Let K be an ordered field. A function $X \xrightarrow{f} K$ on an arbitrary set K is called *bounded* (or K-bounded if K is not implied by the context) if there is $B \in K$ such that $|f(x)| \leq B$ for all $x \in X$.

Problem 1 (5 points). For an ordered field K, we equip $\overline{K} = K \cup \{\pm \infty\}$ with the em interval topology: A neighbourhood base of x is

$$\mathfrak{B}_x = \begin{cases} \left\{ (a,\infty]_{\overline{K}} \;\middle|\; a \in K \right\} & x = \infty \\ \left\{ [-\infty,a)_{\overline{K}} \;\middle|\; a \in K \right\} & x = -\infty \\ \left\{ (a,b]_{\overline{K}} \;\middle|\; a,b \in K \; and \; a < x < b \right\} & x \in K \end{cases}$$

For $P \in K[T]$ and with the conventions from the lecture, show that $\overline{K} \xrightarrow{P} \overline{K}$ is continuous!

Problem 2 (9 points). Decide whether the following assertions are true for arbitrary elements a < b of an ordered field K and arbitrary $P \in K[T]$. If true, give a proof. Otherwise give a counterexample.

- The function $t \to P(t)$ is bounded on $[a, b]_K$.
- If P has no zero in $[a,b]_K$ then the function $t \to 1/P(t)$ is continuous as a map $[a,b]_K \to K$, for the interval topology on source and target.
- If P has no zero in $[a,b]_K$ then the function $t \to 1/P(t)$ is bounded on $[a,b]_K$.

Problem 3 (4 points). Let R be a ring and \mathfrak{P} a prime cone in R. For $r \in R$, show that the following conditions are equivalent:

- $r \in \mathfrak{P}$ and $-r \in \mathfrak{P}$.
- $-r^{2n} \in \mathfrak{P}$ for some $n \in \mathbb{N}$.

Definition 1. The set of $r \in R$ with these equivalent properties is called the support of \mathfrak{P} and denoted supp \mathfrak{P} .

Problem 4 (3 points). For a prime cone \mathfrak{P} , show that supp \mathfrak{P} is a prime ideal!

Solutions should be submitted in the exercises on Wednesday, October 25. One of the 21 possible points from this sheet is a bonus point, which does not count in the calculation of the $\geq 50\%$ lower bound of points needed to pass the exercises.