Sixth exercise sheet "Class field theory" summer term 2025.

Problem 1 (5 points). Let $\mathcal{A} \xrightarrow{L} \mathcal{B} \xrightarrow{R} \mathcal{A}$ be functors between categories. We consider the following two classes of data:

- Collections of bijections Hom_B(LA, B) → Hom_A(A, RB) which are, for fixed B ∈ ObB, morphisms of functors A^{op} → Gets and, for fixed A ∈ ObA, morphisms of functors B → Gets.
- Pairs (c, u) where $LR \xrightarrow{c} Id_{\mathcal{B}}$ and $Id_{\mathcal{A}} \xrightarrow{u} RL$ are functormorphisms satisfying the unit-counit equations

(1)
$$\mathrm{Id}_L = L^* c L(u)$$

(2)
$$\mathrm{Id}_R = R(c)R^*u$$

Show that we have a bijection between the two classes of data, which in one direction sends α to (c, u) where $c = \alpha^{-1}(\mathrm{Id}_R)$ and $u = \alpha(\mathrm{Id}_L)!$

In the following, let G be finite.

Problem 2 (3 points). If $H \subseteq G$ is a subgroup, show that we have a functor of restriction $\mathfrak{Ho}_G \xrightarrow{\mathfrak{Res}} \mathfrak{Ho}_H$ of restriction to H sending a G-module M to its restriction to H and the homotopy class of a morphism of G-modules to the homotopy class of the same map viewed as a morphism of H-modules. Moreover, show that we have a functor $\mathfrak{Ho}_H \xrightarrow{\operatorname{Ind}} \mathfrak{Ho}_G$ sending an H-module N to $\operatorname{Ind}_H^G M$ and the homotopy class of a morphism $N \xrightarrow{\mathcal{V}} N'$ to the homotopy class of $\operatorname{Ind}_H^G \nu$.

Problem 3 (2 points). In the situation of the previous problem, show that Ind is both left and right adjoint to Res!

Problem 4 (5 points). Let $\mathcal{M} : 0 \to \mathcal{M}' \xrightarrow{i} \mathcal{M} \xrightarrow{p} \mathcal{M}'' \to 0$ be a short exact sequence of *G*-modules. For $m \in m''$ such that $\operatorname{Tr}_G(m'') = 0$, let μ'' be its image in $\operatorname{Ker}(\mathcal{M}'_G \xrightarrow{\operatorname{Tr}_G} \mathcal{M}''^G)$, select $m \in \mathcal{M}$ such that m'' = p(m) and $m' \in \mathcal{M}'^G$ such that $i(m') = \operatorname{Tr}_G(m)$. Show that the image of μ'' under

(3)
$$\operatorname{Ker}(M''_{G} \xrightarrow{\operatorname{Tr}_{G}} M''^{G}) \cong \hat{H}^{-1}(M'') \xrightarrow{d_{\mathcal{M}}} \hat{H}^{0}(M') \cong \operatorname{Coker}(M'_{G} \xrightarrow{\operatorname{Tr}_{G}} M'^{G})$$

is equal the image of m' in the right hand side! The two isomorphisms in (3) are Examples 1.3.1 and 1.3.2 from the lecture.

If K is a field and G acts on a K-vector space V, let G act on its dual space by $(g\ell)(v) = \ell(g^{-1}v)$.

Problem 5 (2 points). If V is finite-dimensional, show that

$$\dim_K V_G = \dim_K (V^*)^G.$$

Problem 6 (2 point). If V is finite-dimensional and $V \times V \xrightarrow{B} K$ a non-degenerate bilinear form satisfying $B(\gamma v, \gamma w) = B(v, w)$ for $\gamma \in G$ and $(v, w) \in V^2$, then show that $\dim(V_G) = \dim(V^G)!$

Problem 7 (3 points). Let L/K be a finite Galois extension. Without using normal bases, show that $\hat{H}^0(L/K, (L, +))$ and $\hat{H}^{-1}(L/K, (L, +))$ both vanish!

When combined with the future Proposition 1.5.5 from the lecture this will give a proof of the vanishing of $\hat{H}^*(L/K, (L, +))$ which does not use normal bases.

Two of the 22 points from this sheet are bonus points which do not count in the calculation of the 50%-limit for passing the exercises module. Solutions should be submitted to the tutor by e-mail before Tuesday May 20 24:00.

 $\mathbf{2}$