Exercises in Geometry II

University of Bonn, Summer Semester 2018
Dozent: PD Dr. Fernando Galaz-Garcia

1. Curvature of curves [4 points]

a) Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a unit speed curve such that its curvature $\kappa_{\gamma}\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$. Show that there is a unique unit speed parametrized circle $c: \mathbb{R} \rightarrow \mathbb{R}^{n}$, called the osculating cicle at $\gamma\left(t_{0}\right)$, with the property that $c\left(t_{0}\right)=\gamma\left(t_{0}\right), \dot{c}\left(t_{0}\right)=\dot{\gamma}\left(t_{0}\right)$ and $\ddot{c}\left(t_{0}\right)=\ddot{\gamma}\left(t_{0}\right)$. Further, show that $\kappa_{c}\left(t_{0}\right)=\frac{1}{R}$, where R is the radius of the osculating circle c.
b) Let M be a Riemannian manifold and suppose $\gamma: I \rightarrow M$ is a regular curve, i.e. $\dot{\gamma}(t) \neq 0$ for all $t \in I$, but not necessarily unit speed. Show that the curvature of γ at t is given by

$$
\kappa(t)=\left(\frac{\left|D_{t} \dot{\gamma}(t)\right|^{2}}{|\dot{\gamma}(t)|^{4}}-\frac{\left\langle D_{t} \dot{\gamma}(t), \dot{\gamma}(t)\right\rangle^{2}}{|\dot{\gamma}(t)|^{6}}\right)^{1 / 2}
$$

2. Totally geodesic submanifolds [4 points]

Let $(\widetilde{M}, \tilde{g})$ be a Riemannian manifold. Show that the following are equivalent for a Riemannian submanifold $M \subset \widetilde{M}$ with induced Riemannian metric g :

1. M is totally geodesic.
2. Every g-geodesic in M is also a \tilde{g}-geodesic in \widetilde{M}.
3. The second fundamental form of M vanishes identically.

3. The Gaussian curvature of a sphere [4 points]

Show that $S_{R}^{2} \subset \mathbb{R}^{3}$, the round 2-dimensional sphere of radius $R>0$ in euclidean space \mathbb{R}^{3}, has constant Gaussian curvature $\frac{1}{R^{2}}$.

4. Product manifolds [4 points]

Suppose $g=g_{1} \oplus g_{2}$ is a product metric on the product manifold $M_{1} \times M_{2}$.
a) Show that for each point $p_{i} \in M_{i}$ the submanifolds $M_{1} \times\left\{p_{2}\right\}$ and $\left\{p_{1}\right\} \times M_{2}$ are totally geodesic.
b) Let $\Pi \subset T\left(M_{1} \times M_{2}\right)$ be a 2-plane spanned by $X_{1} \in T M_{1}$ and $X_{2} \in T M_{2}$. Show that the sectional curvature $K(\Pi)=0$.
c) Show that $S_{R}^{2} \times S_{R}^{2}$, the Riemannian product of two round 2-spheres of radius $R>0$, has nonnegative sectional curvature.
d) Show that there is an embedding of the torus $T^{2}=S^{1} \times S^{1}$ in $S_{R}^{2} \times S_{R}^{2}$ such that the induced metric is flat.

Due on Monday, May 7.
Homepage of the lecture: https://www.math.uni-bonn.de/people/galazg/

