First exercise sheet "Class field theory" summer term 2025. Throughout the following let G be any group.

Problem 1 (5 points). Let $(M_{\lambda})_{{\lambda} \in \Lambda}$ be a family of G-modules. Let $\prod_{{\lambda} \in {\Lambda}} M_{\lambda}$ be the set of all families $(m_{\lambda})_{{\lambda} \in {\Lambda}}$ such that $m_{\lambda} \in M_{\lambda}$ for all ${\lambda} \in {\Lambda}$, with group operation

$$(m+\mu)_{\lambda}=m_{\lambda}+\mu_{\lambda},$$

G-action

$$(gm)_{\lambda} = g(m_{\lambda})$$

and projection $\pi_{\lambda}(m) = m_{\lambda}$ to M_{λ} . Show that the universal property of a product in the category of G-modules holds!

Problem 2 (6 points). Let $(M_{\lambda})_{\lambda \in \Lambda}$ be a family of G-modules. Let $C = \coprod_{\lambda \in \Lambda} M_{\lambda}$ be the set of all families $(m_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} M_{\lambda}$ for which $\{\lambda \in \Lambda | m_{\lambda} \neq 0\}$ is finite. Let $M_{\lambda} \xrightarrow{i_{\lambda}} C$ send $m \in M_{\lambda}$ to the family $(\mu_{\vartheta})_{\vartheta \in \Lambda}$ where $\mu_{\lambda} = m$ and $\mu_{\vartheta} = 0$ when $\vartheta \neq \lambda$. Show that the universal property of a coproduct in the category of G-modules holds.

Problem 3 (5 points). Let L/K be a Galois extension of degree p of fields of characteristic p > 0. Let σ be a generator of Gal(L/K).

• Show that

$$0 \to K \to L \xrightarrow{x \to \sigma(x) - x} L \xrightarrow{\operatorname{Tr}_{L/K}} K \to 0$$

is eract!

- Show that there is $x \in L$ with $\sigma(x) = x + 1!$
- Show that $\xi = x^p x \in K$ and that L is a field of decomposition of the polynomial $T^p T \xi!$

Problem 4 (2 point). Let K be a field of characteristic p > 0 and $\xi \in K$ such that $x^p - x = \xi$ has no solution $x \in K$. Let L be the extension of K obtained by adjoining a solution x to this equation. Show that L/K is a Galois extension!

An extension of this type is called an Artin-Schreier extension.

Problem 5 (3 points). Let L/K be an algebraic field extension and \overline{K} an algebraic closure of K. Show that the following conditions are equivalent:

- If an irreducible $P \in K[T]$ has a zero in L then it splits into linear factors in L[T].
- L is a union of splitting fields of polynomials in K[T].
- Two arbitrary extensions $L \xrightarrow{\lambda, \vartheta} \overline{K}$ of the embedding $K \to \overline{K}$ have the same image.

One of the 21 points from this sheet is a bonus point which does not count in the calculation of the 50%-limit for passing the exercises module. Solutions should be submitted to the tutor by e-mail before Tuesday April 15 24:00.