Exercises to "Algebraic geometry I", 5

EXERCISE 1 (4 points). Let $\mathcal{A} \xrightarrow{L} \mathcal{B}$ be left adjoint to the covariant functor $\mathcal{B} \xrightarrow{R} \mathcal{A}$. Show the following:

- L preserves initial objects in the sense that when I is an initial object of A, L(I) is an initial object of \mathcal{B} .
- R preserves equalizers in the sense that whenever $K \xrightarrow{K} X$ is an equalizer of $X \stackrel{a}{\Longrightarrow} Y$ in \mathcal{B} , then $R(K) \xrightarrow{R(\kappa)} R(X)$ is an equalizer of $R(X) \xrightarrow{R(a)}_{R(b)} Y$ in \mathcal{A} .

Moreover, formulate and show the fact that R preserves arbitrary finite or infinite products in A.

REMARK 1. Dually, R preserves final objects and L preserves coequalizers and arbitrary *coproducts* (i. e., products in \mathcal{A}^{op}).

Throughout the remaining exercises, let \mathfrak{A} be one of the categories of sets, commutative or not necessarily commutative rings, or abelian groups or not necessarily abelian groups.

EXERCISE 2 (3 points). Let \mathfrak{S} be the category of \mathfrak{A} -valued sheaves on X and $\mathcal{F} \stackrel{a}{\Rightarrow} \mathcal{G}$ be a pair of morphisms with common source and target in \mathfrak{A} . Show that an equalizer $\mathcal{K} \to \mathcal{F}$ of this pair is given by

$$\mathcal{K}(U) = \left\{ f \in \mathcal{F}(U) \mid a(f) = b(f) \right\},\$$

equipped with the restriction(s) of the required group or ring operation(s).

DEFINITION 1. Let $X \xrightarrow{\xi} S \xleftarrow{v} Y$ be morphisms in a category \mathcal{A} . A fibre product of X and Y over S is an object P of \mathcal{A} with a pair of morphisms $X \xleftarrow{\pi_X} P \xrightarrow{\pi_Y} Y$ in \mathcal{A} satisfying $\xi \pi_X = v \pi_Y$ and enjoing the universal property for such objects: If T is any object of \mathcal{A} together with morphisms $X \xleftarrow{\tau_X} T \xrightarrow{\tau_Y} Y$ such that $\xi \tau_X = v \tau_Y$, then there is a unique morphism $T \xrightarrow{t} P$ such that $\tau_X = \pi_X t$ and $\tau_Y = \pi_Y t$. Fibre products are often denoted $P = X \times_S Y$.

EXERCISE 3 (2 points). Show that fibre products in \mathfrak{A} exist and are given by

$$X \underset{S}{\times} Y = \left\{ (x, y) \in X \times Y \mid \xi(x) = v(y) \right\}$$

where the required algebraic operation(s) is/are given by

$$(x,y)\star(\xi,\upsilon) = (x\star\xi,y\star\upsilon).$$

EXERCISE 4 (2 points). • Show that a morphism $X \to Y$ in a category \mathcal{A} is a monomorphism if and only if

$$X \xleftarrow{\operatorname{Id}_X} X \xrightarrow{\operatorname{Id}_X} X$$

is a fibre product of X with itself over Y.

• Let $\mathcal{A} \xrightarrow{F} \mathcal{B}$ be a covariant functor preserving fibre products: If $X \xleftarrow{\pi_X} P \xrightarrow{\pi_Y} Y$ is a fibre product of X and Y over P in \mathcal{A} , then $F(X) \xleftarrow{F(\pi_X)} F(P) \xrightarrow{F(\pi_Y)} F(Y)$ is a fibre product of F(X) and F(Y) over F(P) in \mathcal{B} . Show that F preserves monomorphisms.

EXERCISE 5 (6 points). Let \mathfrak{S} be the category of \mathfrak{A} -valued sheaves on X. Show that fibre products in \mathfrak{S} exist and are given by

$$(\mathcal{X} \underset{\mathcal{S}}{\times} \mathcal{Y})(U) = \mathcal{X}(U) \underset{\mathcal{S}(U)}{\times} \mathcal{Y}(U),$$

where the fibre product on the right hand side is taken in the target category. Moreover, show that the stalk functors $\mathfrak{S} \to \mathfrak{A}$, $\mathcal{F} \to \mathcal{F}_x$ preserve fibre products.

- REMARK 2. Note that it can be shown as in the first exercise that right adjoint functors preserve fibre products. But the stalk functor typically has no left adjoint.
 - It can be shown in a similar way that the stalk functors preserve equalizers.
 - If follows from the previous two exercises that a monomorphism in \mathfrak{S} induces monomorphisms on stalks. Together with the result proved in the lecture this shows that the property of being a monomorphism in \mathfrak{S} may be tested on stalks.
 - Note that a morphism in A is a monomorphism if and only if the underlying map is injective. This can be seen in various ways, for instance by applying exercises 4 and 3 or by first verifying it for sets, then using exercise 3 on the previous sheet combined with the fact that the fact that the forgetful functor from A to sets has a left adjoint given by the functors of forming the free abelian group, free group, and (commutative or non-commutative) polynomial ring over Z in the appropriate set of generators or variables.

EXERCISE 6 (1 point). Let $R \stackrel{a}{\Rightarrow} S$ be a pair of local ring morphisms with common source and target. Show that Coeq(a, b) is a local ring if and only if a and b define the same morphism on residue fields.

REMARK 3. Note that $S \to \text{Coeq}(a, b)$ is a local ring morphism in this case, for instance by fact 1.3.3 of the lecture, as it is surjective.

EXERCISE 7 (2 points). Let X be a locally ringed space and $U \xrightarrow{j} X$ the inclusion of an open subset of X. Show that we have a bijection

$$\operatorname{Hom}_{\operatorname{LRS}}(T,U) \to \left\{ g \in \operatorname{Hom}_{\operatorname{LRS}}(T,X) \mid g_{\operatorname{Top}}(T) \subseteq U \right\}$$
$$f \to g = jf,$$

where LRS is the category of locally ringed spaces.

Solutions should be submitted Friday, November 24 in the lecture.