Exercise Sheet 7

For the following exercise, you may use the well-known fact from set theory that the set of real numbers can be constructed as the set of all Dedekind cuts on \mathbb{Q} .

Problem 7.1 (4 points)

Let k be an Archimedian-ordered field. Then there exists a unique, order-preserving homomorphism $k \to \mathbb{R}$.

Problem 7.1 (2 points)

Every non-Archimedian-ordered field has a free Dedekind cut.

Definition 7.1

Let $k[[^PX]]$ be the ring of formal series of the form

$$\sum_{l\in\mathbb{Q},l\geq 0}f_lX^l$$

such that there is a natural number $n \in \mathbb{N}$ with $f_l = 0$ whenever $n \cdot l \notin \mathbb{N}$. We call this ring the ring of **Puiseux series**.

Similarly, let $k[[^PX]][X^{-1}]$ be the ring of formal series of the form form

$$\sum_{l\in\mathbb{O}} f_l X^l$$

such that there are natural numbers $m, n \in \mathbb{N}$ with $f_l = 0$ whenever $n \cdot l \notin \mathbb{N}$ or $l \leq m$.

The aim of the rest of this sheet is to prove the following theorem.

Theorem 7.2

Let K be an algebraically closed field of characteristic 0, then $K[[^PX]][X^{-1}]$ is algebraically closed.

Definition 7.3

We can define a valuation on $k[[^PX]][X^{-1}]$. Namely, let $f \in k[[^PX]][X^{-1}]$, then

$$\nu(f) = \min\{l \mid f_l \neq 0\}.$$

Having this we can define the Newton polygons.

Definition 7.4

The **Newton-Polygon** of $P \in k[[^PX]][X^{-1}][T] \setminus \{0\}$ with $P(0) \in k[[^PX]][X^{-1}] \setminus \{0\}$ and $\deg_T(P) := d$ is the (unique) function $n_P : [0, d] \to \mathbb{R}$ with the following properties

- 1. There are integers $0 = i_0 < \cdots < i_k = d$ s.t. $n_P(t) = n_P(i_j) + s_{j+1} \cdot (t i_j)$ for $t \in [i_j, i_{j+1}]$ with rational numbers $s_0 < \cdots < s_k$.
- 2. $v(P_i) \ge n_P(i)$ for $i \in \mathbb{N} \cap [0,d]$ with equality whenever $i \in \{i_0,...,i_k\}$.

Here P_i is the i-th coefficient of P. The numbers s_i are called the slope and $w_j = i_j - i_{j-1}$ the width of the j-th segment. $[i_0, i_1]$ is called the initial segment.

Problem 7.3 (2 points)

Show that for all $P \in k[[^PX]][X^{-1}][T] \setminus \{0\}$ with $P(0) \in k[[^PX]][X^{-1}] \setminus \{0\}$ the Newton-Polygon exists and is unique.

Problem 7.4 (3 points)

Assume $0 < w := i_1 < i_2 < \dots < i_k = l \text{ and } \sigma < s_2 < s_3 < \dots < s_k$

- 1. $\nu(p_i) \ge \nu(p_{i_{k-1}}) + s_k(j i_{k-1})$ for $2 \le j \le k$ and $i_{l-1} \le l \le i_i$.
- 2. $\nu(p_l) \ge \nu(p_w) \sigma(l-w)$ for $0 \le l \le w$.

Then

- 1. The width of the initial segment of n_p is $\leq w$, its slope is $\leq \sigma$.
- 2. On $[i_{k-1}, i_k]$, n_p is given by the RHS in 1. and $n_p(d) = r(p_d)$.

Problem 7.5 (3 points)

Let $P \in k[[X]][X^{-1}, T]$ of degree d > 0 such that the slope σ of the initial segment of n_p is an integer. Furthermore, write $P(T, P) = \sum_{i=0}^{d} \sum_{j=r(p_i)}^{\infty} p_{i,j} T^i X^j$. Define

$$\widehat{P}(T) = \sum_{i=0}^{w} p_{i,r(p_j) + \sigma i} T^j \in k[T].$$

Let l/k be a field extension and let $\lambda \in l$ be a root of \widehat{P} of multiplicity v. Let $Q(T, X) = P(T + \lambda T^{-s}, X) \in l[[X]][X^{-1}, T]$. Then the width of the initial segment of the Newton polygon of Q is $\leq v$ and its slope is < d.

Problem 7.6 (3 points)

Let $w \in \mathbb{N}$ such that for any field k of characteristic 0, any $Q \in k[[^pX]][X^{-1}, T]$ for which the width of the initial slope of the n_Q is < w has a zero in $l[[^pX]][X^{-1}, T]$ for a finite extension l/k. Let k have characteristic 0 and $P \in k[[X]][X^{-1}, T]$ such that the initial segment of n_P has slope $s \in \mathbb{Z}$ and width w. Assume that there is no finite field extension l of k such that P has a zero in in $l[[^PX]][X^{-1}]$.

- 1. All $(\upsilon(p_i))_{i=0}^w$ are on segment: $\upsilon(p_i) = \upsilon(p_0) + si = n_P(i)$.
- 2. There is $\lambda \in k$ such that the width of the initial segment of n_Q , where $Q(T, X) = P(T + \lambda X^{-s}, X)$, is equal to w, the slope of that segment is an integer < s, and $n_Q = n_P$ on [w, d], $d = \deg_T P = \deg_T Q$.

Problem 7.7 (3 points)

Let k be a field of characteristic 0 and $P \in k[[^pX]][X^{-1}, T]$ be a polynomial of T-degree d > 0. Then there is a field extension l of k such that P has a zero in $l[[^pX]][X^{-1}]$.

Problem 7.8 (1 point)

Prove Theorem 7.2.

Solutions should be submitted in the exercise session on Wednesday, November 29. One of the 21 possible points from this sheet is a bonus point, which does not count in the calculation of the $\geq 50\%$ lower bound of points needed to pass the exercises.