Problem 1 (5 points). Show the following assertions about elements of an ordered field (K, \leq) :

- x is positive if and only if $-x$ is negative.
- If $x y \neq 0$ then $x y$ is positive if and only if x and y have the same sign, i.e., x and y are either both positive or both negative.
- If $x \geq 0$ and $y \geq 0$ then $x+y \geq 0$, and equality holds if and only if $x=y=0$.
In what follows, let K be any field. If A is a finite dimensional K algebra and $a \in A$, let $\operatorname{Tr}_{A / K}(a)$ and $\mathrm{N}_{A / K}(a)$ be the trace and the determinant of the K-linear endomorphism $x \rightarrow a x$ of the K-vector space A. In particular, we will apply these definitions when A is a finite field extension of K. By the properties of trace and determinant of linear operators well-known from linear algebra, we have
Fact 1. For $a, b \in A, \operatorname{Tr}(a+b)=\operatorname{Tr}(a)+\operatorname{Tr}(b)$ und $\mathrm{N}(a b)=\mathrm{N}(a) \mathrm{N}(b)$.
Also,
Problem 2 (2 points). If B is another finite-dimensional K-algebra. Let $A \oplus B$ we equipped with the product $(a, b)(\alpha, \beta)=(a \alpha, b \beta)$, and let $K \rightarrow A \oplus B$ send k to (k, k). If $a \in A$ and $b \in B$, then

$$
\begin{aligned}
\operatorname{Tr}_{A \oplus B / K}(a, b) & =\operatorname{Tr}_{A / K}(a)+\operatorname{Tr}_{B / K}(b) \\
\mathrm{N}_{A \oplus B / K}(a, b) & =\mathrm{N}_{A / K}(a) \mathrm{N}_{B / K}(b)
\end{aligned}
$$

Problem 3 (2 points). Let L / K be a finite field extension, let \otimes always denote the tensor product over K, and equip $A \otimes L$ with the product $(a \otimes l)(\alpha \otimes \lambda)=(a \alpha) \otimes(l \lambda)$ and the ring morphism from L sending l to $1 \otimes l$. Then $\operatorname{Tr}_{A \otimes L / L}(a \otimes 1)=\operatorname{Tr}_{A / K}(a) \otimes 1$ and $\mathrm{N}_{A \otimes L / L}(a \otimes 1)=$ $\mathrm{N}_{A / K}(a) \otimes 1$.

For the following two problems, let L / K be a finite field extension, V a finite dimensional L-vector space and A an L-linear endomorphism of V. If M is K or L, let $\operatorname{det}_{M}(A)$ and $\operatorname{Tr}_{M}(A)$ be the determinant trace of A, viewed as an endomorphism of the finite dimensional K-vector space V.
Problem 4 (5 points). Then $\operatorname{det}_{K}(A)=\mathrm{N}_{L / K} \operatorname{det}_{L}(A)$.
Problem 5 (2 points). In the same situation. we have $\operatorname{Tr}_{K}(A)=$ $\operatorname{Tr}_{L / K} \operatorname{Tr}_{L}(A)$.
Remark 1. The second of the above two problems should be rather straightforward. The first one may be a bit harder. For instance, one can use results from linear algebra to reduce to the case where A has a simple matrix representation, and this case can be dealt with by a straightforward calculation.

Problem 6 (1 point). If M / L is another finite field extension, then

$$
\begin{aligned}
\operatorname{Tr}_{M / K}(m) & =\operatorname{Tr}_{L / K} \operatorname{Tr}_{M / L}(m) \\
\mathrm{N}_{M / K}(m) & =\mathrm{N}_{L / K} \mathrm{~N}_{M / L}(m)
\end{aligned}
$$

for all $m \in M$.
Problem 7 (4 points). If K is a field of odd characteristic, then every element of K is a sum of squares in K.

Remark 2. This can be derived as a special case of a result on field orderings which will be shown next week. However, this derivation will not be accepted here as the result has a short and relatively straightforward proof using the binomial theorem. The fact that the set of sums of squares in K is multiplicatively closed may be used without a proof.

Solutions should be submitted in the lecture on Friday, October 20.

