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1. Introduction

The following text gives an outline of Deligne’s proof of the Weil conjectures for readers
with some basic knowledge of étale cohomology. While I hope it is useful for other readers as
well, it is intended as a surrogate for the sequel of an étale cohomology lecture given in the
winter term 2019/20 in Bonn. For this sequel I intended to present a brief exposition without
proofs of material about étale cohomology which did not fit into the winter term, followed by
an exposition of Deligne’s Weil I proof. If this left any time at the end of the term, this was to
be followed by giving some proofs omitted in the first part of the lecture. Because I never gave
a Weil I lecture before I could not predict how much time would be left at the end. For the
same reason I will try to err on the side safety in the selection of material for an exam based
on the current text or on a textbook.

When the usual form of lecture was canceled because of the COVID-19 pandemic, I had
trouble to use zoom for various reasons, including the initial lack of necessary hardware and my
own problems of getting acquainted with a web service I had never used before. In addition, the
lecture would have made ample use of the blackboard space in the Großer Hörsaal, for which
there seems to be no easy replacement using zoom. To aid anyone who nevertheless wants to
take an exam on Weil I, my original intention was to give a brief introduction to the exposition
in [FK88]. Since this exposition is much too long to present all material in it in a single term,
this was to be followed by an explanation of which parts of [FK88] would be relevant to the
exam, and by a list of mistakes I found in [FK88].

However, I found [FK88] hard to read if one wants to read only part of it. For this reason,
I instead wrote a complete exposition which is self-contained in the sense that most material
used is actually formulated in the text. Of course, proofs often are quoted from other sources
because they would not have fitted into the lecture. I am offering exams based on this text
(of course without my list of errata to [FK88]). Proofs omitted in the current text may also
be omitted in the exam. Also, I am using the machinery of ℓ-adic sheaves after only a partial
exposition of it, relying on the reader’s familarity with ordinary cohomology and his willingness
to believe that things are similar after he has seen how things work in the torsion case. This
too can be done in the exam.

I am also willing to offer exams based on [Del74]. This is a very nicely written paper with
an exposition of part of the needed prerequisites, making the paper understandable for readers
with just a little bit of knowledge of étale cohomology. I actually read it when I was twenty
and had only a rough idea of what étale cohomology is. However, it is written in French, of
which not all students interested in this may have sufficient knowledge. Also, the exposition
of background material in [Del74] is shorter than this text, so an exam based on [Del74]
would have to include some other material as well, for the sake of justice. I leave this open to
negotiation, if anyone is interested in this sort of exam.

In the next few weeks I may add a few more references to other sources and correct errors,
but promiss not to add anything which would make an exam harder. Of course this may change
after fall, when this text is no longer needed for its original purpose.
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2. Prerequisites

This section is an exposition of prerequisites of the Weil 1 proof not covered in the basic
étale cohomology lecture. Only material of a “basic” nature is in this section. The necessary
exposition of étale Picard-Lefschetz theory will be given in the next section.

2.1. Cohomological dimension in the affine case. Let k be an algebraically closed
field. In the previous term, we have seen that the étale cohomology of affine curves over k with
coefficients in a torsion sheaf vanishes in degrees > 1. A related result holds for varieties of
arbitrary dimension.

Theorem 1. Let X be an affine scheme of finite type over k and d = dimX. Then
Hp(Xét,F) = 0 when p > d and F is a torsion sheaf on Xét.

For a proof, see [FK88, Chapter I.8], [Mil80, Chapter VI.7] or [SGA4.3, Expose XIV].
The importance of this result for proving the Riemann Hypothesis for the congruence

zeta function comes from the fact that the upper vanishing bound for ordinary cohomology
becomes a lower vanishing bound for cohomology with compact support by Poincaré duality.
This, together with a cohomology sequence, implies an injectivity result Corollary .2.5.3 for the
restriction of cohomology to hyperplane sections essentially reducing the proof of the needed
result for Frobenius eigenvalues to the case of the middle degree étale cohomology group of X.

The following corollary is also worthwile mentioning. Let ζX∗ denote the direct image
functor from Xét to XZar, which restricts an étale sheaf to the Zariski open subsets of X.

Corollary 1. If X is a prescheme of locally finite type over k, x ∈ X and d = dimOX,x,
then (RpζX∗F)x = 0 when p > d and F is torsion.

In the case of curves, we had established this in the previous term.

2.2. Comparison with classical cohomology. If X is a prescheme of finite type over
SpecC,X(C) carries a “classical” topologyXan with underlying setX(C), the coarsest one such

that for U ⊆ X Zariski-open and f ∈ OX(U), U(C) ⊆ X(C) is open in Xan and U(C) f−−→ C
continuous for the classical topology on C and the induced topology from Xan on U(C).

The topological space Xan also carries the structure of a complex analytic space in the sense
of Grauert. For morphisms of complex analytic spaces, the property of étaleness can simply
defined as being a local isomorphism. One has an analytic étale topology Xan

ét similar to the
étale topology of a scheme. In the case where X is smooth X(C) is simply a complex analytic
manifold and étale morphisms are local isomorphisms. It thus possible to continue reading this
subsection without having a knowledge of complex analytic spaces.

Since étale morphisms in the complex case are just local isomorphisms, every covering sieve
for Xan

ét has a covering subsieve generated by morphisms U → X with are isomorphisms onto
open subsets. Because of this,

(1) Sh(Xan
ét )
∼= Sh(Xan),
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the category of sheaves on the ordinary topological space Xan. Since an étale morphism U → X
of schemes of finite type over C defines an étale morphism Uan → Xan, one has a direct image
functor

Sh(Xan
ét )

αX∗−−−−→ Sh(Xét)

with a left adjoint α∗
X similar to our considerations for Xét → XZar in the previous term. For

an object F on Sh(Xét), let Fan be the sheaf on the ordinary topological space Xan which is
the image of α∗

XF under the equivalence of categories (1).
We have the following comparison theorem:

Theorem 2. Let X f−−→ S be a separated morphism between preschemes of finite type over
C and F a torsion sheaf on Xét. Then one has a canonical isomorphism

(2) Rpf an
! Fan ∼= (Rpf!F)an.

In particular (S = SpecC)

(3) Hp
c (X

an,Fan) ∼= Hp
c (Xét,F)

when X is separated.

This is [Arcata, Théorème IV.6.3], where the definition of Fan has been omitted and a
brief sketch of proof added.

2.3. Smooth base change. In the previous term we introduced a base-change homomor-
phism

(1) f ∗Rlp∗F → Rlp̃∗f
∗
XF

for Cartesian squares

X̃ X

S̃ S

✲
fX

❄

p̃

❄

p

✲
f

and shown that it is an isomorphism when p is proper and F a torsion sheaf.

Theorem 3. Assume that f is a smooth morphism and that F is a sheaf of torsion, such
that the order of torsion of every element Fξ any geometric stalk is invertible in OX,[ξ], where
[ξ] is the ordinary point underlying ξ. Then (1) is an isomorphism.

This must be shown along with a result called the local acyclicity of smooth morphisms.
Formulating this would be essential for presenting the proof because both assertions must be
shown together. For the purposes of this exposition we take the result for granted, although
the proof is a bit more elementary than for proper base change. It may be found in [SGA4.3,
Exposé XV and XVI], [Arcata, V], [Mil80, VI.4] and [FK88, I.7].

One important consequence of smooth base change is a type of “homotopy invariance”
result for smooth families of proper varieties.
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Theorem 4. Let X p−−→ S be a proper smooth morphism and F a locally constant con-
structible torsion sheaf on Xét, with the torsion satisfying the assumption from the previous
theorem. Then the sheaves Rkp∗F on Sét are locally constant constructible.

This may be combined with (.2.2.3) to give the following corollary, which can be used to
derive an equality between étale ℓ-adic and ordinary Betti numbers.

Corollary 1. Let X p−−→ SpecZf be a proper smooth morphism, G a finite abelian group
and s a geometric point of SpecZf located over an ordinary point corresponding to a prime
number not diving f or the order of G. Then there is an isomorphism

Hp
(

(Xs)ét, G
)

∼= Hp
(

X(C)an, G
)

which is functorial in G.

One important step in deriving Theorem 4 from the theorems of smooth and proper base
change is the proof of the fact that a certain cospecialization homomorphism is an isomorphism.
It will be necessary to explain this because it is necessary to understand the Picard-Lefschetz
formulas needed for the proof of the Weil conjecture. Let S = SpecR be the spectrum of a

strictly Henselian local domain, s the closed and η the generic point of S. Let η kS−−−→ S be
the spectrum of a separable closure of the field of quotients of S. Let X p−−→ S be a proper

morphism and let Xη
kX−−−→ X be the base-change of kS. If F is a sheaf of torsion on Xét, we

have a canonical morphism

(2) F → kX∗k
∗
XF

giving rise to

(3) Hp
(

(Xs)ét,F
) ∼= Hp(Xét,F)→ Hp(Xét, kX∗k

∗
XF)→ Hp(Xη, k

∗
XF)

where the first isomorphism is by proper base change and the the last morphism comes from
the Leray spectral sequence

(4) Ep,q
2 = Hp

(

Xét, R
qkX∗k

∗
XF

)

⇒Hp+q
(

(Xη)ét, k
∗
XF

)

.

In the case of Theorem 4, we show (3) to be an isomorphism. See also [FK88, Lemma I.8.13]
or [Mil80, Proof of corollary VI.4.2]:

Proposition 1. • If in the previous situation F is locally constant constructible and
the torsion of F invertible in R, then (3) is an isomorphism.
• More generally, without the assumption of X → S being proper, (2) is an isomorphism
and RqkX∗k

∗
XF = 0 for q > 0.

Proof. By the Leray spectral sequence (4) and the application of proper base change
mentioned after (3), it is sufficient to show the second assertion. The assertion is local on Xét,
hence we may assume that F = FX is the constant sheaf given by a finite abelian group F of
order invertible in R. Since FX

∼= p∗FS smooth base change reduces the assertion to the case
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X = S. This case easily follows from the fact that S is connected and η the spectrum of a
separably closed field. �

2.4. Purity and fundamental classes. For a Zariski-closed subset Z ⊆ X with com-
plement U , let H0

Z(Xét,F) denote the kernel of the restriction map F(X) → F(U) and let
Hp

Z(Xét,F) be its p-th derived functor.

Lemma 1. When F is an injective object of Sh(Xét), then the restriction map F(X) →
F(U) is surjective.

Proof. This surjectivity holds for the skyscraper sheaves ξ∗G at geometric points ξ of X
and is injerited by direct products from their factors and also by direct summands. Since the
morphism from F to the product P of ξ∗Fξ taken over a sufficiently large set of geometric
points is a monomorphism and F is injective, F is a direct summand of P hence inherits the
surjectivity from P . �

By the machinery of derived functors, we get a long exact cohomology sequence

(1) . . .→ Hp−1(Uét,F) d−−→ Hp
Z(Xét,F)→ Hp(Xét,F)→ Hp(Uét,F) d−−→ . . .

If V is an étale X-prescheme, let ZV denote the preimage of Z in V . There is an étale sheaf
H0

ZF defined by
H0

ZF(V ) = H0
ZV

(V,F).
The sheafification of V → H∗

ZV
(Vét,F) satisfies the universal property of the derived functor

H∗
ZF of H0

ZF , and if U j−−→ X denotes the open embedding of U we have a cohomology
sequence

(2) . . .→ Hp−1F d−−→ Hp
ZF → HpF → HpF d−−→ Hp+1

Z F → . . .

The machinery of Grothendieck spectral sequences gives

(3) Ep,q
2 = Hp(Xét,Hq

ZF)⇒Hp+q
Z (Xét,F)

as well as, for Z ⊆ Y ⊆ X,

(4) Ep,q
2 = Hp

ZHq
YF⇒Hp+q

Z F
or

(5) Ep,q
2 = i∗Z→YHp

Zi
∗
Y→XHq

YF⇒i∗Z→XHp+q
Z F .

The derived functor Hp
Z is taken on Sh(Xét) in (4) while in (5) it is taken on Sh(Xét). The

verification of the assumptions for this machinery is not carried out here. It is an amusing
exercise for the reader or can be looked up in the various text books. In any case, it will not
be part of any exam.

Remark 1. If X̃ ξ−−→ X is a morphism, Z̃ ⊆ X̃ a closed subset containing the preimage of
Z, by the universal property of derived functors there is a unique morphism

H∗
Z(Xét,F) ξ∗−−→ H∗(X̃ét,F)
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of cohomological functors on Sh(Xét) which in degree zero is the obvious pull-back.

The basic purity result is the following

Theorem 5. Let Z i−→ X be a (automatically regular) closed embedding of smooth S-
preschemes. Assume that i is of constant codimension d and that F is a locally constant
constructible torsion sheaf on Xét, where the order of torion is invertible on S. Then Hp

ZF
vanishes unless p = 2d, in which case i∗H2d

Z F is locally isomorphic to i∗F and thus locally
constant constructible. The formation of these sheaves commutes with base change S ′ → S.

The proof works by reduction to the case of a section of the affine line over X, using
induction on the codimension and smooth base change. See [FK88, I.10], [Mil80, VI.5] or
[SGA4.3, XVI.3].

Remark 2. Because of the vanishing assertion and the easily seen isomorphism

Hp
ZF ∼= i∗i

∗Hp
ZF ,

(3) degenerates to

(6) Hp
Z(Xét,F) ∼= Hp−2d(Xét,H2d

Z F) ∼= Hp−2d(Zét, i
∗H2d

Z F).

Remark 3. Assume that i factors as a composition Z j−−→ Y k−−→ X of closed embeddings
also satisfying the assumptions of the theorem. If dY/X and friends denote the respective codi-
mensions, then dZ/X = dZ/Y + dY/X . In view of the vanishing assertion, the spectral sequence
(5) degenerates to

(7) i∗H2dZ/X

Z F ∼= j∗H2dZ/Y

Z k∗H2dY/X

Y F
It will be necessary to give a more canonical description of H2d

Z F in the situation of the
above theorem. I will give an exposition based on the relation between H1 and torseurs studied
in the previous term. Recall that an F -torseur is a sheaf of sets T with a morphism F×F → T
satisfying the axioms for a principal homogenuous space for F . There is an obvious category
of F -torseurs which is a groupoid. A torseur T splits if it has a global section or, equivalently,
is isomorphism to the trivial torseur given by F acting on itself in the obvious way. Let TXF
denote the set of isomorphism classes of F -torseurs on Xét. Of course these definitions already
work when F is a non-abelian sheaf of groups, but we will only need them in the abelian case.

In the previous term we have constructed a bijection TXF ∼= H1(Xét,F) when F is abelian.
In particular, in the case where F is an injective object of Sh(Xét) this implies that every torseur
splits. This splitting was, however, shown first and the bijection derived from it. The bijection
is such that whenever

(+) 0→ F → G → Q → 0

is a short exact sequence of sheaves of abelian groups giving rise to H0(Xét,Q) d−−→ H1(Xét,F),
the F -torseur Tq of preimages of q ∈ Q(X) is assigned the cohomology class dq.

There is an obvious candidate for a version of this bijection which applies to H1
Z(Xét,F).

In the discussion of this, the restrictions in Theorem 5 may be dropped, and arbitrary closed
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subsets Z of arbitrary preschemes X allowed. Consider a groupoid GZF with objects (T , t)
where T is an F -torseur on Xét and t ∈ T (U). Morphisms (T , t) → (T ′, t′) are given by
morphisms T → T ′ of F -torseurs sending t to t′. Let TZF denote the set of isomorphism
classes of objects of that category.

Proposition 1. There is a unique bijection TZF ∼= H1
Z(Xét, F ) with the following pro-

perty: For every short exact sequence (+) and q ∈ H0
Z(Xét,Q), the bijection associates to the

isomorphism class of the pair (Tq, 0) the image of q under

(*) H0
Z(Xét, Q) d−−→ H1

Z(Xét,F).
Proof. The uniqueness of the bijection is easily seen by applying the condition charac-

terizing it to a single sequence (+) with injective G. To construct the bijection, we fix such a
sequence, again with injective G = Go. Let F ι−→ G denote the first morphism in that sequence.

There is a direct image ι∗T of the F -torseur T defined as sheafifying the presheaf associating
to the object V of Xét the quotient T (V ) × G(V ) by the diagonal F(V )-action. There is a
morphism T → ι∗T of sheaves of sets compatible with the F -actions on both sides. By the
aforementioned triviality of TG there is an isomorphism ι∗T ∼= G, hence a morphism T γ−−→ G
of sheaves of sets compatible with the F -actions on both sides. By Lemma 1 there is g ∈ G(X)
restricting to γ(t) ∈ G(U). Replacing γ by γ̃(τ) = γ(τ) − g we may assume that γ sends t to
0. If V ∈ ObXét such that T splits on V let τ ∈ T (V ), and let qV ∈ Q(V ) denote the image
of γ(τ) in Q(V ). It is easy to see that this is indeed independent of the choice of τ , and that
υ∗qV = qW for morphisms W → V in Xét. There is thus a unique q ∈ Q(X) such that each qV
is the image of q in Q(V ). If V = U we may take τ = t in the definition of qV . Thus, qU = 0 and
q ∈ H0

Z(Xét, Q). We want to associate d(q) ∈ H1
Z(Xét,F) to the isomorphism class of (T , t).

Obviously, γ defines an isomorphism T → Tq sending t to 0, hence our condition will then be
satsified in the special case of the initially chosen short exact sequence

(%) 0→ F → Go → Qo → 0,

and surjectivity of TZF → H1
Z(Xét, F ) follows from this and the surjectivity of (*). Because

γ : (T , t) → (Tq, 0), the isomorphism class of (T , t) depends only on that of (Tq, 0). If q and
q̃ define the same element of H1

Z(Xét,F), there is g ∈ H0
Z(Xét,G) mapping to q̃ − q, and

addition of g defines an isomorphism (Tq, 0) → (Tq̃, 0), showing the injectivity of our map
TZF → H1

Z(Xét, F ) provided that it is well-defined.
The only potential ambiguity comes from the choice of γ. As a different γ′ must also be

compatible with the F -action and T is locally trivial, γ′(τ) = γ(τ) + g for some g ∈ G(X). As
γ′(t) must also be zero we have g ∈ H0

Z(Xét,Q). As

q′ = q +
(

image of g under G(V )→ Q(V )
)

the images of q and q′ in H1
Z(Xét,F) coincide, and there is no ambiguity.

To confirm the condition of the proposition for sequences (+) different from the initially

chosen (%), we use the injectivity of Go to extend F → Go to a morphism G G−−→ Go compatible

with the morphisms from F , defining Q Q−−→ Qo on cokernels. As G defines an isomorphism
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Tq ∼= TQ(q) and (1) is functorial in the short exact sequence, the constructed bijection indeed
associates d(q) to Tq. �

In the situation of Theorem 5 with d = 1, Z → X is a regular embedding of codimension
one, hence the seaf of ideals I defining it is a line bundle. Let L = I−1 be its inverse. These
Zariski sheaves of modules define étale sheaves as explained in the previous term, and the
subsheaf of sets L∗ ⊆ L of nowhere vanishing sections of the line bundle is an O∗

Xét
-torseur. We

have 1 ∈ L(X) given by the embedding I → OX which is an isomorphism outside Z, hence
1 ∈ L∗(U).

Definition 1. In the situation of Theorem 5 with d = 1, let

[Z]∞ ∈ H1
Z(Xét,O∗

Xét
)

be the cohomology class associated to the pair (L∗,1) by Proposition 1 applied to F = O∗
Xét

.
For a natural number ℓ invertible on S, let

[Z]∞ ∈ H2
Z(Xét,µℓ)

be the image of [Z]∞ under d in the instance

. . .→ H1
Z(Xét,O∗

Xét
) d−−→ H2

Z(Xét,µℓ)→ H2
Z(Xét,O∗

Xét
) ℓ−→ H2

Z(Xét,O∗
Xét

)→ . . .

of (1).

The fundamental classes coincide with the ones constructed at the beginning of [Mil80,
VI.6] for divisors on smooth varieties over a field. This restriction is unnecessary in the previous
definition, but Milne shows the canonical version of Theorem 5 only in this case. Since maximal
generality is not needed here, we will also eventually impose this condition.

Since the canonical fundamental classes from Definition 1 are in the cohomology with
coefficients in µℓ, which is only locally and non-canonically isomorphic to ΛX = (Z/ℓZ)Xét

,
the important issue of Tate twists now comes up for the first time. Let ΛX(1) = µℓ and let,
for positive integers k, ΛX(k) be the k-th tensor power over Λ of this sheaf of Λ-modules.
Moreover, let Λ(−k) be the k-th tensor power of Λ(−1), the sheaf of homomorphisms from
Λ(1) to Λ. For a Λ-module F , let F(k) = F ⊗Λ Λ(k). These twists are easily seen to be
compatible with derived direct and with inverse images of sheaves of modules and satisfy
F(k + l) ∼=

(

F(k)
)

(l) canonically.
Of course, when working over an algebrically closed field or a strictly Henselian local ring

where ℓ is invertible, it is possible to chose a primitive ℓ-th root of 1 to identify F with all F(k),
but this identification depends on the choice of the ℓ

√
1. This is similar to ordinary Poincaré

duality in the complex analytic case where the choice of a
√
−1 determines an R-orientation

for all complex analytic manifolds which however depends on the choice made.

Theorem 6. In the situation of Theorem 5 with S the spectrum of a field, let i denote the
morphism Z → X and d = dZ/X the codimension of Z in X. For locally free ΛX-modules F ,
there is a unique functorial in F isomorphism

i∗F ιX,Z−−−−→ i∗H2d
Z F(d)
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with the following properties:

• ιX,X = Idi∗F .

• If i factors as Z j−−→ Y k−−→ X where Y k−−→ X is also a smooth over k closed subpre-
scheme of X, then the diagram

j∗k∗F i∗F

j∗k∗H2dY/X

Y F(dY/X) j∗H2dZ/Y

Z k∗H2dY/X

Y F(dZ/X) i∗H2dZ/X

Z F(dZ/X)

✲
∼=

❄

j∗ιX,Y

❄

ιX,Z

✲
ιY,Z

✲
(7)

commutes.
• Let [Z]ℓ ∈ H2d

Z

(

Xét,ΛX(d)
)

denote the inverse image of

1 ∈ H0(Z,ΛZ) ∼= H0(Z, i∗ΛX)
ιX,Z−−−−→ H0(Z, i∗H2d

Z ΛX)

under (6). If d = 1, this coincides with the fundamental class defined in Definition 1.

Moreover, if X̃ ξ−−→ X is a morphism such that Z̃ = Z×X
X̃ is smooth over k and

dZ̃/X̃ = dZ/X , then ξ
∗[Z]ℓ = [Z̃]ℓ, where the pull-back is defined by Remark 1.

The theorem follows from [Mil80, Theorem VI.6.1]. Different treatments of the fundamental
class are in [SGA41

2
] and [FK88].

2.5. Poincaré Duality. Let X smooth connected of finite type and separated over an

algebraically closed field k and let X j−−→ X a Nagata compactification of X. Moreover, let
Z ⊆ X be a Zariski-closed subset which stays closed in X. We have an obvious homomorphism
of extension by zero

H0
Z(Xét,F)→ (j!F)(X)

which gives rise to

(1) H∗
Z(Xét,F)→ H∗

c (Xét,F)
by the universal property of derived functors. In the case where Z is smooth of codimension
e, we use the same notation [Z]ℓ for the image under (1)

(2) [Z]ℓ ∈ H2e
c

(

Xét,Z
/

ℓZ(e)
)

of the fundamental class [Z]ℓ from Theorem 6. In particular, when x ∈ X is a closed point we
have a canonical fundamental class

[{x}] ∈ H2d
{x}

(

Xét,Z
/

ℓZ(d)
)

→ H2d
c

(

Xét,Z
/

ℓZ(d)
)

.

where ℓ is assumed to be invertible in k. We abbreviate Z/ℓZ = Λ as before. The easiest case
of Poincaré duality may now be formulated as follows:
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Theorem 7. Under the above assumptions, H2d
c

(

Xét,ΛX(d)
)

is a free
(

ΛX(d)
)

-module of
rank 1 and for arbitrary x ∈ X [{x}] is a generator of this module. This generator does not
depend on the choice of x, giving rise to a canonical isomorphism

H2d
c

(

Xét,ΛX(d)
) TrX/k−−−−−→ Λ.

The resulting pairing

Hk
c (Xét,F)× Ext2d−k

ΛX
(F ,ΛX(d))→ Λ

for constructible ΛX-modules F is a non-degenerate pairing of finitely generated Λ-modules.

This is shown in [Mil80, VI.11], [FK88, II.1] and [SGA4.3, XVIII], where the last two
sources provide more general results and have a different exposition. In particular, in [FK88]
the relation with the fundamental class is only made later on in the book. An introduction to
Poincaré duality over fields is also given in [Arcata, Chapter VI].

Remark 1. The pairing considered in the theorem is a special case of a general pairing for
arbitrary objects of Sh(Yét)

(+) Hp(Yét,A)× ExtqSh(Yét)
(A,B)→ Hp+q(Yét,B).

An element of Hp(Yét,A) gives rise to a morphism Hom(A,B)→ Hp(Yét,B) which is functorial
in B, and the universal property of derived functors gives (+). This may be applied with Y = X,
A = j!F to give

Hp
c (Xét,F)× ExtqSh(Yét)

(j!F ,B)→ Hp+q(Yét,B).
When B = j!G where F and G are ΛX-modules this can be composed with a morphism

Extq
ΛX

(F ,G)→ ExtqSh(Yét)
(j!F , j!G)

given by the functoriality of j! for q = 0 and the universal property of the derived functor Ext
in general. The result is

Hp
c (Xét,F)× Extq

ΛX
(F ,G)→ Hp+q

c (Xét,G)
which of course must be shown to be independent of the choice of compactification. Applying
this with G = ΛX(d) gives the pairing considered in the theorem.

Remark 2. A bilinear form X × Y → Λ on finitely generated Λ-modules is called non-
degenerate if it defines an isomorphism

X → Y ∗ = HomΛ(Y, λ)

or, equivalently, an isomorphism Y
∼=−−→ X∗. Note that Λ is easily seen to be self-injective (eg,

using Baer’s criterion) and X → X∗ is an anti-equivalence on the category of finitely generated

Λ-modules. The fact that X
∼=−−→ X∗∗ can be verified on cyclic modules which is also easy.

Note that the finiteness assertion made in the theorem will only follow from the result of
the previous term directly if X is proper.
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When F is locally free ΛX-module we have

HomΛX
(F ,G) ∼=

(

F∗ ⊗ΛX
G
)

for ΛX-modules G, where the sheaf F∗ of homomorphisms from F to ΛX is a dual of X. In the
category of ΛX-modules sufficiently many injective objects may be constructed using products
of skyscraper sheaves, and the functor from ΛX-modules to Sh(Xét) sends them to products
of skyscraper sheaves which are acyclic for H∗(Xét, ·). Thus,

Extq
ΛX

(F ,G) ∼= Hq(Xét,F∗ ⊗ΛX
G)

when F is locally free.

Corollary 1. If, in the situation of Theorem 7, F is a locally free ΛX-module, we have

Hp
c (Xét,F) ∼= H2d−p(Xét,F∗(d))∗.

Remark 3. In particular, if X is also proper and p = d, one gets a non-degenerate bilinear
form on Hd(Xét,ΛX) after chosing a primitive ℓ

√
1. It can be shown that this bilinear form is

symmetric if d is even and symplectic when d is odd.

If X is affine, the previous corollary may be combined with Theorem 1.

Corollary 2. If, in the situation of Theorem 7, X is affine and F a locally free ΛX-
module, we have Hp

c (Xét,F) = 0 when p < d.

Combining this with a long exact cohomology sequence

. . .→ Hp
c (Xét,F |X )→ Hp

c (Yét,F)→ Hp(Zét, i
∗F)→

obtained using
0→ j!j

∗F → F → i∗i
∗F → 0

where X j−−→ Y i←− Z are the inclusions, one obtains the following result (usually called weak
Lefschetz) about restriction of cohomology classes to hyperplane sections.

Corollary 3. Let Y ⊆ PN
k be an irreducible projective k-scheme and Z ⊆ Y a hyperplane

section such that X = Y \ Z is smooth. If F is a locally free ΛY -module then the restriction

Hp(Yét,F)→ Hp(Zét, i
∗F)

is bijective when p < d− 1 and injective when p < d.

We already mentioned this after Theorem 1. A discussion of related results which are also
sometimes called “weak Lefschetz” is in [Mil80, VI.7].

It is perhaps already known to the reader that the hard part of giving a full proof of the
original Weil conjectures which was still left after the work of Grothendieck on étale cohomology
and which was solved by Deligne boils down to the investigation of Frobenius eigenvalues on
Ql-vector spaces H

p(X,Qℓ) defined in terms of the Hp(Xét,Z/ℓkZ). If d = dimX then Poincaré
duality relates the cohomological degrees p and 2d−p to each other. It will thus be sufficient to
consider p ≤ d, and weak Lefschetz plus an easy argument of induction on dimX shows that
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it is in fact sufficient to consider p = d. Since only appropriate estimates on the absolute value
of the Frobenius eigenvalues will be obtained directly, it is necessary to also consider arbitrary
powers of X which for other reasons are chosen to be even-dimsional. One then considers
morphisms Xk π−−→ C where C is a curve, which are smooth over an open dense subset U of
C and degenerate in a controlled way outside U . This is done using the technique of Lefschetz
pencils. It will be necessary to know that the symplectic form on Hdk−1

(

(Xk)u,Qℓ) obtained by
Poincaré duality (cf. Remark 3) depends in a controllable way on u, defining a non-degenerate
pairing of ℓ-adic sheaves on U . For this, the above simplified discussion of Poincaré duality is
insufficient but the parts of [FK88] or [SGA4.3] cited above actually provide what is needed.
Obviously, the only hard point besides what we formulated as Theorem 7 is to define the trace
morphism in sufficient generality.

There is another consequence of Poincaré duality will will be needed later on. In [FK88]
this is presented as a remark after Proposition III.1.10.

Corollary 4. Let X̃ π−−→ X be a birational map between proper smooth connected
schemes of finite type over the algebraically closed field k in which the natural number ℓ is
invertible. Then

Hp(Xét,Z/ℓZ) π∗−−→ Hp(X̃ét,Z/ℓZ)

is injective.

Proof. Let U ⊆ X be an open dense set over which π is an isomorphism, and let x ∈ U .
For the sake of simplicity, we use notations as if U was a subset of X̃ as well, and π |U = IdU .
Then the fundamental classes of x in X and X̃ are the images of

[{x}]ℓ ∈ H2d
{x}

(

Xét,Z/ℓZ(d)
) ∼= H2d

{x}

(

Uét,Z/ℓZ(d)
) ∼= H2d

{x}

(

X̃ét,Z/ℓZ(d)
)

in H2d
(

Xét,Z/ℓZ(d)
)

and H2d
(

X̃ét,Z/ℓZ(d)
)

. This implies

π∗
(

[x]X) = [x]X̃

and in view of the way in which the trace isomorphism is introduced in Theorem 7 we have a
commutative diagram

H2d
(

Xét,Z/ℓZ(d)
)

H2d
(

X̃ét,Z/ℓZ(d)
)

Z/ℓZ

❄

π∗

◗
◗
◗

◗
◗
◗
◗s

TrX/k

✲
TrX̃/k

hence

〈h, η〉X = 〈π∗h, π∗η〉X̃
for the Poincaré duality pairings between h ∈ Hp(Xét,Z/ℓZ) and η ∈ Hp

(

Xét,Z/ℓZ(d)
)

. If
π∗h = 0 this implies that h is in the kernel of 〈·, ·〉X hence vanishes by Theorem 7. �
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Remark 4. Let X and X̃ be connected, of dimension d, and smooth over the algebraically
closed field k. Let X̃ p−−→ X be a finite morphism of degree δ which is not totally inseparable.
Then there is a closed point x ∈ X over which p is étale. It follows from the compatibility with
pull-back in Theorem 6 that p∗([x]) is the sum of the fundamental classes of the preimages of
x. As these have trace one and H2d

c

(

Xét,Z/ℓZ(d)
)

is generated by [x] as a Z/ℓZ-module, it
follows that

(3) TrX̃/k

(

p∗η) = δTrX/k(η)

for η ∈ H2d
c

(

Xét,Z/ℓZ(d)
)

.

2.6. ℓ-adic cohomology. Let now ℓ be a prime number. We will always assume this to be
invertible on X. As was explained in the previous term, cohomology groups like H∗(Xét,Z) or
H∗(Xét,Zℓ) are well-defined but pathologicial in the sense that they fail to have the properties
one would expect by comparison with classical cohomology. It is thus necessary to define ℓ-adic
cohomology by using étale cohomology with finite coefficients.

A quite natural definition for ℓ-adic cohomology with constant coefficients is

Hp(X,Zℓ) = lim
k
Hp(Xét,Z/ℓ

kZ).

Similarly,
Hp

(

X,Zℓ(1)
)

= lim
k
Hp(Xét, µℓk)

where in the latter case the transition is made using

µℓk+1 → µℓk

ζ → ζ l,

and other Tate twists Zℓ(m) of constant coefficients are obtained using the m-th tensor power
of these transition morphisms. Cohomology with compact support is introduced in the same
way, and cohomology with Qℓ-coefficients is defined by taking ⊗Zℓ

Qℓ. One can verify that the
fundamental classes [Z]ℓm from (.2.5.2) assemble to an ℓ-adic fundamental class

(1) [Z]Qℓ
∈ H2e

c

(

X,Zℓ(e)
)

Since the projective systems occuring in the above construction are made of finite abelian
groups, they have the Mittag-Leffler property, and one gets long exact sequences of the type

(2) . . . Hp−1(Y,Zℓ)→ Hp
c (U,Zℓ)→ Hp(X,Zℓ)→ Hp(Y,Zℓ)→ Hp+1

c (U,Zℓ)→ . . .

(X proper, U = X \ Y ) by taking the inverse limit of the similar sequences with finite cyclic
coefficients. Very importantly, the projective systems (An)

∞
n=1 occuring satisfy the stronger

Artin-Rees Mittag-Leffler property (ARML): There is a natural number k such that the images
of An → Am and Am+k → Am coincide when n ≥ m + k. For cohomology with compact
support this is a special case of [FK88, Proposition 12.15]. The proof given there still works
for ordinary cohomology because the crucial finiteness result is still available for ordinary direct
images when the base is the spectrum of a separably closed field. One can use this to show
that the cohomology groups considered above are finitely generated Zℓ-modules.
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The ARML property has the consequence that up to torsion Poincaré duality survives ta-
king the limit. To explain this let 〈·, ·〉n denote the Poincaré duality pairing between An =
Hp(Xét,Z/ℓnZ) and Bn = H2d−p

c (Xét,Z/ℓnZ(d)), let A and B denote the limits, and let

Cn
πn
m−−−→ Cm denote the transition homomorphisms, where C may be A or B. Obviously

one gets a pairing A×B → Zℓ between the limits, but this is not necessarily non-degenerate.
Let a = (an)

∞
n=1 ∈ A be in the kernel of the pairing. Then 〈am, b〉 = 0 whenever

b ∈
∞
⋂

n=m

πn
m(Bm) = πm+k

m (Bm+k),

where k is from the ARML property. Thus, for b ∈ Bm+k we have
〈

am, π
m+k
m b

〉

m
= 0. But the

last expression is the image in Z/ℓmZ of 〈am+k, b〉m+k, hence ℓ
k 〈am+k, b〉m+k = 0 in Z/ℓm+kZ

for all b ∈ Bm+k, or ℓ
ka = 0 in A. The same argument works with the roles of A and B

interchanged. It follows that we have a Poincaré type duality

(3) Hp(X,Qℓ(m)) ∼= H2d−p
c

(

X,Qℓ(d−m)
)∗

between finite-dimensional Qℓ-vector spaces.
We also record the following consequence of Corollary .2.5.4.

Corollary 1. Let X̃ π−−→ X be a birational map between proper smooth connected
schemes of finite type over the algebraically closed field k in which the natural number ℓ is
invertible. Then

Hp(X,Zℓ) π∗−−→ Hp(X̃ét,Zℓ)

is injective.

In the following we will also use the Künneth decomposition

(4) Hn
c (X × Y,Qℓ) ∼= ⊕n=a+bH

a
c (X,Qℓ)⊗Hb

c (Y,Qℓ).

A proof is, for instance, in [Mil80, VI.8]. For separably closed k, we get H2
c (A

1
k ,Qℓ(1)) ∼= Qℓ

(canonically) by Poincaré duality or the calculation of the cohomology of curves, while all other
Hp

c (A
1
k ,Qℓ(1)) vanish by the calculation of the cohomology of curves given in the previous

term. By the Künneth formula, Hp
c (A

d
k ,Qℓ(d)) ∼= Qℓ (canonically) when p = 2d while the same

cohomology group vanishes when p 6= 2d. Using (2) one obtains, canonically

(5) Hp(Pn
k ,Qℓ) ∼=

{

Qℓ(−p/2) p even and 0 ≤ p ≤ 2n

0 otherwise,

canoncially. Moreover, restriction to Pn−1
k is an isomorphism in cohomological degrees < 2n.

If one is only interested in showing the rationality of the congruence zeta function, then
the previous remarks about ℓ-adic cohomology with coefficients that are constant up to Tate
twists are sufficient. For the more complicated considerations leading to a complete proof of
the Weil conjectures, it is necessary to develop the machinery of ℓ-adic sheaves.
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The obvious idea is to consider projective systems (Fn

)∞

n=1
of constructible sheaves satis-

fying

(6) ℓnFn = 0.

with the following canonical morphism derived from this and the universal property of Coker
being an isomorphism:

(7) Coker
(

Fn
ℓn+1−−−−→ Fn

) ∼=−−→ Fn.

By an ℓ-adic sheaf I will understand a system with these properties.
Unfortunately (7) is not preserved under important operations like the taking of kernels or

direct images. One must relax it to an ARML-like condition, the existence of a natural number
m such that for all n > m and k > 0, the images of Fk+m → Fk and Fk+n → Fk coincide,
where now arbitrary systems of constructible sheaves of ℓ-power torsion are considered. Let
F [k]n = Fk+n. Homomorphisms in the category of ARML systems are defined as

Homℓ(F ,G) = colimHom(F [k],G),
which coincides with homomorphisms of projective systems when both F and G are ℓ-adic
sheaves. An ARML ℓ-adic sheaf is a projective system of ℓ-power torsion constructible sheaves
which in the category of ARML systems is isomorphic to an ordinary ℓ-adic sheaves.

It turns out [FK88, I.12] that the ARML condition is preserved under higher direct images
with compact support, and that many of the previous results about étale cohomology with
torsion coefficients imply similar results about ℓ-adic sheaves. For instance,

Rnf!(Fn) = (Rnf!F)n
where this may only be ARML ℓ-adic even if the original system (Fn) is an ℓ-adic sheaf. Of
course, for results depending on smooth base change ℓ must be invertible on the schemes under
consideration. In the subsection on the Weil conjectures, we will use this tacitly, applying
results about torsion sheaves previously shown or quoted from other sources to ℓ-adic sheaves
as well rather than producing a long list of results in this subsection. Finally, the category
of Qℓ-sheaves is obtained from the category of ℓ-adic sheaves by formally inverting ℓ in the
homomorphism groups. An ℓ-adic sheaf F is called locally constant if all Fn are locally constant
constructible. A Qℓ sheaf is called locally constant if it can be defined from a locally constant
ℓ-adic sheaf.

2.7. Lefschetz type trace formulas. If one is willing to believe a number of rather
plausible facts about ℓ-adic cohomology, it is easy to explain why a basic Lefschetz-type fixed

point formula holds for this cohomology. Let X φ−−→ X be an endomorphism of a proper smooth

connected d-dimensional scheme of finite type over a separably closed field k. Let
(

b
(p)
i

)βp

i=1
be

a base of Hp(X,Qℓ) and
(

b
∗(p)
i

)βp

i=1
be the Poincaré dual base of Hp

(

X,Qℓ(d)
)

. One has a
Künneth type formula

H2d
(

X ×X,Qℓ(d)
) ∼= ⊕2d

p=0H
p(X,Qℓ)⊗H2d−p

(

X,Qℓ(d)
)
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and it is natural to assume that the ℓ-adic fundamental class [Γφ]Qℓ
(cf. (.2.6.1)) of the graph

Γφ of φ is given by

(♯)
2d
∑

p=0

βp
∑

i=1

φ∗(β
(p)
i )⊗ β∗(2d−p)

i

under this decomposition, cf. [Mil80, Lemma VI.12.2]. In particular, taking φ = IdX one has

[∆X ]Qℓ
=

2d
∑

p=0

βp
∑

i=1

β
(p)
i ⊗ β

∗(2d−p)
i

Exchanging the roles of β and β∗, in other words, applying this with γ
(p)
i = g−dβ

∗(p)
i after

fixing a generator g of Qℓ(1), one has γ
∗(p)
i = (−1)pgdβ(p)

i because of the symmetry property
Remark .2.5.3 of the Poincaré duality pairing. Applied to this base, the last formula for the
fundamental class of the diagonal is thus

(♭) [∆X ]Qℓ
=

2d
∑

p=0

(−1)p
βp
∑

i=1

β
∗(p)
i ⊗ β2d−p

i .

If one believes that the Poincaré duality pairing 〈·, ·〉X×X evaluated on fundamental classes
calculates the intersection number of algebraic cycles when the intersection is transversal, the
duality pairing of (♭) with (♯) should give the intersection product Γφ · ∆X or the number of
fixed points of φ, provided the intersection is transversal. It is easy to carry out this calculation:

〈[Γφ]Qℓ
, [∆X ]Qℓ

〉X×X =
2d
∑

p=0

(−1)p
βp
∑

i=1

〈

φ∗(β
(p)
i ), β

∗(2d−p)
i

〉

X
=

2d
∑

p=0

(−1)pTr
(

φ∗
∣

∣ Hp(X,Qℓ)
)

.

Thus, assuming that one is willing to believe the above assumptions, one has (cf. [Mil80,
Theorem VI.12.3]):

Theorem 8. Let X be a smooth connected proper scheme over an algebraically closed field
k of dimension d, and let φ be an endomorphism of X such that the intersection Γφ ∩ ∆X is
transversal in X ×X. Then the number of fixed points of φ is

(1)
2d
∑

p=0

(−1)pTr
(

φ∗
∣

∣ Hp(X,Qℓ)
)

.

Remark 1. The condition that the intersection of Γφ with ∆X be transversal translates
into the condition that for no fixed point x ∈ X(k) of φ, 1 is an eigenvalue of the endomorphism
φ∗ of the tangent space of X at x.

While this relatively straightforward Lefschetz-type formula is sufficient to show the ratio-
nality of the congruence zeta function it is unfortunately insufficient for Deligne’s proof the
Weil conjecture. Instead of formulating this here we will briefly quote the relevant result when
we need its application (.3.4.4).
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2.8. Rationality of the zeta function and formulation of the main result. Let q
be a power of the prime p, and let X be scheme such that p = 0 in OX . Then one has an

endomorphism Fq = F
(X)
q of X, called the absolute Frobenius, given by Fq(x) = x on points

and F∗
q(λ) = λq on sections of the structure sheaf. It is easy to see that this is canonical in the

sense that it is a functor-endomorphism of the identity functor on the category of schemes of
characteristic p, and that

(1) Fqk = Fk
q .

If X ξ−−→ Speck is a scheme over a perfect field of characteristic p and X(q) denotes the fibre

product Speck×Speck
X taken with respect to Speck

Fq−−→ Speck, the commutativity of

X X

Speck Speck

✲
Fq

❄

ξ

❄

ξ

✲
Fq

shows that Speck ξ←−− X
Fq−−→ X define a morphism X

Fq,X/k−−−−−→ X(q) by the universal property
of the fibre product. This morphism Fq,X/k is called the relative Frobenius. From (1) and the
functoriality of the absolute Frobenius one derives that Fqk,X/k coincides with the composition

(2) X
Fq,X/k−−−−−→ X(q) Fq,X(q)/k−−−−−−−→ X(q)(q) ∼= X(q2) → ...

F
q,X(qk−1)−−−−−−−−→ X(qk−1)(q) ∼= X(qk).

If X ⊆ Pn, X(q) is the algebraic variety given by the same equations as X but with all
coefficients raised to the q-th power, and Fq,X/k is the morphism of projective varieties over k
given by raising all homogenuous coordinates to their q-th power.

If X = Xo×Specko
Speck, where ko is a field with q elements and k an algebraic closure of

ko, one has an isomorphism X(q) ∼= X which is canonical (functorial in Xo) and the relative
Frobenius becomes an endomorphism FXo/ko of X. If l ⊆ k is the unique degree k extension of
ko and Xl the base-change of Xo to l it follows from our remark about (2) that

(3) FXl/l = Fk
Xo/ko .

The number of ko-valued points is equal to the number of fixed points of this endomorphism.
Since this is a purely inseparable endomorphism it acts as zero on the tangent spaces and by
Remark .2.7.1 it is possible to apply Theorem 8:

(4) #
(

Xo(ko)
)

=
2d
∑

n=0

(−1)nTr
(

F∗
Xo/ko

∣

∣ Hn(X,Qℓ)
)

.
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The Weil congruence zeta function of Xo is

(5) ZXo(z) = exp
(

∞
∑

m=1

zm

m
#
(

Xo(km)
)

)

,

where kn ⊆ k is the unique subfield of k with qn elements (thus, ko = k1). This can be viewed as
a formal power series, which is however easily seen to converge when |z| is small enough. The
relation with the Riemann zeta function ζ(s) becomes closes when one puts z = q−s, which
unlike the number field case turns out to be a rational function of q−s, which thus has a period
2πi
log q

in the imaginary direction. By the well known power series expansion of log(1 − z), one
also has an Euler product representation of ZXo(z)

(6) ZXo(z) =
∏

x ∈ X closed

(

1− z[k(x):ko]
)−1

converging in the formal power series ring Z[[z]].
Applying (4) with ko replaced by kn and using (3), (5) becomes

ZXo(z) = exp
(

∞
∑

m=1

1

n

2d
∑

n=0

(−1)nTr
(

F∗m
Xo/ko

∣

∣ Hn(X,Qℓ)
)

)

=
2d
∏

n=0

exp
(

(−1)n
∞
∑

m=1

Tr
(

F∗m
Xo/ko

∣

∣ Hn(X,Qℓ)
)

)

=
2d
∏

n=0

det
(

1− zF∗
Xo/ko

∣

∣ Hn(X,Qℓ)
)(−1)n+1

by the well-known formal power series formula

exp
(

∞
∑

m=1

zm

m
Tr

(

Am
∣

∣ V
))

= det
(

1− zA
∣

∣ V
)

for endomorphisms A of a finite-dimensional vector space V over an arbitrary field. Thus,

Theorem 9. Let X be a d-dimensional proper smooth geometrically connected scheme of
finite type over a field ko with q elements, then the Weil zeta function ZXo(z) is a rational
function of z which moreover for primes ℓ invertible in ko is given in Ql(z) by the formula

(7) ZXo(z) =
2d
∏

n=0

det
(

1− zF∗
Xo/ko

∣

∣ Hn(X,Qℓ)
)(−1)n+1

Here one uses the easy fact that a formal power series (5) with rational coefficients defines a
rational function over Q if and only if it does so over any extionsion field like Qℓ. The rationality
was proved by Dwork about a decade before étale cohomology was mature enough to obtain
this result.
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Example 1. If Xo = Pn
ko
then an easy calculation shows

(8) ZPn
ko
(z) =

n
∏

k=0

1

1− qkz .

We would like to identify the k-th factor with the characteristic polynomial of the Frobenius
on H2k(Pn

k ,Qℓ). If n = 0 this is trivial. In general, we may use induction on n. The induction
assumption together with the remark on restriction of cohomology classes after (.2.6.5) shows
that for k < n FPn

ko
/ko acts on H2k

c (Pn
k ,Qℓ) by multiplication by qk. This leaves only the factor

belonging to k = n in (8) for the contribution of n = 2d to (7) applied to Xo = Pn
ko
, proving

our claim.

Remark 1. We would like to show that in general the Frobenius eigenvalue on H2d
c (X,Qℓ)

is qd, when Xo/ko is smooth of dimension d and geometrically connected. If will be conveni-
ent to also consider the case where X is not proper over k, hence cohomology with compact
support is used. If U ⊆ X is open and dense, continuation by zero defines an isomorphism
H2d

c (U,Qℓ) ∼= H2d
c (X,Qℓ) by our material on Poincaré duality. Thus the assertion for X and

for U is equivalent. In particlular, it holds for Ad
ko

because the previous example shows its
validity for Pd

ko
, and to prove it in general it suffices to treat the affine case. In this case, there

is a finite morphism Xo
p−−→ Ad

ko
by Noether normalization. This factors as Xo

q−−→ Yo r−−→ Ad
ko

where q is purely inseparable while r is separable at the generic point. There is a dense open
subset Uko ⊆ Ad

ko
over which r is étal, and r−1Uko → ko is still smooth, and the assertion holds

for Uo/ko by our previous remarks. By (.2.5.3) and Poincaré duality,

H2d
c (Uk,Qℓ) r−−→∗ H2d

c (r−1U,Qℓ)

is an isomorphism, and the assertion holds for Vo = r−1Uo/ko. But

H2d
c (Vk,Qℓ)

q−−→∗
H2d

c (q−1V,Qℓ)

is an isomorphism as the purely inseparable q behaves as a homeomorphism for the étale
topology. Thus, our assertion holds for the open dense subset q−1Vo of Xo, hence for Xo as
well.

Note that the fact that ZXo is a rational function with coefficients in Q does not imply
that the individual factors in the product (7) have coefficients in Q because there may be
cancellations between linear factors of type z − λ with λ ∈ Qℓ transcendental over Q.

Moreover, the degrees dimHn(X,Qℓ) of these polynomials, which are the ℓ-adic Betti num-
bers, might in principle depend on ℓ for varieties without smooth models over SpecZ. In the
case where such smooth models exist, the comparison theorem mentioned earlier (Corolla-
ry .2.3.1) shows that the n-th polynomial in (7) has degree equal to the n-th classical Betti
number of the variety of complex points, as conjectured by Weil. However, this still leaves the
problem of whether or not this factor has rational coefficients and is independent of ℓ remaining
open, even in this case. Moreover, Weil had a conjecture about the zeroes of these polynomials
generalizing the classical Riemann hypothesis for the congruence zeta function. This form of



2. PREREQUISITES 21

the Riemann hypothesis is easily seen to imply all the other assertions which remained open
so far, as we will explain at the end of this subsection.

Deligne was able to show all this:

Theorem 10. Let X be a d-dimensional proper smooth geometrically connected scheme of
finite type over a field ko with q elements, then the factor

det
(

1− zF∗
Xo/ko

∣

∣ Hn(X,Qℓ)
)

in (7) is a polynomial with coefficients in Z which is independent of ℓ. The complex zeroes of
this polynomial have absolute value q−n/2.

Corollary 1. Under the same assumption, the ℓ-adic Betti numbers

dimQℓ
Hn(X,Qℓ)

with ℓ invertible in k are independent of ℓ.

Of course one considers the Frobenius eigenvalues as elements of Qℓ, showing that they are
in fact integral elements of Q and that all their complex conjugates have the desired absolute
values. With this constraint on the zeroes of the polynomials, the representation of a rational
function as (7) becomes unique and all other assertions easily follow, as will be explained in
the proof of Proposition 1. Thus, one considers the following property:
(9)

W (Xo/ko, k, δ, ε) :

All eigenvalues λ ∈ Qℓ of the endomorphism FXo/ko on Hk(X,Qℓ)
are algebraic over Q, and

qk/2−δ ≤ ι(λ) ≤ qk/2+ε

for all field embeddings Q(λ) ι−→ C.

Here we allow for δ = ∞, in which case only an upper bound on |ι(λ)| is asserted. The sum-
mands ε and δ have been introduced because the main step of the proof only yields estimates
containing them. The reduction of Theorem 10 to weaker assertions of this form is so easy that
it is best to present them here.

Proposition 1. We assume the following: For every prime number ℓ there exist a positive
integer D and a real number ε ∈ (0,∞) such that for every finite field ko of characteristic
different from ℓ, every smooth projective geometrically connected ko-scheme Xo of dimension d
divisible by D there exists a positive integer N (possibly depending on Xo/ko) such that for all
positive integers n divisible by N ,W (Xn/kn, d,∞, ε) holds. Under this assumption, both Theo-
rem 10 and its corollary hold. Moreover, for fixed n and X the conditions W (Xn/kn, d,∞, ε)
and W (Xn/kn, d, ε, ε) are actually equivalent.

It is actually possible to apply this with D = 2 (thus, the initial estimate is only shown for
manifolds of even dimension) and ε = 1/2. The number N depends on Xo/ko in a way which
is difficult to describe. It occurs because one wants certain morphisms (Lefschetz pencils) and
their (isolated) singularities to be defined over the finite ground field one is working with. One
could even allow for N to depend on ℓ, but this is not going to happen in the proof.
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Proof. We proceed in several steps, starting with the following strengthening of the initial
assumption:

For every prime number ℓ there exist a positive integer D and a real number
ε ∈ (0,∞) such that for every finite field ko of characteristic different from ℓ,
every smooth projective geometrically connected ko-scheme Xo of dimension d
divisible by D, W (Xo/ko, d,∞, ε) holds.

Indeed, let λ be an eigenvalue of FXo/ko on Hd(X,Qℓ). By (3), λN is an eigenvalue of FXN/kN

on Hd(X,Qℓ). It is thus algebraic over Q and
∣

∣ιλN
∣

∣ ≤ qN(d/2+ε), and the assertion about λ
follows.

For every prime number ℓ and every finite field ko of characteristic different from
ℓ and every smooth projective geometrically connected ko-scheme the condition
Xo, W (Xo/ko, d, 0, 0) holds, where d = dim(X).

Indeed, let λ be an eigenvalue of FXo/ko on Hd(X,Qℓ). Let n be a positive integer and let Xn

be the n-th Cartesian power of X. By the Künneth decomposition

Hnd(Xn,Qℓ) =
⊕

nd=d1+...+dn

n
⊗

i=1

Hdi(X,Qℓ),

λn is an eigenvalue of FXo/ko on Hnd(X,Qℓ). If n is chosen such that D divides nd, it follows

that λn is algebraic and |ιλn| ≤ qnd/2+ε. Thus, λ is algebraic and |λ| ≤ qd/2+ε/n. Since n can
be made arbitrarily large, the upper bound follows, and the lower bound can be derived by
Poincaré duality and Remark 1.

For every prime number ℓ and every finite field ko of characteristic different
from ℓ and every smooth projective geometrically connected ko-scheme Xo, the
condition W (Xo/ko, p, 0, 0) holds for all natural numbers p.

We use induction on the dimension d of X, the case d = 0 being trivial. Let d > 0 and the
assertion be known for manifolds of dimension < d. We first deal with the case p < d. By
Bertini’s theorem, there are a positive integer N and a smooth hyperplane section YN of XN .
By Corollary .2.5.3, the restriction morphism

Hp(X,Qℓ)→ Hp(Y,Qℓ)

is injective. Because Y is defined over kN , this morphism is compatible with FXn/kn when N
divides n. Thus, every Frobenius eigenvalue of FXn/kn on Hp(X,Qℓ) is also an eigenvalue on
Hp(Y,Qℓ), and by the induction assumption we get W (Xn/kn, p, 0, 0) when N divides n. From
this W (Xo/ko, p, 0, 0) can be derived in the same way as in the first reduction step.

Finally, the case p = d follows from our previous intermediate result while the case p > d
follows by Poincaré duality and Remark 1.

If ℓ is invertible in ko, the polynomial

Pℓ,k det
(

Id− zFp
Xo/ko

∣

∣

∣
Hk(X,Qℓ)

)

has rational coefficients which are independent of ℓ.
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For k 6= l the polynomials Pℓ,k and Pℓ,l are coprime in Qℓ[T ] as the properties of their zeroes
shown in the previous step are mutually exclusive. The products Pℓ (resp. Qℓ) of Pℓ,k over odd
(resp. even) k are thus also coprime. As Z = ZXo/ko satisfies Z(1) = 1 we have, for every field
K of characteristic 0, a unique representation

Z(z) =
PK(z)

QK(z)

where P,Q ∈ K[T ] are coprime and P (0) = Q(0) = 1, and because of the uniqueness PK

(resp. QK) is in fact the image of P = PQ (resp. QQ) in K[T ]. Also by the uniqueness of the
representation,

Pℓ = PQℓ
= P

and

Qℓ = QQℓ
= Q

Thus, Pℓ and Qℓ have rational coefficients which are independent of ℓ. It follows from the
property of the zeroes shown previously that when λ ∈ Q is a zero of PQ and Q ι−→ C
a complex embedding that |ι(λ)| = q−k/2 with k = kλ independent of ι. Thus, if R is an
irreducible factor of PQ in Q[T ] there is a unique natural number kR such that kλ = kR for all
zeroes λ of R in Q. It also follows that

Pℓ,k =
∏

Rk=k

R.

The product is over all irreducible factors of PQ in Q[T ] subject to the indicated condition
and with the same multiplicity with which R occurs in PQ. As this is a rational polynomial
independent of ℓ, the claim follows.

The coefficients of Pℓ,k are integers.

Because Pℓ,k(0) = 1, this is equivalent to showing that λ−1 is an integer in Q, for every zero λ

of P or Q. If λ violates this condition, there are a prime number p and an embedding Q ι−→ Qp

such that |ι(λ)|p < 1 holds for the unique extension of the p-adic absolute value to Qp. If λ is
a zero of Q then

P (λ) = Z(λ)Q(λ) = 0

as the power series Z(λ) converges by (6). This is a contradiction to our previous observation
that P and Q are coprime. As (6) also shows that Z−1 is a formal power series with integer
coefficients, the possibility of such a λ being a zero of P can likewise be excluded.

The derivation of the Weil conjectures from the assumption of the Proposition is now
complete. The assertion about the equivalence of W (Xn/kn, d,∞, ε) and W (Xn/kn, d, ε, ε) also
follows Poincaré duality as in the second step. �
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3. Overview over the proof

By Proposition .2.8.1, the proof of the Weil conjectures is reduced to the proof of a weaker
assertion about Frobenius eigenvalues on Hd(X,Qℓ), where d = dim(X) may be assumed to be
even. The proof of this proceeds by induction on the even number d and considers morphisms

X̃o
f−−→ So = P1

ko
with the property that f is smooth over S \ F , where F is finite. Moreover,

the fibres over the elements of F have precisely one singularity of a specific simple type. Here
X̃o is a suitable blow-up of Xo. By Corollary .2.6.1 it is possible to replace Xo by this blow-up.
Let X and X̃ denote the base-changes from Specko to Speck. We will consider the Frobenius
eigenvalues on the terms E0,d

2 , E1,d−1
2 and E2,d−2

2 of the spectral sequence

Ep,q
2 = Hp(S,Rqf∗Qℓ,X̃)⇒Hp+q(X̃,Qℓ).

If f was smooth, Theorem 4 would imply that all Rqf∗Qℓ,X̃ are locally constant. In our case,
the assumption about the singularities of f implies that this still holds with the exception
of the cases p = d − 1 and p = d, in which cases Proposition .2.3.1 fails in a way which is
relatively easy to describe. This is done in the subsection on Picard-Lefschetz formulas where
the situation near a single f ∈ F is investigated in terms of vanishing cycles.

The “global” situation where all f ∈ F are considered is investigated in another subsection.
From these results it will then be easy to give a proof of the Weil conjectures.

3.1. Existence of Lefschetz pencils.

Definition 1. Let X be a prescheme of finite type over a field k and x ∈ X a closed point.
If k is algebraically closed, x is called an ordinary double point if the completion of the local
ring admits a representation as

ÔX,x
∼= k[[X0, . . . , Xd]]

/

f · k[[X0, . . . , Xd]]

where f is a formal power series

f =
∞
∑

l=2

fl

such that fl is a homogenuous polynomial of degree l and the bilinear form

B(x, y) = f2(x+ y)− f2(x)− f2(y)
is non-degenerate. If k is arbitrary and k an algebraic closure, the condition is instead that all
preimages of x in the base-change X of X to k are ordinary double points of X.

Let V̌ be the dual k-vector space to V = kn+1 and P̌n
K = P(V̌ ) be the dual projective space

of hyperplanes in Pn.

Definition 2. Let X be a smooth projective connected variety over an algebraically closed
field k. A closed embedding X i−→ Pn

K is called a Lefschetz embedding if there is a closed subset
A ⊆ P̌n

k of codimension > 1 such that no H ∈ U = P̌n \ A contains an irreducible component
of X and such that for H ∈ U , the intersection scheme H ∩X has at most one singular point,
which is an ordinary double point.
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It can be shown that every X satisfying the assumptions of the definition has a Lefschetz

embedding. In fact, if X io−−→ Pn is any closed embedding then its composition with the closed
embedding Pn → PN defined by the line bundle OPn(d) is a Lefschetz embedding for sufficiently
large d. In particular, if X comes from a projective scheme Xo over a finite field ko of which K
is an algebraic closure, then on can chose a Lefschetz embedding defined over ko.

By a line in P̌n
K we understand the image D of a morphism P(W )→ P(V̌ ) where dimW = 2.

The lines D are in canonical bijection with the linear projective subspaces Ď ⊆ Pn where Ď
is the image of P(W⊥) → P(V ) = Pn

k . If x 6∈ Ď then there is a unique hyperplane H ∈ D
containing x.

For our algebraically closed k, the generic line D does not intersect the codimension ≥ 2
subset A from Definition 2. Also, the generic Ď has transversal intersection with X. We assume
that D has been chosen in this way. As the generic hyperplane has transversal intersection with
X we can also chose D such that it contains at least one such hyperplane H. We call such D
a Lefschetz pencil.

Let X̃(k) be the set of pairs (x,H) with x ∈ X, H ∈ D and x ∈ H. This is the set of closed

points of a unique reduced closed subscheme X̃ ⊆ X×D. LetX f−−→ D denote the projection to
the second factor. The fibres of this projection are the intersections of X with the hyperplanes
in D. As the generic element of D intersects X transversally, all but finitely many fibres are
regular. As D does not intersect A, the exceptional fibres have but one singularity which is
an ordinary double point. It is easy to see that X̃ is the blow-up of the regular codimension
two subscheme X ∩ Ď of X. In particular, X̃ is regular and we have a birational morphism
X̃ → X.

If X comes from Xo over a finite field ko, our argument for the selection of D may fail over
ko, but it is still possible to chose a suitable D which is defined over a finite extension field kn

of ko. The morphism X f−−→ D is then defined over kn.
The local behaviour of f at a closed point x ∈ X where it fails to be smooth can be

described as follows:

Definition 3. Let X f−−→ S be a morphism of finite type where S is one-dimensional
and regular. We assume that f is smooth over an open dense subset of S. Let x ∈ X be a
closed point of the geometric fibre of f at a geometric point σ of S, and let A be the strict
Henselization OSét,σ. We say that f has an ordinary double point at x if the geometric point
of X×S

SpecA defined by σ and X has an étale neighbourhood of the form

A[X0, . . . , Xd]
/

(Q+ u)A[X0, . . . , Xd]

where u is an element of the maximal ideal m of A and Q is a homogenuous polynomial of
degree two such that Qo = Q mod m is non-degenerate as in Definition 1, the bilinear form
Qo(x+ y)−Qo(x)−Qo(y) being non-degenerate.

In particular, the condition implies that f is flat at x.
The considerations in [FK88, III.2], in particular Proposition III.2.8, show that all singu-

larities of a morphism X̃ f−−→ D defined by a Lefschetz pencil are ordinary double points.
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3.2. The Picard-Lefschetz formula. Similar to Proposition .2.3.1 we consider a situa-

tion of a proper morphism X f−−→ S where X is regular and S the spectrum of a strictly
Henselian discrete valuation ring A with field of quotients K. These assumptions, which are
a bit more restrictive than for Proposition .2.3.1, are made for the sake of convenience. We
relax the condition of f being smooth to the condition that there is a closed point x of the
fibre Xs of f over the closed point s ∈ S such that f is smooth outside x. Then the second
part of Proposition .2.3.1 still applies to X \ {x} → S. Thus, if kX is as in Proposition .2.3.1,
RpkX∗k

∗
XF for p > 0 is a skyscraper sheaf supported at x and given by an abelian group Φp,

and F κ−−→ kX∗k
∗
XF is an isomorphism outside x. Since X is regular of positive dimension this

implies that κ is a monomorphism whose cokernel is again a skyscraper sheaf at x given by an
abelian group Φ0.

Because of this, all terms Ep,q
2 with pq > 0 in the Leray spectral sequence (.2.3.4) vanish.

The only non-vanishing differentials are

Φr−1 = E0,r−1
2 = E0,r−1

r → Er,0
r = Er,0

2 = Hr(Xét, kX∗k
∗
XF)

with r > 1. Taking appropriate care of the slightly different situation in cohomological degree 0,
the assertion of Proposition .2.3.1 about the cospecialisations being isomorphism gets replaced
by a long exact sequence involving the groups Φp of vanishing cycles:

(1) 0→ H0
(

(Xs)ét,F
)

→ H0
(

(Xη)ét, k
∗
XF

)

→ Φ0 → H1
(

(Xs)ét,F
)

→ . . .

→ Φp−1 → Hp
(

(Xs)ét,F
)

→ Hp
(

(Xη)ét, k
∗
XF

)

→ Φp → . . .

We are only interested in applying this to cohomology with coefficients in Qℓ. Applying the
direct limit to (1) is possible without problems as the abelian groups involved are finite and a
Mittag-Leffler condition is thus satisfied. In the following, we will thus apply (1) with F = Qℓ,X .
The Φp are then finite-dimensional Qℓ-vector spaces.

It is necessary to calculate them in the case where the singularity of f at x is an ordinary
double point. Because the definition of Φp local with respect to Xét, it is possible to replace X
by an appropriate quadric with the correct degeneracy. If the dimension d of X over S is 1, one
has a P1 over η degenerating to Xs, a union of two copies of P1

k(s) joined along ∞. Applying

(.2.6.2) with X = Xs, Y = {∞} gives

dimHp(Xs,Qℓ) =











1 p = 0

2 p = 2

0 otherwise.

Comparing this with (1) shows that, at least when d = 1, Φp = 0 when p 6= d while Φd

is one-dimensional. It turns out that this is the case for arbitrary d. The considerations for
showing this in general are relatively straightforward but lengthy, and would probably not fit
into a lecture of four hours per week for one-term in which the proof of the Weil conjecture is
also given and the material from our previous section formulated. For instance, in [FK88] the
relevant chapter III is about three times as long as the sections devoted to the actual proof
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of the Weil conjecture, which is relatively short but not at all straightforward. Even so, they
formulate some of the relevant facts for the complex-analytic situation without proof.

We thus only quote the final result, and we do so only in the case of odd d, which is the
only case relevant for our purposes. This case is [FK88, Theorem III.4.3]. In [Del74, (4.3)]
the general case is recalled from SGA7-II. The case of even d requires odd characteristic and
has a slightly different description of the monodromy action. In our case, this involves the
homomorpism

Gal(K/K)
χZ/nZ−−−−−→ µn

χZ/nZ(σ) =
σ
(

n
√
u
)

n
√
u

(2)

where u ∈ mA is as in Definition .3.1.3 and the same root must be used in the enumerator and
denominator. This is well-defined because µn ⊆ A when n is invertible in A. Passing to the
limit over n = ℓk also gives

Gal(K/K)
χQℓ−−−→ Qℓ(1)

Theorem 11. Let S be the spectrum of a strictly Henselian discrete valuation ring A. Let

Λ = Z/rZ or Λ = Qℓ with r (resp. ℓ) invertible in A. Let X
f−−→ S be a proper morphism which

is smooth of odd relative dimension d outside a closed point x of the closed fibre, where f has
an ordinary double point. Let 〈·, ·〉 denote the canonical alternating Poincaré duality pairing
on Hd(Xη,Λ) with values in Λ(−d). The sheaves Rpf∗ΛX are then locally constant on S unless
p = d or p = d + 1. In these cases, their stalks at the closed and generic geometric points are
linked by an exact sequence

(3) 0→ Hd(Xs,Λ) c−→ Hd(Xη,Λ) α−−→ Λ
(

−d+ 1

2

) β−−→ Hd+1(Xs,Λ) c−→ Hd+1(Xη,Λ)→ 0

involving the cospecializations c and with

α(η) = 〈η, δ〉 with δ ∈ Hd
(

Xη,Λ
(d− 1

2

)

)

β(t) = t · δ∗ with δ∗ ∈ Hp
(

Xs,Λ
(d+ 1

2

)

)

.

The action of Γ = Gal
(

K
/

K
)

on Hd+1(Xη,Λ) is trivial, and the choice of δ can be made

such that the action of σ ∈ Gal(K/K) on Hd(Xη,Λ) is given by

(4) σ(x) = x+ (−1) d+1
2 χΛ(σ) · 〈x, δ〉 · δ,

with χΛ defined before the formulation of the theorem.

Remark 1. For the investigation of Lefschetz pencils the theorem will be applied with A
the strict Henselezation of OP1

k
,f . In this application, the Galois group Γ in the Theorem is

called the local monodromy group at f .
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Remark 2. • It is clear from the exact sequence that precisely one of δ and δ∗ va-
nishes. Our conditions characterize the vanishing cycle δ only up to sign. In the case
where it does not vanish the dual vanishing cycle δ∗ is only characterized uniquely up
to multiplication by a unit in Λ. There is a refinement [FK88, Proposition III.4.8] of
this which however is not needed for our purposes.
• Note that χΛ depends on the singularity of f at x, namely χΛ = ϑe where e is the
valuation exponent of u and ϑ is defined like χ, replacing u by a uniformizer π ∈ A.
Note that this formula for χ writes its target as a multiplicative group while in (4) it
is written as an additive group. The exponent e can be thought of as some order of
degeneracy of f near x.

3.3. Global Lefschetz theory. We now apply this result to the case of a morphism

X̃ f−−→ P1 defined by a Lefschetz pencil, again limiting considerations to the case of odd fibre
dimension d. While Theorem 11 only makes assumptions about the singularities of f most
results in this subsection are limited to f obtained from a sufficiently generic Lefschetz pencil,
as will become clear from the proof of Theorem 12.

Let A ⊆ P1 be the finite subset over which f fails to be smooth. Then Rdf∗Qℓ,X is locally
constant over U = P1 \ A, by Theorem 4. If k = C one may pass to a complex-analytic local
system (ie., a locally constant sheaf of Qℓ-vector spaces for the ordinary topology). If u ∈ U is a
closed point this is given by a representation of π1(U, u) on the Qℓ vector space V = Hd(Xu,Qℓ),
the cohomology of the fibre at u. For f ∈ A it is possible to construct an element γp of π1(U, u)
from a path

I = [0, 1] p−−→ P1 \ (A \ {f})
from u to f as follows. Let U be a contractible neighourhood of f containing no other element
of A. Let λ ∈ I be such that λ(t) 6= f p(t) ∈ U for t ∈ [λ, 1]. Define γp by going from u to
p(λ) along p, then turning counterclockwise once around f in U , the going back from p(λ) to
u = p(0) along p. This is easily seen to be independent of the choice of λ, then of the choice of
U . It depends on p only by conjugation with an element of π1(U, u). One often supresses this
dependence and writes γf = γp, but then only conjugacy class of γf is well-defined. Note that
regardless of the choices for p made, the γf generate the free group π1(U, u).

We would like to generalize this to arbitrary ground fields. Unfortunately there is a problem
in the case where k is of characteristic p > 0, which is the case we are interested in. In this case,
the étale fundamental group πét

1 (U, u) is more complicated than expected from the complex
analytic situation. For instance, if U = A1

k it will fail to vanish because we have the finite étale
Artin-Schreier morphism

A1 → A1 t→ tp − t
with wild ramification at∞. Fortunately Theorem 11 implies the tameness of the ramification
of Rdf∗Qℓ,X at the elements of A. Recall that πét

1 (U, u) is the automorphism group of the fibre
functor

(

V υ−−→ U
)

→ υ−1(u)
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on the category of finite étale morphisms V → U . Replacing this by the full subcategory of all
V → U for which the ramification at the elements of A is at most tame we get a quotient of
πét
1 (U, u) which for the purposes of this exposition will be denoted πt

1(U, u).
If A is a strictly Henselian discrete valuation ring and Ω = SpecA \ {mA

}

and ηA the
spectrum of a separable closure of the field of quotients of A we have a similar quotient
πt
1(Ω, ηA) of π

ét
1 (Ω, ηA) by the subgroup of all elements acting trival on étale covers of Ω with

tame ramification at mA. Applying (.3.2.2) with u a uniformizing element of A gives us an
isomorphism

(1) πt
1(Ω, ηA)→

∏

ℓ6=c

Zℓ(1),

where c is the characteristic of the residue field. This isomorphism is independent of the choice
of uniformizer. We apply this to the strict Henselization A = OP1

ét,u
at u. The inverse of (1)

composed with the morphism on fundamental groups defined by Ω→ U defines a morphism
∏

ℓ6=c

Zℓ(1)→ πt
1(U, ηA),

where now c is the characteristic of the ground field. Conjugating with a morphism from ηA
to u in the étale fundamental groupoid Πét

1 (U) we get a homomorphism
∏

ℓ6=c

Zℓ(1)
γf−−→ πt

1(U, u)

which is unique up to conjugacy by elements of πt
1(U, u). Again it can be shown that, regardless

of the choices made, the images of the γf,ℓ generate π
t
1(U, u) topologically.

If A is as above, Theorem 11 describes the relation between the fibres of Rdf∗Qℓ at f and
ηA. Using the morphism from u to ηA in Πét

1 (U) chosen for the definition of γf , we may identify
the fibres at ηA and u, defining a vanishing cycle δf ∈ Hd

(

Xu,Qℓ(
d−1
2
)
)

.

(2) γf (λ)h = h± λℓ 〈h, δf〉 · δf
where λℓ is the ℓ-component of λ. Let E ⊆ V be the πét

1 (U, u)-invariant subspace generated by
the Qℓ(frac1− d2)-multiples of all vanishing cycles δf .

Theorem 12. Let X → PN be a Lefschetz embedding. Recall that the set V of all lines
D ⊆ P̌N defining a Lefschetz pencil for f is an open dense subset of the Grassmanian of all
lines in P̌N . We also assume the dimension of X to be even such that the fibre dimension d
of f is odd. For D in an open dense subset W of V , the vanishing cycle γf is up to sign and
up to conjugacy by an element of πt

1(U, u) independent of f . Moreover, the representation of
πt
1(U, u) on M = E/E∩E⊥ is absolutely irreducible in the sense that it is irreducible and stays

so after ⊗Qℓ
L, for any field extension L of Qℓ.

Proof. The proof of the first assertion will only be sketched, referring to [FK88, III.7]
for details. Let X → PN and D ⊆ P̌N be the Lefschetz embedding and pencil used to define
f . Let Z be the “set” of (x,H) with H ∈ P̌N and x ∈ X ∩H. We have a projection Z g−−→ P̌N
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to the second factor. We also have X̃ ⊆ Z. In fact, X̃ f−−→ D is derived from Z g−−→ P̌N

by base-change with respect to the embedding D ⊆ P̌n. By proper base-change it follows
that Rdf∗Qℓ,X̃ is isomorphic to the pull-back of Rdf∗Qℓ,Z to D. Let F ⊆ P̌n be the set of
all hyperplanes touching X at least one point. This is easily seen to be irreducible, being the
image of a certain projective fibration P(E) over X. Moreover, g is smooth over Ω = P̌N \ Z,
and A = D ∩ F . It is shown in [FK88, Proposition A I.16] that

(+) πt
1(U, u)→ πt

1(Ω, u)

is surjective.
If F has codimension > 1 we define W by excluding all lines intersecting it from V . In this

case we are done because A is then empty. Otherwise, the subset F ′ ⊆ F of all hyperplanes H
touching X in more than one point or with an intersection which fails to be an ordinary double
point is a proper subset because codim(F ′, P̌N) ≥ 2 by our definition of Lefschetz embeddings.
Applying Theorem 11 to the strict localization of P̌N at the generic point of F one obtains that
the ramification of Rdg∗Qℓ,Z at F is tame. It follows that the action of πt

1(U, u) on V factors
over (+). As (+) is surjective it is sufficient to show that the different vanishing cycles are
πt
1(Ω, u). However, (+) maps all γf to a single conjugacy class of morphisms

∏

ℓ6=c

Zℓ(1)
γ−−→ πt

1(Ω, u)

which is essentially the analog of γf with U replaced by Ω and f by the generic point of F .
Since δf is uniquely determined up to sign by (2), our claim about all {±γf} being conjugate
follows. We may actually take W = V in this case.

For the other assertion, let N ⊆ M ⊗Qℓ
L, with be a non-vaninshing πt

1(U, u)-invariant
subspace. As N 6= 0 there are m ∈ N and f ∈ A such that 〈m, δf〉 6= 0 for an appropriate
choice of δf . By (2) and its πt

1(U, u)-invariance, N contains the image of δf in M . By the
previous assertion it also contains the images of all vanishing cycles inM , hence coincides with
M ⊗Qℓ

L. �

Theorem 13 (Kazhdan-Margulis). With M = E/(E ∩ E⊥) as before and for Lefschetz
pencils as in the previous theorem, the image of πt

1(U, u) in the symplectic group Sp(M) for
the symplectic form defined by the Poincaré duality pairing is open with respect to the ℓ-adic
topology.

Proof. Again, the following is intended to be a sketch of proof. Let sp(M) be the set of
all endomorphisms A ofM such that the dual A∗ with respect to the symplectic form coincides
with −A. This is a Lie algebra with Lie bracket [A,B] = AB−BA. For t ∈ Qℓ sufficiently close
to zero, the exponential series for exp(εA) converges to an element of Sp(M). Let g ⊆ sp(M)
be the subset of all A such that exp(tA) is in the image of πt

1(U, u), for all sufficiently small
t ∈ Qℓ. Obviously this is πt

1(U, u)-invariant, hence also invariant under exp(tA) with A ∈ g

and t sufficiently small. Using the Campbell-Baker-Hausforff formula one can derive that g is
a Lie subalgebra of sp(M). Let W ⊆M be the subset of all m such that

gm : x→ 〈x,m〉m
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belongs to g. By (2), W contains all vanishing cycles. Moreover, W is closed and Qℓ ·W ⊆ W .
We have

〈m,n〉 gm+n = 〈m,n〉 (gm + gn) + [gm, gn]

and it follows that for m,n ∈ W , 〈m,n〉 = 0 or m+ n ∈ W . Let U ⊆ W is a largest subvector
space ofM contained inW . This does not vanish asW contains the vanishing cycles. If w ∈ W
is not orthogonal to U then w + ω ∈ W for ω ∈ U \w⊥, and by the closedness of W it follows
that U +Qℓ · w ⊆ W . By the maximality of U it follows that w ∈ U . Thus,

W = U ∪ U⊥ ∩W.
From (2) and because of γf ∈ W , it follows that U is invariant under the images of γf . Since
these generate πt

1(U, u) topologically, the previous assertion shows U =M . But the gm generate
sp(M) as a Lie algebra. Hence g = sp(M), from which the assertion can be derived. �

3.4. An initial estimate. In this subsection we present the material from [Del74, 3.
and 6.] or [FK88, IV.2 and IV.3]. Let U = P1

k \ A be as before. We now assume that k is
the algebraic closure of a finite field ko with q elements over which U is defined. U is thus the
preimage of an open Uo ⊆ P1

ko
. Let Fo is a locally constant Qℓ-sheaf on Uo and F its preimage

on U . For every closed point x ∈ U , let

Speck ξ−−→ U

be a geometric point of U centered at x. We denote the image of ξ under U → Uo by the same
letter ξ. We have a canonical isomorphism Fξ

∼= Fo,ξ. We assume that a choice of ξ has been
made for each x and just abbreviate this to Fx. On this space the Galois group Gal

(

k/k(x)
)

acts. In particular, we have an action of the Frobenius element Fx (sending λ ∈ k to λ#k(x))
on Fξ. This is a special case of the action of πét

1 (Uo, ξ) on Fo,ξ, namely this action applied to
the image of Fx under G = πét

1

(

Speck(x), ξ
)

→ πét
1 (Uo, ξ). For the sake of simplicity, this image

will be denote by the same notation Fx ∈ πét
1 (Uo, ξ).

Remark 1. The definition of the Galois group action on geometrical stalks or cohomology
groups is by pull-backs. It thus involves a sign change in the sense that the pull-back is taken
with respect to the action σ−1 rather than σ, as one would get an “anti-action” otherwise.
Because of this, there is a similar sign change here in the sense the the “geometric Frobeniuses”
we have encountered so far and which are defined in terms of pull-back along the Frobenius
morphisms are in fact inverse to the “arithmetic Frobeniuses” defined as the action of the
Frobenius element of the Galois group on stalks or cohomology classes. For instance, if ρ
denotes the action of πét

1 (Uo, u) on Fu then the arithmetic Frobenius endomorphism FXo,Fo of
Fu coming from the definition of X and F over ko is in fact ρ(F−1

u ) rather than ρ(Fu). This
must be taken into account when the action of πét

1 (Uo, u) on Fu is used to obtain information
about geometric Frobeniuses in the following considerations.

We say that Fo is of weight β if all eigenvalues λ of Fx on Fξ are algebraic numbers satisfying

|ι(λ)| = #k(x)β/2



32 INHALTSVERZEICHNIS

for all complex embeddings ι of the algebraic number field Q(λ) ⊆ Qℓ.
For the sake of simplicity we also assume that U has a point u defined over ko. The geometric

point of Uo obtained as {u} → U → Uo will also be denoted u. If x and ξ are as above then
the choice of a morphism ξ p−−→ u in Πét

1 (Uo) defines an isomorphism

(1) Fx
∼= Fu

identifying the action of Fx ∈ πét
1 (U, ξ) on the former with that of

φx = pFxp
−1 ∈ πét

1 (Uo, u)

on the latter stalk. Of course φx depends on the choice of the “path” p but its conjugacy class
in πét

1 (Uo, u) is unique.
We want to investigate the L-function

(2) LUo,Fo(t) =
∏

x ∈ Uo closed

LUo,Fo,x(t),

where the local factor at x ∈ Uo is

(3) LUo,Fo,x = det
(

1− t[k(x):k]Fx

∣

∣ Fx

)−1
.

By a suitable generalization of (.2.8.7),

(4) LUo,Fo(t) =
det

(

1− tFXo,Fo

∣

∣ H1
c (U,F)

)

det
(

1− tFXo,Fo

∣

∣ H0
c (U,F)

)

det
(

1− tFXo,Fo

∣

∣ H2
c (U,F)

) .

This can be derived from an appropriate version of Theorem 8 in the same way in which (.2.8.7)
was deduced from Theorem 8. Appropriate versions of Theorem 8 are [Mil80, Theorem VI.13.3]
or [FK88, Corollary II.3.15].

Proposition 1. Assume that Fo is equipped with a symplectic form

(5) Fo ⊗Fo
ψ−−→ Qℓ(β)

for which that the following assumptions hold:

• If ξ and x are as above, the characteristic polynomial of Fx on Fξ has coefficients in Q.
• The image of

(6) G = πét
1 (U, u)→ Sp(Fu)

is an open subgroup.

Then F is of weight β.

Proof. Let F (2k) be the 2k-th tensor power of F . Because of the formula Tr(A ⊗ A) =
Tr(A), the formal power series coefficients of the local factor

(7) LUo,Fo,x = det
(

1− t[k(x):k]Fx

∣

∣ F (2k)
x

)−1
= exp

(

∑

k=1

Tr
(

Fk
x

∣

∣ F (2k)
x

)

are positive for each x ∈ Uo. The same holds for the coefficients of their product LUo,Fo(t) over
all closed points x ∈ Uo. The following Lemma 1 applied to F (2k) shows that this formal power
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series in t ∈ C actually converges when |t| ≤ q−kβ−1. By the positivity of the power series
coefficients it follows that the radius of convergence of each factor (7) is also ≥ q−kβ−1. If λ is

an eigenvalue of Fx on Fx then λ2k is an eigenvalue of Fx on F (2k)
x hence

(@)
∣

∣ι(λ)2k
∣

∣ ≤ qkβ+1

as ι(λ)−1 is a pole of (7). Because (@) holds for all positive integers k we get |ι(λ)| ≤ q
β
2 , and

the opposite inequality may be derived using the symplectic form ψ. �

Lemma 1. Under the assumptions of the proposition on F , the product

L
Uo,F

(k)
o
(t) =

∏

x ∈ Uo closed

L
Uo,F

(k)
o ,x

(t),

with the factors given by (7), is a rational function of t, and all poles have |t| ≥ q−1−kβ/2.
Moreover, if λ ∈ Qℓ is an eigenvalue of FXo,Fo on H2

c (U,F (k)) then λ is algebraic over Q and

(8) |ι(λ)| = q1+kβ/2

for all embeddings Q(λ) ι−→ C.

Proof. This is trivial when F = 0. Thus, let F 6= 0. Then the assumption about (6) is
obviously violated for U = P1 as this is simply connected. Therefore, U is affine, and by (4)
and the vanishing of H0

c (U,F), we have

(9) L
Uo,F

(k)
o
(t) =

det
(

1− tF
Xo,F

(k)
o

∣

∣ H1
c (U,F (k))

)

det
(

1− tF
Xo,F

(k)
o

∣

∣ H2
c (U,F (k))

)

and it is sufficient to show the second assertion.
Let V = Fu be the stalk at the closed point u ∈ U selected. By Poincaré duality, the H2

c

occuring in the denominator is dual to H0(U,F (k)∗) ∼= V⊗2k∗G, where V G denotes the space of
G-invariants in V . Hence

H2
c (U,F (k)) ∼= V⊗2k

G (−1)
as the duality pairing is with values in H2

c (U,Qℓ(1)). In this, VG denotes the space of G-
coinvariants of V , the quotient of V by the subspace generated by the gv− v for g ∈ G, v ∈ V .
It is thus sufficient to show the algebraicity of λ and

(+) |ι(λ)| = qkβ

for every eigenvalue λ of F−1
u on

(@)
(

V⊗2k
)

G

and every Q(λ) ι−→ C. 1 It follows from our assumption about (6) that the action of the group
Gp = Gp(V , ψ) of symplectic similitudes of V on (@) is trivial on Sp(V , ψ). Let

Gp χ−−→ Qℓ

1The reason for considering eigenvalues of F−u

u
instead of Fu is explained in Remark 1
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be the character defined by ψ(gv, gw) = χ(g)ψ(v, w) for v, w ∈ V and g ∈ G. Our previous
remark shows that the action of Gp on (@) factors over Gp χ−−→ Q∗

ℓ . Because this is commutative
the eigenspace of λ in (@) contains a one-dimensional Gp-invariant subspace W defined over
Qℓ. On this g ∈ Gp acts by θ(χ(g)) for a certain group homomorphism

Q∗
ℓ
θ−−→ Qℓ

∗

Applying this with g given by multiplication by t ∈ Q∗
ℓ , χ(g) = t2 we find that θ(t2) = tk. It

follows that

λ2 = θ
(

χ(F−1
u )

)2
= θ(qβ)2 = qkβ

and the desired assertion (+) follows. �

Corollary 1. Under the assumptions of the Theorem let λ ∈ Qℓ be an eigenvalue of
FUo,Fo on H1

c (U,F). Then λ is algebraic over Q and

(10) |ι(λ)| ≤ q1+β/2

holds for all Q(λ) ι−→ C.

Proof. If F = 0 this is trivial and otherwise U is affine. Thus, we may apply (9) with
k = 1. Let P and Q denote the polynomials in the enumerator and denominator. By the
Lemma applied with k = 1 the coefficients of Q are algebraic numbers and all zeroes satisfy

(@) |ι(λ)| = q1+
β
2 .

Because the formal power series L
Uo,F

(k)
o
(t) has rational coefficients by our assumption on F ,

the coefficients of P are also algebraic over Q. Thus, λ must be algebraic over Q. Extending ι
to a subfield containing all coefficients of P and Q in addition to λ we have

(+) L
Uo,F

(k)
o
(z)

(

ι(Q)
)

(z) =
(

ι(P )
)

(z)

for all complex numbers z for which L
Uo,F

(k)
o
(z) converges absolutely. It follows from the trivial

bound #Uo(l) = O(#(l)) for finite fields l and the fact that Fo has weight β that the Euler
product (2) converges when |t| ≤ q−1−β/2. Hence (+) holds when |z| < q−1−β/2, and moreover
L(z) 6= 0 in this case. By (@) we also have

(

ι(Q)
)

(z) 6= 0. Thus,
(

ι(Q)
)

(z) 6= 0 when z ∈ C

satisfies |z| < q−1−β/2. Applying this to z = ι(λ) gives (10). �

The verification of the rationality assumption in Proposition 1 uses the following Proposi-
tion, which reduces this assumption to a considerably weaker assumption. In its formulation,
the reason for the occurence of F−1

x rather than Fx is again Remark 1. For a closed point x ∈ U
let d(x) = [k(x) : ko]. We have d(x) = d(Fx) where d on the right hand side denotes the group
homomorphism

πét
1 (Uo, u)→ πét

1 (Specko)
∼= Ẑ

to the profinite completion Ẑ of Z, with kernel πét
1 (U, u).
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Proposition 2. Let ρ denote an action of πét
1 (Uo, u) on the finite-dimensional symplectic

Qℓ-vector space (V, ψ) by symplectic similitudes, such that the image

(11) ρ
(

πét
1 (U, u)

)

is contained in and an open subgroup of Sp(V, ψ). Assume that there are sequences
(

λi
)m

i=1

and
(

µj

)n

j=1
of elements of Ql such that for each x ∈ U , the rational function

(12)

∏m
i=1(1− λ

−d(x)
i t)

∏n
j=1(1− µ

−d(x)
j t)

det
(

1− tρ(F−1
x )

)

belongs to the subfield Q(t) ⊂ Qℓ(t). Then for every x ∈ U , the polynomial det
(

1 − tρ(F−1
x )

)

has coefficients in Q.

Proof. By shortening the lists othwerise we may assume the sets
{

λi
∣

∣ 1 ≤ i ≤ m
}

and
{

µj

∣

∣ 1 ≤ j ≤ n
}

to be disjoint. Let γ be an automorphism of Qℓ over Q. By our rationality
assumption

(+) det
(

1− tρ(F−1
x )

)

m
∏

i=1

(1− λ−d(x)
i t)

n
∏

j=1

(1− γ(µ)−d(x)
j t) =

= γ
(

det
(

1− tρ(F−1
x )

)

)

m
∏

i=1

(1− γ(λi)−d(x)t)
n
∏

j=1

(1− µ−d(x)
j t).

Let H be the set ℓ-adic units ηQℓ occuring among the λi or µj. In the Lemma 2 following this

proof we derive from our opennes assumption about (11) that, for each ℓ-adic unit η ∈ Qℓ, the
closed set Fη of all σ ∈ πét

1 (Uo, u) for which η
−d(σ) is an eigenvalue has no internal point. The

union F of the Fη with η ranging over the finite set H ∪γ(H)∪γ−1(H) likewise has no internal
point. Let E be the set of integers e > 1 for which one of the λi/µj, γ(λi)/λj or γ(µi)/µj is a

primtive e
√
1. As E is finite, G =

⋃

e∈E eẐ is a proper close subset of Ẑ. Its preimage under the
surjection d is a proper closed subset of πét

1 (Uo, u). As F has no internal points,

Ω = πét
1 (Uo, u) \

(

d−1(G) ∪ F
)

is a non-empty open subset. By the Chebotarev density theorem for number fields there is
x ∈ U with F−1

x ∈ Ω. If this x is used in (+) then the only way for the equation to hold is by

det
(

1− tρ(F−1
x )

)

= γ
(

det
(

1− tρ(F−1
x )

)

)

m
∏

i=1

(1− λ−1
i t) =

m
∏

i=1

(1− γ(λi)−1t)(♭)

n
∏

j=1

(1− γ(µ)−1
j t) =

n
∏

j=1

(1− µ−1
j t)(♯)
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because there is no other way to make a bijection between the zeroes of the polynomials on both
sides. For instance, if λ is an eigenvalue of ρ(Fx), our choice of F has made sure that it is not

among the µ
d(x)
j or the γ(λi)

d(x). From ♭ and ♯ it follows that the coefficients of the polynomials
∏m

i=1(1 − λ−1
i t) and

∏n
j=1(1 − µ−1

j t) are γ-invariant. As this holds for all γ ∈ Aut
(

Qℓ

/

Q
)

,

these polynomials have rational coefficients. But then the remaining factor in (12) must have
rational coefficients as well. �

Lemma 2. Under the assumptions of the proposition on ρ, let η ∈ Qℓ be an ℓ-adic unit.
Then the closed set of σ ∈ πét

1 (Uo, u) for which ηd(σ) is an eigenvalue of ρ(σ) has no internal
points.

Proof. Let λ = ηd(σ). If σ is an internal point of the above set, then the set

{

θ ∈ πét
1 (U, u)

∣

∣ λ is an eigenvalue of ρ(θ)ρ(σ)
}

is neighbourhood of the neutral element in πét
1 (U, u). By our assumption about (11) this implies

that
{

g ∈ Sp(V, ψ)
∣

∣ λ is an eigenvalue of gρ(σ)
}

is neighbourhood of the neutral element in Sp(V, ψ). It is easy to confirm that this cannot be
the case. �

3.5. Proof of the Weil conjectures. As we announced after Proposition .2.8.1 we are
going to prove W (Xn/kn, d,∞, 1/2) for X of even dimension d and n divisible by a suitable
positive integer N depending on Xo/ko. Because we are free to modify N it is actually sufficient
to show this with n = 1 under an additional assumption that ko is as large enough to satisfy
certain assumptions depending on Xo/ko. We will use induction on the even number d, the case
d = 0 being trivial. Let d > 0 and the assertion be shown when dim(X) is an even number
< d. If ko is large enough we have a Lefschetz pencil

X̃o
fo−−→ Uo

where Uo = P1
ko
\ A to which Theorem 12 and Theorem 13 apply, such that the elements of A

are defined over ko and such that U still contains a point u defined over ko. In this we often
indicate base change to k from ko by dropping the subscript o. As was explained before it is
possible to replace X by its blow-up X̃ in the proof of W (Xo/ko, d,∞, 1/2). We will always
use q to denote the cardinality of ko. The embedding U → P1 will be denoted by j.

We consider the Frobenius eigenvalues on the E2-term of

Ek,l
2 = Hk(P1, Rlf∗Qℓ)⇒Hp+q(X̃,Qℓ)

with k + l = d. The only cases where this holds and Ep,q
2 may be 6= 0 are the following.
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3.5.1. The case k = 2, l = d− 2. In this case, F = Rqf∗Qℓ is locally constant on P1, hence
constant as P1 is simply connected. By the calculation of the cohomology of P1

k
it follows that

H2(P1
k ,F) ∼= Qℓ(1)⊗Fu

∼= Qℓ(1)⊗Hd−2(X̃u,Qℓ)

where the last isomorphisms holds by proper base change. The Frobenius eigenvalues on E2,d−2
2

are thus qλ where λ is a Frobenius eigenvalue on Hd−2(X̃u,Qℓ). Let Y be a smooth hyperplane
section of X̃u. By Corollary .2.5.3, λ is also a Frobenius eigenvalue on Hd−2(Y,Qℓ). As the
induction assumption applies to Y , and by the last assertion of Proposition .2.8.1, we have
W (Yo/ko, d− 2, 1

2
, 1
2
) provided that ko is large enough. Then λ is algebraic and all ι(λ) satisfy

(1) q
d−3
2 ≤ |ι(λ)| ≤ q

d−1
2 .

Thus, qλ is algebraic and |ι(λ)| ≤ q
d+1
2 as desired. The lower bound in (1) is not needed here

but has been derived for later use.
3.5.2. The case k = 0, l = d. When applying (.3.2.3) at a point f ∈ A as explained in

Remark .3.2.1, the Γ-invariants in last term in the sequence describe the stalk of j∗j
∗Rdf∗Qℓ

at f . By Theorem 11, Γ actually acts trivially on that term, hence the last term is actually
the stalk of F = j∗j

∗Rdf∗Qℓ at f . The triviality of the Γ-action also shows that F is locally
constant at f . It is thus locally constant, hence constant on all of P1. Moreover, in (.3.2.3) the
term before the last one is the stalk at f of Rdf∗Qℓ. Before this there comes the stalk of a
skyscraper sheaf. Using these considerations, (.3.2.3) gives us an exact sequence

0→ K → Rdf∗Qℓ,X̃ → F → 0

where F is a constant sheaf of Qℓ-vector spaces on P1 with Fu
∼= Hd(X̃u,Qℓ) and where K

is a sum of skyscraper sheaves Qℓ(
d
2
)f over f ∈ A when E = 0 (in which case all vanishing

cycles are 0) and K = 0 otherwise (in which case no vanishing cycle is 0). In any case the only
Frobenius eigenvalue which may occur on H0(P1,K) is qd/2. The Frobenius eigenvalues ϑ on
H0(P1,F) are the ones on Hd(X̃u,Qℓ). Since this is in Poincaré duality with Hd−2(X̃u,Qℓ),
λ = qd−1−ϑ is a Frobenius eigenvalue in the latter space. We have seen before that λ (and hence
ϑ) is algebraic, and applying the lower bound from (1) to λ gives

|ιϑ| ≤ qd−1− d−3
2 = q

d+1
2

as desired. Because of

0→ H0(P1,F)→ E0,d
2 → H0(P1,F)

it follows that all Frobenius eigenvalues on E0,d
2 have the desired property.

Our remark about the vanishing of F when E 6= 0 will be needed again, hence we repeat
it:

Remark 1. If E 6= 0, Rdf∗Qℓ,X̃ is a constant Qℓ-sheaf on P1
k .
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3.5.3. The case k = 1, l = d − 1. This is the hardest the three cases. It is this case for
which Proposition .3.4.1, its corollary and the proposition needed for its application had to be
developed.

As we did in the previous case, we apply Theorem 11 at f ∈ F as announced in Re-
mark .3.2.1. We denote the local monodromy group by Γ as we did in this remark. The first
non-zero term in (.3.2.3) is then canoncially isomorphic to the stalk of R = Rd−1f∗Qℓ at f ,
while Γ-invariants in the second term give the stalk of j∗j

∗R at f . It follows from (.3.2.4)
that the space of Γ-invariants on that term coincides with the kernel of the arrow from it to
the third in (.3.2.3). By the exactness of the sequence, it follows that Rf → (j∗j

∗R)f is an
isomorphism. Thus, the canonical morphism

(2) R ∼=−−→ j∗j
∗R

is an isomorphism.
If E = 0 all vanishing cycles are zero the local monodromy group at each f ∈ F acts

trivially on the generic stalk of R. This triviality of the monodromy action implies that j∗j
∗R

is locally constant near f . As this is the case for all f ∈ A, because of (2) R = Rd−1f∗Qℓ,X̃

is locally constant, hence constant on P1. By the calculation of the cohomology of P1 we have
E1,d−1

2 = 0 in this case.
If E 6= 0, we denote by E ⊆ j∗R and E⊥ ⊆ j∗R the subsheaves defined by the πét

1 (U, u)-
invariant subspaces E and E⊥ of Hd−1(X̃u,Qℓ). It follows from (.3.2.4) that the local mono-
dromy group at each f ∈ A trivially acts on generic stalk of E⊥. Thus, j∗E⊥ and j∗

(

E ∩ E⊥)
are locally constant, hence constant sheaves of Qℓ-vector spaces on P1.

Unfortunately, it is now necessary to split the case E 6= 0 into two subcases. Deligne was
able to deduce the Hard Lefschetz theorem from the Weil conjectures, and from this one can
derive that one of these cases will never actually occur. Since the Weil conjectures are used
in that proof, it is nevertheless necessary to go through that case. We will do this first as it
is the easier of the two subcases, in which Proposition .3.4.1 is not needed and the Frobenius
eigenvalues turn out to be qd/2.

Let E ⊆ E⊥. In this case, let F denote the quotient of R by the constant Qℓ-subsheaf j∗E⊥.
We have

Fu
∼= Hd−1(X̃u,Qℓ)

/

E⊥.

By our assumption E ⊆ E⊥ and by (.3.2.4), the local monodromy group at each f ∈ A trivially
acts on this quotient. Thus, j∗F is a locally constant, hence constant Qℓ-sheaf on P1. From

0→ j∗E → R → F → 0,

the fact that j∗E is constant and the calculation of the cohomology of P1 we derive H1(P1
k ,R) ⊆

H1(P1
k ,R) and we must investigate the Frobenius eivenvalues on this space.

It is easy to see that the morphism F → j∗j
∗F is a monomorphism. It is an isomorphism

over U , and the stalk of its cokernel at f ∈ A is easily identifed with the third term in (.3.2.3).
Thus,

0→ F → j∗j
∗F → S → 0
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where is a sum of skyscraper sheaves if∗Qℓ

(

d
2

)

erected at the points f ∈ A. The Frobenius

eivenvalues on H0(P1
k ,S) are thus qd/2. Finally, we have

H0(P1
k ,S)→ H1(P1,F)→ 0

as j∗j
∗F is constant. This proves our claim that qd/2 is the only Frobenius eigenvalue on E1,d−1

2

which may occur in this case.
Finally, let E not be contained in E⊥. Because all vanishing cycles are πét

1 (U, u)-conjugate to
each other, this implies for each f ∈ A that the vanishing cycle δf at f fails to be orthogonal to
E. Because of (.3.2.4) this implies that the generic stalk Eη of the subsheaf j∗E ⊆ R surjectively
maps to the cokernel of the cospecialization morphism

Rf → Rη.

If F denotes the quotient of R by its subsheaf j∗E ,
(3) 0→ j∗E → R → F → 0,

this implies that F ∼= j∗j
∗F . Because the vanishing cycles have vanishing images in Fη an by

(.3.2.4), the local monodromy group at f trivially acts on Fη. Thus F ∼= j∗j
∗F is a locally

constant, hence constant Qℓ sheaf on P1
k . Its first cohomology is thus zero, and by

H1(P1, j∗E)→ H1(P1,R)→ 0

it is sufficient to show that the Frobenius Eigenvalues on H1(P1, j∗E) have the desired proper-
ties.

As was explained before, the subsheaf j∗
(

E ∩ E⊥) of j∗E is constant. Because the vanishing
cycle at f is not orthogonal to E, the morphism

Eη →
(

E
/

E ∩ E⊥
)

η

induces an isomorphism on cokernels of the cospecialization map from stalks at f . Because of
this, the sequence

0→ j∗
(

E ∩ E⊥)→ j∗E → j∗
(

E
/

E ∩ E⊥
)

→ 0

is exact at f . As the first term is constant we obtain

0→ H1(P1, j∗E)→ H1
(

P1, j∗
(

E
/

E ∩ E⊥
)

)

and it is sufficient to study Frobenius eigenvalues on the latter space. Let G = j∗
(

E
/

E ∩ E⊥
)

.
We have

H1
c (U,G)→ H1(P1, j∗G)→ 0

by an application of (.2.6.2) with X = P1, Y = A. By Corollary .3.4.1 it is sufficient to show
that the assumptions of Proposition .3.4.1 hold for G. For the symplecticity this holds by
definition and the assumption about (.3.4.6) is Theorem 13. The rationality assumption will
be verified using Proposition .3.4.2. The assumption about (.3.4.11) is again Theorem 13 and
it remains to verify condition (.3.4.12). This can be considered for arbitrary Qℓ-adic sheaves
H on Uo. Let us denote this property or H as Rat(H). Of course this condition Rat is much
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weaker than the rationality of the coefficients of the Frobenius characteristic polynomial on
the stalks of H.

Then Rat(H) holds when H extens to a locally constant Qℓ-sheaf on P1
k because this

extension is then constant, implying that H comes from an ℓ-adic sheaf on Specko and the
Frobenius eigenvalues on its stalk at x are just λ[k(x):k] with λ running over a fixed finite set.
The characteristic polynomial of the Frobenius on the stalks of H thus has a form allowed
for the denominator in (.3.4.12), which can thus be chosen such that (.3.4.12) is the constant
rational function 1.

By Theorem 11, our previous remark implies Rat(Rpf∗Qℓ,X̃) when p 6∈ {d, d + 1}. By
Remark 1 this still holds when p = d+1. An application of (.2.8.7) to the (smooth) fibre

(

X̃o

)

x
at x ∈ U now shows Rat(Rpf∗Qℓ,X̃) when p = d because this is the only remaining factor in
(.2.8.7) and the congruence zeta function has rational coefficients. Thus, we have Rat(R)

Finally, we remark that if Rat holds for two terms in a short exact sequence, then it does
for the third, by the multiplicativity of determinants in short exact sequences. From (3) and
Rat(R) we may thus decuce Rat(E) as F is constant. The fact that E ∩E⊥ not implies Rat(G).
The proof of the Weil conjectures is now complete.

4. Errata to [FK88]

Following is a brief list of mistakes I found in [FK88]. It is likely to be incomplete and I may
extend it in the next few weeks, in particular if I find more errors in the parts relevant to an
exam. Most of the errors are typographical and quite easy to guess and correct, although a few
them may present stumbling stones for people with a limited knowledge of étale cohomology
attempting to force their way through [FK88] by reading line by line.

1229. The direct limit should be taken.

1446. left side

14914. H2d
c (X,Qℓ(d))→ Qℓ

14913. I am not fully convinced that “It follows from the previous that the induced mapping
. . . has only torsion modules for its kernel and cokernel” unless X is proper. Passing to the
limit here, using the ARML property, is indeed so easy that the typical reader of a book like
[FK88] may be assumed to be able to do it for himself. But it seems to be necessary to use
the ARML property on both sides, as we do before (.2.6.3), while [FK88, Theorem I.12.15]
only gives it for the H∗

c -side. However, I have not read [FK88] careful enough to be 100% sure
that there is indeed an issue here, and in addition I think that the proof of the aforementioned
theorem still works without compact support when S is a field. A carfule reader or editor of a
new edition of [FK88] may want to have a look at this, however.

15017. The ( after ⊕ is not needed and is never closed.

1506. HomΛ(H
2(d−s)
c (Y, µd−s

n )). The → after the opening ( in the text of the book was
probably inserted by mistake.
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1802. The text is misleading here. The proof started on 1802 and continued on the next
page is for the remark made on 1808, not proposition 1.10.

1816. It is the aforementioned remark which allows one to replace X by X̃ in the Weil 1
proof, not proposition 1.10.

2512. ν 6= n, n+ 1

26618. ψ(σx, σy) = χ(sig)ψ(x, y).

27117. Read H1(D, . . .) for H1(d, . . .).
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