Exercise Sheet 7

For the following exercise, you may use the well-known fact from set theory that the set of real numbers can be constructed as the set of all Dedekind cuts on \mathbb{Q}.

Problem 7.1 (4 points)

Let k be an Archimedian-ordered field. Then there exists a unique, order-preserving homomorphism $k \rightarrow \mathbb{R}$.

Problem 7.1 (2 points)

Every non-Archimedian-ordered field has a free Dedekind cut.

Definition 7.1

Let $k\left[\left[^{P} X\right]\right]$ be the ring of formal series of the form

$$
\sum_{l \in \mathbb{Q}, l \geq 0} f_{l} X^{l}
$$

such that there is a natural number $n \in \mathbb{N}$ with $f_{l}=0$ whenever $n \cdot l \notin \mathbb{N}$. We call this ring the ring of Puiseux series.
Similarly, let $\left.k\left[{ }^{P} X\right]\right]\left[X^{-1}\right]$ be the ring of formal series of the form form

$$
\sum_{l \in \mathbb{Q}} f_{l} X^{l}
$$

such that there are natural numbers $m, n \in \mathbb{N}$ with $f_{l}=0$ whenever $n \cdot l \notin \mathbb{N}$ or $l \leq m$.
The aim of the rest of this sheet is to prove the following theorem.

Theorem 7.2

Let K be an algebraically closed field of characteristic 0 , then $\left.K\left[{ }^{P} X\right]\right]\left[X^{-1}\right]$ is algebraically closed.

Definition 7.3

We can define a valuation on $\left.k\left[{ }^{P} X\right]\right]\left[X^{-1}\right]$. Namely, let $f \in k\left[\left[{ }^{P} X\right]\right]\left[X^{-1}\right]$, then

$$
v(f)=\min \left\{l \mid f_{l} \neq 0\right\} .
$$

Having this we can define the Newton polygons.

Definition 7.4

The Newton-Polygon of $P \in k\left[\left[^{P} X\right]\right]\left[X^{-1}\right][T] \backslash\{0\}$ with $P(0) \in k\left[\left[{ }^{P} X\right]\right]\left[X^{-1}\right] \backslash\{0\}$ and $\operatorname{deg}_{T}(P):=d$ is the (unique) function $n_{P}:[0, d] \rightarrow \mathbb{R}$ with the following properties

1. There are integers $0=i_{0}<\cdots<i_{k}=d$ s.t. $n_{P}(t)=n_{P}\left(i_{j}\right)+s_{j+1} \cdot\left(t-i_{j}\right)$ for $t \in\left[i_{j}, i_{j+1}\right]$ with rational numbers $s_{0}<\cdots<s_{k}$.
2. $v\left(P_{i}\right) \geq n_{P}(i)$ for $i \in \mathbb{N} \cap[0, d]$ with equality whenever $i \in\left\{i_{0}, \ldots, i_{k}\right\}$.

Here P_{i} is the i-th coefficient of P. The numbers s_{i} are called the slope and $w_{j}=i_{j}-i_{j-1}$ the width of the j-th segment. $\left[i_{0}, i_{1}\right]$ is called the initial segment.

Problem 7.3 (2 points)

Show that for all $\left.P \in k\left[{ }^{P} X\right]\right]\left[X^{-1}\right][T] \backslash\{0\}$ with $P(0) \in k\left[\left[{ }^{P} X\right]\right]\left[X^{-1}\right] \backslash\{0\}$ the NewtonPolygon exists and is unique.

Problem 7.4 (3 points)

Assume $0<w:=i_{1}<i_{2}<\cdots<i_{k}=l$ and $\sigma<s_{2}<s_{3}<\cdots<s_{k}$.

1. $v\left(p_{j}\right) \geq v\left(p_{i_{k-1}}\right)+s_{k}\left(j-i_{k-1}\right)$ for $2 \leq j \leq k$ and $i_{l-1} \leq l \leq i_{j}$.
2. $v\left(p_{l}\right) \geq v\left(p_{w}\right)-\sigma(l-w)$ for $0 \leq l \leq w$.

Then

1. The width of the initial segment of n_{p} is $\leq w$, its slope is $\leq \sigma$.
2. On $\left[i_{k-1}, i_{k}\right], n_{p}$ is given by the RHS in 1 . and $n_{p}(d)=r\left(p_{d}\right)$.

Problem 7.5 (3 points)

Let $P \in k[[X]]\left[X^{-1}, T\right]$ of degree $d>0$ such that the slope σ of the initial segment of n_{p} is an integer. Furthermore, write $P(T, P)=\sum_{i=0}^{d} \sum_{j=r\left(p_{i}\right)}^{\infty} p_{i, j} T^{i} X^{j}$. Define

$$
\widehat{P}(T)=\sum_{i=0}^{w} p_{i, r\left(p_{j}\right)+\sigma i} T^{j} \in k[T] .
$$

Let l / k be a field extension and let $\lambda \in l$ be a root of \widehat{P} of multiplicity v. Let $Q(T, X)=$ $P\left(T+\lambda T^{-s}, X\right) \in l[[X]]\left[X^{-1}, T\right]$. Then the width of the initial segment of the Newton polygon of Q is $\leq v$ and its slope is $<d$.

Problem 7.6 (3 points)

Let $w \in \mathbb{N}$ such that for any field k of characteristic 0 , any $Q \in k\left[\left[^{p} X\right]\right]\left[X^{-1}, T\right]$ for which the width of the initial slope of the n_{Q} is $<w$ has a zero in $l\left[\left[{ }^{p} X\right]\right]\left[X^{-1}, T\right]$ for a finite extension l / k. Let k have characteristic 0 and $P \in k[[X]]\left[X^{-1}, T\right]$ such that the initial segment of n_{P} has slope $s \in \mathbb{Z}$ and width w. Assume that there is no finite field extension l of k such that P has a zero in in $l\left[\left[^{P} X\right]\right]\left[X^{-1}\right]$.

1. All $\left(v\left(p_{i}\right)\right)_{i=0}^{w}$ are on segment: $v\left(p_{i}\right)=v\left(p_{0}\right)+s i=n_{P}(i)$.
2. There is $\lambda \in k$ such that the width of the initial segment of n_{Q}, where $Q(T, X)=$ $P\left(T+\lambda X^{-s}, X\right)$, is equal to w, the slope of that segment is an integer $<s$, and $n_{Q}=n_{P}$ on $[w, d], d=\operatorname{deg}_{T} P=\operatorname{deg}_{T} Q$.

Problem 7.7 (3 points)

Let k be a field of characteristic 0 and $P \in k\left[\left[^{p} X\right]\right]\left[X^{-1}, T\right]$ be a polynomial of T-degree $d>0$. Then there is a field extension l of k such that P has a zero in $\left.l\left[{ }^{p} X\right]\right]\left[X^{-1}\right]$.

Problem 7.8 (1 point)

Prove Theorem7.2,

Solutions should be submitted in the exercise session on Wednesday, November 29. One of the 21 possible points from this sheet is a bonus point, which does not count in the calculation of the $\geq 50 \%$ lower bound of points needed to pass the exercises.

