Exercises to "Algebraic geometry I", 11

EXERCISE 1 (3 points). Let R. be a \mathbb{Z} -graded ring which has a homogenuous element of degree $\neq 0$ which is a unit in R. Show that we have a bijection between $\operatorname{Spec} R_0$ and the set of homogenuous prime ideals in R. sending $\mathfrak{p} \in \operatorname{Spec} R_0$ to $\mathfrak{q} = \sqrt{\mathfrak{p} \cdot R}$. and the homogenuous prime ideal $\mathfrak{q} \subseteq R$. to $\mathfrak{p} = \mathfrak{q} \cap R_0$.

EXERCISE 2 (6 points). Let R. be an \mathbb{N} -graded ring. Let $\operatorname{Proj}(R)$ denote the set of homogenuous prime ideals of R. not containing R_+ . For a homogenuous ideal $I \subseteq R$., let V(I) denote the set of all elements of $\operatorname{Proj}(R)$ containing I. For a homogenuous element f of R., let V(f) = V(fR).

- Show that there is a topology (called the Zariski topology) on Proj(R.) whose closed subsets are precisely the sets V(I), for homogenuous prime ideals p.
- For $f \in R_d$ with positive d, construct a homeomorphism between $\operatorname{Proj}(R) \setminus V(f)$ and $\operatorname{Spec}((R_f)_0)$.
- Show that the open subsets of the form Proj(R.) \V(f), with f as in the previous point, form a topology base of Proj(R.) and that V(f) ⊇ V(g) if and only if some power of f is divisible by g.
- **REMARK 1.** The fact that prime ideals containing R_+ are excluded corresponds to the fact that in classical projective algebraic geometry we have $V(\mathfrak{k}[X_0, \ldots, X_n]_+) = \emptyset$. It is easy to see that the prime ideals containing R_+ are automatically homogenuous and that they are in canonical bijection with $\operatorname{Spec}(R_0)$.
 - Note that the fact that f has positive degree is essential for the last claim, as (e. g.) $\operatorname{Proj}(R.)$ is empty when $R_+ = 0$, such that V(g) may be empty for non-units g. However, g is allowed to be of degree 0.

It follows from the last point that the localization $(M_{\cdot})_f$ of a graded R_{\cdot} -module M_{\cdot} up to canonical isomorphism only depends on f_{\cdot} Let \widetilde{M}_{\cdot} be the sheafification of the presheaf

$$(\operatorname{Proj}(R.) \setminus V(f)) \Rightarrow ((M.)_f)_0$$

on the topology base of the last point of the previous exercise. In the case where $M_{\cdot} = R_{\cdot}$ this has the structure of a sheaf of rings, as $((R_{\cdot})_f)_0$ is a ring. We denote this sheaf of rings by $\mathcal{O}_{\text{Proj}R_{\cdot}}$.

EXERCISE 3 (6 points). • Show that under the homeomorphism of the second point, the restriction of \widetilde{M} . to $\operatorname{Proj}(R.) \setminus$

V(f) is isomorphic to the presheaf $((M_{\cdot})_f)_0$ on $\operatorname{Spec}((R_{\cdot})_f)_0$, where in the case $M_{\cdot} = R_{\cdot}$ this isomorphism is an isomorphism of sheaves of rings. If follows that $\operatorname{Proj}(R_{\cdot})$ is a prescheme and \widetilde{M}_{\cdot} a quasi-coherent sheaf of modules on it.

- Show that $\operatorname{Proj}(R.)$ is a scheme.
- Decide whether $\operatorname{Proj}(R.)$ is always quasi-compact.

Remark 2.

 $\left(\mathcal{O}_{\operatorname{Proj} R.} \right)_{\mathfrak{p}} \cong \left((R.)_{\mathfrak{p}} \right)_{0}$ $\left(\widetilde{M.} \right)_{\mathfrak{p}} \cong \left((M.)_{f} \right)_{0}$

• One easily derives that

where by convention in the graded case the localization $M_{\mathfrak{p}}$ at a homogenuous prime ideal inverts the *homogenuous* elements of $R \setminus \mathfrak{p}$.

• In the case $M_{\cdot} = R_{\cdot}[d]$, \widetilde{M}_{\cdot} is the sheafification of

$$(\operatorname{Proj}(R.) \setminus V(f)) \Rightarrow ((R.)_f)_d$$

and is denoted $\mathcal{O}(d)$. This is a line bundle when R_+ is generated by R_1 , since in this case the open subsets $\operatorname{Proj}(R_{\cdot}) \setminus V(f)$ with $f \in R_1$, on which f^d is a free generator, cover $\operatorname{Proj}(R_{\cdot})$. However, they are not line bundles in general. The assumption of R_+ being generated by R_1 is typically but not always satisfied. For instance, it is perfectly reasonable (and sometimes useful) to study weighted projective spaces $\operatorname{Proj}(\mathfrak{k}[X_0,\ldots,X_n])$ where the X_i have differing weights.

EXERCISE 4 (5 points). Let

$$\begin{array}{ccc} X_T & \longrightarrow & T \\ & & & & \downarrow^{\tau} \\ & & & & \downarrow^{\tau} \\ X & \longrightarrow & S \end{array}$$

be a Cartesian square of preschemes. For the sheaves of Kähler differentials and for the pull-back functors of quasicoherent sheaves of modules constructe on the previous exercise sheet, construct an isomorphism $\xi^*\Omega_{X/S} \cong \Omega_{X_T/T}$.

Solutions should be submitted Friday, January 19 in the lecture.