
Definition 1. A subset S of a ring R is called multiplicative if every
finite (possibly empty) product of elements of S is an element of S.
For a ring R and a multiplicative subset S of R, the localization RS is
the set of equivalence classes of pairs (r, s) where r ∈ R, s ∈ S and
(r, s) ∼ (ρ, σ) if there is t ∈ S with trσ = tsρ. The ring structure on
RS is given by

[(r, s)/ ∼] + [(ρ, σ)/ ∼] = (rσ + sρ, sσ)/ ∼
[(r, s)/ ∼] · [(ρ, σ)/ ∼] = (rρ, sσ)/ ∼

and there is a ring homomorphism R → RS, r → (r, 1)/ ∼.

The theory of the localization is quite similar to the construction
of the field of quotients, which is the localization of a domain R with
respect to S = R \ {0}. However, there are a few subtle differences.
For instance, if S contains zero-divisors in R the homomorphism R →
RS will fail to be injective, and the introduction of t in the above
equivalence relation is necessary.
Despite of these differences, the similarities with the case of the field

of quotients abund, and it may thus be acceptable to limit proofs to
the following

Problem 1 (2 points). Show that ∼ is indeed an equivalence relation.

As in the case of the field of quotients we will from now on write r

s

for (r, s)/ ∼.

Remark 1. One easily verifies that RS is indeed a ring and R ι−→ RS

a ring homomorphism. It enjoys the follwing universal property: If
s ∈ S then ι(s) ∈ R×

S
, and if R t−→ T is a ring homomorphism with

t(S) ⊆ T× then there is a unique homomorphism RS
τ−−→ T with t = τι,

and τ is given by τ
(

r

s

)

= t(r)
t(s)

.

Problem 2 (7 points). Let R be a ring and S a multiplicative subset
of R. The S-saturation of an ideal I ⊆ R is the ideal

J =
{

r ∈ R
∣

∣ rs ∈ I for some s ∈ S
}

.

We call I S-saturated if I = J . If I is any ideal in R, let

IS =
{r

s

∣

∣ r ∈ S, s ∈ S
}

⊆ RS.

It is easy to see that this is an ideal in RS.

• Show that the inverse image under R → RS of IS is the S-
saturation of I.
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• Show that we get a bijection between S-saturated ideals I ⊆ R
and ideals of RS, sending an S-saturated I ⊆ R to IS and an
ideal in RS to its preimage in R.

• Show that this restricts to a bijection

(1) SpecRS
∼=

{

p ∈ SpecR
∣

∣ p ∩ S = ∅
}

= SpecR \
⋃

s∈S

V (s)

which is a homeomorphism if the right hand is equipped with
the topology induced from the Zariski topology on SpecR.

Remark 2. For the sake of brevity, it is not necessary to prove that
IS is an ideal in RS, or that the saturation of an ideal in R is an ideal
in R.

Problem 3 (3 points). Let R be a ring and I ⊆ R an ideal with
√
I =

I. Show that I is a prime ideal if and only if V (I) is an irreducible
subset of SpecR.

Problem 4 (2 points). Show that for a filter F on a set X, the following
conditions are equivalent:

• For every subset A ⊆ X, A ∈ F or X \ A ∈ F.
• If G is a filter on X with F ⊆ G then G = F.

Remark 3. Recall that such filters are called ultrafilters. Another
equivalent condition would be that A ∪B ∈ F implies A ∈ F or B ∈ F.

Problem 5 (2 points). Show that every filter is contained in some
ultrafilter.

Problem 6 (3 points). Let X be a set, K a field and R the ring of
K-valued functions on X. Show that an ideal in R is a prime ideal if
and only if it is maximal, and show that we have a bijection between
SpecR and the set of ultrafilters on X, sending p to

U =
{

A ⊆ X
∣

∣ f |A = 0 for all f ∈ p
}

and the ultrafilter U to

p =
{

f ∈ R
∣

∣ {x ∈ X|f(x) = 0} ∈ U
}

.

The notion of limit of ultrafilters can be generalized to arbitrary
filters, but then it is necessary to distinguish between points of accu-
mulation and limits.

Definition 2. We call x ∈ X a limit of a filter F if every neighbourhood
of x is an element of F. We call x a point of accumulation if every
neighbourhood of x has a non-empty intersection with every element of
F.
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While the notion of “limit” for ultrafilters is almost certainly the
same throughout the relevant literature, this may be different for “point
of accumulation” and for filters which are not ultrafilters.

Problem 7 (3 points). Let F be a filter on the set underlying a topo-
logical space X.

• If x ∈ X is a limit of F, show that x is a point of accumulation
of F.

• If x ∈ X is a point of accumulation of F, show that x is a limit
of some ultrafilter containing F.

In particular, for ultrafilters the notions of “limit” and of “point of
accumulation” coincide.

Problem 8 (2 points). Show that a topological space is Hausdorff if
and only if every ultrafilter has at most one limit.

Five of the 25 possible points from this sheet are bonus points which
do not count in the calculation of the ≥ 50% lower bound of points
needed to pass the exercises. Solutions should be submitted in the
lecture on Friday, December 8 as there are no exercises on the dies
academicus , Wednesday, December 6.


