

Exercises in Geometry II

University of Bonn, Summer Semester 2018 Dozent: PD Dr. Fernando Galaz-Garcia Assistant: Saskia Roos Sheet 1

1. Induced metrics [4 points]

Let (M, g) be a complete Riemannian manifold and $N \subset M$ be a closed embedded submanifold, i.e. N is compact without boundary. Show that g induces a complete metric on N.

2. Integral curves and geodesics [4 points]

Let (M, g) be a Riemannian manifold and $f: M \to \mathbb{R}$ be a smooth function on M with the property $|\operatorname{grad} f| \equiv 1$.

Show that the integral curves of grad f are geodesics.

3. Riemannian covering [4 points]

Let $p: \tilde{M} \to M$ be a smooth covering of a Riemannian manifold (M, g). a) Show that there is a metric \tilde{g} on \tilde{M} such that $p: (\tilde{M}, \tilde{g}) \to (M, g)$ is a local isometry. b) Show that (\tilde{M}, \tilde{g}) is complete if and only if (M, g) is complete.

4. Non-complete Riemannian manifolds [4 points]

Give an example of a non-complete connected Riemannian manifold (M, g) such that for any two point p and g can be joined by a distance realizing geodesic in M.

Due on Monday, April 30

Homepage of the lecture: https://www.math.uni-bonn.de/people/galazg/