Profiles

arXiv.orgGoogle ScholarMathSciNetORCID

Collaborators

M. BarotP. A. BerghL. DemonetT. DyckerhoffCh. GeißO. IyamaJ. KülshammerS. KvammeY. LekiliM. ThauleT. Walde


Preprints
  1. Dyckerhoff, T. and Jasso, G. and Lekili, Y., The symplectic geometry of higher Auslander algebras: Symmetric products of disks, arXiv:1911.11719 (2019).

Publications
  1. Dyckerhoff, T. and Jasso, G. and Walde, T., Generalised BGP reflection functors via the Grothendieck construction, Int. Math. Res. Not. IMRN (2019), rnz194.
  2. Dyckerhoff, T. and Jasso, G. and Walde, T., Simplicial structures in higher Auslander–Reiten theory, Adv. Math. 355 (2019), 106762.
  3. Jasso, G. and Külshammer, J., Higher Nakayama algebras I: Construction, with an appendix by J. Külshammer and Ch. Psaroudakis and an appendix by S. Kvamme, Adv. Math. 351 (2019), 1139–1200.
  4. Jasso, G. and Kvamme, S., An introduction to higher Auslander-Reiten theory, Bull. Lond. Math. Soc. 51 (2019) no. 1, 1–24.
  5. Demonet, L. and Iyama, O. and Jasso, G., τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not. IMRN (2019) no. 3, 852–892.
  6. Iyama, O. and Jasso, G., Higher Auslander Correspondence for Dualizing R-Varieties, Algebr. Represent. Theory 20 (2017) no. 2, 335–354.
  7. Jasso, G., n-Abelian and n-exact categories, Math. Z. 283 (2016) no. 3-4, 703–759.
  8. Bergh, P. A. and Jasso, G. and Thaule, M., Higher n-angulations from local rings, J. Lond. Math. Soc. (2) 93 (2016) no. 1, 123–142.
  9. Jasso, G., Reduction of τ-tilting modules and torsion pairs, Int. Math. Res. Not. IMRN (2015) no. 16, 7190–7237.
  10. Jasso, G., τ^2-stable tilting complexes over weighted projective lines, Adv. Math. 273 (2015), 1–31.
  11. Jasso, G., The extended affine Lie algebra associated with a connected non-negative unit form, J. Algebra 409 (2014), 148–161.
  12. Barot, M. and Geiß, Ch. and Jasso, G., Tubular cluster algebras II: Exponential growth, J. Pure Appl. Algebra 217 (2013) no. 10, 1825–1837.


Remarks

  • My Ph.D. thesis comprises the articles [3-4] and [6]
  • My master’s thesis comprises part of the article [1]
  • My bachelor’s thesis comprises the article [2]

Proceedings and extended abstracts
  1. Jasso, G., Higher Auslander algebras of type A and the higher Waldhausen S-constructions, arXiv:1904.10163. Notes. To appear in the proceedings of the ICRA 2018
  2. Jasso, G. and Külshammer, J., Nakayama-type phenomena in higher Auslander-Reiten theory, Representations of algebras, ed. by Leuschke, Graham J. and Bleher, Frauke and Schiffler, Ralf and Zacharia, Dan, Contemp. Math., Amer. Math. Soc., Providence, RI 705, 2018,, 79–98.
  3. Jasso, G., Spherical objects in higher Auslander–Reiten theory, Representation Theory of Quivers and Finite Dimensional Algebras, Abstracts from the workshop held February 19–25, 2017, ed. by Crawley-Boevey, William and Iyama, Osamu and Krause, Henning, Oberwolfach Rep. 14, 2017, no. 1, 621-622 of 591–681.
  4. Jasso, G., Reduction of τ-tilting modules and torsion classes, Proceedings of the 16th Workshop on Represenation Theory of Algebraic Groups and Quantum Groups, 2013,, 157–160.
  5. Jasso, G., Cluster-tilted algebras of canonical type and quivers with potential, Proceedings of the 45th Symposium on Ring Theory and Representation Theory, 2012,, 61–68.
  6. Jasso, G., Cluster-tilted algebras of canonical type and graded quivers with potential, Proceedings of the 15th Workshop on Represenation Theory of Algebraic Groups and Quantum Groups, 2012,, 13–18.

Not for publication
  1. Jasso, Gustavo and Külshammer, Julian, The naive approach for constructing the derived category of a d-abelian category fails, arXiv:1604.03473 (2016).

Talks
  1. Stable ∞-categories: localisations and recollements, ‘Two Weeks of Silting’ Summer School, Stuttgart, Germany (2019).
  2. Higher-dimensional Auslander algebras of type A and the higher-dimensional Waldhausen S-constructions, XVIII International Conference on Representations of Algebras (ICRA), Prague, Czech Republic (2018).
  3. τ-tilting reduction, XV International Conference on Representations of Algebras (ICRA), Bielefeld, Germany (2012).
  4. The extended affine Lie algebra associated with a connected non-negative unit form, XIV International Conference on Representations of Algebras (ICRA), Tokyo, Japan (2010).

Posters