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1. A Generalization of Bonnet-Myers [4 points]

Let (M, g) be a complete connected n-dimensional Riemannian manifold and suppose that
there exist constants a > 0 and c > 0 such that, for all pairs of points p, q ∈ M and for
all minimizing geodesics γ(s), parametrized by arclength, joining p and q, we have

Ric(γ′(s)) ≥ a+
df

ds

along γ, for a function f(s) with |f(s)| ≤ c along γ.
Show that M is compact.
Hint: Calculate an estimate for the diameter of M .

2. The second variation of the energy for a non-proper variation [4 points]

Let γ : [0, a] → M be a geodesic in a complete connected Riemannian manifold (M, g)
and let f : (−ε, ε)× [0, a]→ M be a variation of γ that is not necessarily proper. Let V
be the variation field and E be the energy function of the variation f .
Show that
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where {ti}1≤i≤k are the points where V is not smooth and
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3. O’Neill’s formula [4 points]

Let f : (M̃, g̃) → (M, g) be a Riemannian submersion. Let s̃ec and sec be the sectional
curvatures of g̃ and g, respectively.
Show that for all horizontal vector fields X, Y ∈ Γ(TM̃), satisfying |X| = |Y | = 1 and
g̃(X, Y ) = 0, we have the identity

s̃ec(X, Y ) = sec(f∗X, , f∗Y )− 3

4
|[X, Y ]V |2.

Recall, that [X, Y ]V denotes the vertical component of [X, Y ].



4. The sectional curvature on CP [4 points]

For any n ∈ N we view the unit round sphere S2n+1 as a subset of Cn+1. The circle S1

acts on S2n−1 via componentwise multiplication, i.e. for θ ∈ S1 and (z0, . . . , zn) ∈ S2n+1,

θ · (z0, . . . , zn) 7→ (θ · z0, . . . , θ · zn).

It is well-known that the quotient S2n+1/S1 is diffeomorphic to CPn.

a) Show that the standard round metric g̃ on S2n−1 descends to a well-defined metric
g on CPn such that the quotient map f : (S2n+1, g̃) → (CPn, g) is a Riemannian
submersion.

b) Show that the sectional curvature of CPn satisfies

1 ≤ sec(X, Y ) ≤ 4,

for all X, Y ∈ Γ(TCPn) with |X| = |Y | = 1 and g(X, Y ) = 0. Are these bounds
sharp?
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