Problem 1 (10 points). Let $\left(X_{i}\right)_{i \in I}$ be a family of topological spaces, let $X=\prod_{i \in I} X_{i}$. Let \mathfrak{B} be the set of subsets of X which have the form $\prod_{i \in I} U_{i}$, where all U_{i} are open in X_{i} and the set of $i \in I$ with $U_{i} \neq X_{i}$ is finite.

- Show that \mathfrak{B} is the base for some topology on X, which is the topology on X to be used in the following considerations.
- Show that all projections $X \xrightarrow{p_{i}} X_{i}$ are continuous, and that X satisfies the following universal property ${ }^{1}$, which characterizes it uniquely up to unique homeomorphism:

If T is a topological space and $\left(T \xrightarrow{t_{i}} X_{i}\right)_{i \in I}$ a family of continuous maps, then there is a unique continuous map $T \xrightarrow{\tau} X$ such that $t_{i}=p_{i} \tau$ for all $i \in I$.

- If all X_{i} are Hausdorff (resp. (quasi)compact), show that X is Hausdorff (resp. (quasi)compact).

Recall that a topological group is a group G together with a topology on the underlying set, such that the group operations

$$
\begin{aligned}
& G \times G \xrightarrow{(g, h) \rightarrow g h} G \\
& G \xrightarrow{g \rightarrow g^{-1}} G
\end{aligned}
$$

are continuous.
Problem 2 (1 point). Show that G is Hausdorff if and only if it is T_{1}.
From now on we assume that this is the case.
Definition 1. A sequence $\left(g_{i}\right)_{i=0}^{\infty}$ of elements of G (resp. a filter \mathfrak{F} on G) is called a Cauchy sequence (resp. a Cauchy filter) if for every neighbourhood U of the unit element of G, there is $i \in \mathbb{N}$ such that $g_{j} g_{k}^{-1} \in U$ when $\min (j, k) \geq i$ (resp. such that there is $X \in \mathfrak{F}$ such that $g h^{-1} \in U$ when $g, k \in X$). We say that X is complete if every Cauchy ultrafilter has a limit.

Remark 1. Obviously, an equivalent characterization of completeness is that every Cauchy filter has a (unique) point of accumulation.

Problem 3 (4 points). - If G is complete, show that every Cauchy sequence has a limit!

- If every Cauchy sequence has a limit and G has a countable neighbourhood base of 0 , show that G is complete.

[^0]Problem 4 (7 points). Let $\Gamma \subseteq G$ be a dense subgroup such that every Cauchy ultrafilter on Γ has a limit in G. Show that G is complete!

Two of the 22 possible points from this sheet are bonus points which do not count in the calculation of the $\geq 50 \%$ lower bound of points needed to pass the exercises. Solutions should be submitted in the exercises on Wednesday, January 10.

[^0]: ${ }^{1}$ This is the universal property for products in the category with topological spaces as objects and continuous maps as morphisms

