Exercises in Geometry II

University of Bonn, Summer Semester 2018
Dozent: PD Dr. Fernando Galaz-Garcia

1. A Generalization of Bonnet-Myers [4 points]

Let (M, g) be a complete connected n-dimensional Riemannian manifold and suppose that there exist constants $a>0$ and $c>0$ such that, for all pairs of points $p, q \in M$ and for all minimizing geodesics $\gamma(s)$, parametrized by arclength, joining p and q, we have

$$
\operatorname{Ric}\left(\gamma^{\prime}(s)\right) \geq a+\frac{d f}{d s}
$$

along γ, for a function $f(s)$ with $|f(s)| \leq c$ along γ.
Show that M is compact.
Hint: Calculate an estimate for the diameter of M.

2. The second variation of the energy for a non-proper variation [4 points]

Let $\gamma:[0, a] \rightarrow M$ be a geodesic in a complete connected Riemannian manifold (M, g) and let $f:(-\varepsilon, \varepsilon) \times[0, a] \rightarrow M$ be a variation of γ that is not necessarily proper. Let V be the variation field and E be the energy function of the variation f.
Show that

$$
\begin{aligned}
\frac{1}{2} E^{\prime \prime}(0)= & -\int_{0}^{a}\left\langle V(t), \frac{D^{2} V}{d t}+R\left(V, \frac{d \gamma}{d t}\right) \frac{d \gamma}{d t}\right\rangle d t \\
& -\sum_{i=1}^{k}\left\langle V\left(t_{i}\right), \frac{D V}{d t}\left(t_{i}^{+}\right)-\frac{D V}{d t}\left(t_{i}^{-}\right)\right\rangle \\
& -\left\langle\frac{D}{d s} \frac{\partial f}{\partial s}, \frac{d \gamma}{d t}\right\rangle(0,0)+\left\langle\frac{D}{d s} \frac{\partial f}{\partial s}, \frac{d \gamma}{d t}\right\rangle(0, a) \\
& -\left\langle V(0), \frac{D V}{d t}(0)\right\rangle+\left\langle V(a), \frac{D V}{d t}(a)\right\rangle,
\end{aligned}
$$

where $\left\{t_{i}\right\}_{1 \leq i \leq k}$ are the points where V is not smooth and

$$
\begin{aligned}
& \frac{D V}{d t}\left(t_{i}^{+}\right)=\lim _{t \backslash t_{i}} \frac{D V}{d t} \\
& \frac{D V}{d t}\left(t_{i}^{-}\right)=\lim _{t \backslash t_{i}} \frac{D V}{d t}
\end{aligned}
$$

3. O'Neill's formula [4 points]

Let $f:(\tilde{M}, \tilde{g}) \rightarrow(M, g)$ be a Riemannian submersion. Let $\widetilde{\sec }$ and sec be the sectional curvatures of \tilde{g} and g, respectively.
Show that for all horizontal vector fields $X, Y \in \Gamma(T \tilde{M})$, satisfying $|X|=|Y|=1$ and $\tilde{g}(X, Y)=0$, we have the identity

$$
\widetilde{\sec }(X, Y)=\sec \left(f_{*} X,, f_{*} Y\right)-\frac{3}{4}\left|[X, Y]^{V}\right|^{2}
$$

Recall, that $[X, Y]^{V}$ denotes the vertical component of $[X, Y]$.

4. The sectional curvature on $\mathbb{C P}$ [4 points]

For any $n \in \mathbb{N}$ we view the unit round sphere $S^{2 n+1}$ as a subset of \mathbb{C}^{n+1}. The circle S^{1} acts on $S^{2 n-1}$ via componentwise multiplication, i.e. for $\theta \in S^{1}$ and $\left(z_{0}, \ldots, z_{n}\right) \in S^{2 n+1}$,

$$
\theta \cdot\left(z_{0}, \ldots, z_{n}\right) \mapsto\left(\theta \cdot z_{0}, \ldots, \theta \cdot z_{n}\right)
$$

It is well-known that the quotient $S^{2 n+1} / S^{1}$ is diffeomorphic to $\mathbb{C P}^{n}$.
a) Show that the standard round metric \tilde{g} on $S^{2 n-1}$ descends to a well-defined metric g on $\mathbb{C P}^{n}$ such that the quotient map $f:\left(S^{2 n+1}, \tilde{g}\right) \rightarrow\left(\mathbb{C P}^{n}, g\right)$ is a Riemannian submersion.
b) Show that the sectional curvature of $\mathbb{C P}^{n}$ satisfies

$$
1 \leq \sec (X, Y) \leq 4,
$$

for all $X, Y \in \Gamma\left(T \mathbb{C P}^{n}\right)$ with $|X|=|Y|=1$ and $g(X, Y)=0$. Are these bounds sharp?

Due on Monday, July 9.

Homepage of the lecture: https://www.math.uni-bonn.de/people/galazg/

