Problem 1 (10 points). Let $(X_i)_{i\in I}$ be a family of topological spaces, let $X = \prod_{i\in I} X_i$. Let \mathfrak{B} be the set of subsets of X which have the form $\prod_{i\in I} U_i$, where all U_i are open in X_i and the set of $i\in I$ with $U_i\neq X_i$ is finite.

- Show that \mathfrak{B} is the base for some topology on X, which is the topology on X to be used in the following considerations.
- Show that all projections $X \xrightarrow{p_i} X_i$ are continuous, and that X satisfies the following universal property¹, which characterizes it uniquely up to unique homeomorphism:

If T is a topological space and $(T \xrightarrow{t_i} X_i)_{i \in I}$ a family of continuous maps, then there is a unique continuous map $T \xrightarrow{\mathcal{T}} X$ such that $t_i = p_i \tau$ for all $i \in I$.

• If all X_i are Hausdorff (resp. (quasi)compact), show that X is Hausdorff (resp. (quasi)compact).

Recall that a topological group is a group G together with a topology on the underlying set, such that the group operations

$$G \times G \xrightarrow{(g,h) \to gh} G$$

$$G \xrightarrow{g \to g^{-1}} G$$

are continuous.

Problem 2 (1 point). Show that G is Hausdorff if and only if it is T_1 .

From now on we assume that this is the case.

Definition 1. A sequence $(g_i)_{i=0}^{\infty}$ of elements of G (resp. a filter \mathfrak{F} on G) is called a Cauchy sequence (resp. a Cauchy filter) if for every neighbourhood U of the unit element of G, there is $i \in \mathbb{N}$ such that $g_j g_k^{-1} \in U$ when $\min(j,k) \geq i$ (resp. such that there is $X \in \mathfrak{F}$ such that $gh^{-1} \in U$ when $g,k \in X$). We say that X is complete if every Cauchy ultrafilter has a limit.

Remark 1. Obviously, an equivalent characterization of completeness is that every Cauchy filter has a (unique) point of accumulation.

Problem 3 (4 points). • If G is complete, show that every Cauchy sequence has a limit!

• If every Cauchy sequence has a limit and G has a countable neighbourhood base of 0, show that G is complete.

¹This is the universal property for products in the category with topological spaces as objects and continuous maps as morphisms

Problem 4 (7 points). Let $\Gamma \subseteq G$ be a dense subgroup such that every Cauchy ultrafilter on Γ has a limit in G. Show that G is complete!

Two of the 22 possible points from this sheet are bonus points which do not count in the calculation of the $\geq 50\%$ lower bound of points needed to pass the exercises. Solutions should be submitted in the exercises on Wednesday, January 10.