Second exercise sheet "Class field theory" summer term 2025.

Problem 1 (5 points). Let R be a ring, M an R-module such that for every ideal $I \subseteq R$ and every morphism $I \xrightarrow{\phi} M$ of R-modules there exists $m \in M$ such that $\phi(i) = i \cdot m$ holds for all $i \in I$. Show that M is an injective object of the category of R-modules!

Throughout the following let G be any (discrete) group. For G-modules M, N and T, let $\operatorname{Bil}_G(M, N; T)$ be the set of all maps $M \times N \xrightarrow{b} T$ which are \mathbb{Z} -bilinear and satisfy b(gm, gn) = gb(m, n) for all $m \in M, n \in N$ and $t \in T$.

Problem 2 (5 points). Let $H \subseteq G$ be a subgroup, M a G-module and Nan H-module. For $f \in \operatorname{ind}_{H}^{G}N$ and $m \in N$, let $u(f,m) \in \operatorname{ind}_{H}^{G}(N \otimes M)$ be defined by $(u(f,m))(g) = f(g) \otimes gm$. If T is a G-module and $b \in \operatorname{Bil}_{G}(\operatorname{ind}_{H}^{G}N, M; T)$, show that there is a unique morphism

$$\operatorname{ind}_{H}^{G}(N \otimes M) \xrightarrow{\beta} T$$

of G-modules such that $b(f,m) = \beta(u(f,m))$ for all $f \in \operatorname{ind}_{H}^{G}N$ and $m \in M$.

Problem 3 (2 points). Let $\mathcal{A} \xrightarrow{L} \mathcal{B}$ and $\mathcal{B} \xrightarrow{R}$ be an adjoint functor pair between arbitrary categories. If $A \xrightarrow{\alpha} A'$ is an epimorphism in \mathcal{A} , show that $L\alpha$ is an epimorphism in \mathcal{B} .

Problem 4 (3 points). Let G be a topological group, *i. e.*, a group equipped with a topology such that the group operations

$$G \times G \xrightarrow{(g,h) \to gh} G$$
$$G \xrightarrow{g \to g^{-1}} G$$

are continuous. Show that every open subgroup of G is closed and that every closed subgroup of finite index is open!

Let L/K be an algebraic field extension, \overline{K} an algebraic closure of K and $\operatorname{Emb}_K(L,\overline{K})$ the set of K-linear ring homomorphisms $L \to \overline{K}$. We equip $\operatorname{Emb}_K(L,\overline{K})$ with the topology for which a topology base is formed by the subsets of the form

$$\Omega_{F,\phi} = \left\{ f \in \operatorname{Emb}_K(L,\overline{K}) \mid f(x) = \phi(x) \text{ for all } x \in F \right\}$$

where $K \subseteq F \subseteq L$ is an intermediate field and $\phi \in \text{Emb}_K(F, \overline{K})$.

Problem 5 (6 points). Show that $\operatorname{Emb}_K(L, \overline{K})$ is compact!

One of the 21 points from this sheet is a bonus point which does not count in the calculation of the 50%-limit for passing the exercises module. Solutions should be submitted to the tutor by e-mail before Tuesday April 22 24:00.