Let K be an ordered field. A function $X \xrightarrow{f} K$ on an arbitrary set K is called bounded (or K-bounded if K is not implied by the context) if there is $B \in K$ such that $|f(x)| \leq B$ for all $x \in X$.

Problem 1 (5 points). For an ordered field K, we equip $\bar{K}=K \cup$ $\{ \pm \infty\}$ with the em interval topology: A neighbourhood base of x is

$$
\mathfrak{B}_{x}= \begin{cases}\left\{(a, \infty]_{\bar{K}} \mid a \in K\right\} & x=\infty \\ \left\{[-\infty, a)_{\bar{K}} \mid a \in K\right\} & x=-\infty \\ \left\{(a, b]_{\bar{K}} \mid a, b \in K \text { and } a<x<b\right\} & x \in K\end{cases}
$$

For $P \in K[T]$ and with the conventions from the lecture, show that $\bar{K} \xrightarrow{P} \bar{K}$ is continuous!

Problem 2 (9 points). Decide whether the following assertions are true for arbitrary elements $a<b$ of an ordered field K and arbitrary $P \in K[T]$. If true, give a proof. Otherwise give a counterexample.

- The function $t \rightarrow P(t)$ is bounded on $[a, b]_{K}$.
- If P has no zero in $[a, b]_{K}$ then the function $t \rightarrow 1 / P(t)$ is continuous as a map $[a, b]_{K} \rightarrow K$, for the interval topology on source and target.
- If P has no zero in $[a, b]_{K}$ then the function $t \rightarrow 1 / P(t)$ is bounded on $[a, b]_{K}$.

Problem 3 (4 points). Let R be a ring and \mathfrak{P} a prime cone in R. For $r \in R$, show that the following conditions are equivalent:

- $r \in \mathfrak{P}$ and $-r \in \mathfrak{P}$.
- $-r^{2 n} \in \mathfrak{P}$ for some $n \in \mathbb{N}$.

Definition 1. The set of $r \in R$ with these equivalent properties is called the support of \mathfrak{P} and denoted supp \mathfrak{P}.
Problem 4 (3 points). For a prime cone \mathfrak{P}, show that supp \mathfrak{P} is a prime ideal!

Solutions should be submitted in the exercises on Wednesday, October 25 . One of the 21 possible points from this sheet is a bonus point, which does not count in the calculation of the $\geq 50 \%$ lower bound of points needed to pass the exercises.

