Exercises to "Algebraic geometry I", 10

EXERCISE 1 (3 points). Give an example of a sheaf of ideals on $\operatorname{Spec}\mathbb{Z}$ which is not quasi-coherent.

EXERCISE 2 (1 point). For a prescheme X and a morphism $\mathcal{M} \xrightarrow{f} \mathcal{N}$ of \mathcal{O}_X -modules where X and Y are quasi-coherent, show that the cokernel of f is quasi-coherent.

EXERCISE 3 (4 points). Let R be a ring and I an ideal in it. Show that the morphism $\operatorname{Spec}(R/I) \to \operatorname{Spec} R$ obtained by applying the contravariant functor Spec to the ring morphism $R \to R/I$ is a closed immersion and that the sheaf of ideals associated to it equals the (isomorphic) image of \tilde{I} in $\mathcal{O}_{\operatorname{Spec} R}$.

EXERCISE 4 (9 points). Let $X \xrightarrow{f} Y$ be a morphism of ringed spaces.

- Construct a functor $\operatorname{Mod}_{\mathcal{O}_Y} \xrightarrow{f^*} \operatorname{Mod}_{\mathcal{O}_X}$ which is left adjoint to $\operatorname{Mod}_{\mathcal{O}_X} \xrightarrow{f_*} \operatorname{Mod}_{\mathcal{O}_Y}$ and show that the stalk of $f^*\mathcal{M}$ at $x \in X$ is given by $\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{Y,f(x)}} \mathcal{M}_{f(x)}$.
- Show that $(f|_{f^{-1}U})^*(\mathcal{M}|_U)$ is isomorphic to $f^*\mathcal{M}|_{f^{-1}U}$.
- If $X = \operatorname{Spec} R$ and $Y = \operatorname{Spec} S$ and f is given by a ring morphism $S \to R$, describe $f^* \tilde{M}$ for an S-module M.
- If f is a morphism of preschemes and \mathcal{M} quasi-coherent, show that $f^*\mathcal{M}$ is quasi-coherent.

REMARK 1. It may be used that for a ring R and an R-algebra S, $M \to S \otimes_R M$ is left adjoint to the forgetful functor from S-modules to R-modules.

Let \mathcal{R} be a sheaf of rings and \mathcal{M} an \mathcal{R} -module. A derivation of \mathcal{R} with values in \mathcal{M} is a morphism $\mathcal{R} \xrightarrow{d} \mathcal{M}$ of sheaves of abelian groups such that d(rs) = rd(s) + sd(r) in $\mathcal{M}(U)$ when r and s are elements of $\mathcal{R}(U)$. In the case where a morphism $X \xrightarrow{\xi} S$ of locally ringed spaces is given, a derivation $\mathcal{O}_X \xrightarrow{d} \mathcal{M}$ is called \mathcal{O}_S -linear if $d(f^*\lambda) = 0$ in $\mathcal{M}(f^{-1}U)$ when $\lambda \in \mathcal{O}_S(U)$.

EXERCISE 5 (8 points). Let $X \xrightarrow{f} S$ be a morphism of preschemes.

• Show that there is an \mathcal{O}_X -module $\Omega_{X/S}$ with an \mathcal{O}_S -linear derivation $\mathcal{O}_X \xrightarrow{d_{X/S}} \Omega_{X/S}$ such that for any \mathcal{O}_X -linear derivation $\mathcal{O}_X \xrightarrow{d} \mathcal{M}$ there is a unique morphism $\Omega_{X/S} \xrightarrow{\delta} \mathcal{M}$ such that $d = \delta d_{X/S}$.

• Show that $\Omega_{X/S}$ is quasi-coherent, that the stalk of $d_{X/S}$ at $x \in X$ is isomorphic to $\mathcal{O}_{X,x} \xrightarrow{d_{\mathcal{O}_{X,x}/\mathcal{O}_{S,f(x)}}} \Omega_{\mathcal{O}_{X,x}/\mathcal{O}_{S,f(x)}}$ and that for any pair (U,V) of affine open subsets of X and S such that $f(U) \subseteq V$, $\mathcal{O}_X(U) \xrightarrow{d_{X/S}} \Omega_{X/S}(U)$ is isomorphic to $\mathcal{O}_X(U) \xrightarrow{d_{\mathcal{O}_X}(U)/\mathcal{O}_S(V)} \Omega_{\mathcal{O}_X}(U)/\mathcal{O}_S(V)$.

REMARK 2. Of course, the universal property of $d_{X/S}$ determines it and the *sheaf of Kähler differentials* $\Omega_{X/S}$ uniquely up to unique isomorphism. The required facts about Kähler differentials of rings (eg, existence, compatibility with localization and base-change) may all be used, provided they are correct.

Of the 25 points for this exercise sheet, 5 are bonus points which do not count for the calculation of the 50%-limit for passing the exercises. Solutions should be submitted Friday, January 12 in the lecture.

 $\mathbf{2}$