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Preface

This lecture course covers various topics around group rings of infinite groups.
We are motivated by geometric group theory but do not assume familiarity with it.
Most of the course will treat the Kaplansky conjectures.

The main reference text is Passman’s book [Pas85] but we often deviate from
it, either to cut a quicker path to the specific applications we are interested in or
because of developments since its publication. Some topics will use recent research
articles.

iv



CHAPTER 1

The Kaplansky conjectures

1.1. Introduction

Definition 1.1. Let R be a ring and G be a group. The group ring R[G] consists
of finite formal R-linear sums

R[G] =

{
n∑
i=1

rgi · gi

∣∣∣∣∣ rgi ∈ R, gi ∈ G
}

with multiplication

(
∑

rg · g)(
∑

sh · h) =
∑

rgsh · gh =
∑
k

(
∑
gh=k

rgsh) · k.

In this course, we’ll almost always have R = Z or R = K a field; in the latter
case, one often calls K[G] the group algebra.

From now on:
G will always be a group,

K will always be a field, and
R will always be a ring.

Example 1.2. For G = Z = 〈t〉, R[G] is the ring of Laurent polynomials over R,
usually denoted R[t, t−1].

A viewpoint due to Noether: Representations of G on K-vector spaces are
K[G]-modules.

Warning 1.3. K[G] is non-commutative unless G is abelian. It is (left) Noetherian
only in special settings and it is never semisimple for infinite G (cf. Maschke’s
theorem).

Although group rings tend to have bad ring theoretic properties, they conjec-
turally have nice elementary properties. Note first that for k ∈ K \ {0} and g ∈ G,
the element kg ∈ K[G] is a unit (with (k · g)−1 = k−1 · g−1); such units are called
trivial. A group is called torsion-free if it has no non-trivial finite order elements.
For example, fundamental groups of aspherical manifolds are torsion-free.

Definition 1.4. Let P be a property of groups. A group G is virtually P if it has
a finite-index subgroup G0 with P.

As another example, a finitely generated subgroup of GLn(C) is virtually torsion-
free (Selberg).

Conjecture 1.5 (The Kaplansky conjectures). If G is torsion-free, then K[G] has
• no non-trivial units: αβ = βα = 1 =⇒ α = kg for some k ∈ K×, g ∈ G
• no non-zero zero divisors: αβ = 0 =⇒ α = 0 or β = 0, and
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1.1. INTRODUCTION 2

• no non-trivial idempotents: α2 = α =⇒ α = 0 or α = 1.
For any G (possibly with torsion), K[G] is

• directly finite: αβ = 1 =⇒ βα = 1.

These are the unit conjecture, zero divisor conjecture, idempotent conjecture and
direct finiteness conjectures respectively. (Direct finiteness is also called Dedekind
finiteness or von Neumann finiteness.)

Remark 1.6. The unit conjecture is false; the others are open.

Remark 1.7. Torsion-freeness is essential. For example, if g ∈ G has order n ≥ 2
then (1− g)(1 + g + · · ·+ gn−1) = 1− gn = 0.

Remark 1.8. These conjectures are “local” in the sense that they only depend on
the finitely generated subgroups of G.

Proposition 1.9. For a given torsion-free group G and field K, we have

unit conj. =⇒ zero divisor conj. =⇒ idempotent conj. =⇒ direct finiteness

Proof. The 3 weaker conjectures are ring theoretic statements and their
implications are easy ring theoretic observations: if αβ = 1 and βα 6= 1 then
(βα)2 = β(αβ)α = βα is a non-trivial idempotent. If α2 = α is a non-trivial
idempotent, then α2 − α = α(α− 1) = 0 with both factors non-zero.

The unit conjecture is a “group ring theoretic” statement and the proof of the
implication requires the following (which we’ll prove later using group theory):

Theorem 1.10 (Connell). K[G] is prime if and only if G has no non-trivial
finite normal subgroup.

A non-commutative ring R is called prime if the zero ideal is not a product of
two non-zero ideals. This is equivalent to saying that for all 0 6= α, β ∈ R there
exists γ ∈ R with αγβ 6= 0.

Since G is torsion-free, K[G] is prime. Suppose that αβ = 0 for α, β 6= 0. Then
there exists γ ∈ K[G] with βγα 6= 0. Now

(1 + βγα)(1− βγα) = 1− βγ(αβ)γα = 1.

Thus 1 + βγα is a non-trivial unit, since if it were trivial then βγα = kg − 1 which
implies k2g2− 2kg+ 1 = 0 which is absurd unless g = 1, which then forces βγα ∈ K
so βγα = 0 since it is nilpotent. �

Definition 1.11. A group G is residually finite if for all 1 6= g ∈ G there exists a
homomorphism φg : G→ Q to a finite group such that φg(g) 6= 1.

We will see later that the direct finiteness conjecture is true for K = C. Here
we prove:

Proposition 1.12. Let G be residually finite. Then K[G] is directly finite.

Notation 1.13. For α ∈ K[G] and g ∈ G, let (α)g ∈ K denote the coefficient of g
in α. Then α =

∑
g∈G(α)g · g and (α)g = 0 for all but finitely many elements of G.

Definition 1.14. An element α ∈ K[G] has support

supp(α) = {g ∈ G | (α)g 6= 0} .
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Proof. Suppose α, β ∈ K[G] with αβ = 1. A group homomorphism φ : G→ Q
induces a ring homomorphism K[G]→ K[Q]. Thus K[Q] is a K[G]-module. Note
that Q is a basis for the K-vector space K[Q], so if Q is finite this is a finite
dimensional representation of G on V = K[Q].

Let A = supp(α), B = supp(β). Let C = BA = {ba | a ∈ A, b ∈ B}. By residual
finiteness, there is a finite quotient φ : G � Q which is injective on C: take the
product of homomorphisms φg given by the definition over all g ∈ C−1C \ {1} (and
let Q be the image of this product homomorphism).

Now the induced maps ρα, ρβ ∈ End(V ) satisfy ρα ◦ ρβ = idV and thus – since
V = K[Q] is finite dimensional – we have ρβ ◦ ρα = idV .

But we can write βα =
∑
c∈C(βα)c · c and thus

ρβα(1Q) = φ(βα) =
∑
c∈C

(βα)c · φ(c) = 1Q

forces (since all φ(c) are distinct!)

(βα)c =

{
1 c = 1

0 else

that is, βα = 1. �

1.2. Proving the unit conjecture

There is only one way known to prove the unit conjecture: the unique product
property.

Definition 1.15. A group G has the unique product property (or “has unique
products”, or “has UP”) if for all non-empty finite subsets A,B ⊆ G there exists
g ∈ G such that g = ab for a unique pair (a, b) ∈ A×B.

Example 1.16. In (Z,+) the “product” max(A) + max(B) is unique.

Remark 1.17. A group with UP is torsion-free: if 1 6= H ≤ G is a finite subgroup,
set A = B = H. Each product occurs exactly |H| times.

Proposition 1.18. A group G with UP satisfies the zero divisor conjecture.

Proof. Let α, β ∈ K[G] with α, β 6= 0 and set A = supp(α), B = supp(β).
Write

α =
∑
a∈A

λa · a

β =
∑
b∈B

µb · b.

Then if g0 = a0b0 is a unique product for (A,B) we have

(αβ)g0 =
∑
gh=g0

λgµh = λa0µb0 6= 0

and thus αβ 6= 0. �

For the unit conjecture we need something that a priori is stronger.
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Definition 1.19. A group G has the two unique products property if for all finite
subsets A,B ⊆ G with |A||B| ≥ 2, there exist elements g0 6= g1 of G such that
g0 = a0b0 for a unique pair (a0, b0) ∈ A × B and g1 = a1b1 for a unique pair
(a1, b1) ∈ A×B.

Proposition 1.20 (Strojnowski). The two unique product property is equivalent
to the unique product property.

Proof. TUP =⇒ UP is immediate (TUP doesn’t apply if |A| = |B| = 1, but
if |A| = 1 or |B| = 1, then all products are unique!)

Suppose now G has UP but that finite sets A,B ⊆ G with |A||B| ≥ 2 have only
1 unique product. Without loss of generality, by translating A on the left and B on
the right, we can assume that 1 = 1 · 1 is the unique unique product.

Now let C = B−1A, D = BA−1. We claim that C ·D has no unique product,
giving the desired contradiction. Every element of CD can be written as b−1

1 a1b2a
−1
2

for some a1, a2 ∈ A, b1, b2 ∈ B.
If (a1, b2) 6= (1, 1), then by assumption there is another pair (a′1, b

′
2) with

a′1b
′
2 = a1b2 and thus

(b−1
1 a1) · (b2a−1

2 ) = (b−1
1 a′1) · (b′2a−1

2 )

is not a unique product for (C,D).
If (a1, b2) = (1, 1), then unless (a2, b1) = (1, 1) we can write

b−1
1 · a

−1
2 = (a2b1)−1 = (a′2b

′
1)−1 = (b′1)−1(a′2)−1

with a2 6= a′2 (and b1 6= b′1). Finally, if (a1, b2) = (1, 1) and (a2, b1) = (1, 1), then
our element of CD is 1 = 1 · 1 = b−1 · b = a · a−1 for any a ∈ A or b ∈ B. �

Corollary 1.21. A group with UP satisfies the unit conjecture.

Proof. Exercise. �

Most examples of groups with UP are orderable groups.

Definition 1.22. A group G is left-orderable if it admits a total order < that is
left-invariant, that is, g < h implies kg < kh for all g, h, k ∈ G.

Remark 1.23. Being left-orderable and right-orderable are equivalent, but admit-
ting a bi-invariant total order is much stronger!

Proposition 1.24. A left-orderable group has UP.

Proof. We show that the maximum ofAB is a unique product. Let b0 = maxB.
Then for all a ∈ A and b ∈ B \ {b0} we have b < b0 =⇒ ab < ab0. Thus the
maximum of AB can only be written as a · b0 and this expression must be unique
(as ai 6= aj =⇒ aib0 6= ajb0). �

Remark 1.25. It is not necessarily true that max(AB) = max(A) max(B)!

Definition 1.26. For a left-ordered group (G,<), the set

P = {g ∈ G | 1 < g}
is called its positive cone.

The positive cone satisfies
(1) P2 ⊆ P (that is, it is a subsemigroup)
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(2) G = P t {1} t P−1.

Lemma 1.27. Left-orderings are equivalent to choice of P ⊂ G satisfying (1) and
(2).

Proof. Exercise (hint: x < y ⇔ 1 < x−1y). �

Lemma 1.28. A group G is left-orderable if and only if for all g1, . . . , gn ∈ G \ {1}
there exists a choice of signs ε1, . . . , εn ∈ {1,−1} such that

1 /∈ S(gε11 , . . . , g
εn
n ),

the subsemigroup generated by gε11 , . . . , g
εn
n .

Proof. ⇒ set εi = 1 if gi ∈ P (that is, 1 < gi) else −1.
⇐ we use compactness (slogan: inverse limit of non-empty finite sets is non-

empty). Let X = {1,−1}G\{1} be the set of functions G \ {1} → {1,−1} and let
A ⊂ X denote those functions that define a positive cone. This is equivalent to
satisfying (simultaneously!) the choice of sign condition for all possible g1, . . . , gn ∈
G \ {1} (actually n = 3 suffices). That is, if we denote such functions A{g1,...,gn}
then

A =
⋂

finite S⊂G\{1}

AS .

But X is compact by Tychonoff and the AS are closed (only depend on the restriction
to S → {1,−1}) and have all finite intersections non-empty by assumption. Thus
A 6= ∅. �

We will apply the lemma to prove the following:

Theorem 1.29 (Burns–Hale). If every finitely generated non-trivial subgroup
of G has a non-trivial left-orderable quotient, then G is left-orderable.

Definition 1.30. Let P be a property of groups. A group G is locally P if every
finitely generated subgroup of G has P.

We call a group indicable if it either maps onto Z or is trivial. So the Burns–Hale
theorem says in particular that a locally indicable group is left-orderable.

Corollary 1.31 (Higman, 1940). Locally indicable groups satisfy the conjectures on
units and zero divisors.

Proof. Locally indicable =⇒ left-orderable =⇒ UP. �

Example 1.32. The following groups are locally indicable:
• free groups (subgroups of free groups are free by Nielsen–Schreier)
• fundamental groups of surfaces of non-positive Euler characteristic
• torsion-free nilpotent groups
• torsion-free one-relator groups i.e. groups of the form 〈X | r 〉 where r ∈
F (X) is not a proper power (Brodskii, Howie)

Proof of Burns–Hale theorem. Suppose G is not left-orderable and let n
be minimal such that there exist g1, . . . , gn ∈ G \ {1} with 1 ∈ S(gε11 , . . . , g

εn
n ) for

all choices of εi. Let H = 〈g1, . . . , gn〉 ≤ G. By assumption, H has a non-trivial
left-orderable quotient q : H � Q. By relabelling, assume g1, . . . , gt ∈ ker(q) and
gt+1, . . . , gn /∈ ker(q). As t < n, we can assign ε1, . . . , εt such that

1 /∈ S(gε11 , . . . , g
εt
t ),
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and since Q is left-orderable we can assign εt+1, . . . , εn such that

1 /∈ S(q(gt+1)εt+1 , . . . , q(gn)εn).

But this implies that
1 /∈ S(gε11 , . . . , g

εn
n )

as every non-empty product of those elements either only uses g1, . . . , gt so lies in
S(gε11 , . . . , g

εt
t ) or has image under q in S(q(gt+1)εt+1 , . . . , q(gn)εn). �

The dynamical point of view.

Proposition 1.33. The group Homeo+(R) of orientation-preserving (i.e. increasing)
homeomorphisms of the real line is left-orderable.

Proof. Let {x0, x1, x2, . . . } ⊂ R be dense (e.g. enumerate Q). Then we define
f < g for f 6= g ∈ Homeo+(R) by

f < g ⇔ f(xi) < g(xi) for the minimal i ∈ N s.t. f(xi) 6= g(xi).

(Such an i exists as continuous functions to Hausdorff spaces are determined by their
values on dense subsets.) Left-invariance is immediate as elements of Homeo+(R)
are strictly monotone (and we take Homeo+(R) to act on R on the left!). Let
f, g, h ∈ Homeo+(R) with f < g and g < h and let i ∈ N be the minimal index such
that f(xi) 6= g(xi) or g(xi) 6= h(xi). Then f(xi) ≤ g(xi) and g(xi) ≤ h(xi) with
at least one inequality being strict, so f(xi) < h(xi). Moreover, for j < i we have
f(xj) = g(xj) = h(xj), so f < h. �

In fact:

Proposition 1.34. A countable group is left-orderable if and only if it is a subgroup
of Homeo+(R).

Proof. Exercise. �

Proposition 1.35. Suppose that N C G such that N and G/N both have UP.
Then G has UP.

Proof. Let A,B ⊂ G be finite non-empty subsets and write φ : G � G/N .
Suppose φ(a1) · φ(b1) is a unique product for φ(A) := {φ(a) | a ∈ A} and φ(B) in
G/N . By replacing A with a−1

1 A and B with Bb−1
1 , we can assume without loss of

generality that φ(a1) = φ(b1) = 1. Thus for a ∈ A and b ∈ B we have

ab ∈ N ⇔ φ(ab) = 1⇔ φ(a) = 1 and φ(b) = 1⇔ a ∈ N and b ∈ N
Hence the unique product of the non-empty finite sets A ∩N and B ∩N in the UP
group N is a unique product for A and B. �

Diffuse groups. We now meet the weakest property known to imply UP.

Definition 1.36. Let A ⊂ G be a finite subset. An element a ∈ A is called extremal
if for all 1 6= s ∈ G, either as /∈ A or as−1 /∈ A (or both). A group is called diffuse
if every non-empty finite subset contains an extremal element.

Remark 1.37. a ∈ A is extremal if and only if a−1A ∩A−1a = {1}.

Remark 1.38. This notion has been called “weakly diffuse” with diffuse reserved
for the a priori stronger property that any A ⊂ G with 2 ≤ |A| <∞ has at least 2
extremal points, but they turn out to be equivalent.
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Proposition 1.39. For any group we have the implications

left-orderable =⇒ diffuse =⇒ UP.

Proof. Suppose (G,<) is left-ordered. Let A ⊂ G be an arbitrary non-empty
finite subset and let a = maxA. For any 1 6= s ∈ G either 1 < s or 1 < s−1, which
implies either a < as or a < as−1. Thus a is extremal. Hence G is diffuse.

Suppose G is diffuse and let A,B ⊂ G be non-empty finite subsets. Consider
C = AB. Let c ∈ C be an extremal point and pick some a1 ∈ A, b1 ∈ B such
that c = a1b1. We claim that this is a unique product. Suppose for the sake of
contradiction that c = a2b2 with b1 6= b2 (and a2 ∈ A, b2 ∈ B). Then

c · (b−1
2 b1) = a2b2 · (b−1

2 b1) = a2b1 ∈ C
c · (b−1

2 b1)−1 = a1b1 · (b−1
1 b2) = a1b2 ∈ C

contradicting diffuseness. �

Remark 1.40. Given finite B ⊂ G we can easily decide if all non-empty A ⊆ B
have an extremal point because if a ∈ A0 ⊆ A1 and a is extremal in A1, then it is
also extremal in A0. Thus we can run a greedy algorithm, starting with A = B and
throwing out all extremal points at each step (checking extremality in finitely many
steps via Remark 1.37), seeing if we terminate with A = ∅ or with a non-empty set
A that falsifies diffuseness.

Exercise 1.2.1. Show that the following classes of groups are closed under
taking extensions:

• locally indicable groups
• left-orderable groups
• diffuse groups

1.3. Hyperbolic groups

Geodesics in the hyperbolic plane resemble tripods.
Given 3 points a, b, c in a metric space, they map isometrically to the vertices

a, b, c of a unique tripod with central vertex o.
The length d(o, a) must be

1

2
(d(a, b) + d(a, c)− d(b, c)) =: (b · c)a

which we call the Gromov product. Morally, it measures “distance to the incircle”.
Let X be a geodesic metric space, i.e. a metric space such that for all x, y ∈ X

there is an isometric embedding p : [0, d(x, y)]→ X of an interval (standard metric
on R) such that p(0) = x and p(d(x, y)) = y. We denote the image of such a geodesic
p from x to y by [x, y]. For a geodesic triangle ∆ = ∆(a, b, c), define

χ∆ : ∆→ T∆

by mapping the three geodesics isometrically to the comparison tripod T∆. For
δ ≥ 0, ∆ is called δ-thin if p, q ∈ χ−1

∆ (t) implies d(p, q) ≤ δ for all t ∈ T∆.

Definition 1.41. Let δ ≥ 0. A geodesic metric space X is called δ-hyperbolic if
every geodesic triangle is δ-thin. X is called (Gromov) hyperbolic if it is δ-hyperbolic
for some δ ≥ 0.

Example 1.42. A tree is 0-hyperbolic.
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Warning 1.43. There are multiple equivalent definitions of hyperbolicity, but the
constant δ will need to change in general.

Definition 1.44. A group G is called hyperbolic if it acts properly cocompactly by
isometries on a proper geodesic hyperbolic space.

Example 1.45. • A free group acting a tree (deck transformations on
universal cover of rose graph).

• The fundamental group of a closed hyperbolic surface acting on the hyper-
bolic plane.

Definition 1.46. An action Gy X by homeomorphisms of a topological space is
called proper if for all compact K ⊆ X, the set {g ∈ G | gK ∩K 6= ∅} is finite. It is
called cocompact if there exists compact K ⊆ X such that X = G ·K.

Definition 1.47. A metric space X is called proper if for all x ∈ X and for all
r ≥ 0, the closed ball B(x, r) := {y ∈ X | d(x, y) ≤ r} is compact.

Remark 1.48. For a proper metric space X, an action G y X by isometries is
proper if and only if for all x ∈ X and r ≥ 0, the set {g ∈ G | d(g · x, x) ≤ r} is
finite and it is cocompact if and only if for all x ∈ X there exists r ≥ 0 such that
X = G ·B(x, r).

Lemma 1.49. Let Gy X be a proper cocompact action by isometries on a proper
metric space. Let R ≥ 0. Then

SR = {g ∈ G | ∃x ∈ X s.t. d(g · x, x) ≤ R}
consists of finitely many conjugacy classes.

Proof. Pick some basepoint x0 ∈ X. By cocompactness, there exists r0 ≥ 0
such that X = G ·B(x0, r0). Suppose g ∈ G and x ∈ X with d(g · x, x) ≤ R. Since
X = G ·B(x0, r0), there exists h ∈ G such that x1 := h−1 · x ∈ B(x0, r0). Then

d(gh · x1, x1) = d(h−1gh · (h−1 · x), h−1 · x) = d(h−1gx, h−1x) = d(g · x, x) ≤ R
and thus

d(gh · x0, x0) ≤ d(gh · x0, g
h · x1) + d(gh · x1, x1) + d(x1, x0) ≤ 2r0 +R

so by properness there are only finitely many possibilities for gh. Thus the elements
of SR are contained in finitely many conjugacy classes. Since d(gh ·(h−1 ·x), h−1 ·x) =
d(g · x, x) for all g, h ∈ G and x ∈ X, we note that SR will be a union of conjugacy
classes.

�

Definition 1.50 (4-point condition). Let δ ≥ 0. A metric space X is (δ)-hyperbolic
if

(∗) (x · y)w ≥ min{(x · z)w, (y · z)w} − δ
for all w, x, y, z ∈ X.

Remark 1.51. This definition is arguably less intuitive, but it also works for
non-geodesic metric spaces e.g. discrete metric spaces.

Proposition 1.52. Let X be a geodesic metric space. Then
(i) X is (δ)-hyperbolic =⇒ X is 4δ-hyperbolic.
(ii) X is δ-hyperbolic =⇒ X is (δ)-hyperbolic.
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Proof. (i) is left as an exercise.
Hint: Suppose that p ∈ [x, y] and q ∈ [x, z] with d(x, p) = d(x, q) ≤ (y · z)x.

Prove the required inequality d(p, q) ≤ 4δ by bounding (p · q)x from below by first
proving the general fact that, for all a, b, c, d, w ∈ X, we have

(a · d)w ≥ min{(a · b)w, (b · c)w, (c · d)w} − 2δ.

(ii) Pick x′ on a geodesic [w, x], y′ on [w, y] and z′ on [w, z] such that

d(w, x′) = d(w, y′) = d(w, z′) = min{(x · z)w, (y · z)w}.

By δ-thinness of ∆(w, x, z) we have d(x′, z′) ≤ δ and similarly d(z′, y′) ≤ δ so that
d(x′, y′) ≤ 2δ. Thus

d(x, y) ≤ d(x, x′) + 2δ + d(y, y′)

but by construction

d(x, x′) = d(w, x)−min{(x · z)w, (y · z)w}
d(y, y′) = d(w, y)−min{(x · z)w, (y · z)w}

so that
d(x, y) ≤ d(w, x) + d(w, y)− 2 min{(x · z)w, (y · z)w}+ 2δ

which says precisely that

(x · y)w ≥ min{(x · z)w, (y · z)w} − δ.

�

Let’s repackage the 4-point condition to be symmetric: we have that

(x · y)w ≥ (x · z)w − δ(1.1)
or (x · y)w ≥ (y · z)w − δ(1.2)

(or both). Inequality (1.1) says

d(w, x) + d(w, y)− d(x, y) ≥ d(w, x) + d(w, z)− d(x, z)− 2δ

⇔ d(w, z) + d(x, y) ≤ d(w, y) + d(x, z) + 2δ.

So similarly rewriting (1.2) and combining the two possibilities, we see that the
4-point condition (∗) is equivalent to

(�) d(w, z) + d(x, y) ≤ max{d(w, y) + d(x, z), d(w, x) + d(y, z)}+ 2δ.

There are 3 ways to partition {w, x, y, z} into 2 pairs, all of which occur in the
previous equation. Suppose S ≤ M ≤ L are the corresponding sums of opposite
edge lengths. Then (∗) is equivalent (considering permutations of the 4 points) to
the assertion L ≤M + 2δ.

Theorem 1.53 (Delzant). Let X be a δ-hyperbolic geodesic metric space (in
the sense of thin triangles) and suppose that Gy X by isometries such that for all
1 6= g ∈ G and for all x ∈ X, we have

d(x, g · x) > 3δ.

Then G is diffuse.
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Proof. We claim that for all g ∈ G, 1 6= h ∈ G and p ∈ X we have either

d(gh · p, p) > d(g · p, p)
or d(gh−1 · p, p) > d(g · p, p).

Then we are done because for finite A ⊆ G and any p ∈ X, an element a ∈ A
achieving maxa∈A d(a · p, p) will be extremal.

Suppose for the sake of contradiction that

(1.3) d(g · p, p) ≥ d(gh · p, p), d(gh−1 · p, p).
Consider the symmetric 4-point condition (�) on p, g · p, gh · p, gh−1 · p. (Note that
X is assumed δ-hyperbolic and is thus (δ)-hyperbolic by Proposition 1.52.) The
three possible sums are (since Gy X by isometries):

d(g · p, p) + d(gh−1 · p, gh · p) = d(g · p, p) + d(h2 · p, p)
d(gh · p, p) + d(g · p, gh−1 · p) = d(gh · p, p) + d(h · p, p)
d(gh−1 · p, p) + d(g · p, gh · p) = d(gh−1 · p, p) + d(h · p, p).

If we assume d(h2 · p, p) ≥ d(h · p, p), then together with (1.3) this implies that the
first term is the largest and thus the 4-point condition says

d(g · p, p) + d(h2 · p, p) ≤ d(gh±1 · p, p) + d(h · p, p) + 2δ

≤ d(g · p, p) + d(h · p, p) + 2δ.

So in either case, we have d(h2 · p, p) ≤ d(h · p, p) + 2δ. Thus

(h · p, h−1 · p)p ≥
1

2
d(h · p, p)− δ.

Take any geodesic [p, h−1 ·p] and translate it by h to get a preferred geodesic [h ·p, p].
If we let q be the midpoint of [p, h−1 · p] and then let q′, q′′ lie on [q, p] respectively
[h · q, p] ⊂ [h · p, p] at distance δ from q respectively h · q, we have d(q′, q′′) ≤ δ by
δ-thinness of ∆(h−1 · p, p, h · p). But now

d(h · q, q) ≤ d(h · q, q′′) + d(q′′, q′) + d(q′, q) ≤ 3δ,

a contradiction.
�

Corollary 1.54. Let G be a residually finite hyperbolic group. Then G is virtually
diffuse.

Remark 1.55. It is a famous open problem whether all hyperbolic groups are
residually finite.

Proof. Let Gy X properly cocompactly by isometries, where X is a proper
geodesic δ-hyperbolic metric space. By Lemma 1.49 there exist 1 = g0, g1, . . . , gn ∈ G
such that for all g ∈ G, if there exists x ∈ X with d(g · x, x) ≤ 3δ then g ∼ gi
for some i. By residual finiteness we can find φ : G � Q, Q finite, such that
φ(g1), . . . , φ(gn) 6= 1. Then G0 = ker(φ) satisfies the assumptions of Delzant’s
theorem 1.53. �

We note one consequence of this corollary of general interest (i.e. beyond studying
group rings).
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Corollary 1.56. A residually finite hyperbolic group is virtually torsion-free.

Exercise 1.3.1. Verify Remark 1.48 (translating between topological and metric
conditions).

1.4. Primality of group rings

Our aim is to give a complete proof of the following, which was used to show
that the unit conjecture for K[G] implies the zero divisor conjecture for K[G].

Theorem 1.57 (Connell). K[G] is prime if and only if G has no non-trivial
finite normal subgroup.

Recall that a ring R is prime if for all α, β ∈ R\{0} there exists γ ∈ R such that
αγβ 6= 0 (that is, the zero ideal is a prime ideal in the sense of non-commutative
ring theory).

To get there we need some group ring basics, a fair bit of group theory and an
ingenious trick of Passman.

Definition 1.58. Let H ≤ G. Then the projection πH : K[G]→ K[H] is defined
by

πH(
∑
g∈G

agg) =
∑
g∈H

agg.

Warning: this is never a ring homomorphism for H � G! But we do have:

Lemma 1.59. πH is a homomorphism of (K[H],K[H])-bimodules.

Proof. Exercise. �

Corollary 1.60. Let H ≤ G. If α ∈ K[H] is a unit in K[G], then it is a unit in
K[H].

Proof. For β ∈ K[G] with αβ = βα = 1 we have

απH(β) = πH(αβ) = 1 = πH(βα) = πH(β)α

so in fact α−1 = β = πH(β) ∈ K[H]. �

Recall that a left transversal for H ≤ G is a set X containing exactly one
representative x of each left coset of H, so that G = tx∈XxH.

Lemma 1.61. Let X be a left transversal for H in G. Then every element α ∈ K[G]
can be written uniquely as a finite sum

α =
∑
x∈X

xαx

with αx ∈ K[H]. In fact, αx = πH(x−1α). Thus K[G] is a free right K[H]-module
with X as a basis.

Proof. Exercise. �

Recall that Mn(R) denotes the ring of n× n matrices over a ring R.

Lemma 1.62. Let [G : H] = n <∞. Then K[G] ↪→Mn(K[H]).
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Proof. Let X = {x1, . . . , xn} be a left transversal for H in G. Then V = K[G]
is a free right K[H]-module with basis X. It is also a left K[G]-module and since
left and right multiplication commute, K[G] acts by K[H]-linear transformations of
V ∼= K[H]n. Since for each α ∈ K[G] and each index j we have

αxj =

n∑
i=1

xiπH(x−1
i αxj),

sending the element α to the matrix

ηX(α) :=
(
πH(x−1

i αxj)
)
ij

defines the embedding (for choice of basis X).
�

Remark 1.63. If G is finite and H = 1 then this is just the regular representation.

Example 1.64. Let D∞ = 〈 r, t | r2 = 1, tr = t−1 〉 = Z o Z/2 and take X = {1, r}
as the obvious left transversal for 〈t〉 = Z. Then since r · 1 = r, r · r = 1 · 1, t · 1 =
1 · t, t · r = r · t−1, we have K[D∞]→M2(K[t, t−1]) given by extending

r 7→
(

0 1
1 0

)
, t 7→

(
t 0
0 t−1

)
.

The first bit of group theory is:

Lemma 1.65 (Schur). If [G : Z(G)] <∞ then |G′| is finite.

Definition 1.66. Let H ≤ G with [G : H] = n < ∞. Pick a left transversal
{x1, . . . , xn} for H. For each g ∈ G and 1 ≤ j ≤ n, we have gxj = xihj for some
unique hj ∈ H. The transfer is defined as the map G/G′ → H/H ′ given by

g 7→ h1 . . . hnH
′.

Lemma 1.67. The transfer is a group homomorphism and does not depend on the
choice of transversal.

Proof. Map K[G]→Mn(K[H]) via lemma 1.62,Mn(K[H])→Mn(K[H/H ′])
by extending K[H]→ K[H/H ′], and Mn(K[H/H ′])→ K[H/H ′] via the determi-
nant. For given g ∈ G and 1 ≤ j ≤ n, with gxj = xihj ⇔ hj = x−1

i gxj , the j-th
column of ηX(g) contains hj in row i, otherwise zeroes. Letting sgn(g) denote the
sign of the permutation g induces on the set G/H, we have that the composition
G→ K[H/H ′] so defined maps

g 7→ sgn(g)h1 . . . hn ∈ K[H/H ′]

where the image is moreover a trivial unit. The group of trivial units is K××H/H ′
so we can project onto the second factor to obtain our map

G→ H/H ′ : g 7→ h1 . . . hn.

As the image is abelian, it factors through G/G′ to define the transfer. It is
independent of the choice of transversal since change of basis of K[G] produces
similar matrices in Mn(K[H]), whose images in Mn(K[H/H ′]) will have the same
determinant.

�
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Proof of Schur’s lemma. Let Z = Z(G). Consider the transfer mapG/G′ →
Z/Z ′ = Z. By centrality of Z, for g ∈ Z this is simply g 7→ gn (in fact, one can show
this for all g ∈ G). Thus g ∈ G′ ∩ Z implies gn = 1. If x1, . . . , xn is a transversal,
then every commutator is of the form [xiz1, xjz2] = [xi, xj ] (for some z1, z2 ∈ Z) and
thus G′ is finitely generated. Now [G′ : G′ ∩ Z] ≤ n so G′ ∩ Z is finitely generated,
finite exponent and abelian, thus finite. Thus G′ is finite. �

Definition 1.68. The FC-centre of a group G is

∆(G) = {g ∈ G : |gG| <∞},
the set of elements whose conjugacy class is finite.

This is alternatively the set of elements g whose centralizer CG(g) is finite
index (by orbit-stabilizer theorem for Gy G). As CG(gh) ≥ CG(g) ∩ CG(h) and
[G : CG(g) ∩ CG(h)] ≤ [G : CG(g)][G : CG(h)] for all g, h ∈ G, we see that ∆(G) is
a (characteristic) subgroup of G.

We call G an FC-group if G = ∆(G). Note that ∆(∆(G)) = ∆(G), i.e. the
FC-centre is an FC-group.

Lemma 1.69. An FC-group is locally finite-by-(free abelian).

Proof. Let H = 〈h1, . . . , hn〉 ≤ G. Then CG(H) = ∩ni=1CG(hi) is finite index
in G and thus Z(H) = CG(H)∩H is finite index in H. Thus Schur’s lemma implies
that H ′ is finite. Now H/H ′ is a finitely generated abelian group so it has the form
T ⊕ Zd where T is finite. Thus the kernel of the composition H → Zd is finite. �

Remark 1.70. The torsion elements of an abelian group form a characteristic
subgroup, so any group (finitely generated or not) has a well-defined torsion-free
abelianization.

Corollary 1.71. A torsion-free virtually cyclic is cyclic.

Proof. Let G be torsion-free and virtually cyclic with G0 = 〈t〉 a finite index
subgroup. (If G0 is finite, then G is finite and thus trivial.) We claim that G is an
FC-group. For any 1 6= g ∈ G there exists n ≥ 1 such that gn ∈ G0, i.e. gn = tm

for some m ∈ Z. By torsion-freeness m 6= 0 and thus CG(g) contains 〈tm〉 which is
finite index in G0 and thus in G.

A virtually finitely generated group is finitely generated so lemma 1.69 applies.
Now we are done by the classification of finitely generated abelian groups. �

Remark 1.72. A torsion-free virtually abelian group need not be abelian, e.g. the
fundamental group Z o Z of the Klein bottle.

We now have the tools to prove the following result on the torsion of ∆(G),

∆+(G) := {g ∈ ∆(G) : ord(g) <∞}.
Lemma 1.73 (B.H. Neumann). ∆+(G) is a characteristic subgroup of G and
∆(G)/∆+(G) is torsion-free abelian.

Proof. If g, h ∈ ∆+(G) then the generators of H = 〈g, h〉 are both in the
kernel of its torsion-free abelianization, so H is finite. Thus ∆+(G) is a subgroup,
which is clearly characteristic.

Since ∆+(G) contains precisely the torsion elements of ∆(G), the quotient
∆(G)/∆+(G) is torsion-free. For any H = 〈g, h〉 ≤ ∆(G), we have that H ′ is finite
by lemma 1.69 and thus H ′ ≤ ∆+(G), so ∆(G)/∆+(G) is abelian. �
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Lemma 1.74. If x1, . . . , xn ∈ ∆+(G) then the normal closure N = 〈〈x1, . . . , xn〉〉G
is finite.

Proof. N is generated by the finitely many conjugates in G of the xi, which
are all in the kernel of the torsion-free abelianization of N , so we are done by
lemma 1.69. �

Lemma 1.75 (B.H. Neumann). Let G be a group and H1, . . . ,Hn ≤ G. Suppose
there exist finitely many (left) cosets gijHi such that

G =
⋃
i,j

gijHi.

Then some [G : Hi] <∞.

Proof. We proceed by induction on n. The base case n = 1 is clear. Suppose
n ≥ 2. If all (left) cosets of Hn occur, then [G : Hn] <∞. If not, then let gHn be
such that gHn 6= gnjHn for all j, which gives gHn ∩ gnjHn = ∅ for all j. Thus

gHn ⊆
⋃

i≤n−1,k

gikHi.

Now replace each gnjHn with
{
gnjg

−1gikHi

∣∣ i ≤ n− 1
}
to write G as a finite union

of cosets of H1, . . . ,Hn−1. �

This result is similarly true for right cosets.
The final ingredient is:

Theorem 1.76 (Passman). Suppose that α, β ∈ K[G] such that αγβ = 0 for
all γ ∈ K[G]. Then π∆(G)(α)π∆(G)(β) = 0.

Proof of Connell’s Theorem. If H C G is finite then let α =
∑
h∈H h ∈

K[G]. Note that α ∈ Z(K[G]) and α2 = |H|α. Thus αγ(α − |H|) = 0 for all
γ ∈ K[G], so K[G] is not prime.

If G has no non-trivial finite normal subgroup, then by lemma 1.74 we have
∆+(G) = 1 and thus by Neumann’s lemma 1.73 ∆(G) is torsion-free abelian.
Suppose that 0 6= α, β ∈ K[G] with αγβ = 0 for all γ ∈ K[G]. By choosing
some g ∈ supp(α), h ∈ supp(β) and replacing α with g−1α and β with βh−1, we
can assume without loss of generality that 1 ∈ supp(α) and 1 ∈ supp(β). Thus
π∆(G)(α), π∆(G)(β) 6= 0 but by Passman’s theorem their product is zero. This is
impossible as ∆(G) is torsion-free abelian so K[∆(G)] satisfies the zero divisor
conjecture. �

Proof of Passman’s Theorem. Let ∆ = ∆(G). It suffices to prove that
π∆(α)β = 0 since then

0 = π∆ (π∆(α)β) = π∆(α)π∆(β)

(as π∆ is a homomorphism of K[∆]-bimodules, lemma 1.59).
Write α = α0 +α1 where α0 = π∆(α). Suppose for the sake of contradiction that

α0β 6= 0 and fix some g0 ∈ supp(α0β). The assumption on α and β is equivalent to
saying

x−1(α0 + α1)xβ = 0

for all x ∈ G. If x ∈ CG(supp(α0)) then this simplifies to

x−1α1xβ = −α0β
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so that g0 ∈ supp(x−1α1xβ). Let

supp(α1) = {v1, . . . , vm}
supp(β) = {w1, . . . , wn}

So if x ∈ CG(supp(α0)) there exist 1 ≤ i ≤ m, 1 ≤ j ≤ n such that

x−1vixwj = g0.

If gij is some solution in x to vxi = g0w
−1
j , then the set of solutions is precisely the

coset CG(vi)gij .
Now the definition of ∆ guarantees that

C := CG(supp(α0)) =
⋂

g∈supp(α0)

CG(g)

is finite index in G whereas for vi ∈ supp(α1) we have [G : CG(vi)] = ∞ which
implies [C : C ∩ CG(vi)] = ∞ too. If every x ∈ C lies in some CG(vi)gij , then C
can be written as a finite union of cosets of infinite index subgroups, contradicting
Neumann’s lemma 1.75.

�

Exercise 1.4.1. Let

T (G) = {g ∈ G | ord(g) <∞}
denote the set of torsion of the group G.

(1) Show that if G/N is torsion-free then T (G) ⊆ N .
(2) Show that if T (G) is a subgroup of G, then G/T (G) is torsion-free.
(3) Show that if T (G) is finite, then it is indeed a subgroup. (Hint: consider

the FC-centre ∆(G).)

Exercise 1.4.2. Suppose that g, h, x0 ∈ G satisfy gx0 = h. Show that

{x ∈ G | gx = h} = CG(g)x0.

Exercise 1.4.3. Let [G : G0] <∞. Prove or disprove: If G0 is an FC-group,
then G is an FC-group.

Exercise 1.4.4. Consider the group ring F2[Z/3].
(1) Does is contain zero-divisors?
(2) Does is contain non-trivial units?
(3) Does this contradict anything we proved?

1.5. Traces

(This section of the lectures follows [Pas85, Chapter 2] very closely.)
Suppose |G| = n <∞. Then V = K[G] gives a finite dimensional representation

of G, namely the regular representation. Fix as a basis G which gives ρ : K[G]→
Mn(K). As Gy G freely, we know that each ρ(g) for g 6= 1 is a permutation matrix
with zeroes on the diagonal, and of course ρ(1) = In. Thus

tr(ρ(
∑
g∈G

ag · g)) =
∑
g∈G

ag · tr(ρ(g)) = |G| · a1

i.e. the trace of ρ(α), α ∈ K[G], is just a fixed multiple of the coefficient a1 = (α)1

of the identity. This motivates defining
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Definition 1.77. The trace on K[G] is

tr : K[G]→ K

α 7→ (α)1.

Lemma 1.78. tr : K[G]→ K is K-linear and tr(αβ) = tr(βα) for all α, β ∈ K[G].

Note that tr(αβ) = tr(βα) is called the trace identity.

Proof. Linearity is clear. If

α =
∑
g

ag · g

β =
∑
g

bg · g

then
tr(αβ) =

∑
gh=1

ag · bh =
∑
hg=1

bh · ag = tr(βα).

�

Definition 1.79. An element α ∈ K[G] is called algebraic if there is some non-zero
polynomial p(x) ∈ K[x] such that p(α) = 0.

Example 1.80. • α is called nilpotent if αm = 0 for some m ∈ Z+

• idempotent elements are algebraic (with p(x) = x2 − x)

For these algebraic elements, trace is worth studying.

Lemma 1.81. Let |G| = n <∞ and suppose that char(K) - n.
(i) If α is nilpotent, then tr(α) = 0.
(ii) If e is an idempotent, then tr(e) = dim(e ·K[G])/n ∈ {0, 1

n ,
2
n , . . . , 1}.

Proof. Consider V = K[G]. We will use tr(α) = 1
|G| tr(ρ(α)).

(i) Pick a basis of V that is compatible with the chain of subspaces V ⊇ αV ⊇
α2V · · · ⊇ αmV = {0}. (We want v1, . . . , vk to be a basis of αiV for all i, where
k = k(i) = dim(αiV ).) Then the matrix for α with respect to this basis is strict
upper triangular. Thus tr(ρ(α)) = 0 and hence tr(α) = 0.

(ii) Suppose e2 = e. Then V = eV ⊕ (1 − e)V (for v ∈ V , we have v =
ev + (1− e)v so that eV and (1− e)V together span, whereas if ev = (1− e)v′ then
ev = e2v = e(1− e)v′ = (e− e2)v′ = 0.) Then e acts as the identity on eV and is
zero on (1− e)V and hence tr(ρ(e)) = dim(eV ). �

Remark 1.82. If e is an idempotent, then so is 1− e. If |G| = n <∞ then 1
n

∑
g g

is an idempotent.

We will work towards proving the following general result on traces:

Theorem 1.83 (Kaplansky). If e ∈ C[G] is a non-trivial idempotent, then
tr(e) ∈ (0, 1).

Corollary 1.84. C[G] is directly finite.

Proof. If αβ = 1 then (βα)2 = β(αβ)α = βα is an idempotent, but tr(βα) =
tr(αβ) = 1 so βα must be the trivial idempotent 1. �
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Definition 1.85. The prime subfield of a field K is the smallest subfield of K.

If char(K) = p > 0, the prime subfield is Fp. If char(K) = 0, it is Q.
In particular, Lemma 1.81 (ii) shows that if e is an idempotent then tr(e) is in

the prime subfield. This algebraic property is also true for infinite G, as we’ll see
later in Theorem 1.120. Also if char(K) = 0 then 0 ≤ tr(e) ≤ 1 and this analytic
property is true in general by Theorem 1.83.

For infinite G we no longer have a finite dimensional representation at hand, so
we need to be able to get at tr(e) internally to C[G].

Definition 1.86. For α =
∑
g ag · g, β =

∑
g bg · g ∈ C[G], we define the inner

product

〈α, β〉 =
∑
g

agbg

which induces the norm
‖α‖ =

√
〈α, α〉.

We also define an absolute value

|α| =
∑
g

|ag|.

Finally, we define conjugation via

α =
∑
g

agg
−1.

Lemma 1.87. (C[G], 〈·, ·〉) is an inner product space and 〈α, β〉 = tr(αβ). Fur-
thermore α 7→ α is a ring anti-automorphism of C[G] and for all α, β, γ ∈ C[G] we
have

〈α, βγ〉 = 〈αγ, β〉 = 〈βα, γ〉.

Thus conjugation is the adjoint with respect to left and right multiplication.

Proof. This is the standard inner product on V = C[G] with respect to the
basis G. Note that

tr(αβ) = (αβ)1 =
∑
gh=1

(α)g(β)h =
∑
g

agbg = 〈α, β〉.

Since (g · h)−1 = h−1 · g−1, it is clear that αβ = βα. Likewise it is clear that
α+ β = α+ β and α = α. For all α, β, γ ∈ C[G] we have

〈α, βγ〉 = tr(α · βγ) = tr(αγβ) = 〈αγ, β〉

and
〈α, βγ〉 = tr(αγβ) = tr(βαγ) = 〈βα, γ〉.

�

Now, as a warm up to the general result, we can give a different proof of:

Lemma 1.88. Let G be finite. If e ∈ C[G] is an idempotent, then tr(e) ≥ 0.
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Proof. Let I = eC[G] = {eα |α ∈ C[G]} be the right ideal of C[G] generated
by e. Let I⊥ be its orthogonal complement. Since C[G] is finite dimensional,
C[G] = I ⊕ I⊥ is a direct sum decomposition. We note that I⊥ is also a right ideal:
if α ∈ I, β ∈ I⊥ and γ ∈ C[G], then

〈α, βγ〉 = 〈αγ, β〉 = 0

as αγ ∈ I.
Now let 1 = f+f⊥ with f ∈ I, f⊥ ∈ I⊥. As f⊥ = 1−f we see that f⊥f = ff⊥,

but f⊥f ∈ I⊥ and ff⊥ ∈ I, so in fact ff⊥ = 0, so that f2 = f(1− f⊥) = f and
similarly (f⊥)2 = f⊥.

For any α ∈ C[G] we have α = fα+ f⊥α with fα ∈ I and f⊥α ∈ I⊥. Thus if
α ∈ I, then fα = α, so we have fC[G] ⊇ I. But fC[G] ⊆ I since f ∈ I and I is a
right ideal, thus fC[G] = I and similarly f⊥C[G] = I⊥.

As f is orthogonal to f⊥C[G] = I⊥, for all α ∈ C[G] we have

0 = 〈f, f⊥α〉 = 〈f, (1− f)α〉 = 〈(1− f)f, α〉.

Letting α = (1− f)f we see that (1 − f)f = 0, that is ff = f . Hence f = ff =
ff = f so f is a self-adjoint idempotent, i.e. what we call a projection. Since e, f ∈ I
and both act as the identity on I, we have e = fe and f = ef . Thus

tr(e) = tr(fe) = tr(ef) = tr(f).

But
tr(f) = tr(ff) = 〈f, f〉 = ‖f‖2 ≥ 0.

�

For infinite G, C[G] will not have such direct sum decompositions, or in other
words, such an f need not exist. One approach is to embed C[G] in either the
reduced group C∗-algebra of G or the von Neumann algebra of G. An alternative
approach introduced by Passman, which we follow, is to take better and better
approximations fn of such an element f without ever leaving C[G].

We can characterize f as follows. For α ∈ I we consider the distance from α to
1. By definition

d(α, 1)2 = ‖α− 1‖2 = 〈α−1, α−1〉 = 〈α−f−f⊥, α−f−f⊥〉 = ‖α− f‖2 +
∥∥f⊥∥∥2

as α − f ∈ I implies that 〈α − f, f⊥〉 = 0. Thus d(α, 1) ≥
∥∥f⊥∥∥ with equality if

and only if α = f , so f is the unique element of I that is closest to 1.
Let G be arbitrary. If L is a C-subspace of C[G], we define

d(L, γ) = inf
α∈L
‖α− γ‖ .

For I = eC[G], since C[G] is not complete we cannot expect that this infimum is
achieved. But we can approach it. Recall that 〈β, f − 1〉 = 0 for all β ∈ I. We will
take fn such that ‖fn − 1‖ → d(I, 1) as n→∞. The following generalization of the
Cauchy–Schwarz inequality lets us see that then also 〈β, fn − 1〉 → 0 as n→∞.

Lemma 1.89. Let (V, 〈·, ·〉) be an inner product space, L ⊆ V a subspace and
α, β ∈ L. Then

|〈β, α− γ〉|2 ≤ ‖β‖2 (‖α− γ‖2 − d(L, γ)2).

So if α ∈ L is close to realizing d(L, γ), then α− γ is almost orthogonal to L.
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Proof. The lemma is trivial for β = 0 so suppose β 6= 0 and set k = 〈α −
γ, β〉/ ‖β‖2. Then α− kβ ∈ L so that

‖α− kβ − γ‖2 ≥ d(L, γ)2.

Then

‖α− γ‖2 − d(L, γ)2 ≥ ‖α− γ‖2 − ‖α− kβ − γ‖2

= 〈α− γ, α− γ〉 − 〈α− kβ − γ, α− kβ − γ〉
= k〈β, α− γ〉+ k〈α− γ, β〉 − kk〈β, β〉

= 〈β, α− γ〉〈β, α− γ〉/ ‖β‖2

= |〈β, α− γ〉|2/ ‖β‖2 .

�

Exercise 1.5.1. Let G = S3 = D6 generated by r = (123) and s = (12). We
can present G as 〈 r, s | r3, s2, rs = r−1 〉. Let ω ∈ C be a primitive cube root of 1.
Consider the elements

f1 = 1 + r + r−1

fω = 1 + ωr + ω−1r−1

fω−1 = 1 + ω−1r + ωr−1

of C[G] and let

e =
1

6
fω(1 + s).

(1) Verify that 1
3f1,

1
3fω,

1
3fω−1 are all self-adjoint idempotents.

(2) Show that f1 + fω + f−1
ω = 3.

(3) Show that fωf1 = 0.
(4) Show that (1 + s)fω = fω + fω−1s.
(5) Show that e is an idempotent. (Hint: apply the previous three calculations!)
(6) Check that e is not self-adjoint and verify moreover that 〈e, 1− e〉 6= 0.

We will use a few basic identities.

Lemma 1.90. (i) ‖α+ β‖ ≤ ‖α‖+ ‖β‖, |α+ β| ≤ |α|+ |β|.
(ii) |trα| ≤ ‖α‖, 〈α, 1〉 = trα.
(iii) ‖αβ‖ ≤ ‖α‖ · |β|, |αβ| ≤ |α| · |β|.

Proof. (i) is standard (or an exercise using Cauchy–Schwarz) and (ii) is
immediate. For (iii), let g ∈ G. Then clearly ‖αg‖ = ‖α‖ as both are

∑
h|(α)h|2.

Seen differently, g is an isometry since g = g−1:

‖αg‖2 = 〈αg, αg〉 = 〈αgg, α〉 = ‖α‖2 .

Thus

‖αβ‖ =

∥∥∥∥∥∑
g

α · (β)gg

∥∥∥∥∥ ≤∑
g

‖α · (β)gg‖ =
∑
g

‖α‖ · |βg| = ‖α‖ |β|.

and similarly |αg| = |α| so that |αβ| ≤ |α||β|. �
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Proof of Theorem 1.83. Let e 6= 0 be an idempotent in C[G] and let I =

eC[G]. We will prove that tr(e) > 0 and in fact tr e ≥ ‖e‖2 /|e|2. Then we are done
since if e is a non-trivial idempotent, then so is 1− e, and tr(1− e) = 1− tr(e) > 0
so that tr(e) < 1.

Let d = d(I, 1) and choose fn ∈ I with

‖fn − 1‖2 < d2 +
1

n4
.

Then the lemma ensures
|〈β, fn − 1〉| < ‖β‖ 1

n2

for all β ∈ I. Since fn ∈ I we have efn = fn and thus

tr(fne) = tr(efn) = tr(fn).

Now
|tr fne− tr e| = |tr(fne− e)| ≤ ‖fne− e‖

and

‖fne− e‖2 = 〈(fn − 1)e, (fn − 1)e〉
= 〈(fn − 1)ee, fn − 1〉

≤ ‖(fn − 1)ee‖ 1

n2

≤ ‖fn − 1‖ |ee| 1

n2

≤ (d+ 1)|ee|
n2

(where we used that (fn − 1)e ∈ I as fn, e ∈ I.) Thus |tr fn − tr e| → 0 as n→∞.
But

‖fn‖2 − tr fn = 〈fn, fn〉 − 〈fn, 1〉 = 〈fn, fn − 1〉
so that

|‖fn‖2 − tr fn| ≤ ‖fn‖
1

n2
≤ d+ 2

n2
→ 0

as n→∞. Thus |‖fn‖2 − tr e| → 0 as n→∞ so

tr e = lim
n→∞

‖fn‖2 ≥ 0.

Finally, we have

‖e‖ ≤ ‖e− fne‖+ ‖fne‖ ≤ ‖e− fne‖+ ‖fn‖ |e|
where ‖e− fne‖ = O( 1

n ), so taking limits we have ‖e‖ ≤
√

tr e|e| and thus

tr e ≥ ‖e‖2 /|e|2 > 0

�

We show later that in fact tr e ∈ Q ∩ [0, 1] but we already have:

Corollary 1.91. If char(K) = 0 and e ∈ K[G] is a non-trivial idempotent, then
tr(e) is a totally real algebraic number all of whose algebraic conjugates lie in (0, 1).

Proof. Let F = Q((e)g : g ∈ supp(e)). Then e ∈ F [G] and F is embeddable
in C, so viewing e as an element of C[G] we have tr(e) ∈ (0, 1). Any field automor-
phism of C induces an automorphism of C[G] and thus σ(tr(e)) ∈ (0, 1). If tr(e)
transcendental, there would exist σ violating this. �
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Places. We shifted from an arbitrary characteristic 0 field to C via a common
subfield. Another way to shift fields is homomorphisms – of rings, not fields!

Recall: an ideal M of a (unital) commutative ring R is called maximal if and
only if R/M is a field. We frequently use the homomorphism R[G]→ (R/M)[G].

Definition 1.92. A subring R of a field is called a valuation ring if for all x ∈ K,
either x ∈ R or x−1 ∈ R (or both).

Example 1.93. • R = K
• Zp ⊂ Qp
• K[[X]] ⊂ K((X))

Lemma 1.94. Let R ⊂ K be a valuation ring. If M denotes the set of non-units
of R, then M is the unique maximal ideal of R.

Proof. Let x, y ∈ R. If xy is a unit, so are x and y (as R is commutative!).
Thus M is closed under multiplication by R. Let x, y ∈M and consider x− y ∈ R.
Then since R is a valuation ring, either x−1y ∈ R or y−1x ∈ R. Since x − y =
x(1 − x−1y) = y(y−1x − 1), we see in either case that x − y ∈ M . Thus M is an
ideal. Any proper ideal of R consists of non-units, so M is indeed maximal. �

A valuation ring R has a homomorphism onto the field F = R/M . We extend
this to K by defining

φR : K → F ∪ {∞}

x 7→

{
x+M if x ∈ R
∞ if x /∈ R

Definition 1.95. Let K and F be fields. A map φ : K → F ∪ {∞} is called a place
if R := φ−1(F ) is a subring of K with φR a homomorphism R→ F and φ(x) =∞
if and only if x is nonzero and φ(x−1) = 0.

Lemma 1.96. Let K be a field.
(i) If R is a valuation ring in K, then φR is a place.
(ii) If φ : K → F ∪ {∞} is a place, then R = φ−1(F ) is a valuation ring in K

with maximal ideal M = φ−1(0).

Proof. (i) If x /∈ R then x−1 ∈ R and moreover x−1 ∈M (since (x−1)−1 /∈ R).
Also x−1 ∈M implies x /∈ R. That is, φR satisfies φ(x) =∞⇔ φ(x−1) = 0.

(ii) R is by definition a subring. If x /∈ R then φ(x) = ∞ so φ(x−1) = 0 and
x−1 ∈ R, so R is a valuation ring. Since φ(x) = 0⇔ x−1 /∈ R, we see that M is the
set of non-units of R. �

So there is essentially a one-to-one correspondence between places and valuation
rings (up to picking F ∼= R/M).

Theorem 1.97 (Extension theorem for places). Let K be a field, S a subring
of K and σ : S → F a homomorphism to the algebraically closed field F . Then there
exists a place φR : K → F ∪ {∞} such that R ⊇ S and φR|S = σ.

Example 1.98. K = C, S = Z and F = Fp.

Proof. Consider the set of all pairs (R,φ) such that S ⊆ R ⊆ K and φ : R→ F
is a homomorphism that extends σ. This is a poset under

(R1, φ1) ≤ (R2, φ2) :⇔ R1 ⊆ R2, φ2 extends φ1.
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This poset is non-empty, as it contains (S, σ), and chains are bounded, so by Zorn’s
lemma there is a maximal pair (R,φ). We will show that R is a valuation ring. Let
M = ker(φ).

Claim. M is the unique maximal ideal of R.

We show that s ∈ R \M implies s−1 ∈ R, so M contains all the non-units. Let

R′ = {r/s | r ∈ R, s ∈ R \M} ⊆ K
and define

φ′ : R′ → F

r/s 7→ φ(r)/φ(s).

We can check that φ′ is a homomorphism extending φ, so by maximality we have
R′ = R, so s−1 ∈ R for all s ∈ R \M in particular. Thus M is the unique maximal
ideal of R and φ(R) ∼= R/M is a field.

Claim. If x ∈ K \R then 1 ∈M [x].

Consider the polynomial ring R[t] and let

I = {f ∈ R[t] | f(x) = 0} ,
the kernel of the evaluation homomorphism R[t] → R[x], so R[x] = R[t]/I. Now
φ extends to φ̃ : R[t] → φ(R)[t] and so φ̃(I) is an ideal of φ(R)[t], which we will
show is the whole ring. If that were not the case, then since φ(R) is a field, φ(R)[t]
is a PID and there would exist a non-constant polynomial h ∈ φ(R)[t] such that
φ̃(I) = (h). Since φ(R) ⊆ F and F is algebraically closed, we then have y ∈ F such
that h(y) = 0. Then the composition

R[t]
φ̃→ φ(R)[t]

ev→ F

has I in its kernel. This factors through R[t]/I = R[x] ) R, contradicting maximality
of (R,φ). Thus φ̃(I) = φ(R)[t] so 1 ∈ φ̃(I) so picking some f ∈ I such that φ̃(f) = 1

we have 1 = f(t) + g(t), g ∈ ker(φ̃). But ker(φ̃) = M [t] and f(x) = 0 so setting
t = x gives 1 = g(x) ∈M [x].

We can now show R is a valuation ring. Suppose for the sake of contradiction
that x, x−1 ∈ K \ R. Then we can find polynomials g, h ∈ M [t] such that 1 =
g(x) = h(x−1). Choose them to have minimal possible degree and suppose without
loss of generality that n = deg(h) ≤ deg(g).

Now 1 =
∑n
i=0 aix

−i with ai ∈M . Then

(1− a0)xn =

n∑
i=1

aix
n−i =

n−1∑
i=0

an−ix
i

and since 1− a0 /∈M it is invertible in R so we write

xn =

n−1∑
i=0

an−1

1− a0
xi.

But we can substitute this into g to eliminate all terms of degree ≥ n, a contradiction.
Thus R is a valuation ring, whose unique maximal ideal is M = ker(φ). Thus

φR : K → F ∪ {∞} is a place. �

What is the “valuation”?
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Definition 1.99. A valuation on a field K is a surjection v : K → vK∪{∞}, where
vK is an ordered abelian group (the value group) such that for all x, y ∈ K

• v(x) =∞ ⇐⇒ x = 0,
• v(xy) = v(x) + v(y), and
• v(x+ y) ≥ min{v(x), v(y)}.

(Here we define a+∞ =∞ for a ∈ vK ∪ {∞} and a <∞ for a ∈ vK.)

Example 1.100. • p-adic valuation Qp → Z (
∑∞
i=k aip

i with ak 6= 0 is
mapped to k)

• K((t))→ Z :
∑∞
i=k ait

i 7→ k.

Valuations v and w are equivalent if there is an order-preserving φ : vK
∼=→ wK

such that w = φ ◦ v.

Proposition 1.101. Equivalence classes of valuations on K are in one-to-one
correspondence with valuation rings in K.

Proof. Given v : K → vK ∪ {∞}, Rv = {x ∈ K | v(x) ≥ 0} is a valuation
ring: closure under addition and multiplication is immediate and x /∈ Rv implies
v(x) < 0 which implies v(x−1) > 0 so that x−1 ∈ Rv. Note that its group of units
is R×v = {x ∈ K | v(x) = 0} and the maximal ideal is Mv = {x ∈ K | v(x) > 0}.

If R ⊆ K is a valuation ring, then Γ = K×/R× is an abelian group and it
is ordered with positive cone {xR× |x ∈M}. Since M is an ideal of R, x ∈ M
implies xR× ⊆M so there is no dependence on the choice of coset representative. If
x, y ∈M \{0} then xy ∈M \{0} so we have a subsemigroup and x /∈ R⇔ x−1 ∈M
so we indeed partition. �

Corollary 1.102. Let p be a prime. Suppose C[G] contains non-zero zero divisors.
Then Fpn [G] contains zero divisors for some n.

Proof. There is a homomorphism Z → Fp so by the extension theorem for
places there is a place φ : C → Fp ∪ {∞}. Suppose 0 6= α, β ∈ C[G] with αβ = 0.
Consider {(α)g | g ∈ supp(α)}. This finite set contains some minimal λ = (α)g0
under the corresponding valuation v so that v((α)g) ≥ v(λ) for g ∈ supp(α) and
hence v(λ−1(α)g) ≥ 0. That is, λ−1α ∈ R[G] where R ⊂ C is the corresponding
valuation ring R = φ−1(Fp). Similarly some µ−1β ∈ R[G] where µ = (β)h0 . Now
α = φ(λ−1α), β = φ(µ−1β) ∈ Fp[G] satisfy

αβ = φ(λ−1µ−1αβ) = φ(0) = 0

but have support containing g0, h0 respectively. Since Fp = limn→∞ Fpn , the result
follows. �

Lemma 1.103. Let S ⊆ K be a subring of a field and let x1, . . . xn be finitely many
elements of K. Then there exists an element s0 ∈ S \ {0} such that if σ : S → F is
a homomorphism to an algebraically closed field F with σ(s0) 6= 0, then σ extends
to a place φR : K → F ∪ {∞} with R ⊇ S[x1, . . . , xn].

Proof. TODO break up into exercises. �

Corollary 1.104. Let char(K) = 0 and let x1, . . . , xn ∈ K×. Then for infinitely
many primes p there exists a place φR : K → Fp ∪ {∞} with φR(xi) 6= 0 or ∞ for
all i.
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Proof. Take S = Z in Lemma 1.103 and take the finite set

{x1, . . . , xn, x
−1
1 , . . . , x−1

n }.

Then s0 ∈ Z has only finitely many prime factors. For all other primes p, σ : Z→ Fp
satisfies σ(s0) 6= 0 and so extends to a place φR with xi, x

−1
i ∈ R which gives

φR(xi) 6= 0 or ∞. �

Corollary 1.105. If C[G] has a non-trivial unit, then for all but finitely many
primes p there exists n such that Fpn [G] has a non-trivial unit.

Proof. Exercise. �

The augmentation map
ε : R[G]→ R

restricts to a map (R[G])× → R×. The kernel is V (R[G]), the group of normalized
units. Since

1→ V (R[G])→ (R[G])× → R× → 1

is split such that R× is central (assuming R to be commutative), then in fact
R[G] ∼= R× × V (R[G]). The unit conjecture states that for torsion-free G, the
natural injection G ↪→ V (K[G]) is surjective.

We can strengthen the link between the unit conjecture and the zero divisor
conjecture as follows.

Proposition 1.106. Let char(K) > 0 and let G be torsion-free. Then V (K[G]) is
torsion-free if and only if K[G] has no zero divisors.

Proof. Let char(K) = p. Suppose 0 6= α, β ∈ K[G] with αβ = 0. By primality
of K[G], we can assume without loss of generality that α = β, that is, that α2 = 0
(by replacing α with some non-zero product βγα). Now

(1 + α)p = 1 + pα+

(
p

2

)
α2 + · · ·+ αp = 1 + αp = 1.

Note that α2 = 0 implies ε(α)2 = 0 ∈ K so that ε(α) = 0. As α 6= 0, we have that
1 + α ∈ V (K[G]) is non-trivial torsion.

Now suppose 1 6= α ∈ V (K[G]) with αn = 1, for some n ≥ 2. Then (1− α)(1 +
α+ · · ·+ αn−1) = 0. The first factor is non-zero by assumption on α. The second
factor has augmentation n, which is non-zero provided that p - n. If p | n then
supposing (without loss of generality) that ord(α) = n, we have αn/p 6= 1 and thus

0 = 1− αn = (1− αn/p)p

so K[G] has zero divisors. �

Corollary 1.107. G satisfies the zero divisor conjecture for all fields K if and only
if V (K[G]) is torsion-free for all fields K.

Proof. We’ve already seen in Corollary 1.102 that G satisfies the zero divisor
conjecture in characteristic 0 if it does in characteristic p > 0. If V (K[G]) has torsion
for char(K) = 0, the proof of Proposition 1.106 gives zero divisors in K[G]. �
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Remark 1.108. The “detour” via positive characteristic is necessary – we cannot
strengthen Corollary 1.107 to say for all K that K[G] is a domain precisely when
V (K[G]) is torsion-free (at least, not with our current knowledge). In particular,
we don’t know if Z[G] can have zero divisors for torsion-free G, but it is a theorem
of Sehgal that V (Z[G]) is torsion-free (in fact, V (O[G]), where O is the ring of
algebraic integers).

1.5.1. The power map. Let char(K) = p > 0. In a non-commutative K-
algebra, we do not necessarily have (α+ β)p = αp + βp, but we will establish what
one might call “Frobenius under the trace”.

Definition 1.109. Let A be a K-algebra. The commutator subspace [A,A] is the
subspace spanned by [α, β] := αβ − βα for α, β ∈ A.

Lemma 1.110. Let A be an algebra over a field K, with char(K) = p > 0. If
α1, . . . , αm ∈ A and q = pn, then

(α1 + α2 + · · ·+ αm)q = αq1 + · · ·+ αqm mod [A,A].

Proof. The difference β := (α1 + · · · + αm)q − (αq1 + · · · + αqm) is a sum of
expressions αi1αi2 . . . αiq where not all indices are the same. Modulo [A,A], cyclic
permutation does not change such expressions. Note that Z/qZ acts on the mq −m
summands of β by cyclic permutation and all orbits have size greater than 1 and
hence divisible by p. Thus β ∈ [A,A]. �

For g ∈ G we write [g] for its conjugacy class

[g] = [g]∼ = gG ∈ G/∼.

Definition 1.111. For g ∈ G, let

τ[g] : K[G]→ K

α 7→
∑
h∈[g]

(α)h

denote the sum of coefficients over the conjugacy class of g.

This is a K-linear map. “The” trace is tr = τ[1].

Lemma 1.112. Let α ∈ K[G]. Then α ∈ [K[G],K[G]] if and only if τ[g](α) = 0
for all g ∈ G. Moreover, a K-linear map τ : K[G]→ K annihilates [K[G],K[G]] if
and only if it is constant on conjugacy classes.

Proof. Exercise. �

In particular, the trace identity

τ[g](αβ) = τ[g](βα)

holds for all g ∈ G and α, β ∈ K[G].

Definition 1.113. We call g ∈ G a p-element if its order is pn, n ≥ 1. For α ∈ K[G],
define

p-supp(α) = {g ∈ supp(α) | g is a p-element} .

Lemma 1.114. Let α =
∑
g ag · g ∈ K[G] be nilpotent.
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(i) If char(K) = p > 0 then

tr(α) +
∑

g∈p-supp(α)

ag = 0.

In particular, either tr(α) = 0 or p-supp(α) 6= ∅.
(ii) If char(K) = 0 then tr(α) = 0.

Proof. (i) We choose q = pn large enough so that αq = 0 and gq = 1 for all
g ∈ p-supp(α). Thus

0 = αq =
∑
g∈G

aqgg
q mod [K[G],K[G]]

and taking traces gives
0 =

∑
gq=1

aqg = (
∑
gq=1

ag)
q

and since {g ∈ supp(α) | gq = 1} = {1} t p-supp(α), we have

tr(α) +
∑

g∈p-supp(α)

ag =
∑
gq=1

ag = 0.

(ii) By Corollary 1.104, for infinitely many primes p there exists a place φR : K →
Fp ∪ {∞} with φR(ag) 6= 0,∞ for all g ∈ supp(α). Thus α ∈ R[G] and its image α̃
in (R/M)[G] ⊆ Fp[G] is nilpotent. If tr(α) 6= 0, then tr(α̃) = φR(a1) 6= 0 and by (i)
p-supp(α) 6= ∅. But this cannot be true for infinitely many primes. �

Using this we can show some more trace functions vanish on nilpotents. We
define a preorder on G by setting

x < y :⇔ 〈〈x〉〉G ⊆ 〈〈y〉〉G .
That is, < is reflexive and transitive, but not antisymmetric. It induces a partial
order on ≈-equivalence classes, where we say

x ≈ y :⇔ (x < y and y < x)⇔ 〈〈x〉〉G = 〈〈y〉〉G .

Remark 1.115. This is a coarser equivalence relation than conjugacy. We always
have x ≈ x−1. Magnus proved that if x, y ∈ Fn with x ≈ y, then x ∼ y or x ∼ y−1.
In general this is far from true, e.g. a simple group G has two ≈-classes: {1} and
G \ {1}.

If S = [g]≈ ∈ G/≈, we define

τS : K[G]→ K : α 7→
∑
g∈S

(α)g.

Remark 1.116. If we pick a transversal X for [g]≈/∼, then τS =
∑
x∈X τ[x].

Proposition 1.117. If char(K) = 0 and α ∈ K[G] is nilpotent, then τS(α) = 0 for
each S ∈ G/≈.

Proof. We “induct” over the finite poset of ≈-classes S that intersect supp(α).
Pick a maximal such S for which we haven’t proved τS(α) = 0. Let x ∈ S. Then
y ∈ 〈〈x〉〉G if and only if [y]≈ = T ≤ S. The image of α in K[G/ 〈〈x〉〉G] is nilpotent
and has trace

0 =
∑

y∈〈〈x〉〉G

(α)y =
∑
T≤S

τT (α).
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As τT (α) = 0 for T � S, we are done. �

We will need the following black box from number theory and a corollary of it.
(The black box is a consequence of the Frobenius density theorem.)

Proposition 1.118. Let f ∈ Z[t] be a monic irreducible polynomial with deg f > 1.
Then there exist infinitely many primes p such that f mod p ∈ (Z/pZ)[t] does not
have all its roots in Z/pZ.

Corollary 1.119. Let char(K) = 0 and x0, x1, . . . , xn ∈ K with x0 /∈ Q. Then for
infinitely many primes p, there exists a place φR : K → Fp ∪ {∞} with φR(xi) 6= 0
for all i and φR(x0) /∈ Fp.

Theorem 1.120 (Zalesskii). Let e ∈ K[G] be an idempotent. Then tr(e) is in
the prime subfield of K.

Proof. Let e =
∑
g agg and suppose first that char(K) = p > 0. Let S =

{1} ∪ p-supp(e). We can find n0 such that gp
n

= 1 for all g ∈ S and n ≥ n0.
Moreover, S =

{
g ∈ supp(e)

∣∣ gpn = 1
}
for all n ≥ n0. By “Frobenius under the

trace” (i.e. Lemma 1.110 plus Lemma 1.112) we have for q = pn, n ≥ n0

tr(eq) =
∑
g∈S

aqg = (
∑
g∈S

ag)
q

so now e = e2 implies e = ep
n0

= ep
n0+1

and thus

tr(e) =

∑
g∈S

ag

pn0

=

∑
g∈S

ag

pn0+1

so that tr(e) is a root of the polynomial xp − x, which has all its roots in Fp.
Now suppose char(K) = 0 and suppose for the sake of contradiction that

tr(e) /∈ Q. By Corollary 1.119 there exists a prime p (in fact, infinitely many)
and a place φR : K → Fp ∪ {∞} such that φR(ag) 6= ∞ for all g ∈ supp(e) and
φR(a1) = φR(tr(e)) /∈ Fp. But then e ∈ R[G] and its image ẽ ∈ (R/M)[G] ⊆ Fp[G] is
an idempotent and has trace tr(ẽ) = φR(tr(e)) /∈ Fp, contradicting the characteristic
p case. �

Our results on traces of nilpotents and idempotents admit a nice generalization,
which we state but will not prove.

Theorem 1.121. Let α be an algebraic element of K[G] with minimal polynomial
f(t) ∈ K[t]. Let λ1, . . . , λn be the distinct roots of f in some algebraic closure of K.

(i) If char(K) = 0 then there exist rational numbers r1, . . . , rn satisfying
0 < ri and

∑n
i=1 ri = 1 such that

tr(α) =

n∑
i=1

riλi.

(ii) If char(K) = p > 0 and either G has no p-elements or f(t) has no repeated
roots, then there exist r1, . . . , rn ∈ Fp with

∑n
i=1 ri = 1 such that

tr(α) =

n∑
i=1

riλi.



1.5. TRACES 28

Theorem 1.122 (Formanek). Let G be a torsion-free group. Let

NG =
{
p
∣∣∣ p is prime and there exist g ∈ G \ {1}, n ∈ Z+ s.t. g ∼ gp

n
}

(this is the set of primes that are in a sense “bad” for G). Suppose e ∈ K[G] is an
idempotent.

(i) If char(K) = p > 0 and p /∈ NG, then tr(e) = 0 or 1.
(ii) If char(K) = 0 and p /∈ NG for infinitely many primes p, then e = 0 or 1.

Remark 1.123. When Formanek proved this theorem in 1973, the condition
|NG| < ∞ may have appeared somewhat esoteric. Since then, geometric group
theory has brought many groups into focus where this holds (often NG = ∅).

Example 1.124. |NG| <∞ for torsion-free G if G is
• a finitely generated subgroup of GLnF , F any field (Bass)
• hyperbolic
• CAT(0)
• a subgroup of Out(Fn) or the mapping class group Mod(Σ) of a surface

Corollary 1.125. All those groups satisfy the idempotent conjecture in characteristic
0.

Remark 1.126. Osin proved that every countable torsion-free group embeds into a
torsion-free group G with exactly 2 conjugacy classes. Then NG contains all primes!

Proof of Formanek’s Theorem 1.122. (i) Let e =
∑
g agg ∈ K[G], char(K) =

p > 0, p /∈ NG. Let h ∈ G \ {1}. We wish to compute

τ[h](e) =
∑
g∼h

ag.

For any g ∈ G \ {1}, there is at most one n ∈ Z+ such that gp
n ∼ h, as otherwise

gp
n+i ∼ gpn with i ≥ 1 and then (gp

n

)p
i ∼ gpn , contradicting p /∈ NG. Since supp(e)

is finite, there exists q = pn such that gq 6∼ h for all g ∈ supp(e). Now Frobenius
under the trace gives us, since e = eq, that

τ[h](e) = τ[h](e
q) =

∑
g∈supp(e)
gq∼h

aqg =
∑
g∈∅

aqg = 0

for all h 6= 1. Now the augmentation ε(e) = 0 or 1 in K, since it is an idempotent.
But

ε(e) =
∑

[g]∈supp(e)/∼

τ[g](e) = τ[1](e) = tr(e)

so that tr(e) = 0 or 1.
(ii) Now char(K) = 0. Suppose for the sake of contradiction that e 6= 0 or

1, so that by Kaplansky’s Theorem 1.83 we have a1 = tr(e) 6= 0 or 1. Then set
b = a1(1− a1) 6= 0. By Corollary 1.104, for all but finitely many primes p, there is
a place φR : K → Fp ∪ {∞} with all φR(ag) 6=∞ and φR(b) 6= 0 (or ∞).

Thus e ∈ R[G] has image ẽ ∈ (R/M)[G] ⊆ Fp[G] with trace φR(a1) 6= 0 or 1
(since φR(a1)(1− φR(a1)) = φR(b) 6= 0). For infinitely many of these p we will also
have p /∈ NG, which contradicts the char(K) = p case. �
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1.6. The unit conjecture counterexample

Rips and Segev (1987) gave the first example of a torsion-free group without
unique products, using small cancellation theory (|A| = 4 and B is huge). Promislow
showed shortly thereafter (1988) that the crystallographic group

P = 〈 a, b | b−1a2b = a−2, a−1b2a = b−2 〉
does not have unique products, with A = B, |A| = 14. In 2021, it was shown that
K[P ] is a counterexample to the unit conjecture whenever char K > 0 (Gardam,
Murray).

LetD∞ = 〈 r, t | r2 = 1, tr = t−1 〉 denote the infinite dihedral group. It naturally
acts on R (isometrically) via t · x = x+ 1 and r · x = −x (“translate” and “rotate”).

Lemma 1.127.

φ : P → D∞ ×D∞ ×D∞
a 7→ (t, tr, r)

b 7→ (r, t, tr)

is an injective group homomorphism.

Remark 1.128. The stabilizer of Kn × {1} in GL(Kn ⊕K) is Aff(Kn). This lets
us rephrase the above embedding as the faithful representation

a 7→


1 1
−1 1

−1 0
1

 , b 7→


−1 0

1 1
−1 1

1

 .

Proof of Lemma 1.127. Note that φ(a2) = (t2, 1, 1) so that φ(b−1a2b) =
(r−1t2r, 1, 1) = (t−2, 1, 1) = φ(a−2). Similarly φ(a−1b2a) = φ(b−2), so this is a
well-defined group homomorphism.

Since (a2)b = a−2, we have b ∈ NP (〈a2〉), thus 〈a2〉 C P and likewise 〈b2〉 C P .
As (a2)b

2

= (a−2)b = a2, we see that Z2 ∼= 〈a2, b2〉 C P . The relations of P are
a consequence (in general) of a2 = 1 and b2 = 1 respectively, so P/〈a2, b2〉 ∼=
〈 a, b | a2, b2 〉 ∼= D∞. The abelianization of D∞ is Z/2 ⊕ Z/2 with [D∞, D∞] =
〈abab〉 ∼= Z (exercise!). Let x = a2, y = b2, z = (ab)2. Now xz = (a2)abab =
(a2)bab = (a−2)ab = (a−2)b = a2 = x and similarly yz = y. Thus 〈x, y, z〉 ∼= Z3 is a
normal subgroup of P with quotient Z/2⊕ Z/2.

Since φ(x) = (t2, 1, 1), φ(y) = (1, t2, 1) and φ(ab) = (tr, trt, rtr) = (tr, r, t−1)
which implies φ(z) = (1, 1, t−2), we see that φ is injective on 〈x, y, z〉. We project
D∞×D∞×D∞ onto the first two factors and then maps to Z/2⊕Z/2 by quotienting
out the corresponding 〈t〉. This gives a map q◦φ : P � Z/2⊕Z/2 which has 〈x, y, z〉
in the kernel. Since P/〈x, y, z〉 ∼= Z/2⊕Z/2, we see ker(q ◦ phi) = 〈x, y, z〉 and thus
g /∈ 〈x, y, z〉 implies φ(g) 6= 1. So φ is injective. �

Exercise 1.6.1. Show that 〈 r, t | r2, tr = t−1 〉 ∼= 〈 a, b | a2, b2 〉 and that the
latter has derived subgroup 〈abab〉 ∼= Z.

Exercise 1.6.2. Show that if G does not have the unique product property then
there is a finite subset A ⊂ G such that A·A does not have a unique product. Deduce
that if G does not have the unique product property, then there are arbitrarily large
sets A that witness this.
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Having identified the abstract finitely presented group P with a subgroup of
D∞ ×D∞ ×D∞ in Lemma 1.127, we can prove:

Corollary 1.129. P is torsion-free.

Proof. The abelianization of D∞ is Z/2⊕ Z/2 and an element is non-trivial
torsion if and only if it has image (0, r̄) or (t̄, r̄). Thus the abelianization of D3

∞
is an elementary abelian 2-group (isomorphic to (Z/2)6) and the image of P is an
order 4 subgroup of (D3

∞)ab, comprising

φ(1) = ((0, 0), (0, 0), (0, 0))

φ(a) = ((t̄, 0), (t̄, r̄), (0, r̄))

φ(b) = ((0, r̄), (t̄, 0), (t̄, r̄))

φ(ab) = ((t̄, r̄), (0, r̄), (t̄, 0)).

Thus every element of P is either in the torsion-free subgroup 〈x, y, z〉 ∼= Z3 or has
infinite order in precisely one of the three D∞ factors. Thus P is torsion-free. �

Alternative proof of Corollary 1.129. (This abstract proof, that does
not require identifying P with a subgroup of D∞ ×D∞ ×D∞, is not examinable.)
We rewrite

P = 〈x, b, y, a |xb = x−1, ya = y−1, x = a2, b2 = y 〉

= 〈x, b |xb = x−1 〉 ∗
x=a2

b2=y

〈 y, a | ya = y−1 〉

and since 〈x, b2〉 ∼= 〈a2, y〉 ∼= Z2 this exhibits P as the free product with amalgama-
tion over Z2 of two Klein bottle groups. A standard fact of Bass–Serre theory is
that free product with amalgamation preserves torsion-freeness. �

Recall that bi-orderable =⇒ locally indicable =⇒ left-orderable =⇒ diffuse
=⇒ unique products =⇒ unit conjecture. Each successive property is weaker and
indeed more difficult to falsify for P .

Definition 1.130. A group G is bi-orderable if it admits a total order < that is
bi-invariant, that is, g < h implies kg < kh and gk < hk for all g, h, k ∈ G.

P is not bi-orderable: a2 is non-trivial and conjugate to a−2

P is not locally indicable: we compute P ab ∼= Z2/〈(4, 0), (0, 4)〉 ∼= Z/4⊕ Z/4 so
P itself does not surject onto Z.

P is not left-orderable: note that σa : P → P : a 7→ a−1, b 7→ b is an automor-
phism, as

σa(b−1a2ba2) = b−1a−2ba−2 ∼ a−2b−1a−2b = (b−1a2ba2)−1

and
σa(a−1b2ab2) = ab2a−1b2 ∼ a−1b2ab2

so it is a well-defined group homomorphism P → P , which is an involution so
in particular an automorphism. (Similarly σb : P → P : a 7→ a, b 7→ b−1 is an
automorphism.) Suppose < is a left-order on P . We can now suppose without loss
of generality that a > 1 and b > 1. But a−1b 6= 1 and if a−1b > 1 we have

1 = a−1b2ab2 = (a−1b) · b · a · b2 > 1
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and if a−1b < 1 we have b−1a > 1 and thus

1 = b−1a2ba2 = (b−1a) · a · b · a2 > 1

giving a contradiction in either case.
Bowditch gave an elegant proof that P is not diffuse (after this was already

known via failure of unique products). We exploit some 3-fold symmetry that is not
immediately clear from the 2-generator presentation. Recall

φ(ab) = (tr, r, t−1)

and thus
φ(b−1a−1) = (tr, r, t)

and hence cycling the factors of D3
∞ cycles through a, b, c := b−1a−1. (In a sense,

this is “all” the 3-fold symmetry of P , as |Out(P )| = 25 · 3.)
As we are acting on the left, it is more convenient to phrase diffuseness in terms

of extremal points a ∈ A such that sa /∈ A or s−1a /∈ A for all s ∈ G \ {1}. It is also
convenient to replace the finite set A ⊂ G with a finite set A ⊂ X, where Gy X
simply transitively. In this case, X =

{
(x, y, z) ∈ Z3

∣∣x+ y + z = 1 mod 2
}
.

For the set A we take 6 elements:

A = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.

The isometry φ(a) is a glide reflection about y = 1
2 , z = 0. Since for example

a : (−1, 0, 0) 7→ (0, 1, 0) 7→ (1, 0, 0)

we see that (0, 1, 0) is not extremal. As b−2 · (0, 1, 0) = (0,−1, 0) and (b−2a)2 = a2

we also have
b−2a : (−1, 0, 0) 7→ (0,−1, 0) 7→ (1, 0, 0)

so that also (0,−1, 0) is not extremal. By symmetry the same is true for the other
4 points, completing the proof that P is not diffuse.

We name the sets that witness the failure of diffuseness:

Definition 1.131. A finite subset A ⊂ G is called a ravel if it contains no extremal
points, i.e. for all a ∈ A there exists 1 6= s ∈ G such that sa, s−1a ∈ A.

We have a translational degree of freedom: if A is a ravel then so is Ag for any
g ∈ G. Similarly, turning the failure of diffuseness for P y R3 into a ravel A ⊂ P
requires a choice of basepoint. Let’s pick p = (0, 1, 0). Recall

a : (−1, 0, 0) 7→ (0, 1, 0) 7→ (1, 0, 0)

b : (0,−1, 0) 7→ (0, 0, 1) 7→ (0, 1, 0)

c : (0, 0,−1) 7→ (1, 0, 0) 7→ (0, 0, 1)

so we compute labels for our six points as

a−1 · p = (−1, 0, 0) a · p = (1, 0, 0)

b−2 · p = (0,−1, 0) p = (0, 1, 0)

c−1a · p = (0, 0,−1) b−1 · p = (0, 0, 1).

This gives the ravel A = {g1, . . . , g6} with

g1 = a−1, g2 = a, g3 = b−2, g4 = 1, g5 = c−1a, g6 = b−1.
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The failure to have extremal points is verified by

a : g1 7→ g4 7→ g2

b−2a : g1 7→ g3 7→ g2

b : g3 7→ g6 7→ g4

c−2b : g3 7→ g5 7→ g4

c : g5 7→ g2 7→ g6

a−2c : g5 7→ g1 7→ g6.

A natural question is: what is encoded by this combinatorial data? The data is: each
element of A has a corresponding pair of elements it lies between e.g. g4  {g1, g2}.
The existence of s ∈ G (in this case: s = a) such that g1 = s−1g4, g2 = sg4 is
equivalent to g4g

−1
1 g4g

−1
2 = 1.

(Note: in general, there could be multiple s 6= 1 such that s−1a, sa ∈ A, beyond
having a given s±1. We assume a choice has been made for simplicity.)

Given this data as f : {1, . . . , n} →
({1,...,n}

2

)
, where i /∈ f(i), we add for

notational convenience an arbitrary order on the pairs, writing f(i) = {s(i), t(i)},
and then we can define a group

Gf = 〈 g1, . . . , gn | gig−1
s(i)gig

−1
t(i), i = 1, . . . , n 〉.

In our case, this is

G =
〈
g1, . . . , g6

∣∣∣ g1g−1
5 g1g

−1
6 , g2g

−1
5 g2g

−1
6 , g3g

−1
1 g3g

−1
2 ,

g4g
−1
1 g4g

−1
2 , g5g

−1
3 g5g

−1
4 , g6g

−1
3 g6g

−1
4

〉
.

By construction, G� 〈A〉 = P .

Lemma 1.132. Gf ∼= Hf ∗ Z for some group Hf .

The free factor of Z corresponds to our translational degree of freedom. Note
that Hf is a priori “well-defined”: H ∗ Z ∼= K ∗ Z =⇒ H ∼= K by Grushko’s
theorem.

Proof. We choose a “basepoint” gj and change to the basis h1, . . . , hj , gj , hj+1, . . . , hn
of the free group F (g1, . . . , gn), where we set hi = gig

−1
j for i = 1, . . . , n. (NB:

hj = 1!) Thus gi = higj . Note that

gig
−1
s(i)gig

−1
t(i) = higj(hs(i)gj)

−1higj(ht(i)gj)
−1 = hih

−1
s(i)hih

−1
t(i)

is a word in the free group F (h1, . . . , ĥj , . . . , hn) of rank n− 1 and so substituting
gives

Gf = 〈h1, . . . , hj−1, hj+1, . . . , hn |hih−1
s(i)hih

−1
t(i) 〉 ∗ 〈 gj | 〉

which completes the proof as 〈 gj | 〉 ∼= Z. �

Remark 1.133. As gig−1
k = (gig

−1
j )(gkg

−1
j )−1 = hih

−1
k , we see that

Hf = 〈
{
gig
−1
k

∣∣ i, k ∈ {1, . . . , n}}〉
which is independent of the choice of j.

Lemma 1.134. For Bowditch’s 6-element ravel function f , we have Hf
∼= P .

In other words, one could say P is the universal group supporting this ravel.
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Proof. We “cheat” by keeping in mind that we have a homomorphism Gf � P
which sends g2 7→ a, g4 7→ 1, g6 7→ b−1. So g4 is a convenient choice of basepoint
(but any choice works!).

We have

Hf =

〈
h1, h2, h3, h5, h6

∣∣∣∣ h1h
−1
5 h1h

−1
6 , h2h

−1
5 h2h

−1
6 , h3h

−1
1 h3h

−1
2 ,

h−1
1 h−1

2 , h5h
−1
3 h5, h6h

−1
3 h6

〉
where the underlined relations will be used to eliminate variables h5, h1 and h3

respectively. We rename h2 to be a and h6 to be b−1, then use

h5 = aba, h1 = a−1, h3 = b−2

to write

Hf
∼= 〈 a, b | a−1(aba)−1a−1(b−1)−1, b−2ab−2a−1, (aba)b2(aba) 〉
∼= 〈 a, b | a−2b−1a−2b, b−2ab−2a−1, (aba)2b2 〉
∼= 〈 a, b | b−1a2b = a2, a−1b2a = b2, (aba)2b2 〉

but in P we have

(aba)2 = a(ba2)ba = a(a−2b)ba = a−1b2a = b−2

so the final relator is redundant and indeed Hf
∼= P . �

The ravel function f clearly has symmetries, i.e. permutations σ ∈ Sym(n) such
that f(σ(i)) = {σ(s(i)), σ(t(i))} for all i. Specifically, its automorphism group is
isomorphic to the wreath product Z/2 o Z/3, generated by (1 2) and (1 3 5)(2 4 6).
Such an automorphism induces an automorphism

σ : Gf → Gf : gi 7→ gσ(i)

since it (and its inverse) preserve the relations. Moreover, as Hf = 〈gig−1
k 〉 and σ

simply permutes the elements of the set
{
gig
−1
k

∣∣ i, k ∈ {1, . . . , n}}, this restricts to
an automorphism of Hf .

Exercise 1.6.3. Compute the automorphisms of P induced by the generating
symmetries (1 2) and (1 3 5)(2 4 6) of the automorphism group of Bowditch’s ravel.

We now turn to:

Theorem 1.135 (Promislow). P is not a UP group.

The duplex is of the form (S, S) where |S| = 14.
The combinatorial data of a duplex with |A| = m, |B| = n is a partition of (or

equivalent relation on) {1, . . . ,m} × {1, . . . , n} into sets of size at least 2. Similarly
to with ravels, this also defines a finitely presented group: if (i, j) and (k, l) are in
the same set of the partition then we have a relation aibj = akbl.

This group similarly has an obvious free factor, this time a free factor of
F2 = Z ∗Z (corresponding to left translation on A and right translation on B). The
data for Promislow’s duplex has no non-trivial symmetry in Sym(14)× Sym(14) –
but it does in (Sym(14)× Sym(14))oZ/2 where we allow swapping the sets A and
B. Such a twist is not an automorphism of the corresponding universal group as
aibj = akbl is not equivalent to bjai = bjak. We only get an automorphism after
inversion. In other words: there exists φ ∈ Aut(P ) such that S = φ(S)−1.
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Remark 1.136. Our presentation of Promislow’s example differs from his. He uses
a different embedding P ↪→ D3

∞ and exploits symmetry on a “piecewise” basis i.e.
coset by coset. Both expositions really boil down to P being virtually abelian.

For notational brevity, we follow Promislow’s example and write n for tn ∈ D∞
and n∗ for tnr ∈ D∞.

Let

E0 = {(0, 0,−2), (0, 0, 2)}
E1 = {(−1, 1∗, 2∗), (−1,−1∗, 0∗), (−1, 1∗, 0∗)

(1, 1∗,−2∗), (1,−1∗, 0∗), (1, 1∗, 0∗)}
E2 = {(2∗,−1, 1∗), (0∗,−1, 1∗), (0∗,−1,−1∗)

(2∗, 1,−1∗), (0∗, 1,−1∗), (0∗, 1, 1∗)}

Theorem 1.137 (Promislow). Let S = E0 ∪E1 ∪E2. Then S ·S has no unique
product.

The automorphism φ is conjugation by (1, 1, r) ∈ D3
∞ i.e. by (0, 0, 0∗) in

Promislow’s shorthand.

Lemma 1.138. Let φ be conjugation by (0, 0, 0∗) and let S be as Theorem 1.137.
Then φ(S) = S−1. �

Remark 1.139. Let A = 〈x, y, z〉 C P . Then E0 ⊂ A, E1 ⊂ aA, E2 ⊂ bA.

Note that φ(c) = (tr, r, t)(1,1,r) = (tr, r, t−1) = c−1 and that φ : x 7→ x, y 7→
y, z 7→ z−1.

Why is Lemma 1.138 helpful? We’ll see in Corollary 1.142. Let’s keep in mind:

Lemma 1.140. The map G→ G : g 7→ g−1 is an automorphism if and only if G is
abelian.

Proof. Since it is a bijection, it is an automorphism if and only if for all
g, h ∈ G we have (gh)−1 = g−1h−1 which is equivalent to gh = hg. �

Lemma 1.141. If A C G is an abelian normal subgroup and φ ∈ Aut(G), g ∈ G
are such that φ(g) = g−1 and φ(a)g = a−1 for all a ∈ A, then φ(h) = h−1 for all
h ∈ gA.

Proof. There exists a ∈ A such that h = ga and so

φ(h) = φ(ga) = φ(g)φ(a) = g−1φ(a)gg−1 = a−1g−1 = h−1.

�

Corollary 1.142 (to Lemma 1.138). E1 · E2 = E2 · E1.

Proof. We note that Lemma 1.141 is satisfies for G = P , A = 〈x, y, z〉, g = c
and the aforementioned φ. So if u ∈ E1, v ∈ E2, then uv ∈ cA and φ(uv) = v−1u−1

so that uv = φ(v)−1φ(u)−1 ∈ E2 · E1 as E2 = φ(E2)−1 and E1 = φ(E1)−1. �

We also have E0 · E1 = E1 · E0 and E0 · E2 = E2 · E0 (for similar but not
identical reasons), so the tedious part is verifying that every element of A in S · S
occurs at least twice, which we skip.

The known non-trivial units of torsion-free groups exhibit symmetry.
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Definition 1.143. Let θ ∈ Aut(K[G]). We call a unit α ∈ K[G] θ-unitary if
α−1 = θ(α)∗.

If K[G] has non-trivial units, then Aut(K[G]) is big and mysterious – including
conjugation by all units. We’ll consider the subgroup of automorphisms that preserve
the subgroup K× ×G of trivial units.

Let G and H be arbitrary groups. We have Aut(G)×Aut(H) ↪→ Aut(G×H)
in the obvious way, but Aut(G × H) can be much bigger. Consider for example
G = H = Z: we’re comparing

{(±1
±1

)}
with GL2(Z).

In our case, the full automorphism group fairly manageable.

Proposition 1.144. Suppose G is centreless and H is abelian. Then

Aut(G×H) ∼= (Aut(G)×Aut(H))nHom(G,H).

Remark 1.145. We need H abelian to have a group Hom(G,H). For arbitrary G
and H, there is a subgroup of Aut(G×H) consisting of those automorphisms{(

θG χH
χG θH

)
∈ Aut(G×H)

∣∣∣∣ θG∈Aut(G), θH∈Aut(H),
χG∈Hom(G,Z(H)), χH∈Hom(H,Z(G))

}
.

Note that for some choice of θG, θH , χG, χH we get a homomorphism that is not an
automorphism (e.g. ( 1 1

1 1 ) ∈ End(Z× Z).)

Proof. Let θ ∈ Aut(G×H) and let iG, iH , φG, φH be the natural inclusions
and projections

G
iG
↪→ G×H

φG

� G

H
iH
↪→ G×H

φH

� H.

Since 1×H is central in G×H, so is θ(1×H) and thus (πG ◦ θ)(1×H) = 1 as G
is centreless. Thus

(πG ◦ θ)(g, h) = (πG ◦ θ)(g, 1) · (πG ◦ θ)(1, h) = (πG ◦ θ)(g, 1)

is independent of h so we have a well-defined homomorphism

Aut(G×H)→ Aut(G) : ψ 7→ πG ◦ ψ ◦ iG.

Since θ(1×H) ≤ 1×H we similarly get a homomorphism

Aut(G×H)→ Aut(H) : ψ 7→ πH ◦ ψ ◦ iH .

Let θG = πG θ iG ∈ Aut(G), θH = πH θ iH ∈ Aut(H), and let χ = θ−1
H πH θ iG ∈

Hom(G,H) (where the final θ−1
H is introduced for convenience, as will become

apparent soon). Since πG θ iH = 1, we have for all g ∈ G, h ∈ H that

θ(g, h) = θ(g, 1) · θ(1, h)

= (θG(g), θHχ(g)) · (1, θH(h))

= (θG(g), θH(χ(g)h)).
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Now if θ′ ∈ Aut(G×H) with θ′G, θ
′
H , χ

′ defined similarly, we compute

(θ′θ)(g, h) = (θ′G(θG(g)), θ′H (χ′(θG(g))θH(χ(g)h)))

= (θ′GθG(g), θ′HθH
(
θ−1
H χ′θG(g)χ(g)h

)
)

= (θ′GθG(g), θ′HθH

(
(χ′(θG,θH)χ)(g)h

)
)

where we define the action

χ′(θG,θH) = θ−1
H χ′θG.

Thus we have an isomorphism

Aut(G×H)
∼=→ (Aut(G)×Aut(H))nHom(G,H).

�

Corollary 1.146. The trivial-unit-preserving ring automorphisms of K[P ] are the
maps of the form ∑

ag · g 7→
∑

τ(χ(g)ag) · φ(g)

for φ ∈ Aut(P ), τ ∈ Aut(K), χ ∈ Hom(P,K×).

Proof. First note that these are automorphisms of the group of trivial units
that extend to automorphisms of K[P ]. P is centreless as every g ∈ P has g2 ∈
A = 〈x, y, z〉, a normal Z3 subgroup on which the generators a, b acts as

(
1
−1
−1

)
and

(−1
1
−1

)
respectively. The group of trivial units is isomorphic to P ×K×,

with K× abelian, so Proposition 1.144 applies. Note that K× has many more
automorphisms as a group than we get by restricting field automorphisms, but a
ring automorphism of K[P ] that preserves K× thus preserves K, on which it acts
as a ring (equivalently, field) automorphism. �

Remark 1.147. A character χ ∈ Hom(P,K×) is the same thing as a 1-dimensional
representation P → GL1(K). A representation of P is a K[P ]-module. If we twist
this module by precomposing with the automorphism of K[P ] associated to χ, this
has the effect of tensoring with the 1-dimensional representation. One could call
such χ a “gauge automorphism”.

Theorem 1.148 ([Gar21]). There exists α ∈ (F2[P ])× with |supp(α)| = 21.

That is, the Kaplansky unit conjecture is false.

Corollary 1.149 ([Gar21]). (F2[P ])× contains free subgroups and is not finitely
generated.

The construction of a non-trivial unit over F2 was generalized by Murray
[Mur21] to a unit αd ∈ Fd[P ] for arbitrary prime d, with |suppαd| → ∞ as d→∞.

The unit α exhibits symmetry that was expressed in [Gar21] in terms of cosets
of N = 〈x, y, z〉. This was explained coherently by Bartholdi, who observed

Theorem 1.150 ([Bar23]). There exist non-trivial automorphisms θ0, θ1 ∈
Aut(K[P ]) such that θ0(αd) = αd and θ1(αd)

∗ = α−1
d .

That is, the units are θ1-unitary.
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Remark 1.151. It is unclear whether allowing the field automorphism is helpful.

Remark 1.152. If α ∈ K[G] is θ-unitary, then αθ(α)∗ = 1 gives θ(α)θ2(α)∗ = 1
and thus (θ2(α)∗)∗θ(α)∗ = 1∗ = 1 so that θ2(α)θ(α)∗ = 1 and by uniqueness of
inverses θ2(α) = α. Thus θ acts as a permutation on supp(α) and will induce a
finite order automorphism of 〈supp(α)〉 (which is typically all of G). In Bartholdi’s
theorem, θ2

1 = 1 but in general θ2 can be non-trivial!

Bartholdi’s explanation of the units first requires translation, i.e. multiplication of
units by group elements (specifically α 7→ αb−1a−1). We can simplify his explanation
further if we apply a further group automorphism (namely a 7→ a, b 7→ a−2b) which
has the effect of conjugating θ0, θ1 in Aut(K[P ]). Then we arrive at:

Proposition 1.153. Let χ : P → K× : a 7→ −1, b 7→ −1. Then we can take

θ0 = (φ0, 1), θ1 = (φ1, χ) ∈ Aut(P )nHom(P,K×)

where

φ0 : a 7→ a−1, b 7→ b−1

φ1 : a 7→ a, b 7→ b−1

in Theorem 1.150.

As observed in [Gar21, Lemma 1] in very different terms, this gives “2 out of 4
cosets” for free.

Lemma 1.154 (“2 out of 4 cosets”). If α ∈ K[P ] satisfies φ0(α) = α, then

(α · θ1(α)∗)g = 0

for all g ∈ Na,Nb, where Z3 ∼= N = 〈x, y, z〉 C P .

Proof. Let α =
∑
ag · g, so θ1(α)∗ =

∑
χ(g)ag · φ1(g)−1. Let k ∈ Nb. Then

(α · θ1(α)∗) k =
∑
g,h s.t.

gφ1(h)−1=k

agχ(h)ah.

But φ1(k) = k−1, so gφ1(h)−1 = k implies φ1(g)φ2
1(h)−1 = φ1(k) = k−1 and so

hφ1(g) = k too. Since gφ1(h) ∈ Nb and φ1 acts trivially on P/N , gh ∈ Nb and in
particular g 6= h. As P/N ∼= Z/2⊕ Z/2, we also have gh−1 ∈ Nb, so now

(α · θ1(α)∗)k =
∑

{g,h} s.t.
gφ1(h)−1=k

agah(χ(g) + χ(h))

=
∑

agahχ(h−1)(χ(gh−1) + 1)

= 0

as gh−1 ∈ Nb implies χ(gh−1) = χ(b) = −1.
Since θ0(α) = α, we have for k ∈ Na that

(α · θ1(α)∗)k = (α · (θ1θ0(α))∗)k = 0

similarly as φ1φ0 : a 7→ a−1, b 7→ b. �
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Remark 1.155. The first non-trivial unit in F2[P ] was found by reformulating the
quadratic system of equations one has for given finite candidate support sets (on 147
elements) as a problem in boolean satisfiability (a.k.a. SAT). Note that 2147 ∼ 1044!
SAT is the original NP-complete problem. It is the problem of deciding, given a
propositional (so quantifier-free) Boolean formula, whether it can be made true
(satisfied) for some assignment of its variables to false and true. Generally, the
input is assumed to be in conjunctive normal form, something like

(¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z)
which asserts that x+ y + z = 0 in F2 (making the natural identification of false
with 0 and true with 1).

1.7. Units of the infinite dihedral group

We won’t prove Corollary 1.149 as it is mostly a computation using (variants
on) the unit from Theorem 1.148. It does however have one essential ingredient that
is of independent interest: the computation of the entire group of units of F2[D∞],
due to Mirowicz [Mir91]. A map P → D∞ induces a map (F2[P ])× → (F2[D∞])×

and understanding (F2[D∞])× completely (in particular, knowing its abelianization)
allows us to deduce that (F2[P ])× is not finitely generated without even knowing
all the units of F2[P ] (or whether they surject onto the units of F2[D∞], for that
matter).

Characterizing units in F2[D∞]. Recall that D∞ = 〈 t, r | r2 = 1, tr = t−1 〉
and 〈t〉 ∼= Z is an index 2 subgroup. By the standard trick 1.62, we can embed
F2[D∞] ↪→ M2(F2[Z]). Every α ∈ F2[D∞] is uniquely expressible as a + br for
a, b ∈ F2[Z]. Let ∗ : F2[Z]→ F2[Z] denote the involution induced by the action of r:
t∗ = t−1. Then the embedding is

a+ br 7→
(
a b
b∗ a∗

)
.

Since we now are working with matrices over a commutative ring, we can
check invertibility by whether or not the determinant is a unit. Since F2[Z] has no
non-trivial units, this means the determinant must be some tk ∈ Z. However, the
inverse matrix

t−k
(
a∗ b
b∗ a

)
will be in the image of F2[D∞] if and only if k = 0. Thus:

Lemma 1.156. The element α = a + br ∈ F2[D∞] is a unit if and only if
detα = aa∗ − bb∗ = 1. �

Example 1.157. The embedding sends

t−1 + t+ (1 + t+ t2)r 7→
(

t−1 + t 1 + t+ t2

1 + t−1 + t−2 t+ t−1

)
which has determinant

(t−1 + t)2 − (1 + t+ t2)(t−2 + t−1 + 1) = t−2 + 2 + t2 + t−2 + 2t−1 + 3 + 2t+ t2 = 1

so it is a unit. For general invertible 2× 2 matrices over commutative rings,(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
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so since we’re in characteristic 2 with a = d and det = 1, we see that this units is
its own inverse.

For a ∈ F2[Z] define

max a := max supp a

min a := min supp a

deg a := max a−min a = max aa∗

(with max(0) = −∞,min(0) =∞,deg(0) = −∞). The trivial units are precisely
those a + br for which one of a and b is 0 and the other has degree 0 (that is, is
some tk). If one of a and b is 0, this is moreover the only way to satisfy detα = 1.
So every non-trivial unit has a 6= 0 and b 6= 0. Suppose a+ br is a non-trivial unit.
If deg a = 0, then aa∗ = t0 = 1 so we get bb∗ = 0 which forces b = 0, contradicting
non-triviality. Thus our non-trivial unit a+ br has

deg(α) := deg a = max aa∗ = max bb∗ = deg b ≥ 1.

We define the degree of a trivial unit (where {deg(a),deg(b)} = {−∞, 0}) to be 0.

Generators for a group of non-trivial units. We now introduce our gener-
ators for (F2[D∞])×. For i ∈ N+ and j ∈ Z define

nij := t−i + ti + tj(t−i + ti)r

eij := t−i + 1 + ti + tj(t−i + ti)r = 1 + nij .

In general (a + br)2 = a2 + bb∗ + (ab + ba∗)r, so when a∗ = a this cancels to
a2 + bb∗. So (1 + tjr)2 = 1 + tjt−j = 0. Note that (t−i + ti)∗ = t−i + ti, so that
[1 + tjr, t−i + ti] = 0. Thus

nijni′j = (t−i + ti)(1 + tjr)(t−i
′
+ ti

′
)(1 + tjr)

= (t−i + ti)(t−i
′
+ ti

′
)(1 + tjr)2

= 0.

In particular, n2
ij = 0 so that e2

ij = 1.

Infinite elementary abelian 2-groups. Let us define subgroups (for j ∈ Z)

Uj := 〈eij : i ∈ N+〉
U := 〈Uj : j ∈ Z〉.

As nijni′j = 0, we have that⊕
i∈N+

Z/2→ Uj∑
i∈I

1i 7→ 1 +
∑
i∈I

nij

is an isomorphism, as

(1 +
∑
i∈I

nij)(1 +
∑
i′∈I′

ni′j) = 1 +
∑
i∈I

nij +
∑
i′∈I′

ni′j + 0.
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The free product. Our next claim is that the natural map

Fj∈ZUj → U

is an isomorphism.
We reformulate Mirowicz’s argument as ping pong. The ping pong lemma is

the standard way to prove that a group is a free product. We recall a statement of
it here but will not prove it.

Lemma 1.158 (Ping pong lemma). Let G act on a set X and let Gi ≤ G be
subgroups, i ∈ I, at least one of which contains more than 2 elements, and let
Xi ⊂ X be disjoint subsets. Suppose that for all distinct i, j ∈ I and all g ∈ G \ {1}
we have g ·Xj ⊆ Xi. Then G = ∗i∈IGi.

Remark 1.159. The condition that some Gi has more than 2 elements is necessary:
consider G = G1 ×G2 where both G1 and G2 are order 2 and act non-trivially (in
the only way possible) on X = {1, 2} with X1 = {1}, X2 = {2}.

Example 1.160. The standard example of an application of the ping pong lemma
is to show that (

1 x
0 1

)
,

(
1 0
x 1

)
generate a free subgroup of SL2(R) whenever x ≥ 2. Here Gy R2 in the natural
way, G1, G2 are the respective cyclic subgroups and

X1 =

{(
x
y

)
∈ R2

∣∣∣∣ |x| > |y|} , X2 =

{(
x
y

)
∈ R2

∣∣∣∣ |y| > |x|} .
Lemma 1.161. Let X = U and define disjoint Xj, j ∈ Z, by

Xj = {ar + b ∈ X : min(a) + j = min(b)}.
Then the action of U (with subgroups Uj, j ∈ Z) on X by right multiplication
satisfies the assumptions of the ping pong lemma, so U = ∗j∈ZUj. Moreover
U = {1} t

⊔
j∈ZXj so that all g ∈ U \ {1} are non-trivial units.

Proof. Let a + br ∈ Xi, i 6= j, so that min(b) − min(a) 6= j (and both
min(a),min(b) are finite). Consider g ∈ Uj \ {1}. We are required to prove that

(c+ dr) := (a+ br)g

lies in Xj .
From the proof that Uj ∼= ⊕N+Z/2 and the definition of nij we see that

g = 1 + p(1 + tjr) for some non-zero p ∈ F2[Z] with p = p∗ =
∑
i∈I(t

−i + ti). Set
n = max p > 0 (so we can write p = t−n + · · ·+ tn). Thus

c = a(1 + p) + b(pt−j)

and since min(a(1 + p)) = min(a) − n and min(b(pt−j)) = min(b) − n − j, which
are distinct by assumption (that a+ br /∈ Xj), we have

min(c) = min(min(a),min(b)− j)− n.
Likewise

d = aptj + b(1 + p)

so that
min(d) = min(min(a)− n+ j,min(b)− n)

and hence min(c) + j = min(d) so that c+ dr ∈ Xj .



1.7. UNITS OF THE INFINITE DIHEDRAL GROUP 41

Finally, note that if gj ∈ Uj \ {1} then 1 · gj ∈ Xj so by writing any non-trivial
element of U in normal form gj1gj2 . . . gjk we see it lies in Xjk and thus is of the
form a+ br where both a 6= 0 and b 6= 0. �

The semidirect product decomposition. We abuse notation slightly and
write D∞ for the subgroup of trivial units. We claim that 〈U,D∞〉 is naturally
a semidirect product U oD∞. Since we proved above that U ∩D∞ = 1, it only
remains to show that the generators t and r of D∞ normalize U .

t−1ei,jt = t−i + 1 + ti + tj−1(t−i + ti)rt

= t−i + 1 + ti + tj−2(t−i + ti)r

= ei,j−2

r−1ei,jr = ti + 1 + t−i + t−j(ti + t−i)r

= ei,−j

So D∞ simply permutes the free factors Uj (j ∈ Z) of U according to a natural
action of D∞ on Z with two orbits, namely evens and odds. (This action is generated
by reflection in 0 and 1. Another natural choice of action of D∞ on Z would be
generated by reflection in 0 and 1

2 and thus have only one orbit.) In other words,
we have what has been referred to in the literature as a graph wreath product

(⊕N+Z/2) oD∞
where Z is a discrete graph, hence the “graph product” is just a free product.

Proving all units are accounted for.

Lemma 1.162. Let α ∈ (F2[D∞])× be non-trivial. Then there exist i ∈ N+, j ∈ Z
such that

deg(αeij) < deg(α).

This immediately implies that (F2[D∞])× = 〈U,D∞〉 = U oD∞.

Proof. Let α = a + br. As one might guess after studying the proof of
Lemma 1.161, we set j := min(b)−min(a).

For c+ dr := (a+ br)eij we have

c = a+ (t−i + ti)(a+ t−jb).

Our choice of j ensures cancellation at both ends (min and max) in computing
a+ t−jb. We now choose our i to be the minimal amount we move inside after such
cancellation, so that when we extend by i in both directions (by multiplying by
t−i + ti) we get something that will again cancel with a. That is, we set

i := min
(
min(a+ t−jb)−min(a),max(a)−max(a+ t−jb)

)
.

Then

min
(
(t−i + ti)(a+ t−jb)

)
≥ min(a)

max
(
(t−i + ti)(a+ t−jb)

)
≤ max(a)

with at least one being an equality, and thus min(c) ≥ min(a) and max(c) ≤ max(a)
with at least one inequality being strict, so deg(c) < deg(a) as claimed. (NB: it is
possible that deg(c) = 0 or c = 0, in which case we know that (a+ br)eij is a trivial
unit.) �
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1.8. The unit conjecture is not a ring theoretic statement

We now make precise (in a way) the observation that the unit conjecture is a
“group ring theoretic” statement and not simply a ring theoretic statement about a
group ring, as the other 3 Kaplansky conjectures are.

If the trivial units were a definable subset of the ring K[G] (in the sense of model
theory) then they would necessarily be invariant under all ring automorphisms,
including conjugation by non-trivial units (if any exist). This cannot be the case for
non-exotic groups, at least. Let’s introduce the exotic groups in question.

Definition 1.163. A group V is called an Adian extension if it is finitely generated
and torsion-free and V/Z(V ) is an infinite group of finite exponent.

This means there exists a positive integer n such that gn = 1 for all g ∈ V/Z(V ).

Remark 1.164. The famous Burnside problem (1902) asks whether a finitely
generated group of finite exponent must be finite. Novikov–Adian (1968) gave the
first counterexample. Adian (1971) went one step further and constructed the first
Adian extension. A group containing an Adian extension can certainly be considered
“exotic”.

Example 1.165. There are no solvable infinite “Burnside groups”: we can prove
by induction on the derived length that a finitely generated solvable group G of
finite exponent is finite. Indeed, the base case of derived length 0 is the trivial
group. For the inductive step, note that the abelianization of G is finite (e.g. by
the classification of finitely generated abelian groups, or argue directly) and the
derived subgroup, being finite index in a finitely generated group, is itself finitely
generated. Since solvability passes to quotients, this immediately implies that there
are no solvable Adian extensions. In particular, the following proposition applies
whenever G is solvable.

Proposition 1.166. Let G be torsion-free. Suppose that no subgroup of G is an
Adian extension. Let T ≤ (K[G])× denote the subgroup of trivial units. Then T is
self-normalizing i.e. N(K[G])×(T ) = T .

In other words, if u is any non-trivial unit then Tu 6= T . (To show T is not a
definable subset of K[G] we only need one such u.)

Proof of Proposition 1.166. Suppose for the sake of contradiction that u
is a non-trivial unit of K[G] with Tu = T . Let S = supp(u). Since tu will also
normalize T for any t ∈ T , we can assume without loss of generality that 1 ∈ S. Let
n = |S|!.

Let g ∈ G be a trivial unit. Let h := u−1gu ∈ T . Considering the augmentation
map, we see that h ∈ G. We change perspective and write the previous equation
as g−1uh = u. The map G → G : x 7→ g−1xh permutes the elements of S and
thus x 7→ g−nxhn fixes S pointwise. As 1 ∈ S, this means that gn = hn and the
aforementioned map is actually the inner automorphism x 7→ g−nxgn, so gn ∈ CG(V )
where V = 〈S〉. This holds in particular for g ∈ V so that the finitely generated
group V has the property that V/Z(V ) has exponent (dividing) n. By assumption
V cannot be an Adian extension, so V/Z(V ) is finite. By Schur’s Lemma 1.65, this
implies V ′ is finite and hence trivial by torsion-freeness. Thus V is a torsion-free
abelian group supporting the non-trivial unit u, a contradiction. �
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1.9. Bi-orderable groups

We will prove that if G is bi-orderable, then K[G] embeds into a skew field.
This is much stronger than satisfying the zero divisor conjecture.

Lemma 1.167. P ⊂ G is the positive cone of a bi-ordering if and only if
(1) P2 ⊆ P (that is, it is a subsemigroup)
(2) G = P t {1} t P−1.
(3) Pg = P for all g ∈ G (that is, it is a normal subset)

Proof. Exercise. �

Example 1.168. Torsion-free abelian groups are left-orderable (assuming the axiom
of choice) and thus bi-orderable.

Example 1.169. Free groups are bi-orderable.

We will not prove this but it follows from Fn being residually torsion-free
nilpotent.

Lemma 1.170. A bi-orderable group has unique roots. That is, if n ∈ Z+ and
g, h ∈ G such that gn = hn, then g = h.

Proof. If g 6= h then without loss of generality g < h and thus

gn = gn−1g < gn−1h < gn−2h2 < · · · < hn.

�

Example 1.171. We can present the fundamental group Z o Z of the Klein bottle
as 〈 a, b | a2 = b2 〉 which clearly fails to have unique roots.

Proposition 1.172. Torsion-free nilpotent groups are bi-orderable.

Example 1.173. 
1 x z

1 y
1

∣∣∣∣∣∣x, y, z ∈ Z


is the (integral) Heisenberg group. It is the free 2-generated class-2 nilpotent group.

Lemma 1.174. Suppose N C G such that N and G/N are bi-orderable, where
N admits a bi-ordering whose positive cone is a normal subset of G. Then G is
bi-orderable.

Proof. Exercise. �

Lemma 1.174 lets us prove inductively that torsion-free nilpotent groups are
bi-orderable: if G is class-c nilpotent then G/Z(G) is class-(c − 1) nilpotent. We
just need to ensure G/Z(G) is also torsion-free, that is, that for n ∈ Z+ and g ∈ G
we have

([gn, h] = 1 ∀h ∈ G) =⇒ ([g, h] = 1 ∀h ∈ G).

It suffices to show for all n ∈ Z+ and g, h ∈ G that

gn = (h−1gh)n =⇒ g = h−1gh.

In other words, the whole question of bi-orderability for torsion-free nilpotent groups
boils down to uniqueness of roots!
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Lemma 1.175. Suppose Z(G) is torsion-free. Then Z(G/Z(G)) is torsion-free.

Proof. Suppose g ∈ Z(G/Z(G)) satisfies gn = 1 for some n ∈ Z+. That is,
for g ∈ G with g = gZ(G) we have gn ∈ Z(G) and [g, h] ∈ Z(G) for all h ∈ G. The
identity [xy, z] = [x, z]y[y, z] implies the identity

[xn, y] = [x, y]x
n−1

[x, y]x
n−2

. . . [x, y]x[x, y].

In our case, for arbitrary h ∈ G we have [g, h] ∈ Z(G) and thus [gn, h] = [g, h]n. But
gn ∈ Z(G) so [gn, h] = 1 and [g, h] ∈ Z(G) which is torsion-free. Thus [g, h] = 1.
As h was arbitrary, this means g ∈ Z(G), that is, g = 1. �

Corollary 1.176. Let G be torsion-free nilpotent. Then G/Z(G) is also torsion-free.

Remark 1.177. We see that for nilpotent G, if Z(G) is torsion-free then G is
torsion-free.

Proof of Corollary 1.176. The upper central series is

1 = Z0 C Z1 C . . . C Zc = G

(where G is class-c nilpotent) defined by Zi+1/Zi = Z(G/Zi). Repeated application
of Lemma 1.175 (toG, G/Z1, G/Z2, . . . ) shows that all quotients Zi+1/Zi are torsion-
free. As extensions of torsion-free groups are torsion-free, the result follows. �

Proof of Proposition 1.172. Induct on nilpotency class, noting that a cen-
tral subset is normal (so that Lemma 1.174 applies) and torsion-free abelian groups
are bi-orderable. �

Bi-orderability is the strongest property we’ve seen that implies the Kaplansky
conjectures:

Proposition 1.178. Bi-orderable groups are locally indicable.

We will prove Proposition 1.178 mostly in exercises. As bi-orderability passes to
subgroups, it is equivalent to showing that a finitely generated bi-orderable group
has infinite abelianization.

Definition 1.179. Let G be an ordered group. A subgroup H < G is called convex
if for a, b ∈ H and g ∈ G we have a < g < h implies g ∈ H.

Definition 1.180. Let G be an ordered group. Then G is called Archimedean if
for all g, h > 1 there exists n ∈ Z+ such that gn > h.

Proposition 1.181. Let G be an Archimedean bi-ordered group. Then G is abelian.

Remark 1.182. In fact, an Archimedean left-ordered group is automatically bi-
ordered and moreover isomorphic to a subgroup of R (a theorem of Hölder).

Proof. Note that if g, t > 1 then there exists n ∈ N such that tn ≤ g < tn+1.
Suppose G has a least positive element t. Then tn ≤ g < tn+1 implies 1 ≤ t−ng < t
so that t−ng = 1, that is, any positive element is a power of t, so G = 〈t〉 ∼= Z is
abelian. So we now assume there is no least positive element.

Let x, y ∈ G. We will show [x, y] = 1. We can assume without loss of generality
that x > 1 and y > 1 and since [y, x] = [x, y]−1 we can also assume [x, y] ≥ 1. Given
any t > 1 we find integers m,n such that tm ≤ x < tm+1 and tn ≤ y < tn+1 and
thus x−1 ≤ t−m and y−1 ≤ t−n so that [x, y] < t−mt−ntm+1tn+1 = t2. We now just
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need to show that if g > 1 then there exists t > 1 such that t2 ≤ g as this will force
[x, y] = 1.

Let g > 1 and take some 1 < s < g. If s2 ≤ g then we take t = s. Otherwise
s < g < s2 and g < s2 implies (s−1g)2 = s−1 · g · (s−1g) < s−1 · s2 · (s−1g) = g
whereas s < g implies 1 < s−1g so that t = s−1g works. �

Exercise 1.9.1. In this exercise we prove Proposition 1.178. Let G be a
bi-ordered group.

(1) Let g0 > 1. Show that

Ng0 := {g ∈ G | gn < g0 ∀n ∈ Z}

is a subgroup of G.
(2) Suppose G = 〈S〉 and g0 = max(S±1). (Note that if S is infinite, the

maximum may not exist.) Show that Ng0 C G. (Hint: let g ∈ Ng0 and
write arbitrary h ∈ G as a product of |h| elements of S±1. Then show
g0 < (hg0h

−1)2|h|+1 so that gn(2|h|+1) < g0 implies (h−1gh)n < g0.)
(3) Show that Ng0 is convex.
(4) Show that there is a natural bi-ordering on the quotient of a bi-ordered

group by a convex normal subgroup.
(5) Show that the bi-ordering on G/Ng0 thus constructed is Archimedean.
(6) Conclude that a finitely generated bi-orderable group has infinite abelian-

ization.

A stronger conjecture than the zero divisor conjecture is:

Conjecture 1.183. Let K be a field a G be a torsion-free group. Then K[G]
embeds into a skew field (a.k.a. division ring).

Suppose K[G] satisfies the zero divisor conjecture. We could attain a skew field
by localization provided K[G] satisfies the Ore condition: for all a, b ∈ K[G] with
b 6= 0 there exist x, y 6= 0 such that xa = yb. However, we’ll see later that this holds
if and only if G is amenable!

As a motivating example, an alternative way to embed K[Z] into a field is to
take the formal Laurent series. Then supports can be infinite but are sufficiently
well controlled that multiplication can be defined. This generalizes to:

Theorem 1.184 (Malcev, Neumann). Let G be a bi-ordered group. Let D
denote the formal sums

∑
g∈G ag · g, where ag ∈ K, with well-ordered support. Then

D is a skew field containing K[G].

Definition 1.185. A set X is well-ordered if every non-empty subset of X contains
a least element.

Every subset of a well-ordered set is well-ordered.

Lemma 1.186. Let G be a bi-ordered group, g ∈ G and A,B ⊆ G well-ordered
subsets. Then

(i) S = {(a, b) ∈ A×B | ab = g} is finite.
(ii) A ∪B and AB are well-ordered.

Proof. (i) If S were infinite, we could construct an infinite ascending se-
quence in the projection SA = πA(S) ⊆ A by defining a0 = min(SA) and ai+1 =
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min {a ∈ SA | a > ai}. Then bi := a−1
i g defines an infinite descending sequence in

B, a contradiction.
(i) If ∅ 6= S ⊆ A ∪B then min(S) = min(min(S ∩A),min(S ∩B)).
If AB is not well-ordered, then we can construct an infinite descending sequence

a1b1 > a2b2 > . . . with ai ∈ A, bi ∈ B. Since A is well-ordered we can construct an
infinite non-decreasing subsequence (anj

) by setting n0 such that an0
= min{ai}

and then setting nj+1 such that anj+1
= min {ai | i > nj}. Then (bnj

) is strictly
decreasing, a contradiction. �

Proof of Theorem 1.184. We define addition and multiplication on D in
the same way as for K[G]. Multiplication is well-defined by Lemma 1.186 part (i).
Moreover, the resulting formal sums have well-ordered support by part (ii). This
makes D into a ring - the ring axioms hold for the same reasons as in K[G].

We only need to check that non-zero elements are invertible. If β 6= 0 then
letting x = min(supp(β)), we have x−1 supp(β) ⊆ {1} ∪ P, where P is the positive
cone of G, so we can write β = (β)xx(1− α) where A = supp(α) ⊆ P. As (β)xx is
invertible, we just have to show that such 1−α is invertible. The obvious expression
to try is 1 + α + α2 + . . . . We need to show that this is well-defined and has
well-ordered support.

Proposition 1.187. Let G be a bi-ordered group with positive cone P and suppose
A ⊆ P is well-ordered. Then Ã = S(A) = ∪∞n=1A

n, the subsemigroup generated by
A, is also well-ordered.

We finish the proof of Theorem 1.184 assuming Proposition 1.187. The propo-
sition has as a corollary that each g only occurs in finitely many An, in other
words,

lim sup
n→∞

An :=

∞⋂
n=1

⋃
j≥n

Aj = ∅.

Indeed, suppose the limsup is non-empty. Being a subset of Ã it is well-ordered
so we let g be its least element. Then g ∈ Anj for some n1 < n2 < . . . and we write
g = ajbj where aj ∈ A and bj ∈ Anj−1 ⊂ Ã. By Lemma 1.186 (i) there are only
finite many different pairs (aj , bj) so some bj = a−1

j g < g occurs infinitely many
times, contradicting the minimality of g. Thus each g ∈ G is in the support of only
finitely many αn and we can define γ = 1 +α+α2 + · · · ∈ D, since Ã is well-ordered.
Clearly ((1− α)γ)1 = 1 whereas general

((1− α)γ)g =
∑
ab=g

(1− α)a(γ)b
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can only involve finitely many b ∈ Ã (Lemma 1.186 (i)). Call them b1, . . . , bk and
choose N such that g, b1, . . . , bk /∈ An for all n > N so that we have

((1− α)γ)g =
∑
ab=g

(1− α)a(γ)b

=
∑
ab=g

(1− α)a(1 + α+ · · ·+ αN )b

= ((1− α)(1 + α+ · · ·+ αN ))g

= (1)g − (αN+1)g

= 0.

Thus (1− α)γ = 1 and similarly γ(1− α) = 1. �

Proof of Proposition 1.187. We wish to do proof by induction. We need
to control how elements “grow” (in the ordering) when we take products of ai ∈ A.
We do this by breaking Ã up into manageable pieces.

The smallest convex subgroup containing x ∈ G is

c(x) :=
{
g ∈ G

∣∣x−i ≤ g ≤ xi for some i ∈ Z
}
.

We note that 1 ≤ x ≤ y implies c(x) ≤ c(y). Define an equivalence relation ∼ on A
by x ∼ y if c(x) = c(y). In other words, x ∼ y if there exist m,n ∈ Z+ such that
x ≤ ym and y ≤ xn. (This is called Archimedean equivalence.)

As A is well-ordered, we can define a transversal W for A/∼ by taking the
smallest element of each equivalence class. Note that W is also well-ordered. Equip
W × N+ with the lexicographic order, a well-ordering.

Define f : Ã→W × N+ by sending x to (w, r) where x ∼ w (which is possible,
even though W is a transversal for A/∼ and not Ã/∼, as a1 . . . ak ∼ max{ai} for a
product of ai ∈ A) and r is minimal such that x ≤ wr.

Then one checks that f is order-preserving. It is convenient to extend W × N+

by adding a smallest element (1, 0). Let X = W ×N+∪{(1, 0)} and (by slight abuse
of notation) also write f : Ã ∪ {1} → X for the order-preserving extension.

Claim. If x ∈ Ã we can write x = x0ax1 for some a ∈ A and x0, x1 ∈ Ã ∪ {1}
such that f(x0), f(x1) < f(x).

The proof of the claim is left as an exercise, with the hint that we write
x = a1a2 . . . ak for ai ∈ A and let a = max{ai}.

Since f is order-preserving and X is well-ordered, Ã∪{1} will be well-ordered if
and only if every f−1((w, r)) is well-ordered. We prove this by transfinite induction
on X. The base case is f−1((1, 0)) = {1}, so trivial. The inductive step follows from
the claim: if S = f−1({(w′, r′) ∈ X | (w′, r′) < (w, r)}) then f−1((w, r)) ⊆ SAS,
which is well-ordered by Lemma 1.186 (ii). �
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Overview of results in the course

G bi-orderable K[G] embeds
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APPENDIX B

Lectures in winter semester 2023/2024

(1) 2023-10-10: The Kaplansky conjectures and their implications, residually
finite groups are directly finitely.

(2) 2023-10-12: Unique product property, left orderability, statement of Burns–
Hale, corollary 1.31.

(3) 2023-10-17: Proof of Burns–Hale theorem, dynamical point of view, diffuse
groups.

(4) 2023-10-19: Hyperbolic groups, Delzant’s theorem.
(5) 2023-10-24: Primality of group rings (Connell’s theorem) up to the proof

of lemma 1.69.
(6) 2023-10-26: Rest of proof of Connell’s theorem.
(7) 2023-10-31: Exercises (on torsion, FC-groups, F2[Z/3]), trace map, traces

of idempotents and nilpotents for finite G.
(8) 2023-11-02: Inner product on C[G], alternative proof for trace of complex

idempotents for finite G, start of proof for arbitrary G (Kaplansky’s
theorem) with generalized Cauchy–Schwarz.

(9) 2023-11-07: Rest of approximation-based proof of Kaplansky’s theorem on
complex idempotents, generalization to arbitrary characteristic zero fields,
direct finiteness of K[G] when char(K) = 0, places and valuation rings.

(10) 2023-11-09: Extension theorem for places, valuations, zero divisors over C
give zero divisors over Fpn for some n, lemma on test elements for places
with finitely many elements guaranteed to be in valuation ring.

(11) 2023-11-14: The zero divisor conjecture is equivalent to the group of
normalized units always being torsion-free, the power map, trace-like
functions, traces of nilpotents, “normal closure traces” of nilpotents.

(12) 2023-11-16: Zalesskii’s theorem that the trace of an idempotent is in the
prime subfield (using number theoretic black box to get required places
to deduce characteristic 0 case from characteristic p case), Formanek’s
theorem on idempotents, corollaries of Formanek’s theorem.

(13) 2023-11-21: Big picture overview of results in the course, the Hantzsche–
Wendt group P as an abstract finitely presented group and as a subgroup
of D∞ ×D∞ ×D∞.

(14) 2023-11-23: Two proofs that P is torsion-free, P is none of the following:
bi-orderable, locally indicable, left-orderable, diffuse.

(15) 2023-11-28: Ravels and corresponding universal groups (with and without
free factor of Z), Bowditch’s ravel defines P , symmetries of the ravel give
group automorphisms.

(16) 2023-11-30: Duplexes, the symmetry of Promislow’s duplex and its utility
in verifying the failure of the unique product property.
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(17) 2023-12-05: Automorphism group of the direct product of a centreless
and an abelian group, trivial-unit-preserving group ring automorphisms,
twisted-unitary and symmetric units.

(18) 2023-12-07: The “2 out of 4 cosets” lemma for units of K[P ], reformulation
in Boolean satisfiability, start of Mirowicz’s computation of (F2[D∞])×

(embedding in matrix ring and determinant condition)
(19) 2023-12-12: Ping pong lemma, subgroup of units of the form ∗Z ⊕N Z/2.
(20) 2023-12-14: End of computation of (F2[D∞])× (semi-direct product struc-

ture and proof that we found all units), the subgroup of trivial units is
self-normalizing under mild assumptions.

(21) 2023-12-19: Bi-orderability, torsion-free nilpotent groups are bi-orderable,
bi-orderable groups are locally indicable.

(22) 2023-12-21: Malcev–Neumann theorem embedding K[G] in a skew field
for bi-orderable G.

(23) 2024-01-09: Stable finiteness of K[G] from direct finiteness of K[G×H]
with H finite, amenability and soficity, cellular automata.

(24) 2024-01-11: Surjunctive groups are directly finite, amenability is detected
by the Ore condition (Bartholdi–Kielak).

(25) 2024-01-16: Semisimplicity.
(26) 2024-01-18: Property (T) (cancelled due to snow).
(27) 2024-01-23: Revision and Q&A.
(28) 2024-01-25: Revision and Q&A.
(29) 2024-01-30: Live coding demo (using SAT for left-orderability and the

unique product property).
(30) 2024-02-01: Guest lecture by Grigori Avramidi on conjectures around

2-complexes.
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