Problem 1 (5 points). Show the following assertions about elements of an ordered field (K, \leq) :

- x is positive if and only if -x is negative.
- If $xy \neq 0$ then xy is positive if and only if x and y have the same sign, i.e., x and y are either both positive or both negative.
- If $x \ge 0$ and $y \ge 0$ then $x + y \ge 0$, and equality holds if and only if x = y = 0.

In what follows, let K be any field. If A is a finite dimensional K-algebra and $a \in A$, let $\operatorname{Tr}_{A/K}(a)$ and $\operatorname{N}_{A/K}(a)$ be the trace and the determinant of the K-linear endomorphism $x \to ax$ of the K-vector space A. In particular, we will apply these definitions when A is a finite field extension of K. By the properties of trace and determinant of linear operators well-known from linear algebra, we have

Fact 1. For
$$a, b \in A$$
, $Tr(a+b) = Tr(a) + Tr(b)$ und $N(ab) = N(a)N(b)$.
Also,

Problem 2 (2 points). If B is another finite-dimensional K-algebra. Let $A \oplus B$ we equipped with the product $(a,b)(\alpha,\beta) = (a\alpha,b\beta)$, and let $K \to A \oplus B$ send k to (k,k). If $a \in A$ and $b \in B$, then

$$\operatorname{Tr}_{A \oplus B/K}(a, b) = \operatorname{Tr}_{A/K}(a) + \operatorname{Tr}_{B/K}(b)$$
$$\operatorname{N}_{A \oplus B/K}(a, b) = \operatorname{N}_{A/K}(a) \operatorname{N}_{B/K}(b)$$

Problem 3 (2 points). Let L/K be a finite field extension, let \otimes always denote the tensor product over K, and equip $A \otimes L$ with the product $(a \otimes l)(\alpha \otimes \lambda) = (a\alpha) \otimes (l\lambda)$ and the ring morphism from L sending l to $1 \otimes l$. Then $\operatorname{Tr}_{A \otimes L/L}(a \otimes 1) = \operatorname{Tr}_{A/K}(a) \otimes 1$ and $\operatorname{N}_{A \otimes L/L}(a \otimes 1) = \operatorname{N}_{A/K}(a) \otimes 1$.

For the following two problems, let L/K be a finite field extension, V a finite dimensional L-vector space and A an L-linear endomorphism of V. If M is K or L, let $\det_M(A)$ and $\operatorname{Tr}_M(A)$ be the determinant trace of A, viewed as an endomorphism of the finite dimensional K-vector space V.

Problem 4 (5 points). Then $\det_K(A) = N_{L/K} \det_L(A)$.

Problem 5 (2 points). In the same situation. we have $\operatorname{Tr}_K(A) = \operatorname{Tr}_{L/K}\operatorname{Tr}_L(A)$.

Remark 1. The second of the above two problems should be rather straightforward. The first one may be a bit harder. For instance, one can use results from linear algebra to reduce to the case where A has a simple matrix representation, and this case can be dealt with by a straightforward calculation.

Problem 6 (1 point). If M/L is another finite field extension, then

$$\operatorname{Tr}_{M/K}(m) = \operatorname{Tr}_{L/K} \operatorname{Tr}_{M/L}(m)$$
$$\operatorname{N}_{M/K}(m) = \operatorname{N}_{L/K} \operatorname{N}_{M/L}(m)$$

for all $m \in M$.

Problem 7 (4 points). If K is a field of odd characteristic, then every element of K is a sum of squares in K.

Remark 2. This can be derived as a special case of a result on field orderings which will be shown next week. However, this derivation will not be accepted here as the result has a short and relatively straightforward proof using the binomial theorem. The fact that the set of sums of squares in K is multiplicatively closed may be used without a proof.

Solutions should be submitted in the lecture on Friday, October 20.