Remark 1. Throughout this sheet let X be a topological space. For a subset $A \subseteq X$, the closure is denoted \overline{A} . In solutions, the following equivalent characterizations of \overline{A} can be used as their equivalence is easily seen:

- The intersection of all closed subsets of X containing A.
- The smallest closed subset of X containing A.
- The unique closed subset of X containing A as a dense subset.

Problem 1 (3 points). Let $x \in X$, and let $A \subseteq X$ be any subset.

- Show that $x \in \overline{A}$ if and only if every neighbourhood of x intersects A.
- If x has a countable neighbourhood base, show that $x \in \overline{A}$ if and only if x is the limit of some sequence of elements of A.

Remark 2. As an easy consequence of the first point, the "only if"-part of the second one holds even if x has no countable neighbourhood base.

Problem 2 (1 point). Show that $x \in X$ is a point of accumulation of the filter \mathfrak{F} if and only if $x \in \overline{A}$ for all $A \in \mathfrak{F}$.

Problem 3 (3 points). Show that the following conditions are equivalent:

- X is quasi-compact.
- Every filter on X has at least one point of accumulation.
- Every ultrafilter on X has at least one limit.

Remark 3. • In particular, X is compact iff every ultrafilter has precisely one limit.

- The following obviously equivalent characterization of quasicompactness may be used in solutions:
 - Every open covering has a finite subcovering.
 - Every family of closed subsets has a non-empty intersection, provided that this holds for every finite subfamily.

The following shows that the assumption of countable neighbourhood bases can be omitted in the second point of 1 if filters are used instead of sequences.

Problem 4 (2 points). In the situation of 1, show that $x \in \overline{A}$ if and only if x is the limit of some ultrafilter on A.

Remark 4. If $X \xrightarrow{f} Y$ is any map between sets and \mathfrak{U} some ultrafilter on X, $f_*\mathfrak{U} = \{A \subseteq Y \mid f^{-1}A \in \mathfrak{U}\}$ is easily seen to be a ultrafilter on X. This covariant functoriality of ultrafilters coincides

with the one obtained as the composition of the contravariant functor from sets to rings, sending X to the ring of \mathbb{F}_2 -valued functions on X, with the contravariant functor Spec from rings to topological spaces. As in Problem 6 of the previous sheet, every field can be used instead of \mathbb{F}_2 .

In the situation of the previous problem, one has a bijection

(ultrafilters \mathfrak{U} on A) \cong (ultrafilters \mathfrak{V} on X with $A \in \mathfrak{V}$) $\mathfrak{U} \to \mathfrak{V} = i_* \mathfrak{V}$

$$\mathfrak{U} = \{ B \subseteq A \mid B \subseteq A \} \leftarrow \mathfrak{V},$$

where $A \xrightarrow{i} X$ is the inclusion. We say that x is a limit of \mathfrak{U} in X if and only if it is a limit of $i_*\mathfrak{U}$.

- **Problem 5** (4 points). Let $(C_i)_{i \in I}$ be a familiy of connected subsets, and assume that $\bigcap_{i \in I} C_i \neq \emptyset$. Show that $\bigcup_{i \in I} C_i$ is a connected subset in X.
 - Let $C \subseteq X$ be a connected subset of X. Show that the closure \overline{C} of C in X is a connected subset of X.

Problem 6 (4 points). Show that every compact (i. e., quasi-compact and Hausdorff) space is T_4 .

The following finishes the proof of the second (spectral) case of the Sura-Bura theorem from the lecture.

Problem 7 (6 points). Assume that the set \mathfrak{B} of quasi-compact open subsets of X is closed under finite intersections in X and a topology base for X. Let Y be the set of quasi-components of X equipped with the quotient topology for the surjection $X \xrightarrow{q} Y$ sending every $x \in X$ to its quasi-component Q_x . Let $Q \in Y$ and assume that A and B are disjoint closed subsets of X such that $Q = A \cup B$. Show that there are disjoint open subsets $U \subseteq X$ and $V \subseteq X$ such that $A \subseteq U$, $B \subseteq V$.

Two of the 23 possible points from this sheet are bonus points which do not count in the calculation of the $\geq 50\%$ lower bound of points needed to pass the exercises. Solutions should be submitted in the exercises on Wednesday, December 20.