Fourth exercise sheet "Class field theory" summer term 2025. Let \mathfrak{k} be a field and $A = \mathfrak{k}[T]/T^2 \mathfrak{k}[T]$. By Problem 5 from the previous sheet, the classes of injective, projective and free A-modules coincide. Let this class of A-modules be denoted \mathfrak{K} .

Problem 1 (2 points). For a morphism $M \xrightarrow{f} N$ of A-modules, show the equivalence of the following assertions:

- There is a \mathfrak{k} -linear map $M \xrightarrow{s} N$ such that f(m) = Ts(m) + s(Tm) for all $m \in M$.
- It is possible to factor f as a composition $M \to K \to N$ with $K \in \mathfrak{K}$.

Remark 1. This example has been included to motivate the notions of "contractible" and "homotopic" used in the lecture to construct Tate groups. If A is graded such that T has degree 1, then graded A-modules are cochain complexes. Problem 5 of the previous sheet still holds if free generators of non-zero degree are allowed in the definition of "free", and the assertion of the previous problem also holds where the \mathfrak{k} -linear map s must be graded of degree -1. The second condition is then equivalent to f being cochain homotopic to 0.

Problem 2 (2 points). Let G be a group and $I_G \subseteq \mathbb{Z}[G]$ the augmentation ideal. For $g \in G$, let $s(g) \in (I_G)_G$ be the image in $(I_G)_G$ of $\delta_g - \delta_1 \in I_G$. Show that s is a group homomorphism!

For a *G*-Module *M*, the morphism $M \to \operatorname{Ind}_{\{\mathbf{1}_G\}}^G M$ corresponding to Id_M unter the bijection (1.1.1) from the lecture sends *m* to f_m where $f_m(g) = gm$. Let $Q_M = Q_{G,M}$ be the cokernel of this morphism. Every element of Q_M has a unique representative $f \in \operatorname{Ind}_{\{\mathbf{1}_G\}}^G M$ satisfying $f(\mathbf{1}_G) = 0$.

Problem 3 (2 points). Show that this choice of representatives gives us a of Q_M^G with Z, the set of maps $G \xrightarrow{f} M$ satisfying $f(gh) = f(g) + gf(h)!^{-1}$

Problem 4 (3 points). Under the same identifications, show that the map $M = (\operatorname{Ind}_{\{\mathbf{1}_G\}}^G M)^G \to Q_M^G \cong Z$ sends $m \in M$ to $f \in Z$ given by f(g) = m - gm.

The previous two problems finish the proof of Proposition 1.2.4 from the lecture. In particular this finishes the proof Hilbert's Theorem 90 and of the bijection $H^1(G, A) \cong \text{Hom}(G, A)$ where A is an abelian group with trivial G-action.

¹Such f are often called *crossed homomorphisms*.

Problem 5 (2 points). With A as before, let $H \subseteq G$ be a subgroup. Show that the following diagram commutes:

Problem 6 (5 points). In the situation of the previous problem let in addition [G:H] be finite. Show that the following diagram commutes, where Verl is transfer:

Remark 2. For both problems it seems best to consider a commutative diagram of *H*-modules

One can then study what Res and Cores do on the first row, then use the diagram to investigate what happens on the side of H-modules. It seems that Problem 6 is a bit harder.

Problem 7 (2 points). If H is a normal divisor of G and $G \xrightarrow{\pi} G/H$ the projection, show that the following diagram commutes

$$H^{1}(G/H, A) \xrightarrow{\cong} \operatorname{Hom}(G/H, A)$$

$$\downarrow^{f \to f \circ \pi}$$

$$H^{1}(G, A) \xrightarrow{\cong} \operatorname{Hom}(G, A).$$

 $\mathbf{2}$

When solving the following problem it is allowed to tacitly assume that the abelien category under consideration is of a kind well-known to us, like G-modules or left or right modules over an arbitrary ring.

Problem 8 (5 points). Let

$$X \xrightarrow{\xi} I^0 \to I^1 \to \dots$$

be an exact sequence of objects of an abelian category \mathcal{A} , and let

$$Y \xrightarrow{\upsilon} J^0 \to J^1 \to \dots$$

be an injective resolution of Y. Show that every morphism $X \xrightarrow{f} Y$ extends to a morphism $I^* \xrightarrow{\phi} J^*$ of cochain complexes such that $vf = \phi^0 \xi$, and show that two choices for ϕ are cochain homotopic!

Three of the 23 points from this sheet are bonus points which do not count in the calculation of the 50%-limit for passing the exercises module. Solutions should be submitted to the tutor by e-mail before Tuesday May 6 24:00.