose information’ by passage to its homotopy category (see [Sc01] and [Sc07]). In general,
it is not possible to recover the Quillen equivalence type of the model category M from its homotopy
category Ho(M) — even if one also demands that the model category M is stable and hence its
homotopy category triangulated. Our aim is to find some stable model categories where this is the
case.

Definition 1.2.12. We call a stable model category M rigid if every stable model category N, whose
homotopy category Ho(N) is triangulated equivalent to Ho(M), is already Quillen equivalent to M.
A ring spectrum R is said to be rigid if the model category of right R-modules is rigid.

Remark 1.2.13. Results of Schwede, Shipley and Weiner provide a characterization for rigid ring
spectra which is independent of model categories. Before we give the precise statement (Thm. 1.2.16),
we need the following definition.

Definition 1.2.14. Let S and T be two ring spectra. A morphism of graded rings
P mi () —— mu(T)

is said to preserve Toda brackets if for all elements a, b, ¢ € 7. (S) with ab = 0 = bc the set ¢({a, b, c))
is contained in the set ((a),¥(b), ¥ (c)) in 7. (T).

Remark 1.2.15. If the morphism ¢ is an isomorphism then the set ¢ ({(a, b, ¢)) equals (¢)(a), 1 (b), ¥ (c)).
Those kind of isomorphisms are important in this thesis. They occur, for example, in the setting of
Theorem 1.2.16. Actually, the isomorphism in the second part of this theorem is even compatible with
higher Toda brackets since it is induced by a triangulated equivalence between triangulated categories.
However, we do not include this in our definition since we will not use higher Toda brackets.

The following theorem is a direct conclusion of some results of Schwede, Shipley ([ScSh03, Thm. 4.1.2]
and [ScSh00, Thm. 4.3]) and Weiner [We, Thm. 4.6.3].

Theorem 1.2.16. Let S be a ring spectrum, N a stable model category and
®: Ho(Mod-S) —— Ho(N).

an equivalence of triangulated categories. Let P be a cofibrant-fibrant object in N* whose image in the
homotopy category Ho(N) is isomorphic to the image of S under the triangulated equivalence ®.

(1) Then the object P is a compact generator of the model category N'. Moreover, there exists a
cofibrant and fibrant ring spectrum R and a chain of Quillen equivalences between N and the
model category of right R-modules

N =Q Mod-R.

(2) The resulting triangulated equivalence Ho(Mod-S) ~x Ho(Mod-R) maps the object S in Ho(Mod-S)
to an object which is isomorphic to R in Mod-R. In particular, it induces an abstract isomor-
phism

m.(8) 2 [8, 5] & [R, RPN = (R),

which is multiplicative and preserves Toda brackets (see Def. 1.2.14).

(3) The model categories N and Mod-S are Quillen equivalent if there exists a zig-zag of stable
equivalences of ring spectra between R and S.

12



1.2 Model categories and rigidity

Proof. This is a special case of Theorem 4.6.3 in [We| and Theorem 4.3 in [ScSh00].

First observe that the cofibrant-fibrant object P is a compact generator of the stable model category
N since S as a right S-module is a compact generator of the model category Mod-S. In [We], Weiner
constructs a symmetric ring spectrum R and a zig-zag of Quillen equivalences between the stable model
category NV and the model category Mod-R of R-modules [We, Thm. 4.6.2]. Moreover, we can assume
without loss of generality that the ring spectrum R is cofibrant-fibrant since it is stably equivalent to a
cofibrant-fibrant ring spectrum R/ and this zig-zag of stable equivalences induces a zig-zag of Quillen
equivalences Mod-R ~g Mod-R¢/ [HSS, Thm. 5.5.9]. This chain of Quillen equivalences N ~ Mod-R
induces a triangulated equivalence on homotopy categories which maps the object P in Ho(N) to an
object isomorphic to R in the homotopy category Mod-R (see [We, proof of Thm. 4.4.2]). Thus, the
first and second part of this theorem hold.

By [HSS, Thm. 5.5.9] or [ScSh00, Thm. 4.3], a zig-zag of stable equivalences of ring spectra induces a
zig-zag of Quillen equivalences between the stable model categories of right modules over these ring
spectra. This proves (3). O

Remark 1.2.17. In [ScSh03], Schwede and Shipley prove that every cofibrantly generated, simplicial,
proper, stable model category A/ which has a compact generator P is Quillen equivalent to the category
of right R-modules for a certain ring spectrum R [ScSh03, Thm. 3.1.1]. Later, Weiner was able to
omit the additional technical assumptions on the model category N [We, Thm. 4.6.2].

The following corollary is a direct consequence of Theorem 1.2.16.

Corollary 1.2.18. A ring spectrum S is rigid if it is stably equivalent to every cofibrant-fibrant ring
spectrum R whose ring of homotopy groups is isomorphic to the ring m.(S) by an abstract isomorphism
that preserves Toda brackets.

Remark/Notation 1.2.19. Due to [HSS, Thm. 5.5.9], we can assume without loss of generality that
all these ring spectra are cofibrant and fibrant. We will sometimes do that without emphasizing it.

Example 1.2.20. In the following, we give some examples of rigid and non-rigid ring spectra.

1. In [Sc01] and [Sc07], Schwede proves that the model category of spectra in the sense of Bousfield
and Friedlander [BF, §2] is rigid and hence so is the model category of symmetric spectra [HSS,
Prop. 4.3.1]. In particular, the sphere spectrum § is rigid. Moreover, Schwede proves that for
any prime p the p-localized sphere spectrum S, is rigid.

2. For any ring R, the Eilenberg-MacLane ring spectrum HR is rigid as it is uniquely determined
by its homotopy ring m.(HR) [ScSh03, Theorem 5.1.1.].

3. In contrast, the Morava K-theory ring spectra are not rigid (see [Sc01, §2.1]). To see this, let
K(n) be the n'® Morava K-theory ring spectrum for a fixed prime p and a natural number
n > 0. The homotopy category of K(n)-modules is triangulated equivalent to the derived
category of the graded field m,(K(n)) = F, [v,, v,'], where |v,| = 2p™ — 2. This derived
category is the homotopy category of a model structure on the category of differential graded
F, [vn, v, 1]—modules. However, this model category can not be Quillen equivalent to the model
category of K(n)-modules since the homotopy types of the mapping spaces do not coincide
([DwK, Prop. 5.4], see [Roi08, §5]). Indeed, for dg-modules all mapping spaces are products of

Eilenberg-MacLane spaces, which is not the case for K (n)-modules.
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1 Prerequisites

1.3 Postnikov sections of spectra and ring spectra

In sections 2 and 3, we will need Postnikov sections of connective spectra and ring spectra. For exam-
ple, we need Postnikov sections of spectra in the construction of a spectral sequence (see Thm. 3.2.8)
and Postnikov sections of ring spectra in section 2, where we consider Postnikov sections of p-localized
sphere ring spectra S(,,). Therefore, we recall constructions of Postnikov sections and some properties,
that will be useful in subsection 3.2. We start with the following definitions:

Definition 1.3.1. Let n be an integer.

1. A morphism of spectra f: X — Y is called a w«,,-isomorphism if the map m,,,(f) is an isomor-
phism for every integer m < n and surjective for m = n.

2. A spectrum X is called n-connected if the groups m,,(X) are trivial for m < n. A spectrum X is
called connective if it is (—1)-connected. Further, a spectrum X is n-coconnected if m,(X) = 0
for all £ > n.

Clearly, a cone of a m,-isomorphism is n-connected.

Definition 1.3.2. We denote the free associative ring spectrum on a symmetric spectrum X

T(X)=SVXVX"v...=\/ X"
n>0

by T'(X). For a pointed simplicial set K, we abbreviate the ring spectrum T'(X°° K) on the symmetric
suspension spectrum XK of K by T(K).

Recall that a cofibration K ~— L of pointed simplicial sets induces cofibrations ¥*° K »— ¥*°L and
T(K) — T(L) in the category of spectra and ring spectra, respectively (see [HSS, Prop. 3.4.2] and
[ScSh00]). Now we recall constructions of Postnikov sections.

Construction 1.3.3. Let n be a non-negative integer.

1. The n* Postnikov section
ﬁn : X —— an

of a cofibrant spectrum X is constructed by killing all higher homotopy groups of X. One way
to do this is by applying the small object argument (e.g. [Ho, §2.1.2]) to the morphism X — x
with respect to the set of maps

I, = { 5%°0Ak — > %Ak |k > n+ 2}

together with the generating trivial cofibrations for Sp® [HSS, Def. 3.4.9]. We choose this
construction since it ensures the spectrum P, X to be cofibrant and fibrant. Moreover, there are
natural maps

ont: P, X — P, X

such that the equalities o;,' o pr, = P and gy © 0" = op* hold, for all integers m >n > k > 0.
To see this, observe that the morphism p,,: X — P,, X is constructed by applying the small
object argument to the subset I, = { 8°9A% —— %Ak |k > m + 2} of I,, and that the

spectra E‘X’aA’i are Ng-small.
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1.3 Postnikov sections of spectra and ring spectra

2. Now we recall the construction of Postnikov sections of ring spectra. In [DuSh, §2.1], Dugger
and Shipley construct an n** Postnikov section for a connective cofibrant S-algebra S

Ppp: S ——P,S.

They obtain this morphism by applying the small object argument to the morphism S — x
with respect to the set of maps

{ T(0A%) —=T(AK) | k> n+ 2}

together with the generating trivial cofibrations for S-algebras (see [ScSh00, Thm. 4.1]). By
construction, the ring spectrum P,.S is cofibrant, fibrant, (n+ 1)-coconnected and the morphism
Pn 1S & T<py1-isomorphism [DuSh, 2.1]. Moreover, there are natural maps

oy PpS ——P,S

such that the equalities o]}’ o p,, = pn and g} o o) = o}* hold, for all integers m >n >k > 0.

3. The n*" Postnikov section of an arbitrary connective ring spectrum X can be defined by P, (X°),
where X¢ = X is a fixed functorial cofibrant replacement for X in the category of ring spectra.

Note that in this case, one only has a zig-zag of morphisms

Pn

X < X —=» P,(X°).

Similarly, one defines the n*" Postnikov section of an arbitrary connective spectrum X to be the
spectrum P, (X°¢).

Clearly, the n*" Postnikov section p, (or p,) of a connective cofibrant (ring) spectrum X is a
T<n+1-iSomorphism with an (n + 1)-coconnected (ring) spectrum as target. Since the construction of
Postnikov sections is functorial, the morphisms p,, and p,, are ‘universal’ in the following sense:

Lemma 1.3.4. Let f: X — Y be a mepy1-isomorphism between connective cofibrant ring spectra
with an (n + 1)-coconnected target Y. Then the morphism p, f: P, X — P,Y is a stable equivalence
such that the diagram

commutes. In particular, there exists a zig-zag of stable equivalences P, X ~Y . An analogous state-
ment holds for symmetric spectra.
In particular, this applies to the w<yn-isomorphisms @' and o' of Construction 1.3.3.

Corollary 1.3.5. For a connective cofibrant ring spectrum X, the Postnikov sections P,(X) and
P, (X) are stably equivalent as symmetric spectra:

X
pn/N\n

P, X — P, X.

15



1 Prerequisites

Proof. This follows from Lemma 1.3.4 since the underlying spectrum of a cofibrant ring spectrum is
cofibrant. 0

Since the functors P,,: Sp* — Sp*¥, m > 0, take stable equivalences between cofibrant spec-
tra to stable equivalences, we can define derived functors PL: Ho(Sp*) — Ho(Sp*), m > O
In order to do this, we choose a cofibrant replacement functor Q: Sp* — Sp> and a natural
transformation ¢q: Q@ — Id such that the morphism ¢x: QX — X is an acyclic fibration for
every spectrum X. Precomposing the functor P, : Sp*¥ — Sp* with @ defines a derived func-
tor PL: Ho(Sp*) — Ho(Sp®) for every non-negative integer m (see [Ho, Def. 1.3.6]). Moreover,
there is a natural transformation pp,: Idgesp») — PL where the morphism (p,,)x is the com-

posite (Pm)qQx © q)_(l: X & QX — P,(QX) for every spectrum X. The natural transformations
om: P, — P,, m > n >0, induce derived natural transformations g : PL — PL such that the
equalities o) o py, = Py, and g} o @' = oj* hold, for all integers m >n >k > 0.

Notation 1.3.6. To facilitate notation, we denote the derived functor PZ by B, as well.

Lemma 1.3.7. Let m be a non-negative integer and let f: X — Y be a morphism in the homotopy
category HQ(SpE) which s a T<mi1-1somorphism with a (m + 1)-coconnected target Y. Then the
morphism Py, f is an isomorphism and the diagram

commutes in Ho(Sp*).

Corollary 1.3.8. Let m be a non-negative integer. Let f: X — Y be a morphism in the homotopy
category Ho(Sp*) such that m,(f) is an isomorphism for every integer n > m and X is m-connected.

(i) Then there exists an evact triangle in Ho(Sp™), where the first morphism is f and the second
morphism is P, Y — PpY:

X Y P,Y X

(ii) Let M > m be an integer and Y be the M*" Postnikov section Py;Z of a spectrum Z. Then
there exist exact triangles

x-1op,z b PyZ—>5X
H f _ | aM _v% H
X —PyZ P, Z )39,

that are isomorphic in Ho(Sp®), where the isomorphism P,, Py Z = P, Z is the one of Lemma
1.3.7 applied to the morphism oM.

?

Proof. (i): We choose an exact triangle X Ly 4 0% $X. Tt follows that the triangle

f Pm qop o Ppi

X Y P,Y X

is exact, by applying Lemma 1.3.7 to the morphism i: ¥ — C.

(ii): There is an exact triangle X L,PMZ oy PoPyZ % $X in Ho(Sp>), by (i). As above, we
replace the morphism p,,: PyyZ — Py, Py Z by the morphism @T]‘f : PyZ — P, Z. O
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2 On rigidity of some Postnikov sections P,,S ;)

Schwede proves in [Sc01] and [Sc07], that the sphere spectrum S, is rigid. We adapt his proof to
show that all Postnikov sections Pp,(S(2)) are rigid (Thm. 2.2.3) and that for an odd prime p the
Postnikov sections P, (S(y)) are rigid for all m > p?(2p — 2) — 1 (Thm. 2.3.11).

The proofs of these statements are divided into a sequence of lemmas and theorems. Recall that
the ring spectrum P,,S(,) is rigid if it is stably equivalent to certain ring spectra R (Thm. 1.2.16).
These ring spectra R have the property that their rings of homotopy groups are isomorphic to the
ring 7, (P,S(,)) by isomorphisms which preserve Toda brackets. Let us consider the units

t:S——R

of these ring spectra R. In Section 2.1, we prove that if all those units ¢ induce isomorphisms 7, (1) ®Z )
for all integers k& < m then the ring spectrum P,,S, is rigid (Lemma 2.1.1).

Now let ¢ be such a unit. We prove in Theorem 2.1.5 that the morphisms 74 () ® Zp), k < m, are
isomorphisms if the maps 7x(1) ® Z(,) are bijective for certain integers k. In Sections 2.2 and 2.3, we
consider these special cases and prove that the spectra P,S(2), m > 0, and P,,,S(p,), m > p?(2p—2)—1,
are rigid (Theorems 2.2.3 and 2.3.11).

Let us fix the following notations:
Notation 2.0.9.

(i) Let p be a prime. We choose a p-localization S(,) of the Sphere ring spectrum S that is a
cofibrant and fibrant ring spectrum. (More precisely, let SZ,) be a Moore spectrum for Z,),
that is the groups Hy(SZ(y),Z) are trivial for all integers k # 0 and the group Ho(SZ,),Z) is
isomorphic to Z,). Using Bousfield localization Lgz,, of S-algebras at the S-module SZ ) (see
[EKMM, §VIIL.2]), we construct a p-localized sphere ring spectrum Lsz,, (S). We define the
ring spectrum S(,) to be a cofibrant-fibrant replacement of Lsz,, (S). Note that every p-local
ring spectrum S whose unit ¢: S — S induces an isomorphism 7, (1) ® Z () is stably equivalent
to S(p).)

Let m be a non-negative integer. The ring spectrum P,, = P,,(S(,)) denotes the m-th Postnikov
section of S(,y (Constr. 1.3.3).

(ii) Let m be a non-negative integer and p be a prime number. Recall that the ring spectrum
PS(py is rigid if every ring spectrum R, which has the property that the homotopy cate-
gories Ho(Mod-R) and Ho(Mod-P,,S(,)) are triangulated equivalent, is stably equivalent to
the ring spectrum P,,S(,) (Thm. 1.2.16). Throughout this section, the ring spectrum R de-
notes a cofibrant and fibrant ring spectrum such that there exists a triangulated equivalence
®: Ho(Mod-P,,S()) — Ho(Mod-R) (see Theorem 1.2.16). In particular, there exists a ring
isomorphism

Yr: T(PrS@p)) — m(R)

which preserves Toda brackets. Without loss of generality we can assume that the uniti: S — R
of the p-local ring spectrum R factors through S,

i

SHS(p)?R

by replacing the ring spectrum R with a cofibrant-fibrant replacement of the ring spectrum
Lsz,,, (R) ~ R.

17



2 On rigidity of some Postnikov sections Py, S p)

(iii) Recall that a morphism of ring spectra f: .S — R induces a Quillen adjunction
— As R: Mod-S —= Mod-R :U.
In this section, the adjoint of a morphism y: M ALY R — N in Ho(Mod-R) is denoted by
y: M ——= U(N) € Ho(Mod-S).
We often use this Quillen adjunction without stating it explicitly.

(iv) We abbreviate ‘[—, f]HO(MOd'S(m)’ by ‘[—, —]” when it is clear from the context. Furthermore, we
define 7, (—) = [S(p), —]Ijo(MOd_S(p)). This definition makes sense since the unit of S(,) induces a

Quillen adjunction — Ag S(p): Mod-S & Mod-S(,,) :U.

2.1 General statements about rigidity of P,,S(,) for all primes p

Let R be a p-local cofibrant and fibrant ring spectrum as in Notation 2.0.9(ii). In particular, the
homotopy categories Ho(Mod-R) and Ho(Mod-P,,S(;)) are triangulated equivalent and there exists a
morphism of ring spectra ¢: Sy — R. Consider the diagram of ring spectra

S(p) - R (2.4)

=P, (¢ ~
Po = Pu(S) ——2"  h— p(R)

where R and P, are the m!" Postnikov sections of S-algebras of R and S(p), respectively (see Con-
str. 1.3.3). Our candidate for a zig-zag of stable equivalences between the ring spectra P, and R
is

Lemma 2.1.1. The ring spectra P,S(,) and R are stably equivalent if the morphism v: S(,) — R is
a4 T<m41-1S0morphism.

Proof. Suppose that ¢ is a T, 11-isomorphism.

Thus, the morphism 7 is a T<,1-isomorphism like the other three morphisms in diagram (2.4).
Since the spectra P, = P,,S(,), R and R = P, R are (m + 1)-coconnected, the 7, 4+1-isomorphisms
i: P, — R and Pm: R — R are m4-isomorphisms and hence stable equivalences. (I

Therefore, it remains to prove that the morphism ¢: S¢) — R is a 7y, y1-isomorphism. In order
to do this, let us recall the following well-known fact, which is used by Cohen [Co, Thm. 4.2] who
cites a conversation with Adams. A proof of this fact can be found in [Sc01, Lemma 4.1].

Lemma 2.1.2. Let p be a prime and f: Sl(“p — S(py be a map with k > 1 and mod-p Adams filtration
at least two. Then the map f factors through some finite p-local spectrum whose mod-p cohomology is
concentrated in dimensions 1 through k — 1. More precisely, this spectrum is the (k — 1)*"-skeleton of
the fiber of the Hurewicz map S,y — HZy).

For the prime p = 2, Adams proves that all elements in 7(S(2)) with k& > 0, except for unit
multiples of the Hopf maps 1 € m1(S(2)), v € m3(S(2)) and o € 77(S(2)), have Adams filtration at least
two [Ad60, Thm. 1.1.1]. For prime p > 2, the only elements in m(S(,)), k > 0, with Adams filtration
smaller than two are in the first non-trivial p-torsion homotopy group ma,_3(S)) = Z/p{a1} (see
[Li, Thm. 1.2.1]). In Corollary 2.1.4, we adapt this statement to our situation.
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2.1 General statements about rigidity of P,,S(,) for all primes p

Definition 2.1.3. Define a function K on prime numbers by

)7 if p=2,
K(p)_{ 2p—3 ifp> 2.

Corollary 2.1.4. Let p be a prime and let k be an integer which is larger than K(p).
(i) All maps f: S’(fp) — PS(p) factor through some finite p-local spectrum like in Lemma 2.1.2.

Ho(Mod-Pp,S(p)) ]Ho(Mod—R)

(it) All maps in [S*PpSp), PnSp] and [S*R,R factor through a finite
PSpy-cell and R-cell complex, respectively, with cells in dimensions 1,...,k — 1.

Proof. (i): Since the morphism S,y — P,S(p) is & Ty, 1-isomorphism, the map f is either trivial
or factors through the p-localized sphere spectrum and the claim follows from Lemma 2.1.2.
(ii): The second claim holds for all elements in [S*P,,, P, ] HoMod-Pr) e to (i) and the adjunction

— AF Py, 0 Ho(Mod-S(,)) == Ho(Mod-P,,) :U
between triangulated categories. Moreover, recall that the triangulated equivalence
Ho(Mod-P,,) ~a Ho(Mod-R)

maps the object P, € Ho(Mod-P,,) to an object isomorphic to R € Ho(Mod-R) (Thm. 1.2.16). Thus,
the claim holds for morphisms in [ZkR, R] Ho(Mod-R) as well. (]

Theorem 2.1.5. Let m be a non-negative integer. Then the morphism ¢: S(p) — R is a Tepmt1-
isomorphism if the maps m;(t) are bijective for | < min{K(p),m}.

Remark 2.1.6. For an odd prime p, the only non-trivial homotopy groups 7. (S(,)) with dimensions
at most K(p) = 2p — 3 are mo(S(p)) = Z,y and ma,_3(Sp)) = Z/p{a1}. Thus, in this case we only
have to show bijectivity of the two maps mo(¢) and map_3(¢).

The theorem above follows inductively from

Lemma 2.1.7. Let k andm be integers such that K (p) < k < m. If the maps m(¢): m(S¢p)) — m(R)
are bijective for all | < k, then so is mp(¢).

Proof. It suffices to prove that the map 7 (¢) is surjective since the groups 7% (S,)) = 71 (Pm) = m(R)
are finite. Let § be a morphism in 7 (R) = [EkS(p), R}. We want to prove that this morphism factors
through ¢: S(,) — R. This proof is divided into three steps.

First, recall that the morphism ¢ induces an adjunction

— AP R: Ho(Mod-S(,)) =—= Ho(Mod-R) :U

and that the adjoint y € [EkR, R] Ho(Mod-R) of the morphism ¢ factors through a finite R-cell complex

Y with cells in dimension 1,...,k —1 (Cor. 2.1.4):

Y
YER 2 Y b R.
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2 On rigidity of some Postnikov sections Py, S p)

Second, we inductively construct a finite S,)-cell complex X with cells in dimensions 1,...,k—1 and
a T<p-isomorphism 2: X — U(Y) in the homotopy category Ho(Mod-S,)). In particular, the map
() is surjective and hence there exists an element o’ € 7 (X) such that the diagram

commutes. In order to do this, we fix a finite R-cell complex structure of Y with cells in dimensions
1 through k& — 1, that is we choose distinguished triangles in Ho(Mod-R):

VS R— " oSk Y Sk Y P\, SR

for every natural number 1 < j < k — 1. Here, I; are finite (possibly empty) sets, the zeroth skeleton
of Y equals Sko Y = * and its (k — 1)*" skeleton is Y itself. Accordingly, we define the zeroth skeleton
of X to be Skg X = .

Let [ be an integer with 1 < [ < k. Suppose we have already constructed the (I — 1)** Skeleton
Sk;—1(X) of X together with a m.p-isomorphism x;_1: Sk;—1 X — U(Sk;—1Y) in Ho(Mod-S)).
Then there exists a morphism s such that the diagram

UV, D7) s USky ¥) s U (S V)~ UV, X'B)
VELILT Ti—1
\/Iz Elilg(p) SR >Sk;_1 X

commutes. We define the [*" skeleton Sk; X by completing the morphism s; to a distinguished triangle
in the homotopy category Ho(Mod-S,)):

U Uz U
UV, SR — 2 u(Sk Y) — s p(sk Y) — 2 Uy, SR)
A
VZIILT Ti—1 x| VEZLT
s il | ’
Vi, S8 ————> Sk X ! Sk X - Vi ES -

Observe that the upper triangle in the diagram above is exact since the forgetful functor
U: Mod-R — Mod-S,)

induces an exact functor. Thus, there exists a morphism z; such that this diagram commutes. By
the Five Lemma, the morphism z; is a 7~j-isomorphism since the morphisms \/ £!~!¢ and z;_; are
Tel—1+k—1- and T<g-isomorphisms, respectively.

It follows that there exists a spectrum X and a 7g-isomorphism

T:=Tp_1

X :=8Skp_1 X

u(y).
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2.2 The ring spectra P, (S(z)) are rigid for all m > 0

In particular, the morphism a: *S(,) — U(R) factors through the morphism z as in diagram (2.5).
Third, we prove that the morphism

(X, 4 : [X,Sg)]

(X, U(R)]

is surjective. Then there exists a morphism b’ such that the diagram

Y

N

SFS ) —m U(Y) % U(R) (2.6)

L

X - —=>Sy)

commutes and hence the element b’ o a’ € m4(S(;)) is in the preimage of § € 71 (R).

We prove the surjectivity of the map [X,:] by induction over the skeleta of X. The morphism
[Sko X, 1] = [*,4] is bijective.
Let [ be an integer with 0 < I < k and assume that the morphism [Sk;—; X, ], is surjective. The
exact triangle

V, 1S ) ————= Sk X Sk, X Vi3S

in Ho(Mod-S ;) induces the following morphism of exact sequences:

[V =718, 8] < [Ski1 X, 8| <— [Ski X, S| <— [V '8, Sp)] <— [£Skia X, Sy

N N

[V} 718, R] <—— [Ski_1 X, R] <—— [Sk; X, R] <—— [V/; ©'S(p), R] <— [ Ski_1 X, R].

In this diagram, the first and the fourth vertical morphism are bijective since the map ;(¢) is bijective
for every integer | < k. As the second morphism is surjective, the third morphism is also surjective
by the Five Lemma.

It follows that the map [X,¢] = [Skrp_1 X, ] is surjective and hence the element § € m;(R) lies in the
image of the map m(t) (see diagram (2.6)). This finishes the proof of Lemma 2.1.7 and hence of
Theorem 2.1.5. (]

2.2 The ring spectra P,,(S(2)) are rigid for all m > 0

In the last subsection, we prove that the ring spectrum P, Sy is rigid if certain maps m(¢), 0 <1 <
min{7, m}, are bijections (Theorem 1.2.16, Lemma 2.1.1 and Theorem 2.1.5). Now, we show that this
is indeed the case (Lemma 2.2.1) and thereby complete the proof of the rigidity of P,,S(), m > 0
(Thm. 2.2.3).

Lemma 2.2.1. Let m be a non-negative integer and let R be a p-local cofibrant-fibrant ring spectrum as
in Notation 2.0.9(ii). In particular, there exists an equivalence ®: Ho(Mod-P,,S(,)) — Ho(Mod-R)
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2 On rigidity of some Postnikov sections Py, S p)

of triangulated categories and a ring isomorphism Yr: 7(PpS()) — T« (R) that preserves Toda
brackets. In addition, the unit i: S — R of R factorizes through S,):
i

SHS@)?R

(see Notation 2.0.9). Then the morphism v is a T<yq1-iSomorphism.

Proof. In order to avoid confusion, let us first fix the following notation: Let & be an integer which
is at most m and a an element of the group m(PnS2)) = m(S2)). Then we denote the element
tg(a) € mp(R) with the same symbol ‘a’.

To prove this lemma, it suffices to show that the morphism ¢: S(3y — R induces isomorphisms
7 (¢) for all integers k < min{m, K(2)} = min{m, 7} (Thm. 2.1.5). We do this consecutively for every
integer 0 < k <7 with k <m:

k =0: Since the unit i: S — R of the ring spectrum R factors over the morphism ¢ (see Notation
2.0.9(ii)), the map mo(¢) sends the element 1 € 7m(S(2)) to 1 € mo(R) = Z(z) and is hence
bijective.

k =1: We prove the bijectivity of 71(¢) in the following lemma using properties of the 2-local mod-2

Moore spectrum M := Sy /2.

Lemma 2.2.2.
(i) The morphisms 21dys € [M, M] and 21dpar € [M AR, M A R]HO(MOd_R) factors through
the morphisms n € [ES(Q),S(Q)] and n € [ER, R]HO(MOd'R), respectively.

(ii) In particular, the map mi(1): m1(S(2)) — 71 (R) is an isomorphism.

k = 2: Since the group m3(S(2)) is generated by the element n?, the map mo (1) is bijective if 2 < m.
k =3: The map v,: m3(S(2)) = Z/8Z{v} — m3(R) = Z/8Z{v} sends the element 4v = 1* to 4v = n?

and hence it equals multiplication with a unit v in Z/8.

k = 4,5: Here is nothing to prove since the groups 74(S(2)) = m4(R) and 75(S(2)) = m5(R) are trivial.

k = 6: Since the group 7m6(S(2)) is generated by v2, the map 74(c) is bijective if 6 < m.

k = 7. Consider the Toda bracket 80 = (v,8,v) € 77(S()) [To62, §V]. It has trivial indeterminacy since
the group m4(S2)) is trivial. As ¢ is a morphism of ring spectra it preserves Toda brackets and

it follows that ¢.(80) = t.({v,8,v)) = (uv, 8, ur) = (v,8,v) = 8c. Thus, the map m7(¢) equals
multiplication with a unit in Z/16 and is hence an isomorphism.

O

Proof of Lemma 2.2.2.
(i): This is a well-known fact, which can be seen as follows: Due to the exact triangle

2> S(g) —> M —= 5S)

S(2)

in Ho(Mod-S(3)), the group [M, M] has exactly 4 elements and it suffices to show that the Identity
map Idy; has 4-torsion in order to prove that the composition
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2.3 The ring spectra P, (S(;)) are rigid for odd primes p and m > plq—1

equals 21dy,.

As the group [M, M] has exactly 4 elements, the morphism Ids has either 2- or 4-torsion. Moreover,
the morphism 21Idp; can not be trivial since the cohomology of its cone C(21dps) ~ M A M with
Z/2-coefficients does not split as a module over the Steenrod algebra. Thus, the morphism Id,; has
4-torsion and hence the first part of claim (i) follows.

In order to prove the claim for the morphism 21Idy;Agr, we consider the exact triangle

i R
R=So AR—2> g2 i p g5 wR

in the homotopy category Ho(Mod-R). It follows that the image of M A P,, under the triangulated
equivalence Ho(Mod-P,;,) ~a Ho(Mod-R) is isomorphic to M A R in Ho(Mod-R). Due to the m<,41-
isomorphism M — M A P,,, the group [M, M A P,,] is cyclic of order four and hence so is the

group
[M, M AR] = [M AR, M A R"MB) =~ (ar A P M A P, HoMedPm) o~ 1af A1 AP,
Like above, it follows that the element 2Idy g € [M A R, M A R4 factors as

2

MANR YR R M AR

in Ho(Mod-R).

(ii): The map 7 (¢) sends the element 1 € 7 (S(2)) non-trivially to 7 (R) since the morphisms 2Idas €
[M,M] and (2Idp) A € [M,M AR] = [M AR, M A R"™™°% factor through the morphisms
n € m1(S(2)) and n € w1 (R), by (i). Thus, the map 7 (¢) is bijective. O

Theorem 2.2.3. The ring spectra Py, (S(2)) are rigid for all m > 0.

Proof.  Fix a non-negative integer m. In order to prove that P%,S) is rigid, it suffices to prove
that the morphism ¢: S(3y — R induces an isomorphism 7 (¢) for every integer & < min{m, K(2)} =
min{m, 7} and for every ring spectrum R as in Notation 2.0.9(ii) (Theorem 1.2.16, Lemma 2.1.1 and
Theorem 2.1.5). This is the case due to Lemma 2.2.1. ]

2.3 The ring spectra P,,(S(y)) are rigid for odd primes p and m > p?q — 1

In subsection 2.1, we prove that the ring spectrum P,,,S(,) is rigid if certain morphisms ¢: S,y — R
(see Notation 2.0.9(ii) and Lemma 2.1.1) induce isomorphisms 7 (¢) of stable homotopy groups for
k < min{m,2p — 3}. Now we prove that this is the case if the integer m is at least p?q — 1, where ¢
denotes the integer 2p — 2 (Theorem 2.3.11).

Since the stable homotopy groups of the spectrum S, are trivial in dimensions 1 through 2p — 4, it
remains to prove that the maps mo(¢) and map_3(¢) are bijective. Clearly, the former is since the unit
i: S — R of the ring spectrum R factors over the morphism ¢ (see proof of Thm. 2.3.11). In order
to prove the bijectivity of the map

Tap—3(t): M2p—3(S(p)) = Z/p{on} —— map_3(R) = Z/p,
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2 On rigidity of some Postnikov sections Py, S p)

we only need to show that the element oy is non-trivially mapped into the group ma,_3(R). The
proof of this fact requires some work and is similar to Schwede’s proof of the rigidity of the sphere
ring spectrum [Sc07, Thm. 3.1 and Prop. 4.1]. One motivation for this proof is the following: By an
unpublished result of Schwede (and probably by others), the (2p — 1)-fold Toda bracket

<p7 ﬁl)p7 Bla s a/817p> C T2p—3+(p—1)(pg—2) (S(p))7 (27)

is defined and contains the element «y8°!, where 8 is a non-trivial element in Tpg—2(S(p)) (see
the proof of Prop. 2.3.6). Now let us assume that the element «y is trivially mapped into the
group m.(R) by the map m.(:). Then the Toda bracket (2.7) and the triangulated equivalence
Ho(Mod-P,,S(;)) =a Ho(Mod-R) indicate the existence of a 2p-cell complex whose attaching maps
correspond to the morphisms p-Ids ,, and (1. This motivates the construction of a cell complex with
these properties which, hopefully, can not exist and hence gives a contradiction to our assumption.
In his proof of the rigidity of S(,), Schwede constructs a cell complex with the necessary properties
[Sc07, Thm. 3.1] using coherent M-modules [Sc07, Def. 2.1]. We recall their definition and some re-
lated statements in the following subsection. Afterwards, we prove that the map ma,_3(¢) is bijective
(Prop. 2.3.6) and hence finish the proof of the rigidity of certain Postnikov sections of the p-localized
sphere spectrum (Thm. 2.3.11).

2.3.1 Coherent M-modules
For the proof of Theorem 2.3.11, we will need the following definitions and statements [Sc07]:

Definition 2.3.1. [Sc07, Def 1.1 and 1.2]

1. Let G be a group. We denote by EG the nerve of the transport category with object set G and
exactly one morphism between any ordered pair of objects. So EG is a contractible simplicial
set with a free G-action. We are mainly interested in the case G = ¥,,, the symmetric group on
n letters.

2. The n'" extended power of a pointed simplicial set X is defined as the homotopy orbit construc-
tion
D, X = X" As, EXY,

where the symmetric group ¥, permutes the smash factors, and the ‘4+’ denotes a disjoint
basepoint. We often identify the first extended power D; X with X and use the convention
DoX = S°.

3. The injection ¥; x ¥; — X;4; induces a X; X Yj-equivariant map of simplicial sets
EY x EYj ——=EY¥;;
and thus a map of extended powers
prij: DiX AD;X = XMNHD Ag v (BS; x BEX)F —— XM+ Aq (ESip )t = Diyj X.
These maps are associative in the sense that the diagram

Id Apj

D; X A DJX ADX —=D; X A Dj+lX

\LMJAId iﬂi,jJrL

D, X ADX — 2 oD, X
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2.3 The ring spectra P, (S(;)) are rigid for odd primes p and m > plq—1

commutes for all 7, j,k > 0. The maps p; ; are also unital, so that after identifying D; X A Do X
and Do X A D; X with D; X the maps p; 0 and ji9; become the identity.

Throughout this section, M is a fixed simplicial set which is finite, pointed and of the homotopy
type of a mod-p-Moore space with bottom cell in dimension two i: S? — M, where S? is A [2] /0A [2]
(see [Sc07, p. 840]).

Definition 2.3.2. [Sc07, Def 2.1]
Let C be a pointed simplicial model category, p a prime and k an integer 1 < k < p. A k-coherent M-
module X consists of a sequence X (1), X(2), ..., X1 of cofibrant objects in C, together with morphisms
inC

pi g DiMA Xy —— X(ipj)

for 1 <i,75 and ¢+ j < k, subject to the following two conditions
(C1) (Unitality) The composite

S? A X(jon) —= MA Xy == X(j)
is a weak equivalence for each 2 < j <[, where we identify M with D;M.

(C2) (Associativity) The square

DM A D;M A Xy 25 DM A X4

i#i,j/\ld ll‘f’i,j+L

DijM A Xy —222 5 Xy

commutes for all 1 <i4,j,landi+j+1<k.

The underlying object of a k-coherent M-module X is the object X(;) of C. We say that an object YV’
of C admits a k-coherent M-action if there exists a k-coherent M-module whose underlying C-object is
weakly equivalent to Y.

A morphism f: X — Y of k-coherent M-modules consists of C-morphisms f(;): X(;) — Y(;) for
j=1,... k, such that the diagrams

Id j
DM A Xy 2 DM A Y

J{Nid

Fit4)
X(it) :
commute for 1 <i¢,j and i + j < k.

Example 2.3.3. (Schwede, [Sc07, Example 2.4])
The mod-p Moore space acts on itself in a (p — 1)-coherent fashion, which is also refered to as the
tautological (p — 1)-coherent M-module. We define a (p — 1)-coherent M-module M by setting

M =DM

for 1 < j < p—1. In particular, the underlying object M,y is just the Moore space M. The action
maps

Hij- D;M /\M(j) =D;,MA DJM N Di+jM = M(H—j)
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2 On rigidity of some Postnikov sections Py, S p)

are the maps between extended powers in Definition 2.3.1(3). The unitality condition holds by [Sc07,
Lemma 1.4]. Now let Y be a cofibrant object in a pointed simplicial model category C. Then we can
define a tautological (p — 1)-coherent M-action on M A'Y by smashing the tautological module M with
Y. More precisely, we define a (p — 1)-coherent M-module MAY in C by

for 1 < j < p—1, and similarly for the structure maps. The associativity and unitality conditions are
inherited from M.

We fix fibrant simplicial models S? and S of the 2p- and 3-sphere. We denote by a;: $2P —s §3
a generator of the p-primary part of the homotopy group m2,(S®) (see [Ra, Cor. 1.2.4]).

Proposition 2.3.4. (Schwede, [Sc07, Thm. 2.5])
Let'Y be a cofibrant object of a simplicial stable model category C and let p be a prime. If the map

Al ANY: SPAY —= S3AY

is trivial in the homotopy category of C, then the tautological (p — 1)-coherent M-action on M AY
defined in Example 2.3.3 can be extended to a p-coherent M-action.

Proposition 2.3.5. (c¢f. Schwede, [Sc07, Prop. 3.2])
Let C be a simplicial stable model category and

®: Ho(Mod-P,,,) — Ho(C)

an exact functor of triangulated categories that is fully faithful. Let a: X" P,, — E be a morphism in
the stable homotopy category of right P,,-modules. Suppose that X'(®E) admits a k-coherent M-action
with k > 2 in Ho(C). Then there exists a morphism a: M A X" 2P,, — E such that the following
diagram commutes in Ho(Mod-P,,)

a
X"P, — FE
Ja_ ~
z'/\E"sz\L pad

7
7
2

M A X-2P,,

and such that the object ¥2H®(C(a)) admits a (k — 1)-coherent M-action, where C(a) is any mapping
cone of a in Ho(Mod-P,,).

Proof.  Replacing the stable homotopy category of spectra Ho(Mod-S) by Ho(Mod-P,,(S;))) in
Schwede’s proof of Prop. 3.2. in [Sc07], provides the proof of this Proposition. O

2.3.2 The morphism ¢ is a w<2p_a-isomorphism for m > p?(2p — 2) — 1
In this subsection, we prove Theorem 2.3.11, which follows from

Proposition 2.3.6. Let p be an odd prime and define q as the integer 2p — 2. Let m be an integer
which is at least p>q — 1 and R a ring spectrum as in Notation 2.0.9(ii). In particular, there exists an
ezxact functor

®: Ho(Mod-P,,,) — Ho(Mod-R)
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2.3 The ring spectra P, (S(;)) are rigid for odd primes p and m > plq—1

of triangulated categories that is fully faithful and that maps Py, = PppS,) to an object isomorphic to
R in the homotopy category of right R-modules. Then the map

a1 AR: S N\R——= S3 AR

is non-trivial in Ho(Mod-R).

The proof of this Proposition is analogous to the proof of Schwede for his Theorem ([Sc07, Thm. 3.1]).
In our case, we need some knowledge about cohomology operations on the cohomology theory

I‘AI*(*) [ HF ]Ho(Mod P,)

where the right Py,-module structure on HF), is defined by HF,AP,,, — HF,ANHZ,y — HF,. Note
that the graded group H*(P,,) is concentrated in degree zero and is isomorphic to H* (Sw) =Z/p.

Lemma 2.3.7. The morphism of algebras A* := H*(HF,) —s H*(HF,) = A* which is induced by
the forgetful functor U: Ho(Mod-P,,) — Ho(Mod-S(,)) is bijective in degrees x < m + 1.

Remark /Notation 2.3.8. The cohomology operations in A~ corresponding to P € A" are denoted
by P". Since — among other things — we will need the relations ;PP 4+ PP~1 Pl = ppp(i-1p for a]]
i=1,...,p, we have to require that m > p?q — 1.

Corollary 2.3.9. For m > p?q — 1, the elements ]51,}52,...,]51’2 m fI*(H]Fp) corresponding to
pPL P2 .. pr e H*(HF,) are non-trivial and the relations iP® 4 pir=1pl — prp(i=1p pold for all
1=1,...,p.

Proof of Lemma 2.3.7. We prove that the forgetful functor
U: Ho(Mod-P,,) — Ho(Mod-S,))
induces isomorphisms U: H"(HF,) —s H"(HF,) for n < m + 1, by using the adjunction
— A Py, Ho(Mod-S(,)) ——= Ho(Mod-P,,) :U.
We denote the counit of this adjunction with . The morphism
mr,: HF, A Py, — HF,

is & T« o-isomorphism for the following reasons: Observe that the group m,, (HF, A P,,) is trivial for
every 0 < n < m+1 since the morphism HF, App,: HF,AS ) — HF, APy, is a T4 1-isomorphism.
Moreover, the map mo(enr,): mo(HF, A Pp) — mo(HF)) is bijective. It follows that the morphism
€HF, 18 & T<mo-isomorphism and that its Cone C(egr, ) is (m + 2)-connected.

Now we compare the groups H "(HF,) and H"(HF),) using the commutative diagram

~ ~ ﬁn(EHJFT_,) ~ ~
H"(Cepr,)) <~ H"(HF, A Pp) ~———— H"(HF,) <—— H"(C(eng,))

o~ J/U
@

where the right vertical map is induced by the forgetful functor U and the left diagonal map ¢ is
part of the adjunction above. The group H*(C(eyr,)) is trivial for every integer k& < m + 2 since
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2 On rigidity of some Postnikov sections Py, S p)

the cone C(enr,) is (m + 2)-connected, the ring spectrum P, is connective and the spectrum HIF,, is
1-coconnected [EKMM, IV.1.4.(i)]. Thus, the morphism

U: H"(HF,) — H"(HF,)
is bijective in degrees n < m + 1 since the morphism fI"(sHFP) is. O
Proof for Proposition 2.3.6. We assume, contrary to our claim, that the morphism

a1 AR: S N\R— S3 AR

is trivial in the homotopy category of right R-modules. We will reach a contradiction by constructing
right P,,-modules E; for ¢ =0,1,...,p — 1 with the following properties:

(a) The P,,-module E; has exactly one stable P,,-cell in dimensions jpq, jpg+1 forall j =0,1,...,4
— and no others.

(b) The map P?: HY(E;) —s H™4(E;) is non-trivial.
(c) The object X2*2®(E;) admits a (p — i)-coherent M-action.

(d) There exists a morphism a;: SESl)m_l A P,, — E; in Ho(Mod-P,,) such that the map

PP HP1(Cay) — HOTDP(Cay)
is non-trivial.

We construct these Pp,-modules Ey, ..., F,_; by induction.
For ¢ = 0: The zeroth right P,,-module Fy is defined to be the P,,-cell complex M A S(;Q) A Py,
which satisfies properties (a) and (b). Moreover, the object X2®(Ey) = %20 (M A S(_pg) A Py,) admits a
p-coherent M-action since it is isomorphic to M A ®(P,,) in the homotopy category Ho(Mod-R) and
since the morphism oy A R is trivial (Prop. 2.3.4).
We choose a morphism f; : Sty L MA S(_])Q) which is detected by the operation PP. One possible
morphism is the one constructed by Toda, whose composite with the pinch map M A S(_}f) — S%p)
is a unit multiple of the generator 3; of the homotopy group m,4_2(S¢,)) [To71, section 5, p. 60]. It
follows that the map

B1APy,

. qpra—1 —2
ag: S(p) /\Pm4>M/\S(p) AP,

satisfies property (d).

For 0 < ¢ < p: Suppose we have constructed the right P,,-modules F; for 1 < j <i—1. By
Proposition 2.3.5, an extension a;_; exists, such that the following diagram commutes in Ho(Mod-F,,)

a;—1

ipqg—1
S(p) A P,

\L Ja; 1

1pg—3
M A S(p) A Py,

Ei (2.8)
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2.3 The ring spectra P, (S(;)) are rigid for odd primes p and m > plq—1

and such that X2*2®(C(a;_1)) admits a (p — i)-coherent M-action. We define E; = C(a;_1) and
hence get the following exact triangle in Ho(Mod-P,,):

MASEI™ A Py, B, E; M A S A Prn. (29)

Thus properties (¢) and (a) hold for F;. To prove (b), consider the relation

prpli-tr — jpir 4 pir=1pl
For degree reasons, the operation P! acts trivially on H* (E;) and hence the operation zlsip is non-
trivial if and only if PP P~1P is non-trivial. In the following, we prove that the operation PP P(i—1)p
is indeed non-trivial. Consider the commutative diagram

ﬁ(ifl)pq(Cai_l) — ﬁipq(Cai_l)

P

of> 0 T

Fi-1pg () — 2 o fripa( [ o
V(1) 2 e 71 (E,) = F,

N ®
pli=brog

@lz @lz

F, = H(E;_,) HO=Dra(B; 1) =T,

_—
P-4
The morphisms in this diagram are bijective or non-trivial for the following reasons:

®: By the octahedral axiom and the commutative diagram (2.8), there is an exact triangle

S A Py —= Cla—1) —= C(ai—1) = B —=SPIT A Py, (2.10)

Thus, the morphism C(a;—1) — E; induces an isomorphism H=Vra(E) = AE-Dre(Ca;_y)
since the groups H*(S,) A Pp,) = H*(S(,)) are trivial for k # 0.

@: Therefore, the operation P”: HG-Vra(E)) —s H®I(E;) is non-trivial since the operation
PP H(ifl)pq(Cai,l) — Hipq(Cai,l) is.

@: Due to the exact triangle (2.9), the morphisms H™(E;) — H"(E;_,) are bijective for all
integers n < ipg — 2 since the groups H™(M A SE’;‘)FS A Pp) = H*(M A SZ:)]%) are trivial for
n #ipq — 1, ipq.
@: Thus, the operation
P-Dp. FO(E) — H~Dra(E;)
is non-trivial since the operation PU=1p: HO(E;_y) — HE=Dra(E;_,) is.
Therefore, the composite
prpl—Vpr — jpiw: gO(E;) — HPI(E;)
and hence PP are non-trivial. Thus property (b) follows.
To prove (d), we consider the morphism

) SYABLASPI"IAP,, )
SETP AP, @ SEAMASEI A Py 22 By /By,
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2 On rigidity of some Postnikov sections Py, S p)

The obstruction to lifting this morphism to a morphism a;: S wi=l A p . B, in the homotopy

category Ho(Mod-F,,)

(i+1
(p)

SEVPTt A P, (2.11)
-7 lsl/\Bl/\Sngl/\Pm
—~ /Eal P
E; EZ Ei/E; YE; 1
lies in the group
S(iJrl)INI*l P SE Ho(Mod-P,,) - B
[ ) N P, i71:| & (it 1)pg—2(Eio1). (2.12)

This group is trivial. To see this, recall that the stable homotopy groups m,(S(,)) are trivial for
n=jpqg—3,jpqg— 2, j =2,...,p [Ra, Thm. 4.4.20]. Since the same is true for the stable homotopy
groups of P, and since the spectrum E;_; has P,,-cells in dimensions jpqg and jpg+1 for 0 < j <i—1,
it follows that the group 74 1)pq—2(Fi—1) is trivial.

Therefore, it remains to show that every lift a; is detected by the operation pr. By the octahedral
axiom and the commutative diagram (2.11), the triangle

Bi 1 —> Ca;—= S" ACB ASPIT APy —= SE; 4 (2.13)
is exact in the homotopy category of right P,,-modules. Thus, the operation
PP HP1(Ca;) — H*DPI(Ca,)
is non-trivial since the cone Cf3; is detected by PP and since the morphisms

H™(S' N OB NS A Po) — A™(Cay)

are bijective for all n > (i — 1)pg + 1.
Therefore, the right P,-modules Fy, Ey, ..., Ep_; exist.

Remark 2.3.10. In this argument, we needed that m+1 > (p—1)pq. In order to get a contradiction,
we will need that m + 1 > p2q.

In the following, we consider cohomology operations on Ca,_; in order to reach a contradiction.
Recall that the relation of operations

ppp-Dp _ prP2 4 pri-1pl
holds. Moreover, the two morphisms
pPr? pri-1pl. I:IO(Cap_l) _ ﬁpzq(Cap_l)

are trivial for the following reasons: The map plf”’2 is trivial since its source and target are F,-vector
spaces: H°(Ca,_1) = H(E, ;) = F, and ﬁpzq(Cap,ﬁ =~ AP*(ST A C(By) A Sg;”pq*l A P) =
HP1(C(B1) A Pp) = HP(C(B1)) = F, (see (2.13)). The second map PP"~!P! factors through the
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group H(Ca,_1) = HY(E, 5) = 0 (see properties (a) and (d)) and is hence trivial. However, the
sum
pPr’ 4 pri-1pl — prp-Yr. [9(Ca, ) ———— H? 9(Ca,_1)

of these trivial maps is non-trivial since the properties (b) and (d) hold for E,_;:

A~ 2 N 2

HO(SI()p)q A\ Pm) =0 H(p—l)PQ(Sifp)q A Pm) -0
p(p—1)p N ﬁp 0 R
H®(Cay-1) - HP=DP(Cay,y) = HY"4(Cay,_,)
. plr—1rxq .
F, = H(E,_1 HP-Yry(E, ) ~F,

'} 2g—1 N 2,1

HO(SZD)‘J APy)=0 H® 1)pq(gl(’p)q APy) =0.
This is a contradiction and hence the morphism a; A R has to be non-trivial in Ho(Mod-R). O

Finally, we are able to prove that the Postnikov sections P, (S(,)) are rigid for m > p2q — 1:

Theorem 2.3.11. Let p be an odd prime and define ¢ = 2p — 2. Then the ring spectrum P, (S(p)) is
rigid for every integer m > p’q — 1.

Remark 2.3.12. As mentioned above, the ring spectrum PyS,) = HZ ) is also rigid (see example
1.2.20(2)). The author does not know whether the ring spectra P,,S,), 2p —3 < m < p?q — 1, are
rigid.

Proof. By Theorem 2.1.5 and Remark 2.1.6, it suffices to prove that every morphism ¢: S,y — R as
in Notation 2.0.9(ii) induces isomorphisms 7 (¢) and m2,—3(¢). Let ¢ be such a morphism. The map
mo(¢) is an isomorphism since the unit i: S — R of the ring spectrum R whose zeroth homotopy
group is Z,) factors over the morphism ¢. Now we prove that the map

Tap—3(t): T2p—3(Sp)) = Z/p{ar AS(p)} —————>T2p_3(R) = Z/p
is non-trivial and hence bijective. It sends the element a; AS(,), which is represented by the morphism
ap A\ S(p) 0 52PN S(p) — = S3A S(p)

in the category of right S, -modules, to the element (S Av) o (a1 A S()) = a1 A S, € T2p—3(R).

This element is the adjoint of the non-trivial morphism a; AR € [22”_31%, R} Ho(Mod-F) (Prop. 2.3.6)

under the adjunction
— AP R: Ho(Mod-S;,)) =<—= Ho(Mod-R) :U".

Thus, it is non-trivial and the claim follows. O
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3 Towards rigidity of the real connective K-theory ring spectrum

In this section we consider the 2-local real connective K-theory ring spectrum ko(z). Recall that its
graded ring of homotopy groups is given by 7. (ko(2)) = Z2)[n, w, 8]/(2n,1°, nw, w?* — 43), where the
generators 7, w and S have degree 1, 4 and &, respectively. We would like to prove that the ring
spectrum Kooy is rigid. One possible approach is to show that ko(s) is stably equivalent to every ring
spectrum R whose ring of homotopy groups 7., (R) is isomorphic to 7, (ko(s)) so that this isomorphism
preserves triple Toda brackets (Cor. 1.2.18).
In this section, we prove that the ring spectra R and koy) are stably equivalent as spectra (Thm. 3.3.7).
First, we show in subsection 3.1 that the 4" Postnikov sections P4k;o(2) and P4R are stably equiv-
alent (Cor. 3.1.7). In particular, their cohomologies H*(Pyko(2),Z/2) = H*(ko) ® H*(ko)[9] and
H*(P4R,Z/2) are isomorphic as A*-modules.
Using this and the periodicity of R and ko(2), we deduce in subsection 3.2 that the A*-modules
H*(ko(sy,Z/2) and H*(R,7Z/2) are abstractly isomorphic (Thm. 3.2.8). Thus, in the last subsection
3.3 we obtain a morphism of spectra

f: Ry ——kob

(Cor. 3.3.2) due to the Adams spectral sequence and a result of Milgram [Mi, equation 5.20]. This
morphism induces an isomorphism on cohomology with Z/2-coefficients and is hence a stable equiv-
alence. In the last subsection 3.3, we modify this stable equivalence such that it lifts to a stable
equivalence between the 2-localized spectra R and ko(zy. Unfortunately, this stable equivalence is in
general not an equivalence of ring spectra.

Notation 3.0.13. In this section, R always denotes a ring spectrum as in Theorem 1.2.16. In
particular, there is an isomorphism of rings

b me(kor)) — m.(R)

which preserves Toda brackets (see Def. 1.2.14). To facilitate notation, we denote the elements in

Ho(ko(oy-mod
T.(kogz)) & [koga), ko)) L@ ™

) and their corresponding elements in 7. (R) with the same sym-
bols.

Moreover, we assume without loss of generality that the ring spectrum R is cofibrant and fibrant
by taking a cofibrant and fibrant replacement in the model category of S-algebras (see [ScShO00,
Thm. 4.1.(3)]). We use a cofibrant and fibrant model of the ring spectrum ko).

Notation 3.0.14. All the (ring) spectra in this chapter are 2-local. To simplify notation, we often
omit the corresponding index and denote the ring spectra ko(s) and S(z) by ‘ko’ and ‘S’, respectively.
Moreover, the 2-localization of the integers Z,) is denoted by ‘Z’ as well.

3.1 Cell-approximation of ko, Psko and Pgko

In this subsection, we prove that the ring spectra Pyko and Py R are stably equivalent (Cor. 3.1.7). We
need this statement in subsection 3.2, in order to calculate the cohomology groups of PyR (Cor. 3.2.6)
and R (Thm. 3.2.8). Moreover, we prove in this subsection that the ring spectrum Pjko is rigid
(Thm. 3.1.12).

In order to prove Corollary 3.1.7, we need to construct a zig-zag of stable equivalences between the
ring spectra Pyko and PyR. This will be done inductively by gluing ring spectrum cells to the sphere
spectrum S in such a way that the colimit C of the resulting ring spectra C; is stably equivalent to
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3.1 Cell-approximation of ko, Pysko and Pgko

the ring spectra Pyjko and P4R (see subsection 3.1.2):

1

C = colim C

RN e
P4k0.

In this diagram, the morphisms ¢ are the unit morphisms of the ring spectra P4R and P,ko, respec-
tively. Recall that (ko) is isomorphic to Z[n,w, B8] /(2n,n3, wn,w? — 483), where 1, w and B have
degree 1, 4 and 8, respectively, and hence . (Pyko) = Z[n,w] /(2n,n3, wn,w?). Thus, the first step in
the process is to kill a generator v of the group m3(S) & Z/8Zv since m,(¢) maps v to zero. Gluing
the ring spectrum 7' (D?) to S via the map v: S* — S gives a ring spectrum C; together with 7_5-
isomorphisms PyR < C7; — Pyko (see subsection 3.1.2).

We explain what is meant by ‘gluing a ring cell to a ring spectrum’ in the next subsection 3.1.1. Af-
terwards, we prove Corollary 3.1.7 and Theorem 3.1.12. In the rest of this subsection, we approximate
the ring spectrum ko using this method. More precisely, we prove that there exist m.1g-isomorphisms
of ring spectra

ko<—C—>R

(Thm. 3.1.15). In particular, the ring spectra Psko and PsR are stably equivalent (Thm. 3.1.16). We
need this statement in order to calculate the first differential of a spectral sequence, which converges to

H*(R,Z/2) (Lemma 3.2.11). It follows that the cohomology of R with Z/2-coeflicients is isomorphic
to H*(ko,Z/2) (Thm. 3.2.8).

3.1.1 Gluing ring spectra cells to a ring spectrum
In this subsection we consider pushouts of ring spectra

T(i
TO") <= T(E") — Z,
where Z is a ring spectrum and i denotes the cofibration i: S™ — D™*! = A[1] AS™. The ring
spectra T(D™*!) and T(S™) denote the free associative ring spectra on the spectra D™*! and S™
(Def. 1.3.2). In order to calculate some homotopy groups of the resulting ring spectrum we use a

description of Schwede and Shipley for those kinds of pushouts [ScSh00, 6.2]. We recall the parts
which are relevant for our work.

Let Z be a ring spectrum and K — L a cofibration in the category of symmetric spectra. The
pushout of the diagram
TL<—TK—>Z7

in the category of ring spectra is given by the colimit C' = colim,,>¢ C}, of a sequence

Co=2 Cy Cs Cp

in the underlying category Sp>. The spectrum Cj is defined to be the ring spectrum Z. The spectra
C,, are inductively defined as pushouts of the diagrams

Cho1<=—Qn—— (ZANL)MAZ. (3.14)

In order to define the spectra @,,, we need to define punctured cubes in the category of spectra:
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3 Towards rigidity of the real connective K-theory ring spectrum

Definition 3.1.1. Let n > 0 be a natural number.
(i) An n-dimensional cube in the category of spectra is a functor

W,: P({1,2,...,n}) — Spectra,

from the poset category P({1,2,...,n}) of subsets of {1,2,...,n} and inclusions to the category
of spectra. The vertex of the cube at the subset A C {1,2,...,n} is defined to be

Wi(A) = ZAXiAZAXo A AXn AZ,
with
Sl L ifie A
The map K — L induces a morphism W,,(4) — W,,(B) for an inclusion of subsets A C B.

Xz{ K ifidA,

(ii) The punctured cube W, denotes the cube W, without the terminal vertex W, ({1,2,...,n}).

(iii) The spectrum @, is defined as a colimit of this punctured cube W,,. The morphism
Qn —=(ZNL)NANZ
is induced by the maps
Wo(A) —=W,o({1,2,....n}) = (ZAL)"™ANZ, AG{1,2,...,n}.

We refer the reader to [ScSh00, p. 508] for the definition of the map @, — Cjp,—1 in (3.14).

Lemma 3.1.2. The morphism Q, — (ZAL)""AZ of Def. 3.1.1(i) is a cofibration and the quotient
((Z NN AN Z)]Qy is isomorphic to (Z AN L/K)" A Z for every natural number n > 0.

Proof. The claim is clear for n = 1 since the spectrum @Q); equals Z A K A Z. For n bigger than 1,
the spectrum @, is isomorphic to the pushout of

(ZANDNODANDNANKNZ<———Qun A NKNZ —————>Qu 1 ANLAZ.

Thus, the lemma follows by induction on n since the following sublemma holds. ([

Sublemma 3.1.3. Let Y — Y and Z — Z be two cofibrations of symmetric spectra and denote
the pushout (Y N Z) Uy 5 (Y AN Z) by Q. Then the induced morphism Q — Y N Z is a cofibration
and the quotient (Y A Z)/Q is isomorphic to (Y/Y) N (Z]Z).

In the following subsections, we want to kill some elements in the homotopy groups of connective
ring spectra. Let Z be a connective ring spectrum and a: S™ — Z a morphism of spectra. The
forgetful functor from the category of ring spectra to the category of spectra has a left adjoint, the
functor T (see Def. 1.3.2). The adjoint morphism a: T(S™) — Z of a is denoted by a. We consider
the following pushout in the category of ring spectra

T(S™) E Z
| |

7D —— = C(a).
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3.1 Cell-approximation of ko, Pysko and Pgko

Recall that the underlying spectrum of the ring spectrum C(a) equals the colimit colim,>q Cp,
where the spectrum C; is defined as the pushout of the diagram

po(1AaAl)
SADMIAS<—SAS*AS———Z

Since the cofiber of the inclusion S™ —s D™+ is S™*1 the triangle
ST ZAST)NNZ ——-Coy ——=Cy, ——= (ZAS™H) A\ A Z

is exact for m > 0, n > 1 (Lemma 3.1.2). Thus, the morphisms C,,_1 — C,, are Top(m41)—1-
isomorphisms since the spectra (Z AS™TH)"" A Z are (n(m+ 1) — 1)-connected. Therefore, the colimit
colim,, 7, (Cp) = 7, (C(a)) stabilizes and the morphism i: C; — C(a) is & T<2pm41-isomorphism.

Every morphism of ring spectra f: Z — T which maps the element [a] € 7,,,(Z) to zero in 7, (T)
factors through the additive cone D™*! U, Z of a. Similarly, the morphism f factors through the
pushout C(a) = T(D™*!) Upgmy Z in the category of ring spectra:

Construction 3.1.4. Let f: Z — T be a morphism between cofibrant-fibrant ring spectra which
maps the element [a] € m,(Z) to zero in m,(T). We fix a morphism of spectra a: S™ — Z
representing [a] and denote the pushout 7'(D™*!) Upgmy Z in the category of ring spectra by C(a).
Then choosing a null-homotopy H : D™t — T of the composite foa: S™ — T defines a morphism
of ring spectra G which extends f:

TE™) —2 o

3G

\
i
|
|
|
AV
T.

In the following, we need to determine some parts of the ring structure and the right 7. (S)-module
structure of the ring 7.(Z). Among others, we use Toda brackets for this purpose:

Lemma 3.1.5. Letx: X — Y, y: Y — Z and z: Z — W be morphisms in a triangulated category
such that yr = 0 = zy. Let

z A q

Z w C A
be an exact triangle. Consider the preimage of the element y € [Y, Z] under the morphism [Y,q]:
¢.'(y) ={ac [V, Cllgoa=y},

which is non-empty since the element y lies in the kernel of the morphism [Y,z]. Then the set
Yz, y,7) C [X, E_lW] is sent to the set q; ' (y)ox C [X, ! C} by the morphism i,.

Proof. The proof follows directly from the definition of Toda brackets. O
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3 Towards rigidity of the real connective K-theory ring spectrum

3.1.2 Approximation of Psko: Killing the element v € 73(S)

Our aim is to approximate the ring spectra ko and Psko by gluing ring spectra cells to the sphere
spectrum S. In this subsection, we kill the element v € 73(S) by attaching the ring spectrum T'(D*) to
the sphere spectrum. That is, we consider the ring spectrum C(v), which is defined by the following
pushout diagram in the category of ring spectra (see section 3.1.1):

1z

T(S?) ———

o |

T(DY) — C(v).

In the first part of this subsection, we construct morphisms of ring spectra ¢,: C(v¥) — ko and
ty: C(v) — R which are m<s-isomorphisms (Thm. 3.1.6(iii)) and calculate some homotopy groups
of C(v). In the second part, the rigidity of P,ko is deduced (Thm. 3.1.12).

The homotopy groups 7, (C(v)), 0 < n < 9: By the description of the ring spectrum C(v) as a
colimit colim,, C,, (see subsection 3.1.1), it is sufficient to calculate the homotopy groups m,(C7) and
T (C2), 0 < n <9, in order to calculate the groups 7, (C(v)) for 0 < n < 9. Recall that the spectrum
C) is the sphere spectrum S. The spectra C; and C5 are given by the following two pushout diagrams
in the category of spectra:

SAS3AS —=S and Q———0Cy
SADIAS —>C (SADH2 AS —> Co.

Here, Q2 and [ are defined by the pushout diagram:

Id AjAILd
SASPASASIAS — > SASSASADIAS

Ids A-j/\Id(SAS3AS)
vANH
Q2

SAD*ASAS]AS

Thus, the spectrum @2 is weakly equivalent to S7. We fix such a weak equivalence and define [ to

be the composite S7 ~ Qs AN C in the stable homotopy category. Up to a sign, this composite is
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3.1 Cell-approximation of ko, Pysko and Pgko

independent of the choice of the weak equivalence S7 ~ Q4. Using the two resulting exact triangles

and

SB

S?

v

%

P

Gy

S4

l

S

J

q

O

Cs

S8,

we can calculate the homotopy groups m,(C(v)) = m,(C3) for 0 < n < 9.

Theorem 3.1.6.

given in the following table

(3.15)

(i) For 0 < n <9, the homotopy groups m,(C1) and m,(Cs) = 7,(C(v)) are

n 0 |1 2 3 4 5 6 7 8 9
™) | Z |Z/2{n}|Z/2{n*}|Z/8{r} O |0 Z/2{v*}|Z/16{c} Z/2{no} & | Z/2{n’c}t&
7./2{e} 7)2{v3} @
Z)2{p1}
7)e+772a =°
P
m(C) | Z |Z/2{n}|Z/2{n*}| O Z{8} |z/2{n} |Z/2{m}| Z/16{c} & | Z/2{on} & | Z/2{en}
ZJA{L — o} | Z/2{e} Z/2{p}
8n=0 m? =2(L—o)| Ln=on+e Ln*=0
LT
m(C2)= | Z | Z/2{n}|Z/2{n’}| O Z{8} |Z/2{n} |Z/2{mn}|Z/4{c} Z/2{e} @ | Z/2{m}®
T (C(v)) Z{16} Z)2{en}
m* =20 on =e, 16-1=p
82 =46 (e)

where L denotes a multiple of 1: ST — Cy with an odd natural number.
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3 Towards rigidity of the real connective K-theory ring spectrum

(ii) The following relations hold in m.(Cy):

8n = 0 (3.16)
m? = 2(L-o0) (3.17)

(i:S——=0C1,1,8) = 8+8Z8 C m(Cy) (3.18)
8v = 8o (3.19)
AL = 4o (3.20)
Ly = on+e (3.21)
Ly = 0.

(iii) Recall that R denotes a ring spectrum whose ring of homotopy groups m.(R) is isomorphic
to m.(ko(ay) so that this isomorphism preserves Toda brackets (Notation 3.0.13). There exist
morphisms of ring spectra v,: C(v) — ko and v,,: C(v) — R with the following properties:

a) The maps 7. (1,) send the element 8 € w4(Cy) to unit multiples of the elements w € my(ko)
and w € m4(R).

b) The restrictions of the maps ,, to the sphere spectrum S equal the unit map ¢ of ko and R,
respectively.

In particular, the morphisms v, are w<s-isomorphisms.
(iv) The following relations hold in w.(C2) and hence in m,(C(v)):
Bop = m (3.22)
8% = 4.76 (mode). (3.23)

Moreover, the morphisms (1) : . (C(v)) — mi (ko) and 7« (1) : T (C(v)) — 7. (R) map the
element 16 € mg(C(v)) to unit multiples of B € ms(ko) and B € wg(R), respectively.

The following corollary of Theorem 3.1.6(iii) will be used in the proof of Corollary 3.2.6.
Corollary 3.1.7. The ring spectra Pyiko and PyR are stably equivalent as ring spectra.

Proof of Theorem 3.1.6.
(i) and (ii): The homotopy groups of C; can be calculated using the exact triangle

v p

S3 S —>Cy S*.
We omit most of these calculations. However, we define the new elements in the list above and prove
the relations of part (ii). First, we define the new elements in 7. (C4) in the table above:
The element 8 in 74(C'(v)) = 74(Cy) arises when killing v. It is defined to be a lift of the morphism
8 - Idg by p:
S4
X
8
§3 —>§ ——>C, —>§t.
Since the homotopy group m4(S) is trivial, this gives a well-defined element in the homotopy group
m4(C1). The element 7 € 75(C(v)) is uniquely defined by:

S5
N
7

§? —>§—>C1 ——= s,
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The element v € 77(C(v)) is a lift of 2v € 77(S*) by the morphism p:

S7

SSVSiCH

This does not determine the element 7 uniquely since the group 77(S) is isomorphic to Z/16Z. How-
ever, we choose the element  such that the element %1% equals 20. This is possible for the following
reasons:

Let o € m7(C1) be a lift of 2v. The element 7jn? is (up to homotopy) a lift of 4v € m7(S*) by the
morphism p: 7. (p)(7n?) = n3 = 4v. Thus the difference jn? — 27 is sent to zero by the map . (p)
and hence equals no € m7(Cy) for some natural number n:

777)2 — 20 = no.
The element no - 7 is trivial in 75(C1):
(noyy = (i =20 =7 -4v - - 20 =70 — -0 =0,

On the other hand, the element o7 is non-trivial in 7g(C1) since the morphism 7g(i): 7(S) — 75(C1)
is injective. Thus n has to be even and hence the element (7 + % - o) is a lift of 2v € w7(S*) such that
2(r+ % -0) equals 7jn* in 77(C1). It follows that we can choose the element 7 such that 2 equals 77°.
Later, we define the element L such that 7 is a linear combination of the elements L and o (equation
(3.27)) and deduce relation (3.17).

The calculations for the homotopy groups 7, (Cy) in the list above, except for the group 77(Cy), are
very easy. The latter is isomorphic to the group Z/16{c} ® Z/4{P} due to the short exact sequence

0 ——m7(S) = 2/16{o} =% mr(Cy) ZPL | fra (S} = Z/4f20) — 0

and since the non-trivial element 2 = fjn? is 2-torsion. It follows that the group 77(C1) is isomorphic
to Z/16{c}®Z/4{L— o} under the identification L = o+ (a~'b)7, where a~1b is an invertible element
in the ring Z/4 (equation (3.27)).

Now we prove some relations between the elements of m,(C1):
The relation 8 - = 0 in 75(C}) holds since the bijective morphism 75(p): m5(C1) — 75(S*) maps
the element 8 - 7 to 87 = 0 in 75(S*). The third relation of (ii) holds since the Toda bracket (i,,8)
has indeterminacy 8 - Z8 and contains the element 8 by the definition of Toda brackets (Def. 1.2.10):

8

v p v v 7 v

ptte §? S Gy i)
1d ~1d éId -
v -p v v i Vs

>l S3 S Ch.

By Lemma 3.1.5, the element 8 equals 80 since the Toda bracket (v,8,v) € 77(S) is 8¢ with trivial
indeterminacy [To62, §V]. The remaining relations of (ii) follow from
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3 Towards rigidity of the real connective K-theory ring spectrum

Sublemma 3.1.8. Recall that 1 is an element in w7;(Cy) (see (5.15)). The following relations hold in
Ty (Cl)

In = on+e (3.24)
l = ao+bv, wherea € (Z/16)*, b€ (Z/4)*. (3.25)
D’r] = € (3.26)

Proof.  The idea of this proof is to show that some elements in 7 (C1), 7 < k < 10, have to be
zero in colim,, m;(C)) = m(C(v)) due to the ring spectrum structure of C(v). Since the morphism
Cy — C(v) is a m<q1-isomorphism, these elements have to be trivial in 7 (C5) and hence lie in the
image of 7y (1).

First, we prove the relation ln = on+e. The element e+on = (v,n,v) € 75(S) [To62, §VI] is sent to
zero in 7, (C(v)) by the morphism m,(s,): m(S) — 7. (C(v)). Since the morphism Cy — C(v) is a
T<11-isomorphism, the element e+o7 has to lie in the image of the map (1) and hence has to equal In.

Second, we prove relation (3.25). Let a € Z/16 and b € Z/4 be two elements such that | = ao + bi.
We want to prove that a and b are invertible in Z/16 and Z/4, respectively. By equation (3.24), the
relation

on+e=1In=aon+bim
holds in 7g(C4) and hence the element bin equals the non-trivial element (1 — a) - on + €. It follows
that the element b is invertible in Z/4. The element a € Z/16 is invertible for the following reasons:
The Toda bracket (vACY,i: S — C1,v) C m7(C1) has indeterminacy 8o since the element (vACy)o8
differs only in sign from 8 and hence equals 8 by relation (3.19). This Toda bracket is sent to the
set

{0} = wAC), 1: 8 —=C(v) ,v) C77(C(¥))

(
by the map m,(C1) — 7.(C(v)). Thus the set (v A Cq,4,v) has to lie in the image of m.(I) and
is hence of the form (v A Cy,i,v) = ml + 8(Z/160) C m7(Cy) for some 2-local integer m. By the
juggling formula (Lemma 1.2.11) and relation (3.18) in Theorem 3.1.6(ii), it follows that the element
8ml equals 80 € 7, (Cy):

{8m -1} = (v ACh,i,v)8 = (v AN Cy) o (i,1,8) = {(v A Cy) o (8 + 8Z8)} = {8c}.

Due to the equation 8¢ = 8ml = 8ma - o, the elements a and m have to be invertible and hence
relation (3.25) follows. In particular, the equation

on+e=1In=(ac+bv)n=o0on+vn
and hence € = n holds. This finishes the proof of Sublemma 3.1.8. O

Let us now continue with the proof of the relations in Theorem 3.1.6(ii). We define the element
L € m(Cy) as
L=a"t-l=0+(a"'b)w. (3.27)

Under this identification, the relations

4], = 4o+ 4v =4o
Ln = In=on+e
L = on*4+en=1>=0

m? = 20=2(L—o0)
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hold.
(iii): By Construction 3.1.4, there exists a morphism of ring spectra ¢, such that the diagram
ko
S ——=C(v)

commutes in the category of ring spectra and hence condition (b) of Theorem 3.1.6(iii) holds.

Now we prove that the map 7. (t,) sends the element 8 € 74(C(r)) to a unit multiple of w € m4(ko).
Consider the Toda bracket (i: S — C4,1,8) = 8 4+ 8Z8 C m4(C1) (equation (3.18)). Thus, the Toda
bracket (1: S — C(v),1,8) C my(C(v)) equals 8 + 8Z8 as well. The map 7.(t,) sends this Toda
bracket into the set (¢: S — ko, v, 8) C m4(ko) and hence into w4 2Zw (Lemma 3.1.10(i)). Thus, the
element 8 € 7, (C(v)) is mapped to a unit multiple of w € m,(ko) by 7. ().

Similarly, one can prove claim (iii) for the ring spectrum R by using the inclusion

(t:S — R,1,8) Cw+2Zw C my(R) (Lemma 3.1.10(ii)).

(iv): Now we calculate the homotopy groups m,(C2) for n < 9 (see page 37) and prove the relations
in 7, (C2) (Theorem 3.1.6(iv)).
The element 16 € 7g(Cs) is defined as a lift of the morphism 16 - Idgs by the morphism g:

SS

l

S7

This definition is not unique up to homotopy since ms(C1) = (Z/2)*. In the following lemma, we
redefine the element 16 as a lift of a unit multiple of 16 - Idgs in order to obtain useful relations.

Lemma 3.1.9. One can choose the element 16 € ws(Cy) such that the following relations hold

6n = m (3.28)
82 = 4-T6(mod ¢) (3.29)
7 (,)(16) = B € ms(ko). (3.30)

Proof.  First, we prove relation (3.28). By Lemma 3.1.5, the Toda bracket (I,16,n) C m9(C1) is sent
to the set m,(q)~1(16) - n C m9(C2) by the morphism m,(j): m.(C1) — 7 (Co):

o (C1) 2 Z/2 (i} © T2 {0} — mo(Ca) = Z/2 (i} & Z/2 {en} —— P g (§T) —> - -
(1,16,m) 1 m(q)~1(16) - 1.

The juggling formula (Lemma 1.2.11) gives:
(1,16,n) = (81,2,n) = (80,2,n) = (0,16,n) = u1 + Z/2en C m9(C4), (3.31)

where all the Toda brackets have indeterminacy en since the element on? equals en in 7,(C1). The
last equation in (3.31) holds since the Toda bracket

(0,16,1) = 1 + Z/2n*0 + Z./2ne C 9(S)
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3 Towards rigidity of the real connective K-theory ring spectrum

(see [Ko, §5.7]) is sent to (o,16,n) C me(Cy) by the morphism 7. (S) — m.(C1). Thus the element

16 -  lies in the set m.(q)~1(16) -7 = p1 + Z/2en. The relation 16 - n = py follows by redefining the
element 16 as 16 + ¢ if necessary.

Using this relation (3.28), we deduce that the element g equals the element 4-16 (modulo €): Recall
that the ring morphism 7, (¢, ): m.(C(v)) — 7. (ko) maps the element 8 € 7.(C(v)) to u-w € m.(ko),
where u denotes an invertible element in Z (Theorem 3.1.6(iii)). Therefore, the element 8” € 7, (C(v))
is sent to u?w? = 248 in 7, (ko). Define n and m to be some (2-local) integers such that the relations

. (,,)(T6) = u’n-pB

8 = m-16(mod ¢)
hold. Summarizing gives
4B = (u-w)? = W*(LV)(g2) = 7, (1,)(m16) = u?nmp

and hence nm = 4. Moreover, the morphism m,(¢,): m(C(v)) — 7. (ko) maps the element uy to
Bn € (ko) since this is the case for the morphism m,(¢): 7. (S) — 7. (ko). Thus, the relation

Bn = m(w) (1) = (1) (160) = u’nfy
holds and n must not be a multiple of 2. Therefore, the number n is invertible in Z,) and m equals

4 -n~'. By redefining the element 16 as n~! - 16, the relation 8 =m-n-16 = 4- 16 follows. Note
that 16 is a lift of the morphism n~! - 16 - Idgs by the morphism g. O

In particular, the 7.5-isomorphisms of ring spectra ¢,: C(v) — ko and ¢,: C(v) — R, which
were defined in part (iii), map the elements 8 and 16 € m.(C(v)) to unit multiples of the elements w
and (. This finishes the proof of Theorem 3.1.6. ([

Lemma 3.1.10.
(i) The Toda bracket (v: S — ko, v, 8) C m4(ko) is contained in the set w + 2Zw.
(i) Similarly, the Toda bracket (v: S — R,v,8) C m4(R) is contained in the set w + 2Zw.

Proof.  (i): Recall that the Toda bracket (n? n,2) C ms(ko) equals the set w + 2Zw. This can be
seen as follows: By [Ko, Prop. 5.7.5], the Toda bracket (n?,1,2) C m.(ko}) equals w + 2Z% w since the
Massey product (h?, hy, ho) contains the non-trivial element in Exti{Z (H*(ko),Fq) = F5 of the Adams
spectral sequence

Ey' = Ext’! (H*(ko), Fy) = Fy ==>[S, kop],_, .
The juggling formula (Lemma 1.2.11) gives:
(1,0,8) € (1,40,2) = (1,7°,2) = (n%,1,2) = w + 22 C . (ko).

(ii): The Toda bracket (n?,n,2) C m.(R) equals w+ 2Zw C . (R) since the homotopy groups . (R)
and (ko) are isomorphic by an isomorphism which preserves triple Toda brackets (see Def. 1.2.14).
By the juggling formula (Lemma 1.2.11), the Toda bracket (:: S — R,v,8) C m4(R) is contained
in the set (n?,7,2) C m.(R). Here, we use that the unit .: S — R maps the element 1 € m1(S) to
n € m1(R) since the unit

ppot:S—R——> PR

of the ring spectrum PR does (Lemma 2.2.2). O
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Remark 3.1.11. One can even show that the Toda brackets in Lemma 3.1.10 equal the set w+8Z{w}
in 7. (ko) and 7.(R), respectively. In particular, it is possible to choose morphisms of ring spectra
ty: C(v) — ko and 1,: C(v) — R that map the element 8 € 7, (C(v)) to the elements w € 7. (ko)
and w € m.(R), respectively (see proof of Theorem 3.1.6(iii)). However, we omit the rather long and
technical proof since we do not need this statement.

The ring spectrum Pyko is rigid: Now we show that the ring spectrum Pyko is rigid by modifying
the proof of Theorem 3.1.6. In this proof, we have constructed m.s-isomorphisms of ring spectra
ko <+ C(v) — R (see page 41). Similarly, one can prove the following

Theorem 3.1.12. The ring spectrum Pyko is rigid.

Proof. By Corollary 1.2.18, it suffices to show that the ring spectrum P,ko is stably equivalent to
every ring spectrum R whose ring of homotopy groups 7, (R) is abstractly isomorphic to , (Psko) by
an isomorphism which preserves Toda brackets.

Let R be such a ring spectrum. One can replace the ring spectra ko and R in the proof of Theorem
3.1.6(iii) by the ring spectra Pjko and R since only information about the homotopy groups m, (ko)
and 7, (R) for n < 4 were used. Thus, there exist morphisms of ring spectra Pyko < C(v) — R,

which are 7m5-isomorphisms. These morphisms induce a zig-zag of stable equivalences of ring spectra

Pyko = Py C(I/) = P4R = }Nz

3.1.3 Approximation of Pgko and Pyko

In this subsection, we prove that the ring spectra Pgko and PgR are stably equivalent (Theorem
3.1.16). To this end, we kill the elements in 7,(C(r)) which are obstructions to the morphism of
ring spectra ¢, : C(v) — ko being a m.g-isomorphism. For calculating some homotopy groups of the
resulting ring spectra, we will need

Lemma 3.1.13.

(i) Let k be a non-negative integer and f: A — B a m<-isomorphism between connective spectra.
Then the morphism f A f is also a w<-isomorphism.

(i) Some homotopy groups of the smash product CY A CY are:

n 0 1 2 3 4

mCrACy) |z | zZj2|Z/2|0 |22

Proof. (i): The morphisms AA f and f A B are mg-isomorphisms since the cone C(f) is k-connected.

(ii): The triangle C¥ A S? G, Ci1 NS — CY ANCY — CY NS is exact. O

First, we kill the element 7 € 75(C(v)).
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3 Towards rigidity of the real connective K-theory ring spectrum

Lemma 3.1.14. There exists a ring spectrum C(7]) together with two morphisms of ring spectra
ty: C(n) — ko and vy: C(77) — R which are wg-isomorphisms such that the diagram

commutes. In particular, these morphisms map the elements 8, 16 € m,.(C(7])) to unit multiples of the
elements w and .

Proof. The ring spectrum C(7) is defined as the pushout of the diagram

(D) < T(S?) —= C(v)

in the category of ring spectra. Since the composite S? a, C(v) % ko is null-homotopic, there exists
a morphism of ring spectra

1 C(7) —ko
extending the morphism ¢,: C(rv) — ko of Lemma 3.1.6(iii) by Construction 3.1.4. The morphism
of ring spectra t;: C(77) — R is defined similarly.
Recall that the morphism C} — C(77) = colim C is a m<11-isomorphism and that we can hence
calculate some homotopy groups of the ring spectrum C(7) using the exact triangle

Cv)

(see subsection 3.1.1). The homotopy groups m,(C(r) A C(v)) for n < 4, which we need for these
calculations, are known due to the m.7-isomorphism CY — C(v) and Lemma 3.1.13.

po(Id AGAId) q

C(v) AS° AC(v) (ol Y C(v) AS® AC(v)

n 0 |1 2 3 [4 |5 6 7 8 9
m(CW)) | Z |Z/2{n}|Z/2{n*} O |Z{8}|Z/2{n}\Z/2{im}|Z/Mo} | Z/2{¢} & | Z/2{m}®
Z{16} Z[2{en}
m’ =20 on=¢ | 16n=m
82 =416 (¢)

Z/2{n}

Z/2{n*}

Z{8}

7{2}

Z/2{c}

2n=o0

Z/Zf{e} &
7{16}

Z/2{p}

o

>

=
I
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3.1 Cell-approximation of ko, Pysko and Pgko

The element 2 € 75(C7) is (up to homotopy) uniquely defined as a lift of the morphism ¢ A 2 A ¢ by
g since the morphism mg(p o (Id A7j AId)) is surjective:

S6

_ LA2AL
12
Y

D C(y) —= €]~ 2C() AS A C).

C(v) AS® AC(v)
The relation 2 = o holds since the Toda bracket
(po (IdAGFAIA), e A2 AL, n) C m7(C(v))
is sent to the set m.(q) "Lt A2 A1) on = {2n}:

e (O) > 1 (CF) s 1 (S CW) AS A C()) >

(po (IdAGATIA), L A2AL,n) = {2n}, 2——> L A2 A L.

We prove that this Toda bracket equals the set {o,30} and hence the relation 2n = o holds in
m7(CY) = 77(C(77)): By the juggling formula (Lemma 1.2.11), this Toda bracket equals

(o (IAAGATA), e A2 A t,n) = (77,2,m) C m7(C(v))

since the morphism g o (Id A AId) o (¢ AId Ac) is 7. The Toda bracket (77, 2,n) has the indeterminacy
im?. Recall that the Toda bracket (2,7,2) € m.(S) has trivial indeterminacy and equals n? (see [Ko,
§5.7]). By the juggling formula

(n,2,m2=17(2,n,2) =7 {n’} = {20} C m(CY),

the Toda bracket (7,2,n) C m7(C(v)) = Z/40 is {J 30} and hence the relation 27 = o holds.

Due to this relation 27 = o, the element en = on? = 23 = 0 has to be trivial in 7, (C") The image
of the element p; € mo(C(v )) in 7,(C7) is non-trivial since 1 € mo(C(v)) is mapped by 7. (1,) to the
non-trivial element Sn € mg(ko) and since the diagram

C(n) — > ko

commutes.

The ring morphisms 7, (¢5): m(C(7)) — m« (ko) and my(t5): m(C(7)) — m(R) map the elements
1, 7, 8 and 16 to unit multiples of the elements 1, 1, w and 3 since the ring morphisms 7. (¢,) do.
Therefore, the morphisms of ring spectra ¢5 are mg-isomorphisms. ([

Similarly, one can prove the following

Lemma 3.1.15. There exists a ring spectrum C(2) together with w~10-isomorphisms of ring spectra
130 C(2) — ko and 13: C(2) — R such that the diagram

N

C(2) — ko

L3

(3.32)

R

L3

commutes.
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3 Towards rigidity of the real connective K-theory ring spectrum

Proof. The ring spectrum C(2) is defined as the pushout of the diagram

T(D7) < T(S) —2= C(7)

in the category of ring spectra. Since the composite S° 2 C(7) 2 ko is null-homotopic, there exists
a morphism of ring spectra
13: C(2) —= ko

extending the morphism t5: C(77) — ko of Lemma 3.1.14 by Construction 3.1.4. The morphism
of ring spectra t5: C(2) — R is defined similarly. In particular, it follows that diagram (3.32)
commutes.

We can calculate some homotopy groups of the ring spectrum C(2) due to the exact triangle

C(77) A S8 A C(7) PPN oy 2 —1>50() ASE A C(R),

the 7-13-isomorphism C7 —s C(2) (see subsection 3.1.1) and the 7 5-isomorphism C¥ — C(v) (see
Lemma 3.1.13):

n 0 1 2 3 4 5 6 7 8 9
™(CM) | Z |Z/2{n} |Z/2{n*}| 0 |Z{8}| 0 |Z{2}|Z/2{c} %ﬁ}} ® | Z/2{m}
16
ana on =€, T~nz,ul

8 =476 (e)
™(CH = | Z |Z/2{n} |Z/2{n*}| 0 |Z{8} |0 |0 |0 7{16} Z/2{pu1}
wn(C(?)

8 =4.16

Due to Lemma 3.1.14 and the commutative diagram (3.32), the morphisms ¢5 induce isomorphisms
7n(t3) for all integers smaller than 9. Moreover, the map

m0(t2): m10(C(2)) —= mo(ko)

is surjective since the diagram (3.32) commutes and since the map m(¢): m10(S) — mi0(ko) is
bijective. Thus, the element p; -7 € 710(C(2)) is non-trivial and hence the morphism

’/Tlo(LQ) . 7'('10(0(?)) —_— 7T10(R)

is also surjective. |
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3.2 Cohomology of R with Z/2-coefficients

The previous lemma has the following two implications, where the first is obtained by taking the
8" Postnikov section C := Pg C(2) of the ring spectrum C(2).

Theorem 3.1.16. The ring spectra Pgko and PsR are stably equivalent: Pgko < P;C = PsR.

Theorem 3.1.17. Let R be a ring spectrum whose ring of homotopy groups is abstractly isomorphic
to the ring m.(Poko) by an abstract isomorphism which preserves Toda brackets. Then there exists a
zig-zag of stable equivalences of ring spectra R ~ Pyko. In particular, the ring spectrum Poko is rigid.

Proof.  Replacing the ring spectra ko and R in the proof of Lemma 3.1.15 by the ring spectra Poko
and R, respectively, proves that there exists a zig-zag of ring spectra

Poko <—— C(2) —= R,

which induces isomorphisms 7,(13) for all integers n < 9. Taking the 9" Postnikov section Py C(2)
of the ring spectrum C(2) proves the theorem.

O

3.2 Cohomology of R with Z/2-coefficients

In this section, we calculate the cohomology groups with Z/2-coefficients of the Postnikov sections
Pgsn_4ko ~ Pg,_1ko for n. > 0 (Thm. 3.2.4) and hence of P,R ~ P,ko (Cor. 3.2.6). Using these groups,
we prove that the cohomology groups H*(ko,Z/2) and H*(R,Z/2) of the ring spectra ko and R are
isomorphic as A*-modules (Thm. 3.2.8).

Notation 3.2.1. In the following, the cohomology and homology with Z/2-coefficients will be de-
noted by H*(—) and H.(—), respectively. To simplify notation, we denote the (8n — 4)*" Postnikov
sections Py, _4ko and Pg,, 4R of the ring spectra ko and R (see Construction 1.3.3) by P,,ko and P, R,
respectively. Similarly, we denote the Postnikov section Pg,_4X of a spectrum X by P, X. We also
denote the morphisms pg,,_4 and pg,—4 by P, and p,, respectively. Moreover, we denote the natural
morphisms 5221'3 and o§"*7 (see Construction 1.3.3) by T,, and r,,, respectively.

Recall that the cohomology of ko with coefficients in Z/2 is H* (ko) = H*(ko(z)) = A*/A*(Sq",Sq?),
where A* denotes the Steenrod algebra [Sto, Thm. A]. Using this, we can calculate the cohomology
groups of the Postnikov sections P, ko for every integer n > 1: We consider an exact triangle

n _

B n_ = kn
ESnkO ko P ]}ano ZSn+1k0

in the stable homotopy category of spectra (Corollary 1.3.8). Note that the .4*-module morphism
H*("™) is trivial for degree reasons and since H*(ko) is a cyclic A*-module. Thus, there exists a short
exact sequence of A*-modules

H*(Pn) H" (kn)

0 ~—— H*(ko) H* (P, ko) H*(2% ko) <—— 0
1 11, A i1,

where the elements 1 € H°(P, ko) and \,, € H®"T1(P, ko) are defined as follows:

Definition 3.2.2. For every integer n > 1, we define the element A, € H""(P,, ko) to be the image
of the element 1 € H®" (X8 *1ko) by the map H*(k,). Moreover, the element 1 € H°(P,ko) is
defined to be the preimage of the element 1 € H°(ko) by the bijective map H%(p,,).
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3 Towards rigidity of the real connective K-theory ring spectrum

Notation 3.2.3. We mostly consider the case n =1 and abbreviate the element \; by A.
Theorem 3.2.4.

(i) For every natural number n > 1, there is an isomorphism of A*-modules

H* (B (ko)) = H*(ko){1} @& H* (ko) [$n + 1] {\n}.

The morphism H*(p,): H* (P, ko) — H*(ko) of A*-modules sends the elements 1 and \, to 1
and zero, respectively.

(i) The morphism
H*(t,): H*(P,ko) ———— H*(P,,,1ko)
of A*-modules maps the element 1 to 1 and the element A\, to zero.

Proof. (i) Recall that the exact triangle

B Pn - kn
anko ko P ]P’nko Z8n+1k‘0

induces a short exact sequence of A*-modules

H"(pn)
- - — — >
s

0<— H*(ko) )

H* (P, ko) H* (3871 ko) <—— 0

since the A*-module morphism H*(S") is trivial. This short exact sequence of A*-modules splits
uniquely since the map H(p,,) is bijective, H* (ko) is a cyclic A*-module, and the Steenrod operations
Sq' and Sq? act trivially on the generator of the group HO(P, ko) = Z/2. In particular, the section
s of the morphism H*(p,) is an A*-module morphism which sends the element 1 € H*(ko) to
1 € H*(P,ko). Therefore, the A*-module H* (P, ko) is isomorphic to H*(ko){1}® H*(ko)[8n+1]{\,}.
Moreover, the inclusion

H*(k,): H*(2%" ko) —— H*(P, ko)

maps 1 € H* (X% ko) to A, and the projection H*(p,) maps the element 1 € H*(p,,) to 1 € H* (ko).
(ii) In order to determine the morphism H*(T,): H*(P,ko) — H*(P,i1ko) of A*-modules, we
consider the commutative diagram

H* (ko) {1} @ H* (ko) [8n + 1] {Aa} = H*(P,ko) H@)=00 (ko)
39 |
v e

H* (ko) {1} @ H* (ko) [8n + 9] {Ans1} = H* Py iko) —— V=00 b (ko).

Recall that the morphisms H*(py,) and H*(DPp+1) are projections on the direct summand H*(ko) (see
part (i)). Moreover, the image of the morphism H*(T,) in the direct summand H*(ko) [8n + 9] of
H*(Py41ko) is trivial for degree reasons. Thus, the morphism H*(T,) maps the element 1 € H*(P, ko)

to 1 € H*(P,41ko) and the element A, to zero. O

Corollary 3.2.5. The cohomology of Ppko is isomorphic to H* (ko) ® H* (ko) [8n + 1].
Proof. The spectra P, ko and P, ko are stably equivalent (Cor. 1.3.5). (I
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3.2 Cohomology of R with Z/2-coefficients

Corollary 3.2.6. The cohomology of P1R is isomorphic to H*(P1ko) =2 H*(ko){1} & H* (ko) [9] {\}
as an A*-module.

Proof. The zig-zag of stable equivalences of ring spectra P1ko ~ P1 R of Corollary 3.1.7 induces an
isomorphism of Z/2-coalgebras and .A*-modules on cohomology: H*(P1ko) = H*(Py R). O

Remark/Notation 3.2.7. The zig-zag of stable equivalences PR ~ P; R ~ Py ko ~ P; ko induces an
A*-module isomorphism H* (P, R) = H*(PyR) = H*(P ko) = HP ko). This isomorphism is uniquely
determined since the A*-module H*(Pko) is generated by the elements 1 € H°(P ko) = Z/2 and
A € H°(Piko) = Z/2. We write this isomorphism as identity H*(P;R) = H*(P1ko). Moreover, we
denote the elements in H*(P ko) and H*(P;R) with the same symbols.

Now we can prove that the cohomologies of ko and R are isomorphic as .A*-modules by using a
spectral sequence which has as input the cohomology of Py R ~ P1ko and converges to H*(R).

Theorem 3.2.8. (i) There is a spectral sequence of A*-modules with Eq-term given by

By = @ H(Prko) [8n] = H* (Piko) © 2/2[a], |a] = 8
n>0

converging strongly to H*(R).
(i) The cohomology of R is isomorphic to H*(ko) as an A*-module. Under this isomorphism, the
map

H*(p1)

H* (ko) & H* (ko) [9] = H* (P R) H*(R) = H* (ko)

equals the projection on the direct summand H* (ko) of H*(P1R).

Notation 3.2.9. The isomorphism H*(ko) — H*(R) of Theorem 3.2.8(ii) is denoted by ¢. It is
uniquely determined since H*(ko) is a cyclic A*-module and hence there exists only one non-trivial
morphism from H*(ko) to H*(R).

Proof.  (i): We construct this spectral sequence using the tower of Postnikov sections

i PnR PQR o PlR * .

P,1R

For every integer n > 0, there exists an exact triangle

Tn kn

8P, R —> P, 1 R B.R S8 +HIp R (3.33)

for the following reason. Let P,;1(B™) denote the morphism induced by taking the Postnikov section
P,,+1(—) of the map #": ¥R — R. By Corollary 1.3.8(ii), there exists an exact triangle

_ Prt1 (8™ = Tn
Pn-l—l(zsnR) ¥> IP)n+1}z

PR SPni1(3*"R)

for every integer n > 0. Since the spectra P, (3% R) and ¥3"P; R are isomorphic in the homotopy
category Ho(Sp¥) (Lemma 1.3.7), there exists an exact triangle (3.33) for every integer n > 0. Clearly,
the triangle

qo=Id — ko

PR PR *

SIP R
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3 Towards rigidity of the real connective K-theory ring spectrum

is exact, as well. These exact triangles induce an exact couple

@ H (Pui1R) o @ H(Pui1 )
n>0 n>0

(17_1) %

@ H* (5P, R),

n>0

where (*,n) denotes the bidegree of the morphisms. The E;-term is isomorphic to

P E" =P H(Z*"P1R) = P H* (P1ko) [8n] = H* (P1ko) ® Z/2[x] (3.34)
n20 n>0 n>0

as an A*-module, where the variable x has degree 8.

Notation 3.2.10. The only purpose for the variable z is to distinguish the different shifted copies
of H* (P1ko) in the Ej-term of the spectral sequence. For example, the generators of the A*-module
H*(Piko) [8m] C B, H*(P1ko) [8n] are denoted by 1 ® 2™ and A ® 2™, where m is a non-negative
integer. B

The differentials d, : " — E*T1"~" have bidegree (1,—r). Therefore, the spectral sequence
converges strongly to the colimit colim,, H* (P, R) since all except finitely many differentials leaving
any point (*,7n) vanish (see [Bo, Theorem 6.1]). As all morphisms H*(P,R) — H*(R) are isomor-
phisms for * < 8n, this colimit colim,, H*(P,,R) is isomorphic to H*(R).

*
[y d H (P;ko)[16]
16 1®x
H*(Pyko)[8]
ID)\®1
8 ‘\dL»1®$

4 NL

H*(Pyko)

0 e1®1
0 1 2 3 n
(ii): The following lemma, which we will prove later, gives a more specific description of the differ-
entials dy: E}™ — E;T" 7' Recall from part (i) that the entries on the Ej-page of the spectral
sequence are given by
P Er" = H* (Pyko) ® Z/2[x]

n>0
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3.2 Cohomology of R with Z/2-coefficients

and that the cohomology of P1ko equals H*(P1ko) = H*(ko){1} ® H* (ko) [9] {\} (Thm. 3.2.4).

Lemma 3.2.11. The differentials

dl . Ei«,n Eiﬁtl,nfl

map the elements (y-1) @ 2™ to (y - \) @ 2"~ ! and the elements (y - \) @ 2™ to zero for all integers
n > 1 and all elements y € A*. The elements (y-1) @ 2° and (y- \) @ 2°, y € A*, are sent to zero.

Consequently, the chain complex

dy dy dy

*,0 *,n
£ Ey

EN!
is exact and the entries on the FEs-page of the spectral sequence are given by

e H*(ko) ifn=0,
2710 otherwise,

where the isomorphism E;° = H* (ko) is an isomorphism of A*-modules.

*
8
4
T eide
T

HE (o)

1T \ U}
0-+1

For degree reasons all differentials d,.: EX" —s Et1n=7" with » > 2 are trivial and hence the
spectral sequence collapses. It follows that H*(R) is isomorphic to H*(ko) as an A*-module since the
spectral sequence converges strongly to H*(R): The filtration of H*(R)

0= F*,O g F*,l g g F*s g F*’S+1 g H*(R)
which is defined by
Pt it (H*(p,): H*(B,R) —> H'(R))

equals
OZF*’OQF*’l:F*’ZZ-“:F*’S:"-:H*(R>7

since the quotients F***!/F** are isomorphic to

H*(ko) ifs=0,

*,54+1 *,8 A *,8 ~v
F [ By = { 0 otherwise.
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3 Towards rigidity of the real connective K-theory ring spectrum

Thus, there are no extension problems and the cohomology of R equals
H*(R) = F*' =1Im (H*(]f)l): H*(P,R) —— H*(R)) ~ Er0 =~ H*(ko).
Moreover, the morphism

= H"(p1)
H*(ko)® H*(ko) [9] = H*(P1R)

H*(R) = H*(ko)
is surjective and hence equals the projection on H*(ko) for degree reasons since the group H(ko) is

trivial. This finishes the proof of Theorem 3.2.8. O

Corollary 3.2.12. The isomorphism ¢: H*(ko) =2 H*(R) of Theorem 3.2.8(ii) is an isomorphism of
Z]2 -coalgebras.

Proof. The diagram

H*(Py R) = H* (Pl ko)
H*(]pl)i H*(Pl)i
HR) = H*(ko)

is commutative since all maps are morphisms of A*-modules, and the two vertical morphisms H*(p1)
map the elements 1 and A to the elements 1 and 0, respectively. Thus, the isomorphism H*(R) &
H*(ko) is a morphism of Z/2-coalgebras since all other maps in the diagram are morphisms of Z/2-
coalgebras and the two vertical morphisms are surjective. O

We finish this subsection with the remaining proof of Lemma 3.2.11:
Proof. The differentials dy : Ef "™ — E" ! are defined by the composite

H* 1 (E8n]fle)

(k) H*(28-VP R).

H*(gn-1)

H*(P,R)
As the differentials d; are morphisms of A*-modules, it suffices to prove that they send
(i) the elements 1 ® z" € Ef "™ to A@ 2"~ € B! and
(i) the elements A ® 2" € Ef "™ to zero

for all n > 1. Clearly, part (i) implies (ii) since (E;"",d;) is a chain complex. Thus, it remains to
prove (i). We prove it first for the case n = 1 and afterwards for the general case n > 1.

n = 1: Our proof is motivated by the fact that the claim holds for n = 1 if the ring spectrum R is
ko. One way to see this is the following. Observe that the element A ® 1 € E;® = H*(P1ko) has to
be killed by some differential since the spectral sequence converges to H* (ko). Since the differentials
d, can not hit the element A ® 1 for » > 2, it has to equal d; (1 ® x).

In order to prove the claim for a general ring spectrum R, we use that the ring spectra Pgko and PgR
are stably equivalent (Thm. 3.1.16). Note that the differential dy: E;"" — E; ™0 equals H* (S 1k;)
since the morphism qq is the identity Idp p. The morphism k; is defined by the exact triangle

1

_ _ _ _ k _
Y8PIR =Y8P R — PisR z PR YOPR.
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3.2 Cohomology of R with Z/2-coefficients

In order to use that the spectrum PR is stably equivalent to Psko, we compare this triangle with the
exact triangle

S8 HZ PsR—"> PR —>S9H7, .
Recall that the diagram
PlgR
\LQ 04
8
PgR i> P4R

commutes (see Construction 1.3.3(1)). Thus, the following morphism of exact triangles

_ _ 5 _ k _
>8P, R PR —2> PR —>Y9P,R
| |

| ar J{QS lld | Yar
SV _ o = k gv
Y8 HZ, PsR PR SOH7,

exists. In this diagram, we can ‘replace’ the morphism ap by the morphism 3800: By the Five
Lemma, the morphism ar: X8 PyR — Y8HZ is a m_g-isomorphism. Thus, there exists a zig-zag of
isomorphisms X8 HZ ~ Y8 H7Z, such that the diagram

Y8P,R
] S
pPs
aR
Y8H7Z = R(Z]PR) = Y8H7Z

commutes (Lemma 1.3.7). Clearly, this isomorphism X8HZ =2 ¥8HZ induces the identity on coho-
mology 1p-(sspz) since it induces an isomorphism between cyclic A*-modules. Thus, the morphisms
Y800 and ag induce the same morphism H*(X%gy) = H*(agr) on cohomology. Summarizing, there
exists a morphism of long exact sequences

o (0B R) M g (ByR) — > H*(PiaR) —

H*(EQQO)T H*(Qs)T
-~*>H*(29HZ PR HH*(PSR)

Replacing the ring spectrum R by ko gives an analogous statement for ko. The zig-zag of stable
equivalences Pgko ~ Pgko ~ PsR ~ PsR (Thm. 3.1.16) induces a commutative diagram

ngo =~ pgR

04 _
P4

p4]€0 =~ p4(ng‘0) ~ P4(P8R) ~ P4R

by Lemma 1.3.4. Thus, the exact triangles

S8HZ PR —2> B,R—F > 5917
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3 Towards rigidity of the real connective K-theory ring spectrum

and

S8HZ —> Psko ——> Pyko —> SOHZ,

are equivalent. Summarizing gives the following commutative diagram of long exact sequences.

- ——= H*(ZPyR) k) H*(PyR) — H*(PaR) —> -+~
H*(E"go)T H*(gs)
- B (SHL) — > HY(PuR) ——> H'(RR) ——> -
© = BN (SHZ) — = H (Piko) ——= H*(Psko) ——= -+
1
H*(2°g0) l H*(gs)
1t Al 0
-+ —— H*(29Pyko) o H*(Pyko) PR H*(Pigko) — -

Finally, a diagram chase proves that the morphism H*(ki): H*(X°P,R) — H*(P4R) maps the
element 1 ® £ to A ® 1: The morphism

* 9=
(A A Sq) 9] = H* (50 HZ) — =) j=(59B,ko) = H* (ko) [9] {1} @ H* (ko) [18] {\}
maps the element 1 € H*(X°HZ) to 1 € H* (X Pyko) since the 7 1g-isomorphism X%y induces an iso-
morphism on the 9" cohomology group. Recall that the morphism H*(g,): H*(Pyko) — H*(Py2ko)
maps A to zero (Theorem 3.2.4). Thus, the element A € H*(P,ko) has to be hit by the morphism
H*(ky), which therefore has to send 1 € H*(X9Psko) to A\ € H*(Pyko). It follows that the ele-
ment A ® 1 € H*(PyR) lies in the image of the morphism H*(ki): H*(X°PyR) — H*(PyR) and
hence has to be hit by 1 ® € H*(X2P,R). Therefore, the differential d; = H*(qo) o H*(k1) maps
(y-1) @z e B~ = H*1(S8P,R) to the element (y-\) @ 1 € Ef® = H*(P4R). This proves the
claim for n = 1.

n > 1: In order to prove that all differentials di = H*(gn—1) o H*(ks), n > 1, send the element
1@a" e Bf7'" = H* Y (S8 PyR) to A@ 2™ € B ' = H*(28(*~D Py R), it suffices to show that
the diagram

L. ,dl
H (235598, 7)) e ssnesp gy — 00 e sse-spy R (3.35)
(3B R) — e, R) ) (-0 R)
o -
. .

commutes. For the right square, commutativity is directly clear. For the left square, recall that the
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3.2 Cohomology of R with Z/2-coefficients

diagram
IP>n+1R
i Tpn—1
Tn
_ Fro1 o
P,R——P, 1R
commutes (see subsection 1.3) and hence the morphism of exact triangles

Tn — kn

_ _ San _
P,i1R PR y8n+ip R —"> YP, 1 R

I
J/H"nl | 3¢
\

IF)n—lfi 4k> ES”i?EDQR 4(1) ZPTL-{-IR

P7L+1R

exists, where ¢ is a m_g(;,—1)-isomorphism by the Five Lemma. Due to the octahedral axiom of
triangulated categories, the diagram

8 =UP R »8(=UP R
qn—1 \L];‘
= Ty — kn — Lan =
]P)nJrlR PnR 28n+1P1R —_— E]P)nJrlR
|
Tp—1 | 3¢
— n— k v — 3q —
]P)n-i-lR I[Dn—lfi 28n77]P>2R - E]P)n—f—lR
|
kn—l | 3223 izrn
_ v_ Xgn-1 _
$8=DHPp, g =—=35"""TP)R — ¥P,
Yqn-1 \LE/}:
P, R t> y8nt2p R

commutes and the four triangles in this diagram are exact. In particular, the composite &y o ¢,,—1
equals the morphism k, which can be replaced by the morphism ¥87=8L, for the following reason:
The triangle (p, k, §) is isomorphic to the triangle

28(71—1)]?1 _ ES(n—l)kl B _y8n—7
8 =DP R S8 HP R

q1

ES(n—l)]F)QR

Esn_7P2R
since there exists a zig-zag of isomorphisms L8"~DP; R = $3("=DP, R such that the diagram
ZS(nfl)E)bR
Pn
w8-Up, R = P,(X8"UP,R) = y8(-LUP R

commutes (Lemma 1.3.7). Therefore, also the diagram

ES(n—l)PlR —_— ES(T»—l)PlR o~ ZS(n—l)PlR
iin iiﬂ izs("—l)kl
_ kn _ _
P,R———>s8"HP R = 8FIPR
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3 Towards rigidity of the real connective K-theory ring spectrum

commutes. The two isomorphisms in this diagram induce the identity morphism Id . p, gy on coho-
mology since they induce isomorphisms of A*-modules mapping the elements 1 and A € H*(P,R) to
themselves. Thus, the diagram (3.35) commutes. It follows that the differentials d; map the elements
1®@a" € Ef™ = H*(Y8"P, R) to the elements A @ 2"~ ' € BTV = g*(£872=9P R) for all n > 1.

O

3.3 The ring spectra ko, and R, are stably equivalent as spectra

In the last subsection, we have proved that the cohomologies H*(R) and H*(ko) of the ring spectra
R and ko are isomorphic as A*-modules (Thm. 3.2.8). Using this and the Adams spectral sequence,
we now construct a stable equivalence R) — koj of spectra using the

Theorem 3.3.1. Let X be a connective, 2-completed spectrum whose cohomology is isomorphic to the
cohomology of koy as an A*-module. Then there exists a stable equivalence of spectra f: X — kob.

Proof. Let p: H*(ko}) — H*(X) be an isomorphism between the A*-modules H*(ko%) and H*(X).
This isomorphism represents the non-trivial element in the group

Ext%’ (H* (koy), H* (X)) = Z/2.

This element is a permanent cycle in the Adams spectral sequence Ey* = Ext%’ (H*(kob), H*(X))
since the groups Ext%’ (H*(koy), H*(X)) = Ext’’ (H*(ko), H* (ko)) are trivial for ¢ — s = —1 [Mi,
5.20]. Thus, there exists a morphism f: X — ko) of spectra which induces an isomorphism on
cohomology. This can bee seen as follows: Let us consider an Adams tower as in Adams’ proof of
[Ad74, Thm. 15.1] for the spectrum ko)

kOé\ — YO Yn+1

Y, Y, Y,
NSNS N
-1 -1 -1

Wo Wa s W,

where each triangle is exact and the morphisms ¢ have degree —1: W,, — XY, ;. Let g: X — W,
be a morphism such that the map H*(g) represents the non-trivial element in Eg 0 Since this element
is a permanent cycle, the composite ¢ o ¢ is in the image of the projection lim; [X,XY;] — [X, XY7]
and hence trivial (see [Ad74, proof of Thm. 15.1]). Thus, the morphism ¢ factors through the spectrum
Yo = kob and hence a morphism f exists:

X
ar 7 0
2 J«q\
£
i kol —= W, YY;.

Since the morphisms g and 7 induce surjective maps on cohomology, the morphism f induces a bijective
map H*(f) and is hence a stable equivalence.
|

By Theorem 3.2.8, the cohomology of R is isomorphic to H*(ko) = H*(ko%) and hence the 2-
completed spectra RS and ko) are stably equivalent:

Corollary 3.3.2. There exists a stable equivalence of spectra f: RY — ko).
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3.3 The ring spectra ko and R% are stably equivalent as spectra

Unfortunately, the morphism f is not a morphism of S-algebras in general. Moreover, it does not
lift to a morphism between the 2-local spectra R and ko in general. However, we will prove that
the stable equivalence f can be changed in a way that it lifts to a morphism between 2-local spectra
(Thm. 3.3.6). The idea is to compose f with an endomorphism ® € [ko%, ko4 ] such that the map

T (@0 f): ma(R) —> m. (ko)

sends the subgroup 7.(R) C m.(Rj) into the subgroup . (ko) of m.(ko}). The endomorphism ® will
be constructed using the Adams operation 3.

In the following, we recall some properties of Adams operations and the polynomials ¢,, = 6,,(1%)
(Def. 3.3.3). Afterwards, we prove the existence of an operation ® € [ko}, ko%] such that the mor-
phism ® o f lifts to a morphism between 2-local spectra (Thm. 3.3.6).

In 1962, Adams has constructed an unstable operation ¥ of the (real) K-theory of spaces for every
integer k [Ad62, §5]. Later, the Adams operation 1* was constructed as a stable operation under the
condition that k is a unit in the coefficient ring one is working over [AHS, §4]. In particular, there
exist stable operations ¥* on KOy for odd integers k. These Adams operations ¥ act on 74 (KO(2))
by multiplication with k% and as the identity on the torsion groups of m,(KOs)). Similarly, one can
construct Adams operations 1* on the 2-localized and 2-completed real connective K-theories ko and
kof for an odd integer k (see for example [Mi]).

In the following, we consider the Adams operation 1® on ko and ko). As mentioned above, this
operation acts on the homotopy groups my;(ko%) and m4;(ko) by multiplication with 3% = 97, Using
this property, one can construct operations ¢, which induce trivial morphisms m;(¢,) for 7 smaller
than 4n:

Definition 3.3.3. For each non-negative integer n, we define the polynomial 6,, by

n—1

On(x) = H(m — 9%

i=0
and the corresponding the operation ¢,, € [ko%, kjoé\]o by ¢, = 0, (3).

For example, ¢ is the identity and ¢; equals 3 — 1. Thus, the maps mo(¢1), 74(¢1) and 74;(p1)
correspond to a multiplication with 0, 9—1 = 8 and 9% — 1, respectively, since my; (%) is multiplication
with 9. In general, the operation ¢,, acts on my; (ko)) by multiplication with 6,,(9%). Clearly, this term
is zero for i < m. Moreover, the maps 7. (¢,), n > 0, are zero on the torsion groups of 7. (ko%) since
¥ induces the identity on these torsion groups. Thus, the maps ;(¢,,) are trivial for i smaller than 4n.

In order to understand the maps m4;(¢y), ¢ > n, Milgram has calculated the exponent of 2 in the
prime factorization of 6,,(9%):

0 if 1 < n,

971(91) = { 9dn—a(i)+a(i-n) (Odd) ifi >n, (336)

where «(n) denotes the number of ones in the binary representation of n and ‘(odd)’ denotes some
odd number [Mi, Lemma 3.5]. Recall the two inequalities

a(l) + a(n

n

a(l+n)

>
> a(n),
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3 Towards rigidity of the real connective K-theory ring spectrum

which hold for all non-negative integers [ and n. Thus, 6,,(9%) is divisible by 24*~*(")_ Therefore,
composing the map 7, (f) with an endomorphism m,(Id +c,®,), ¢, € Z%, fixes the values in degree
% < 4n and changes them by a multiple of 2**~*(") in degree * > 4n. This will allow us to define 2-
adic integers ¢, such that the map 7. ((3,, 50 ¢n®n) 0 f): m(RY) — . (koy) restricts to a morphism
7. (R) — m«(ko) (see Thm. 3.3.6). B

Remark 3.3.4. In the proof of Theorem 3.3.6, we will need infinite sums of the form ) - cnén,
where ¢, are 2-adic integers. Let us first observe that the sum 7;(3°, <qcndn) = D 50 CnTi(¢n) is
finite in every degree ¢ > 0 since the maps m;(¢,,) are trivial for ¢ smaller than 4n. One way to define
these sums ) ., cn¢y in the stable homotopy category is the following: The operations ¢g,, and
Gam+1 factor through ¥8"kos ([Mi, Thm. B]):

Pn
ko) —— w3151 ko) 7% kof.

Moreover, the canonical morphism \/, -, w83l ko) — IL.>o »8L3/ ko) is a stable equivalence since it
is a my-isomorphism. Thus, the composite

A " o~ " 5B
ko —=> [Tm0 ko) — [Tmo ZE koh <=—V/, L £518)kop P kop

defines a morphism in the stable homotopy category. This morphism induces the map >, -, ¢, (ép)
on homotopy groups since for every degree i the sum ) -, c,m;i(¢y) is finite and the claim holds for
finite sums Y ¢, ¢, by the universal properties of products and coproducts.

Before we state Theorem 3.3.6, we introduce the following

Notation 3.3.5. For convenience, we denote the canonical generators of the Z%-modules m4;(ko%)
and 74;(R%) by gi, for i > 0. That is, the elements go; and go;11 equal the elements 3* and wf?,
respectively. Thus, the map 7. (f): m.(R%) — m.(kob) defines a sequence of 2-adic integers (a;);>0
by
T (f)(9i) = ai - gi € T (ko0p).
These 2-adic integers a; are units in the ring Z4 since f is a stable equivalence and the maps m4;(f)
are Z%-module maps for all integers i > 0.
Theorem 3.3.6.
(i) There exists a stable equivalence ® = 3" -, cndy € [kob, koy| with ¢, € Z5 such that the map
(®o f). sends B
(a) 1 € mo(RE) to1 € mo(kob) and
(b) gi € mai(RY) to u;-g; € mai(koy ), where u; is an odd integer and hence a unit in Zy C L,
for every integer i > 0.
In particular, the subgroup m.(R) C m.(R5) is sent into the subgroup m.(ko) C m.(koy) by the
morphism (® o f).,.

(i) The stable equivalence @ o f lifts to a stable equivalence F': R — ko such that the diagram
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3.3 The ring spectra ko and R% are stably equivalent as spectra

commutes up to homotopy, where the vertical maps i are 2-completion maps of R and ko.

(iii) The diagram

L O

7 ko

commutes up to homotopy.

Before we prove this theorem, let us note that it implies that the ring spectrum kos) is determined
as a spectrum by its ring of homotopy groups and some Toda brackets:

Theorem 3.3.7. Let R be a ring spectrum whose ring of homotopy groups m.(R) is isomorphic to the
ring . (ko)) by an isomorphism which preserves Toda brackets. Then there exists a stable equivalence
of spectra F': R — ko).

Proof of Theorem 3.3.6.

(i): Let us first observe that a morphism ® = 3" _cn¢n € ko3, kop] is a stable equivalence if the
2-adic integer ¢ is invertible in Z%. Suppose that cq is such a 2-adic integer, that is co equals 1
modulo 2Z%. Then the operation ® acts on my;(ko}) by multiplication with the 2-adic integer

co + Z cn0n(9%) = ¢ = 1 (mod 27%) (see (3.36))

which is invertible in Z%. Moreover, ® acts as the identity on the torsion groups of m. (ko)) since
it acts on them by multiplication with cg. Thus, the morphism ® is a m,-isomorphism and hence a
stable equivalence.

Now we define the 2-adic integer ¢g such that condition (a) holds and @ is a stable equivalence: Recall
that the map 7. (f) defines a sequence of invertible 2-adic integers (a;);>0 by (see Notation 3.3.5):

T (f)(9i) = ai - gi € ma(k03).

Define ¢y to be the 2-adic integer aal. Since ¢g is a unit in Z%, all operations aal + Zn>0 Cn®Pn,
cn € Z%, are stable equivalences. Moreover, all these operations satisfy condition (a) since the
morphisms o (D, .o cn¢n) are trivial for all sequences of 2-adic integers (c,)n>0 and hence the maps
T ((ag" + 3,20 cn®n) © f) send the element 1 € mo(R)) to ag' - ap = 1 € mo(ko}).

It remains to define the 2-adic integers ¢, for n > 0 such that condition (b) is satisfied. We do this by
induction. Let N > 1 be a natural number and suppose that the integers c¢,, 0 < n < N, are defined
such that (b) holds. Let a/y be the 2-adic integer defined by the equation

D ndn | of | (9n) = aly - gn € Tan(kod).
0<n<N

Since the morphisms f and },_, -y c.¢n are stable equivalences, the 2-adic integer a'y is invertible

and hence equals 1 modulo Z%. The value of the element ((ZOSnSN cn¢n) o f) (9n) equals

aygn + (en - dn o fi(gn) = (ay +en - On(OY) -an) - gn.

We want to choose the 2-adic integer cy such that afy + ey - On(9V) - an € Z4 is a natural number.
Recall that the integer O (9) is the product of 2*¥=*(N) and an odd number u (see equation (3.36)).
Thus the number a)y + ¢y - 9N(9N) -an equals afy modulo 24N—a(N) = We define uy to be such a
natural number, that is

uy = ay mod (2N =Mz,
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3 Towards rigidity of the real connective K-theory ring spectrum

In particular, the natural number uy is odd since the 2-adic integer ay equals 1 modulo 2Z%. We
will define ¢y to be a 2-adic integer such that the equation

un — ay ;cN~9N(9N)-aN =cpn 20N N) gy
holds. Since uy — aly is divisible by 2IN=a(N) ' we get:

24N7a(

(uy —adly)/ N)écN'usz.

Recall that u and ay are invertible in Z%. Thus, by defining the 2-adic integer cy to be
(un — aly)/(an w2V W) = (uy —aly)/(an - On(9V)),

the element gy € man (RS is sent to the element

D cadn|of] (gn) =un-gn-

0<n<N
*

Note that the elements g; € my;(R%) are still sent to u;g; € m4;(kos) for all integers 0 < 7 < N since
the value of (¢n o f)«(g;) is trivial.

(ii): Let us consider an exact triangle
ko ——> ko) —1> ko) /ko — Sko.

It suffices to prove that the composition

1 Pof
R—> R} kob

q

kob /ko

is null-homotopic, in order to prove that the morphism ® o f lifts to a morphism between the 2-local
spectra R and ko in the stable homotopy category of spectra. Since the spectra R and ko are cofibrant
and fibrant, this lift is represented by a morphism F' in the category of spectra such that the diagram

T (3.37)

Yko

commutes up to homotopy.

Clearly, the map 7. (go (®f)o1) is trivial since 7, (®f) maps the subgroup m.(R) C 7. (R%) to m, (ko).
Moreover, the spectrum ko% /ko is rational since all its homotopy groups are rational, that is, they
are uniquely divisible:

A _ [ Z4)Zy ifi>0andi=0(mod 4)
mi(koy /ko) = { 0 otherwise.
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3.3 The ring spectra ko and R% are stably equivalent as spectra

Therefore, the map
7 (=): [R, kob ko] — Homg, ap (s (R), 7 (Ko} ko))

is bijective and hence the composition g o (®f) o ¢ is null-homotopic since its image under the map
7« (—) is trivial. It follows that the morphism @ f lifts to a morphism

F:R—ko

in the category of spectra such that the diagram above (3.37) commutes up to homotopy. Thus, this
morphism F is a m,-isomorphism due to property (b) of ® o f (see (i)).

(iii): The units in the rings 7. (R) and m.(ko) are represented by the morphisms ¢: S — R and
t: S — ko, respectively. By (i) and (ii), the morphism 7, (F) maps the element 1 = 1] € m(R) to
1 =[i] € mo(ko) and hence (iii) holds. O

Remark 3.3.8. We would like the morphisms ® o f: R — koj and F': R — ko(2) of Theorem
3.3.6 to be morphisms of ring spectra. However, the morphism 7, (® o f) and m.(F') need not even
be ring morphisms. Like above, one can try to change the morphisms ® o f and F' in such a way
that they induce ring morphisms 7.(® o f) and 7. (F'). Unfortunately, we were not able to do this
since the maps 74, (¢, ) equal multiplication with 6,,(9") = 24*=2(") . (odd) for all n > 0 and hence
the possibilities to modify the maps . (® o f) and 7. (F) by composing them with a map of the form
(> dnn), dn, € Z%, are limited.

Using the example of the stable equivalence h := ® o f, we sketch our approach and explain where it
encounters the difficulties mentioned above. Recall that the 2-adic integer a; is defined by the equation
7« (R)(g:) = a; - g; € (ko) for every non-negative integer 7 and that the 2-adic integer ay equals one
(Thm. 3.3.6). Without loss of generality, we can assume that the element a; equals one since we can
redefine the elements g; € my;(RS) by al_i - g; as aj is invertible in Z2. Thus, it suffices to change the
morphism A in such a way that the 2-adic integers a; are one for all integers ¢ > 0. Like above, we try
to do this by composing h with a suitable operation ¥ = Id+ Y, ., cydn: ko5 — koy. We choose
the coefficients ¢,, inductively: -

Let m be an integer which is at least 1. Suppose that there are coefficients co, c3, ..., ¢mn—1 such that
the associated 2-adic integers a; of the morphism

hi=[Id+ > cudn | oh

m>n>2

equal one for all integers ¢ with 0 < i < m. We want to choose a 2-adic integer ¢, such that the 2-adic
integer a,, of the morphism h+ Cm®m © h equals one, as well. This is possible if and only if the 2-adic
integer a,, of h equals one modulo (24m_a(m)) -Z4% since the operation ¢,, induces multiplication with
O, (9™) = 24m=2(m) . (0dd) on T4 (ko).

Unfortunately, we are only able to prove that the 2-adic integer a,, is one modulo 24’“*“(7“)22A for
integers m > 2 which are not powers of two. Here is a sketch of this proof: Let us consider the
morphism

h=AR™Y

ko) A ko) R) NRY —> R s kob

which is an element in the group [koj A kof, koy]. Note that this Z%-module [ko) A kof, kob] contains
the elements 1o (¢ A dr): koy ANkoy — kob, I,k > 0 which are linearly independent. Using a similar
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3 Towards rigidity of the real connective K-theory ring spectrum

method as in [Mi], one can calculate the second page E3* = Ext’ (H*(koy), H*(koy) @ H* (ko)) of
the Adams spectral sequence which converges to the graded group [koy A kof, koy],. It follows that
the elements po (¢ Agr), I,k > 0, generate the Z2-module [kob A ko, ko}]. In particular, there exist
2-adic integers ¢y, k,1 > 0, such that the morphism hopo (ifl /\ifl) equals Zk7l<0 Crl- o (P ANeyp)
in [koy A kof, kob). B

By comparing the images of the elements g; A g; € m.(koy Akoy), i, j > 0, under these two morphisms
we obtain equations

ai_l . aj—l CQiyj = Z Chl "9k(9l) . gl(gj)
i>1,j>k

for all pairs of non-negative integers (i, 7). In particular, the 2-adic integer ¢ equals one and the
2-adic integers cj,; are trivial for all integers k,! > 0 with k +{ < m — 1 since the 2-adic integers

ag,ai, - --,am—1 equal one. It follows that the associated 2-adic integer a,, of the morphism h equals
one modulo (24m—()=alm=i)y . 7/ for every integer i with 0 < i < m:

az'_l 'a;zl—i CAm = A, = Z Ck,l '91@(9i) ~91(9m7i)
i>lm—i>k
= 0,0+ Cim—i *0:(9") Oy (9™ 7")
= 14 Cim—i 24mfoz(7l)7a(mfi) . (Odd)

Thus, the 2-adic integer a,, equals 1 modulo (247”_0‘(’”)) -Z% if there exists an integer ¢ with 0 < i < m
such that a(m) = a(i) + a(m — i). This is the case if and only if m is not a power of 2.

Let us suppose that it is possible to choose a stable equivalence ¥: kof — koj such that the map
(¥ o h) sends the elements g; € m4;(RS) to g; € ma;(kob) for all integers ¢ > 0. In particular, the
map 7, (¥ o h) is a morphism of rings. Moreover, the composite (¥ o h) o o ((\Il oh)"!A (Vo h)_l)
is homotopic to the morphism o (¢g A ¢o) =~ p: koy A ko) — ko’ and hence the diagram

R) ANR) —L > R

(\Iloh)/\(\lfoh)l ‘Ilohl

ko) A kol — ko)

commutes up to homotopy.

In this case, one can hope to prove that the ring spectra R} and ko) are stably equivalent as ring
spectra by using the obstruction theory of Robinson ([Rob89] and [Rob04]) or Angeltveit ([An08] and
[Anl11]). One possible approach could be to first prove the uniqueness of the A-structure of the
2-localized periodic K-theory ring spectrum KO and then deduce that RS and ko) have the same
Aso-structures by a similar method as in [BaRi]. However, this is only possible if one can invert the
element 3 € wg(RY%) in the ring spectrum RY.
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Zusammenfassung

Ein Hauptziel der algebraischen Topologie ist die Klassifizierung von topologischen Réumen. Dabei
spielt der Begriff der Homotopiedquivalenz von topologischen Rdumen eine wesentliche Rolle. Anderer-
seits wird das Konzept der Homotopie zum Beispiel auch in der Kategorie der simplizialen Mengen und
in der Kategorie der Kettenkomplexe verwendet. Eine Moglichkeit diese verschiedenen Definitionen
von Homotopie zu vereinheitlichen und zu axiomatisieren ist Quillen’s Begriff der Modellkategorie
[Qu]. Ein wichtiger Bestandteil einer Modellkategorie M ist eine Klasse von speziellen Morphismen,
den sogenannten schwachen Aquivalenzen. Die Modellkategorie M kann an dieser Klasse von Mor-
phismen lokalisiert werden und die daraus resultierende Kategorie Ho(M) wird Homotopiekategorie
von M genannt.

In dieser Dissertation beschéftigen wir uns mit der Frage ob bestimmte Modellkategorien starr sind.
Eine stabile Modellkategorie M heifit starr, falls sie zu jeder stabilen Modellkategorie N, deren Ho-
motopiekategorie trianguliert-dquivalent zu Ho(M) ist, Quillen-dquivalent ist. Ein Ringspektrum R
heilt starr falls die stabile Modellkategorie Mod-R der Moduln iiber diesem Ringspektrum starr ist.
Dies ist unter anderem der Fall, falls das Ringspektrum R von seinem Homotopiegruppenring . (R)
und Todaklammer-Relationen bis auf stabile Aquivalenz eindeutig bestimmt wird [ScSh03].

Beispiele fiir starre Ringspektren sind das Sphéarenspektrum S und die p-lokalisierten Sphéarenspektren
S(p) fiir alle Primzahlen p [Sc07]. Des Weiteren sind die Eilenberg-MacLane Ringspektren HS fiir alle
Ringe S und insbesondere die nullten Postnikovschnitte FPoS(,) ~ HZ,) starr.

Im ersten Teil dieser Arbeit (Abschnitt 2) untersuchen wir die Starrheit der anderen Postnikovschnitte
PnSpy, m > 0, der Ringspektren S(,). Dazu verwenden wir, dass das Ringspektrum P,,S,) starr
ist, falls es zu bestimmten Ringspektren R stabil dquivalent ist (Thm. 1.2.16). Letztere zeichnen sich
durch Ringisomorphismen Wp: m,(R) — 7.(PnS(p)) aus, die Todaklammern erhalten. Durch diese
Isomorphismen beweisen wir, dass das Ringspektrum P,,S(, starr ist, falls die Einheiten i: S,y — R
der Ringspektren R bijektive Abbildungen 7y (i) @ Zp), k < m, induzieren (Lemma 2.1.1). Danach
zeigen wir, dass diese Bedingungen erfiillt sind, falls die Abbildungen 74 (i) ® Z,) fiir bestimmte
Zahlen k bijektiv sind (Thm. 2.1.5). Wir betrachten diese speziellen Fille und beweisen, dass die
Ringspektren P,S(2), m > 0, und P,,,S(,, m > p?(2p — 2) — 1, starr sind.

Im zweiten Teil dieser Arbeit (Abschnitt 3) untersuchen wir die Starrheit des 2-lokalisierten reellen
konnektiven K-Theorie-Ringspektrums ko(z). Dessen Homotopiegruppenring 7. (ko(2)) hat zusammen
mit den Todaklammern eine ausreichend reiche Struktur, um annehmen zu kénnen, dass ko(g) starr
ist. Wir beweisen, dass das unterliegende Spektrum von ko) durch den Ring 7. (ko(2)) und einigen
Todaklammer-Relationen bis auf stabile Aquivalenz eindeutig bestimmt ist (Thm. 3.3.7).

Diese Aussage folgt aus mehreren Theoremen: Wir betrachten jedes Ringspektrum R, fiir das es einen
Ringisomorphismus 7, (R) — 7.(ko(2)) gibt, der Todaklammern erhélt. Zuerst werden die beiden
Ringspektren R und ko(sy durch Ankleben von Ringspektren-Zellen an S,y approximiert. Mit dieser
Methode kénnen wir beweisen, dass die Ringspektren Pjko(g) und Poko(g) starr sind (Cor. 3.1.7 und
Thm. 3.1.17) und dass der Postnikovschnitt Py R stabil dquivalent zu Pgko(g) ist (Thm. 3.1.16).
Daraus folgt insbesondere, dass die Kohomologie von PyR mit Z/2-Koeffizienten isomorph zum .4*-
Modul H*(ko(ay,Z/2) = H*(ko(2)) ® H*(ko(2))[9] ist (Cor. 3.2.6). Im néchsten Schritt zeigen wir mit
Hilfe der Periodizitat von ko(z) und R, dass diese beiden Ringspektren isomorphe Kohomologiegrup-
pen haben (Thm. 3.2.8). Durch die Adams Spektralsequenz Ext’’ (H*(kob), H*(R%)) = [R}, kob],_,
erhalten wir deshalb eine stabile Aquivalenz von Spektren f : R) —s ko) (Thm. 3.3.7). Zum Schluss
verandern wir diesen Morphismus f so dass er zu einer stabilen Aquivalenz R —» ko(g) zwischen den
2-lokalen Spektren liftet (Thm. 3.3.6). Damit haben wir das Theorem 3.3.7 bewiesen.
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