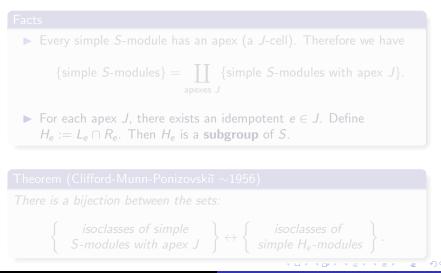
Analogues of centraliser subalgebras for fiat 2-categories

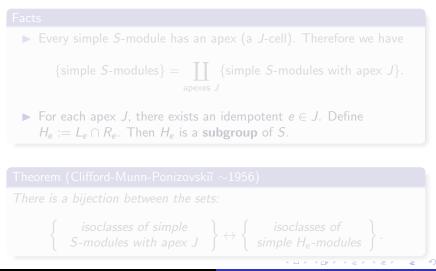
Xiaoting Zhang

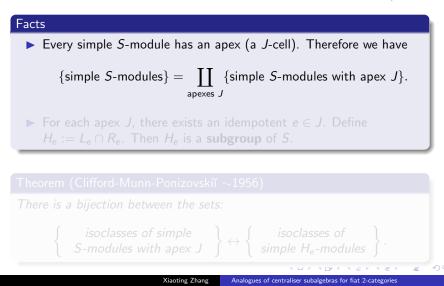
Joint work with M. Mackaay V. Mazorchuk and V. Miemietz

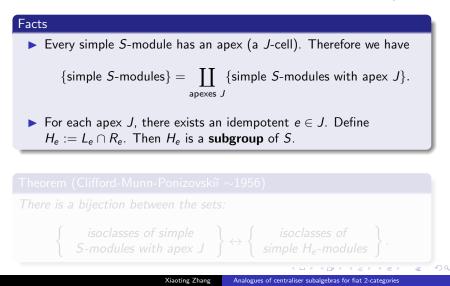
September 2018, Zürich, Switzerland

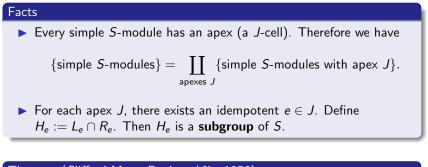
э











Analogues of centraliser subalgebras for fiat 2-categories

Xiaoting Zhang

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

- Cat : the cat of small cats
 - ▶ objects: small cats;
 - ▶ 1-morphisms: functors;
 - 2-morphisms: natural transformations;
 - composition is the usual composition;
 - ▶ identity 1-morphisms: the identity endofunctors.

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

O Cat : the cat of small cats

- objects: small cats;
- 1-morphisms: functors;
- 2-morphisms: natural transformations;
- composition is the usual composition;
- identity 1-morphisms: the identity endofunctors.

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

- O Cat : the cat of small cats
 - objects: small cats;
 - ▶ 1-morphisms: functors;
 - 2-morphisms: natural transformations;
 - composition is the usual composition;
 - identity 1-morphisms: the identity endofunctors.

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

- O Cat : the cat of small cats
 - objects: small cats;
 - 1-morphisms: functors;
 - 2-morphisms: natural transformations;
 - composition is the usual composition;
 - identity 1-morphisms: the identity endofunctors.

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

- O Cat : the cat of small cats
 - objects: small cats;
 - ▶ 1-morphisms: functors;
 - 2-morphisms: natural transformations;
 - composition is the usual composition;
 - identity 1-morphisms: the identity endofunctors.

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

- O Cat : the cat of small cats
 - objects: small cats;
 - ▶ 1-morphisms: functors;
 - 2-morphisms: natural transformations;
 - composition is the usual composition;
 - identity 1-morphisms: the identity endofunctors.

② 𝔅^f_k: the cat of all small cats equiv. to A-proj for some fin. dim. algebra A over a field k = k.

4 E 5 4 E 5

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

- O Cat : the cat of small cats
 - objects: small cats;
 - ▶ 1-morphisms: functors;
 - 2-morphisms: natural transformations;
 - composition is the usual composition;
 - ▶ identity 1-morphisms: the identity endofunctors.

A 2-cat \mathscr{C} is a cat enriched over the monoidal cat **Cat** of small cats.

Example

- O Cat : the cat of small cats
 - objects: small cats;
 - ▶ 1-morphisms: functors;
 - 2-morphisms: natural transformations;
 - composition is the usual composition;
 - identity 1-morphisms: the identity endofunctors.
- **②** \mathfrak{A}^{f}_{\Bbbk} : the cat of all small cats equiv. to *A*-proj for some fin. dim. algebra *A* over a field $\Bbbk = \overline{\Bbbk}$.

A 2-functor $\mathbf{M} : \mathscr{A} \to \mathscr{C}$ is a functor which sends objects to objects, 1-mor. to 1-mor. and 2-mor. to 2-mor. such that it intertwines the categorical structures of \mathscr{A} and \mathscr{C} .

Remark

> 2-cats, 2-functors and 2-natural transformations form a 2-cat;

▶ for fixed 2-cats 𝔄 and 𝔅, 2-functors from 𝔄 to 𝔅 together with 2-natural transformations and modifications form a 2-cat.

A 2-functor $\mathbf{M} : \mathscr{A} \to \mathscr{C}$ is a functor which sends objects to objects, 1-mor. to 1-mor. and 2-mor. to 2-mor. such that it intertwines the categorical structures of \mathscr{A} and \mathscr{C} .

Remark

2-cats, 2-functors and 2-natural transformations form a 2-cat;

▶ for fixed 2-cats 𝔄 and 𝔅, 2-functors from 𝔄 to 𝔅 together with 2-natural transformations and modifications form a 2-cat.

法国际 医耳道氏

A 2-functor $\mathbf{M} : \mathscr{A} \to \mathscr{C}$ is a functor which sends objects to objects, 1-mor. to 1-mor. and 2-mor. to 2-mor. such that it intertwines the categorical structures of \mathscr{A} and \mathscr{C} .

Remark

- > 2-cats, 2-functors and 2-natural transformations form a 2-cat;
- ▶ for fixed 2-cats A and C, 2-functors from A to C together with 2-natural transformations and modifications form a 2-cat.

医下口 医下

э.

$\Bbbk = \overline{\Bbbk}:$ an algebraically closed field

Definition

A finitary 2-category $\mathscr C$ over \Bbbk is a 2-cat such that

- it has finitely many objects;
- ▶ each C(i, j) is a small cat. equiv. to A_{i,j}-proj, where A_{i,j} is a fin. dim. k-algebra;
- all compositions are (bi)additive and k-linear;
- each identity 1-morphism 1_i is indecomposable.

A (weakly) fiat 2-category \mathscr{C} is a finitary 2-cat which has a weak involution (antiequivalence) $\star : \mathscr{C} \to \mathscr{C}^{op}$ and adjunction morphisms.

 $\Bbbk = \overline{\Bbbk}:$ an algebraically closed field

Definition

A finitary 2-category ${\mathscr C}$ over \Bbbk is a 2-cat such that

- it has finitely many objects;
- ▶ each C(i, j) is a small cat. equiv. to A_{i,j}-proj, where A_{i,j} is a fin. dim. k-algebra;
- ▶ all compositions are (bi)additive and k-linear;
- ▶ each identity 1-morphism 1_i is indecomposable.

A (weakly) fiat 2-category \mathscr{C} is a finitary 2-cat which has a weak involution (antiequivalence) $\star : \mathscr{C} \to \mathscr{C}^{op}$ and adjunction morphisms.

 $\Bbbk = \overline{\Bbbk}:$ an algebraically closed field

Definition

A finitary 2-category ${\mathscr C}$ over \Bbbk is a 2-cat such that

it has finitely many objects;

- ▶ each C(i, j) is a small cat. equiv. to A_{i,j}-proj, where A_{i,j} is a fin. dim. k-algebra;
- ▶ all compositions are (bi)additive and k-linear;
- each identity 1-morphism 1_i is indecomposable.

A (weakly) fiat 2-category \mathscr{C} is a finitary 2-cat which has a weak involution (antiequivalence) $\star : \mathscr{C} \to \mathscr{C}^{op}$ and adjunction morphisms.

 $\Bbbk = \overline{\Bbbk}:$ an algebraically closed field

Definition

A finitary 2-category $\mathscr C$ over \Bbbk is a 2-cat such that

- it has finitely many objects;
- ▶ each C(i, j) is a small cat. equiv. to A_{i,j}-proj, where A_{i,j} is a fin. dim. k-algebra;
- ▶ all compositions are (bi)additive and k-linear;
- each identity 1-morphism 1_i is indecomposable.

A (weakly) fiat 2-category \mathscr{C} is a finitary 2-cat which has a weak involution (antiequivalence) $\star : \mathscr{C} \to \mathscr{C}^{op}$ and adjunction morphisms.

 $\Bbbk = \overline{\Bbbk}:$ an algebraically closed field

Definition

A finitary 2-category $\mathscr C$ over \Bbbk is a 2-cat such that

- it has finitely many objects;
- ▶ each C(i, j) is a small cat. equiv. to A_{i,j}-proj, where A_{i,j} is a fin. dim. k-algebra;
- ▶ all compositions are (bi)additive and k-linear;

each identity 1-morphism 1_i is indecomposable.

A (weakly) fiat 2-category \mathscr{C} is a finitary 2-cat which has a weak involution (antiequivalence) $\star : \mathscr{C} \to \mathscr{C}^{op}$ and adjunction morphisms.

 $\Bbbk = \overline{\Bbbk}:$ an algebraically closed field

Definition

A finitary 2-category $\mathscr C$ over \Bbbk is a 2-cat such that

- it has finitely many objects;
- ▶ each C(i, j) is a small cat. equiv. to A_{i,j}-proj, where A_{i,j} is a fin. dim. k-algebra;
- ▶ all compositions are (bi)additive and k-linear;
- ▶ each identity 1-morphism 1_i is indecomposable.

A (weakly) fiat 2-category \mathscr{C} is a finitary 2-cat which has a weak involution (antiequivalence) $\star : \mathscr{C} \to \mathscr{C}^{op}$ and adjunction morphisms.

化苯丙酸 化苯丙

 $\Bbbk = \overline{\Bbbk}:$ an algebraically closed field

Definition

A finitary 2-category $\mathscr C$ over \Bbbk is a 2-cat such that

- it has finitely many objects;
- ▶ each C(i, j) is a small cat. equiv. to A_{i,j}-proj, where A_{i,j} is a fin. dim. k-algebra;
- ▶ all compositions are (bi)additive and k-linear;
- ▶ each identity 1-morphism 1_i is indecomposable.

A (weakly) fiat 2-category \mathscr{C} is a finitary 2-cat which has a weak involution (antiequivalence) $\star : \mathscr{C} \to \mathscr{C}^{op}$ and adjunction morphisms.

Definition

A *finitary* 2-representation **M** of \mathscr{C} is a 2-functor from \mathscr{C} to \mathfrak{A}_{\Bbbk}^{f} .

Let \mathscr{C} -afmod denote the 2-cat of finitary 2-reps of \mathscr{C} .

Example

For each $i \in C$, the 2-rep. $\mathbf{P}_i := C(i, _) \in C$ -afmod is called the i-th *principal* (or Yoneda) 2-rep.

()

Definition

A *finitary* 2-representation **M** of \mathscr{C} is a 2-functor from \mathscr{C} to \mathfrak{A}^f_{\Bbbk} .

Let *C*-afmod denote the 2-cat of finitary 2-reps of *C*.

Example

For each $i \in C$, the 2-rep. $\mathbf{P}_i := C(i, _) \in C$ -afmod is called the i-th *principal* (or Yoneda) 2-rep.

Definition

A *finitary* 2-representation **M** of \mathscr{C} is a 2-functor from \mathscr{C} to \mathfrak{A}^f_{\Bbbk} .

Let \mathscr{C} -afmod denote the 2-cat of finitary 2-reps of \mathscr{C} .

Example

For each $i \in C$, the 2-rep. $P_i := C(i, _) \in C$ -afmod is called the i-th *principal* (or Yoneda) 2-rep.

(*) * (*) *)

Definition

A *finitary* 2-representation **M** of \mathscr{C} is a 2-functor from \mathscr{C} to \mathfrak{A}^f_{\Bbbk} .

Let \mathscr{C} -afmod denote the 2-cat of finitary 2-reps of \mathscr{C} .

Example

For each $i \in C$, the 2-rep. $\mathbf{P}_i := C(i, _) \in C$ -afmod is called the i-th *principal* (or Yoneda) 2-rep.

(B) < B)</p>

A 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod is called *transitive* if for any $X, Y \in \coprod_{i \in \mathscr{C}} \mathbf{M}(i)$ there exists a 1-mor. F in \mathscr{C} such that Y is a direct summand of $\mathbf{M}(F)X$.

Definition

A 2-rep. $M \in \mathscr{C}$ -afmod is called *simple* (*transitive*) if $\prod_{i \in \mathscr{C}} M(i)$ has no proper \mathscr{C} -invariant ideals.

Theorem (Mazorchuk-Miemietz '16)

For any 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod, there exists a weak Jordan-Hölder series and its all weak composition subquotients are simple transitive.

通 と く ヨ と く ヨ と

A 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod is called *transitive* if for any $X, Y \in \coprod_{i \in \mathscr{C}} \mathbf{M}(i)$ there exists a 1-mor. F in \mathscr{C} such that Y is a direct summand of $\mathbf{M}(F)X$.

Definition

A 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod is called *simple* (*transitive*) if $\prod_{i \in \mathscr{C}} \mathbf{M}(i)$ has no proper \mathscr{C} -invariant ideals.

Theorem (Mazorchuk-Miemietz '16)

For any 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod, there exists a weak Jordan-Hölder series and its all weak composition subquotients are simple transitive.

伺い イラト イラト

A 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod is called *transitive* if for any $X, Y \in \coprod_{i \in \mathscr{C}} \mathbf{M}(i)$ there exists a 1-mor. F in \mathscr{C} such that Y is a direct summand of $\mathbf{M}(F)X$.

Definition

A 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod is called *simple* (*transitive*) if $\prod_{i \in \mathscr{C}} \mathbf{M}(i)$ has no proper \mathscr{C} -invariant ideals.

Theorem (Mazorchuk-Miemietz '16)

For any 2-rep. $\mathbf{M} \in \mathscr{C}$ -afmod, there exists a weak Jordan-Hölder series and its all weak composition subquotients are simple transitive.

Problem

Classify simple transitive 2-reps for a given finitary 2-category \mathscr{C} .

For indecomposable 1-mor. F, G in \mathscr{C} , define $F \ge_L G$ provided that F is isomorphic to a direct summand of $H \circ G$ for some 1-mor. H. Then \ge_L is a preorder and we call its equivalence classes *left cells*.

Similarly one defines the *right* preorder \geq_R and *right cells*, and also the *two-sided* preorder \geq_J and *two-sided cells*.

Definition

A two-sided cell \mathcal{J} is called *strongly regular* provided that, for any \mathcal{L}, \mathcal{R} in \mathcal{J} , we have $|\mathcal{L} \cap \mathcal{R}| = 1$.

(*) *) *) *)

For indecomposable 1-mor. F, G in \mathscr{C} , define $F \geq_L G$ provided that F is isomorphic to a direct summand of $H \circ G$ for some 1-mor. H. Then \geq_L is a preorder and we call its equivalence classes *left cells*.

Similarly one defines the *right* preorder \geq_R and *right cells*, and also the *two-sided* preorder \geq_J and *two-sided cells*.

Definition

A two-sided cell \mathcal{J} is called *strongly regular* provided that, for any \mathcal{L}, \mathcal{R} in \mathcal{J} , we have $|\mathcal{L} \cap \mathcal{R}| = 1$.

通 と く ヨ と く ヨ と

For indecomposable 1-mor. F, G in \mathscr{C} , define $F \geq_L G$ provided that F is isomorphic to a direct summand of $H \circ G$ for some 1-mor. H. Then \geq_L is a preorder and we call its equivalence classes *left cells*.

Similarly one defines the *right* preorder \geq_R and *right cells*, and also the *two-sided* preorder \geq_J and *two-sided cells*.

Definition

A two-sided cell \mathcal{J} is called *strongly regular* provided that, for any \mathcal{L}, \mathcal{R} in \mathcal{J} , we have $|\mathcal{L} \cap \mathcal{R}| = 1$.

通 と く ヨ と く ヨ と

For indecomposable 1-mor. F, G in \mathscr{C} , define $F \geq_L G$ provided that F is isomorphic to a direct summand of $H \circ G$ for some 1-mor. H. Then \geq_L is a preorder and we call its equivalence classes *left cells*.

Similarly one defines the *right* preorder \geq_R and *right cells*, and also the *two-sided* preorder \geq_J and *two-sided cells*.

Definition

A two-sided cell \mathcal{J} is called *strongly regular* provided that, for any \mathcal{L}, \mathcal{R} in \mathcal{J} , we have $|\mathcal{L} \cap \mathcal{R}| = 1$.

向下 イヨト イヨト

э.

Let \mathcal{L} be a left cell in \mathscr{C} and **N** the 2-subrep. of \mathbf{P}_i gen. by all 1-mor. in add({F: F $\geq_L \mathcal{L}$ }). Then N has a unique maximal \mathscr{C} -stable ideal I. The quotient $\mathbf{C}_{\mathcal{L}} := \mathbf{N}/\mathbf{I}$ is called the *cell* 2-*rep*. of \mathscr{C} associated to \mathcal{L} .

By definition, each cell 2-rep $\boldsymbol{C}_{\mathcal{L}}$ is simple transitive.

Theorem (Chan-Mazorchuk '17)

For a simple transitive 2-rep. **M** of a finitary 2-cat *C* there exists a unique maximal two-sided cell among those which do not annihilate **M**.

This maximal cell is called the apex of M.

Example

For a left cell $\mathcal L$ in a finitary 2-cat $\mathscr C$, we have $\mathsf{apex}(\mathsf{C}_\mathcal L)=\mathcal J(\mathcal L)$

Let \mathcal{L} be a left cell in \mathscr{C} and **N** the 2-subrep. of \mathbf{P}_i gen. by all 1-mor. in add({F : F $\geq_L \mathcal{L}$ }). Then **N** has a unique maximal \mathscr{C} -stable ideal **I**. The quotient $\mathbf{C}_{\mathcal{L}} := \mathbf{N}/\mathbf{I}$ is called the *cell* 2-*rep*. of \mathscr{C} associated to \mathcal{L} .

By definition, each cell 2-rep $\boldsymbol{C}_{\!\mathcal{L}}$ is simple transitive.

Theorem (Chan-Mazorchuk '17)

For a simple transitive 2-rep. **M** of a finitary 2-cat *C* there exists a unique maximal two-sided cell among those which do not annihilate **M**.

This maximal cell is called the apex of M.

Example

For a left cell $\mathcal L$ in a finitary 2-cat $\mathscr C$, we have $\mathsf{apex}(\mathsf{C}_\mathcal L)=\mathcal J(\mathcal L)$

Let \mathcal{L} be a left cell in \mathscr{C} and **N** the 2-subrep. of \mathbf{P}_i gen. by all 1-mor. in add({F : F $\geq_L \mathcal{L}$ }). Then **N** has a unique maximal \mathscr{C} -stable ideal **I**. The quotient $\mathbf{C}_{\mathcal{L}} := \mathbf{N}/\mathbf{I}$ is called the *cell* 2-*rep.* of \mathscr{C} associated to \mathcal{L} .

By definition, each cell 2-rep $C_{\mathcal{L}}$ is simple transitive.

Theorem (Chan-Mazorchuk '17)

For a simple transitive 2-rep. **M** of a finitary 2-cat *C* there exists a unique maximal two-sided cell among those which do not annihilate **M**.

This maximal cell is called the apex of M.

Example

For a left cell $\mathcal L$ in a finitary 2-cat $\mathscr C$, we have $\mathsf{apex}(\mathsf{C}_\mathcal L)=\mathcal J(\mathcal L)$

Let \mathcal{L} be a left cell in \mathscr{C} and N the 2-subrep. of P_i gen. by all 1-mor. in add({F: F $\geq_L \mathcal{L}$ }). Then N has a unique maximal \mathscr{C} -stable ideal I. The quotient $C_{\mathcal{L}} := N/I$ is called the *cell* 2-*rep.* of \mathscr{C} associated to \mathcal{L} .

By definition, each cell 2-rep $C_{\mathcal{L}}$ is simple transitive.

Theorem (Chan-Mazorchuk '17)

For a simple transitive 2-rep. **M** of a finitary 2-cat *C* there exists a unique maximal two-sided cell among those which do not annihilate **M**.

This maximal cell is called the apex of M.

Example

For a left cell \mathcal{L} in a finitary 2-cat \mathscr{C} , we have $\operatorname{apex}(\mathsf{C}_{\mathcal{L}}) = \mathcal{J}(\mathcal{L})$

Let \mathcal{L} be a left cell in \mathscr{C} and N the 2-subrep. of P_i gen. by all 1-mor. in add({F: F $\geq_L \mathcal{L}$ }). Then N has a unique maximal \mathscr{C} -stable ideal I. The quotient $C_{\mathcal{L}} := N/I$ is called the *cell* 2-*rep.* of \mathscr{C} associated to \mathcal{L} .

By definition, each cell 2-rep $C_{\mathcal{L}}$ is simple transitive.

Theorem (Chan-Mazorchuk '17)

For a simple transitive 2-rep. **M** of a finitary 2-cat \mathscr{C} there exists a unique maximal two-sided cell among those which do not annihilate **M**.

This maximal cell is called the apex of M.

Example

For a left cell \mathcal{L} in a finitary 2-cat \mathscr{C} , we have $\operatorname{apex}(\mathbf{C}_{\mathcal{L}}) = \mathcal{J}(\mathcal{L})$

化压力 化压力

Let \mathcal{L} be a left cell in \mathscr{C} and N the 2-subrep. of P_i gen. by all 1-mor. in add({F: F $\geq_L \mathcal{L}$ }). Then N has a unique maximal \mathscr{C} -stable ideal I. The quotient $C_{\mathcal{L}} := N/I$ is called the *cell* 2-*rep.* of \mathscr{C} associated to \mathcal{L} .

By definition, each cell 2-rep $C_{\mathcal{L}}$ is simple transitive.

Theorem (Chan-Mazorchuk '17)

For a simple transitive 2-rep. **M** of a finitary 2-cat \mathscr{C} there exists a unique maximal two-sided cell among those which do not annihilate **M**.

This maximal cell is called the apex of M.

Example

For a left cell ${\mathcal L}$ in a finitary 2-cat ${\mathscr C}$, we have ${\sf apex}({\sf C}_{{\mathcal L}})={\mathcal J}({\mathcal L})$

Let \mathcal{L} be a left cell in \mathscr{C} and **N** the 2-subrep. of \mathbf{P}_i gen. by all 1-mor. in add({F : F $\geq_L \mathcal{L}$ }). Then **N** has a unique maximal \mathscr{C} -stable ideal **I**. The quotient $\mathbf{C}_{\mathcal{L}} := \mathbf{N}/\mathbf{I}$ is called the *cell* 2-*rep.* of \mathscr{C} associated to \mathcal{L} .

By definition, each cell 2-rep $C_{\mathcal{L}}$ is simple transitive.

Theorem (Chan-Mazorchuk '17)

For a simple transitive 2-rep. **M** of a finitary 2-cat \mathscr{C} there exists a unique maximal two-sided cell among those which do not annihilate **M**.

This maximal cell is called the apex of M.

Example For a left cell \mathcal{L} in a finitary 2-cat \mathscr{C} , we have $\operatorname{apex}(\mathbf{C}_{\mathcal{L}}) = \mathcal{J}(\mathcal{L})$. Xioting Zhang Analogues of centraliser subalgebras for fat 2-categories

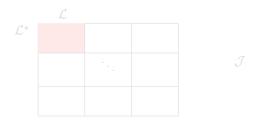
From now on $\mathscr C$ is assumed to be a fiat 2-cat.

WLOG: let \mathcal{J} be a maximal two-sided cell in \mathscr{C} . Consider the colored box $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$, where $\mathcal{L} \subset \mathcal{J}$

From now on $\ensuremath{\mathscr{C}}$ is assumed to be a fiat 2-cat.

WLOG: let \mathcal{J} be a maximal two-sided cell in \mathscr{C} .

Consider the colored box $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$, where $\mathcal{L} \subset \mathcal{J}$,

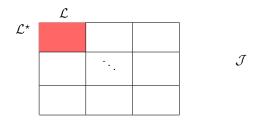


Let \mathscr{A} be the 2-full 2-subcategory of \mathscr{C} gen. by all 1-mor. in \mathcal{H} and the (unique) relevant identity 1-mor. $\mathbb{1}_i$. Note that \mathscr{A} is fiat and has at most two two-sided cells, namely, $\{\mathbb{1}_i\}$ and \mathcal{H} .

From now on $\mathscr C$ is assumed to be a fiat 2-cat.

WLOG: let \mathcal{J} be a maximal two-sided cell in \mathscr{C} .

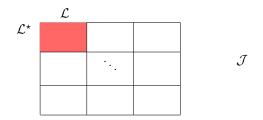
Consider the colored box $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$, where $\mathcal{L} \subset \mathcal{J}$,



From now on $\mathscr C$ is assumed to be a fiat 2-cat.

WLOG: let \mathcal{J} be a maximal two-sided cell in \mathscr{C} .

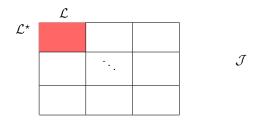
Consider the colored box $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$, where $\mathcal{L} \subset \mathcal{J}$,



From now on \mathscr{C} is assumed to be a fiat 2-cat.

WLOG: let \mathcal{J} be a maximal two-sided cell in \mathscr{C} .

Consider the colored box $\mathcal{H} := \mathcal{L} \cap \mathcal{L}^*$, where $\mathcal{L} \subset \mathcal{J}$,



- S: a finite semigroup J: a two-sided cell
- $e \in J$: an idempotent $H_e := L_e \cap R_e$

Theorem (Clifford-Munn-Ponizovskii ~1956)

There is a bijection between the sets:

$$\left.\begin{array}{c} \text{isoclasses of simple} \\ \text{S-modules with apex J} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{isoclasses of} \\ \text{simple } H_e\text{-modules} \end{array}\right\}$$

.

3

$$\begin{split} & \mathscr{C}: \text{ a fiat 2-cat} \qquad \mathcal{J}: \text{ a maximal two-sided cell in } \mathscr{C} \\ & \mathcal{L} \subset \mathcal{J}: \text{ a left cell} \qquad \mathcal{H} = \mathcal{L} \cap \mathcal{L}^{\star} \qquad \mathscr{A}: \text{ as above} \end{split}$$

Theorem (MMMZ '18)

There is a bijection between the sets

equiv. classes of simple transitive 2-reps of C with apex J equiv. classes of simple transitive 2-reps of A with apex H

프 > > ㅋ ㅋ >

3

 \mathscr{C} : a fiat 2-cat \mathcal{J} : a maximal two-sided cell in \mathscr{C} $\mathcal{L} \subset \mathcal{J}$: a left cell $\mathcal{H} = \mathcal{L} \cap \mathcal{L}^{\star}$ \mathscr{A} : as above

Theorem (MMMZ '18)

There is a bijection between the sets

 $\left\{\begin{array}{c} \text{equiv. classes of simple} \\ \text{transitive 2-reps} \\ \text{of } \mathscr{C} \text{ with apex } \mathcal{J} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{equiv. classes of simple} \\ \text{transitive 2-reps} \\ \text{of } \mathscr{A} \text{ with apex } \mathcal{H} \end{array}\right\}.$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � �

Known

 $\label{eq:constraint} \begin{array}{l} \mbox{Denote \mathbf{STR}} := \{\mbox{equiv. classes of simple transitive 2-reps} \} \mbox{ and \mathbf{CR}} := \{\mbox{equiv. classes of cell 2-reps} \}. \end{array}$

- Known cases STR = CR:
 - C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);

 - ▶ the 2-cat of Soergel bimodules associated to the dihedral group l₂(4) (Zimmermann);
 - ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
 - ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;

回 と く ヨ と く ヨ と

Known

 $\label{eq:constraint} \begin{array}{l} \mbox{Denote \mathbf{STR}} := \{\mbox{equiv. classes of simple transitive 2-reps} \} \mbox{ and \mathbf{CR}} := \{\mbox{equiv. classes of cell 2-reps} \}. \end{array}$

Known cases STR = CR:

- C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);
- ▶ the 2-cat of Soergel bimodules associated to the dihedral group l₂(4) (Zimmermann);
- ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
- ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;

同 ト イ ヨ ト イ ヨ ト

Known

Denote $STR := \{equiv. classes of simple transitive 2-reps\}$ and $CR := \{equiv. classes of cell 2-reps\}.$

Known cases STR = CR:

- C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);
- ▶ the 2-cat of Soergel bimodules associated to the dihedral group l₂(4) (Zimmermann);
- ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
- ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;

伺 と く ヨ と く ヨ と

Known

Denote $STR := \{equiv. classes of simple transitive 2-reps\}$ and $CR := \{equiv. classes of cell 2-reps\}.$

Known cases STR = CR:

- C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);
- ▶ the 2-cat of Soergel bimodules associated to the dihedral group l₂(4) (Zimmermann);
- ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
- ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;

伺 と く ヨ と く ヨ と

Known

 $\label{eq:constraint} \begin{array}{l} \mbox{Denote \mathbf{STR}} := \{\mbox{equiv. classes of simple transitive 2-reps} \} \mbox{ and \mathbf{CR}} := \{\mbox{equiv. classes of cell 2-reps} \}. \end{array}$

Known cases STR = CR:

- C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);
- the 2-cat of Soergel bimodules associated to the dihedral group *l*₂(4) (Zimmermann);
- ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
- ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;

< 同 > < 三 > < 三 >

Known

Denote $STR := \{equiv. classes of simple transitive 2-reps\}$ and $CR := \{equiv. classes of cell 2-reps\}.$

- Known cases STR = CR:
 - C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);

 - the 2-cat of Soergel bimodules associated to the dihedral group *l*₂(4) (Zimmermann);
 - ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
 - ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Known

Denote $STR := \{equiv. classes of simple transitive 2-reps\}$ and $CR := \{equiv. classes of cell 2-reps\}.$

Known cases STR = CR:

- C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);
- the 2-cat of Soergel bimodules associated to the dihedral group *l*₂(4) (Zimmermann);
- ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
- ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;

同 ト イ ヨ ト イ ヨ ト

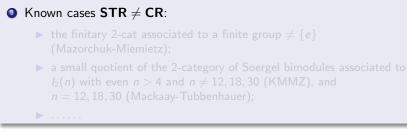
• • • • • • •

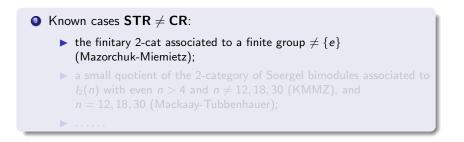
Known

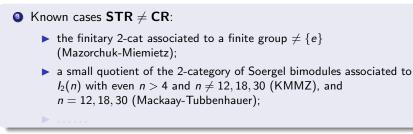
Denote $STR := \{equiv. classes of simple transitive 2-reps\}$ and $CR := \{equiv. classes of cell 2-reps\}.$

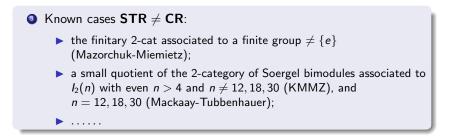
- Known cases STR = CR:
 - C: a (weakly) fiat 2-cat with strongly regular two-sided cells (Mazorchuk-Miemietz);

 - the 2-cat of Soergel bimodules associated to the dihedral group *l*₂(4) (Zimmermann);
 - ▶ a small quotient of the 2-category of Soergel bimodules associated to $I_2(n)$ with odd $n \ge 3$, H_3 , H_4 , F_4 , B_n with $n \ge 3$ (Kildetoft-Mackaay-Mazorhcuk-Zimmermann);
 - ▶ the 2-cat of Soergel bimodules associated to type B_n with n ≤ 4 (MMMZ), as an application of the Main Theorem;









 \mathscr{C} : a fiat 2-cat \mathcal{J} : a maximal two-sided cell in \mathscr{C} $\mathcal{L} \subset \mathcal{J}$: a left cell $\mathcal{H} = \mathcal{L} \cap \mathcal{L}^{\star}$ \mathscr{A} : as above

Theorem (MMMZ '18)

There is a bijection between the sets

 $\left\{\begin{array}{c} \text{equiv. classes of simple} \\ \text{transitive 2-reps} \\ \text{of } \mathscr{C} \text{ with apex } \mathcal{J} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} \text{equiv. classes of simple} \\ \text{transitive 2-reps} \\ \text{of } \mathscr{A} \text{ with apex } \mathcal{H} \end{array}\right\}.$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � �

M: a simple transitive 2-rep of \mathscr{C} with apex \mathcal{J}

Then **M** is also a 2-rep of \mathscr{A} via $\mathscr{A} \xrightarrow{\mathsf{M}} \mathscr{C} \xrightarrow{\mathsf{M}} \mathfrak{A}^{f}_{\Bbbk}$.

Proposition (MMMZ '18)

Let **M** be a simple transitive 2-rep. of \mathcal{C} with apex \mathcal{J} . The restriction of **M** to \mathscr{A} contains a unique simple transitive subquotient with apex \mathcal{H} . We denote by the latter $\Theta(\mathbf{M})$.

Thus Θ is a map from the left set to the right set in the Main Theorem.

M: a simple transitive 2-rep of ${\mathscr C}$ with apex ${\mathcal J}$

Then **M** is also a 2-rep of \mathscr{A} via $\mathscr{A} \xrightarrow{\mathsf{M}} \mathscr{C} \xrightarrow{\mathsf{M}} \mathfrak{A}^f_{\Bbbk}$.

Proposition (MMMZ '18)

Let **M** be a simple transitive 2-rep. of \mathcal{C} with apex \mathcal{J} . The restriction of **M** to \mathscr{A} contains a unique simple transitive subquotient with apex \mathcal{H} . We denote by the latter $\Theta(\mathbf{M})$.

Thus Θ is a map from the left set to the right set in the Main Theorem.

M: a simple transitive 2-rep of $\mathscr C$ with apex $\mathcal J$

Then **M** is also a 2-rep of \mathscr{A} via $\mathscr{A} \xrightarrow{\mathsf{M}} \mathscr{C} \xrightarrow{\mathsf{M}} \mathfrak{A}^f_{\Bbbk}$.

Proposition (MMMZ '18)

Let **M** be a simple transitive 2-rep. of \mathscr{C} with apex \mathcal{J} . The restriction of **M** to \mathscr{A} contains a unique simple transitive subquotient with apex \mathcal{H} . We denote by the latter $\Theta(\mathbf{M})$.

Thus Θ is a map from the left set to the right set in the Main Theorem.

M: a simple transitive 2-rep of ${\mathscr C}$ with apex ${\mathcal J}$

Then **M** is also a 2-rep of \mathscr{A} via $\mathscr{A} \xrightarrow{\mathsf{M}} \mathscr{C} \xrightarrow{\mathsf{M}} \mathfrak{A}^f_{\Bbbk}$.

Proposition (MMMZ '18)

Let **M** be a simple transitive 2-rep. of \mathscr{C} with apex \mathcal{J} . The restriction of **M** to \mathscr{A} contains a unique simple transitive subquotient with apex \mathcal{H} . We denote by the latter $\Theta(\mathbf{M})$.

Thus Θ is a map from the left set to the right set in the Main Theorem.

For a finitary 2-cat \mathscr{C} , one can define a (diagrammatic) injective abelianization $\underline{\mathscr{C}}$ of \mathscr{C} .

For a finitary 2-rep. **M** of \mathcal{C} , we also have its (diagrammatic) injective abelianization <u>**M**</u>, which is a 2-rep. of $\underline{\mathcal{C}}$.

C: a 1-morphism in $\underline{\mathscr{C}}$ with coalgebra structure, i.e. 2-mor. $C \to \mathbb{1}_i$ and $C \to C \circ C +$ axioms (coalgebra 1-mor.)

 $comod_{\mathscr{C}}(C)$: the cat of right C-comodule 1-morphisms in $\underline{\mathscr{C}}$

 $\operatorname{inj}_{\mathscr{C}}(C)$: the subcategory of injective objects in $\operatorname{comod}_{\mathscr{C}}(C)$

くぼう くちょう くちょ

For a finitary 2-cat \mathscr{C} , one can define a (diagrammatic) injective abelianization $\underline{\mathscr{C}}$ of \mathscr{C} .

For a finitary 2-rep. **M** of \mathcal{C} , we also have its (diagrammatic) injective abelianization <u>**M**</u>, which is a 2-rep. of <u> \mathcal{C} </u>.

C: a 1-morphism in $\underline{\mathscr{C}}$ with coalgebra structure, i.e. 2-mor. $C \to \mathbb{1}_i$ and $C \to C \circ C +$ axioms (coalgebra 1-mor.)

 $\mathsf{comod}_{\mathscr{C}}(\mathrm{C})$: the cat of right C-comodule 1-morphisms in $\underline{\mathscr{C}}$

 $\operatorname{inj}_{\mathscr{C}}(C)$: the subcategory of injective objects in $\operatorname{comod}_{\mathscr{C}}(C)$

くぼう くちょう くちょ

For a finitary 2-cat \mathscr{C} , one can define a (diagrammatic) injective abelianization $\underline{\mathscr{C}}$ of \mathscr{C} .

For a finitary 2-rep. **M** of \mathcal{C} , we also have its (diagrammatic) injective abelianization <u>M</u>, which is a 2-rep. of $\underline{\mathcal{C}}$.

C: a 1-morphism in $\underline{\mathscr{C}}$ with coalgebra structure, i.e. 2-mor. $C \to \mathbb{1}_i$ and $C \to C \circ C +$ axioms (coalgebra 1-mor.)

 $comod_{\mathscr{C}}(C)$: the cat of right C-comodule 1-morphisms in $\underline{\mathscr{C}}$

 $\operatorname{inj}_{\mathscr{C}}(C)$: the subcategory of injective objects in $\operatorname{comod}_{\mathscr{C}}(C)$

周 ト イ ヨ ト イ ヨ ト

-

For a finitary 2-cat \mathscr{C} , one can define a (diagrammatic) injective abelianization $\underline{\mathscr{C}}$ of \mathscr{C} .

For a finitary 2-rep. **M** of \mathscr{C} , we also have its (diagrammatic) injective abelianization <u>M</u>, which is a 2-rep. of $\underline{\mathscr{C}}$.

C: a 1-morphism in $\underline{\mathscr{C}}$ with coalgebra structure, i.e. 2-mor. $C \to \mathbb{1}_i$ and $C \to C \circ C +$ axioms (coalgebra 1-mor.)

 $\mathsf{comod}_{\mathscr{C}}(\mathrm{C})$: the cat of right $\mathrm{C} ext{-}\mathsf{comodule}$ 1-morphisms in $\underline{\mathscr{C}}$

 $\operatorname{inj}_{\mathscr{C}}(C)$: the subcategory of injective objects in $\operatorname{comod}_{\underline{\mathscr{C}}}(C)$

周 ト イ ヨ ト イ ヨ ト

3

Construction of the map from right to left: Need coalgebra 1-morphisms

For a finitary 2-cat \mathscr{C} , one can define a (diagrammatic) injective abelianization $\underline{\mathscr{C}}$ of \mathscr{C} .

For a finitary 2-rep. **M** of \mathscr{C} , we also have its (diagrammatic) injective abelianization <u>M</u>, which is a 2-rep. of $\underline{\mathscr{C}}$.

C: a 1-morphism in $\underline{\mathscr{C}}$ with coalgebra structure, i.e. 2-mor. $C\to \mathbb{1}_{\mathtt{i}}$ and $C\to C\circ C+$ axioms (coalgebra 1-mor.)

 $comod_{\mathscr{C}}(C)$: the cat of right C-comodule 1-morphisms in $\underline{\mathscr{C}}$

 $\operatorname{inj}_{\mathscr{C}}(\mathrm{C})$: the subcategory of injective objects in $\operatorname{comod}_{\mathscr{C}}(\mathrm{C})$

伺い イラン イラン

Construction of the map from right to left: Need coalgebra 1-morphisms

For a finitary 2-cat \mathscr{C} , one can define a (diagrammatic) injective abelianization $\underline{\mathscr{C}}$ of \mathscr{C} .

For a finitary 2-rep. **M** of \mathscr{C} , we also have its (diagrammatic) injective abelianization <u>M</u>, which is a 2-rep. of $\underline{\mathscr{C}}$.

C: a 1-morphism in $\underline{\mathscr{C}}$ with coalgebra structure, i.e. 2-mor. $C\to \mathbb{1}_i$ and $C\to C\circ C+$ axioms (coalgebra 1-mor.)

 $comod_{\mathscr{C}}(C)$: the cat of right C-comodule 1-morphisms in $\underline{\mathscr{C}}$

 $\operatorname{inj}_{\mathscr{C}}(C)$: the subcategory of injective objects in $\operatorname{comod}_{\mathscr{C}}(C)$

Construction of the map from right to left: Need coalgebra 1-morphisms

For a finitary 2-cat \mathscr{C} , one can define a (diagrammatic) injective abelianization $\underline{\mathscr{C}}$ of \mathscr{C} .

For a finitary 2-rep. **M** of \mathscr{C} , we also have its (diagrammatic) injective abelianization <u>M</u>, which is a 2-rep. of $\underline{\mathscr{C}}$.

C: a 1-morphism in $\underline{\mathscr{C}}$ with coalgebra structure, i.e. 2-mor. $C\to \mathbb{1}_i$ and $C\to C\circ C+$ axioms (coalgebra 1-mor.)

 $\mathsf{comod}_{\mathscr{C}}(C)$: the cat of right C-comodule 1-morphisms in $\underline{\mathscr{C}}$

 $inj_{\mathscr{C}}(C)$: the subcategory of injective objects in $comod_{\underline{\mathscr{C}}}(C)$

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$.

- There is a coalgebra 1-mor. C_X in <u>C</u> and an equivalence <u>M</u> ≃ comod_C(C_X) as 2-reps of C.
- (ii) The above equivalence restricts to an equivalence between
 M and inj_𝔅(C_𝑋) as 2-reps of 𝔅.

Corollary (Mackaay-Mazorchuk-Miemietz-Z '18)

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$. Consider the coalgebra 1-morphism C_X associated to **M** and X. Then

 C_X is cosimple \iff **M** is simple transitive .

向下 イヨト イヨト

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$.

 (i) There is a coalgebra 1-mor. C_X in <u>C</u> and an equivalence <u>M</u> ≃ comod_C(C_X) as 2-reps of C.

 The above equivalence restricts to an equivalence between M and inj_{\u03c0}(C_X) as 2-reps of \u03c0.

Corollary (Mackaay-Mazorchuk-Miemietz-Z '18)

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$. Consider the coalgebra 1-morphism C_X associated to **M** and X. Then

 C_X is cosimple \iff **M** is simple transitive .

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$.

- (i) There is a coalgebra 1-mor. C_X in <u>€</u> and an equivalence <u>M</u> ≃ comod_€(C_X) as 2-reps of €.
- (ii) The above equivalence restricts to an equivalence between M and inj_𝔅(C_X) as 2-reps of 𝔅.

Corollary (Mackaay-Mazorchuk-Miemietz-Z '18)

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$. Consider the coalgebra 1-morphism C_X associated to **M** and X. Then

 C_X is cosimple \iff **M** is simple transitive .

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$.

- (i) There is a coalgebra 1-mor. C_X in <u>€</u> and an equivalence <u>M</u> ≃ comod_€(C_X) as 2-reps of €.
- (ii) The above equivalence restricts to an equivalence between M and $inj_{\mathscr{C}}(C_X)$ as 2-reps of \mathscr{C} .

Corollary (Mackaay-Mazorchuk-Miemietz-Z '18)

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$. Consider the coalgebra 1-morphism C_X associated to **M** and X. Then

 \mathbb{C}_X is cosimple

 \iff

M is simple transitive .

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$.

- (i) There is a coalgebra 1-mor. C_X in <u>€</u> and an equivalence <u>M</u> ≃ comod_€(C_X) as 2-reps of €.
- (ii) The above equivalence restricts to an equivalence between M and $inj_{\mathscr{C}}(C_X)$ as 2-reps of \mathscr{C} .

Corollary (Mackaay-Mazorchuk-Miemietz-Z '18)

Let **M** be a transitive 2-rep. of \mathscr{C} and $0 \neq X \in \mathbf{M}(i)$ for some $i \in \mathscr{C}$. Consider the coalgebra 1-morphism C_X associated to **M** and X. Then

 C_X is cosimple \iff **M** is simple transitive .

If **N** be a simple transitive 2-rep. of \mathscr{A} with apex \mathcal{H} , then we take $X := \bigoplus_{Y \in \mathsf{Ind}(N(i))/\cong} Y$ and

▶ Theorem MMMT ⇒ there exists a coalgebra 1-morphism C_X in $\underline{\mathscr{A}}$ such that $\mathbf{N} \simeq \operatorname{inj}_{\mathscr{A}}(C_X)$;

inj_𝔅(C_X) ∈ 𝔅-afmod has a unique simple transitive subquotient, denoted by Ω(N), which contains inj_𝔅(C_X).

Then: Prove that Θ and Ω are inverses of each other.

If **N** be a simple transitive 2-rep. of \mathscr{A} with apex \mathcal{H} , then we take $X := \bigoplus_{Y \in \mathsf{Ind}(N(i))/\cong} Y \text{ and}$

▶ Theorem MMMT ⇒ there exists a coalgebra 1-morphism C_X in $\underline{\mathscr{A}}$ such that $\mathbf{N} \simeq \operatorname{inj}_{\mathscr{A}}(C_X)$;

inj_𝔅(C_X) ∈ 𝔅-afmod has a unique simple transitive subquotient, denoted by Ω(N), which contains inj_𝔅(C_X).

Then: Prove that Θ and Ω are inverses of each other.

If **N** be a simple transitive 2-rep. of \mathscr{A} with apex \mathcal{H} , then we take $X := \bigoplus_{Y \in \mathsf{Ind}(N(i))/\cong} Y$ and

▶ Theorem MMMT ⇒ there exists a coalgebra 1-morphism C_X in $\underline{\mathscr{A}}$ such that $\mathbf{N} \simeq \operatorname{inj}_{\underline{\mathscr{A}}}(C_X)$;

inj_𝔅(C_X) ∈ 𝔅-afmod has a unique simple transitive subquotient, denoted by Ω(N), which contains inj_𝔅(C_X).

Then: Prove that Θ and Ω are inverses of each other.

If **N** be a simple transitive 2-rep. of \mathscr{A} with apex \mathcal{H} , then we take $X := \bigoplus_{Y \in \mathsf{Ind}(\mathbf{N}(\mathtt{i}))/\cong} Y$ and

▶ Theorem MMMT ⇒ there exists a coalgebra 1-morphism C_X in $\underline{\mathscr{A}}$ such that $\mathbf{N} \simeq \operatorname{inj}_{\underline{\mathscr{A}}}(C_X)$;

inj_𝔅(C_X) ∈ 𝔅-afmod has a unique simple transitive subquotient, denoted by Ω(N), which contains inj_𝔅(C_X).

Then: Prove that Θ and Ω are inverses of each other.

э.

If **N** be a simple transitive 2-rep. of \mathscr{A} with apex \mathcal{H} , then we take $X := \bigoplus_{Y \in \mathsf{Ind}(\mathbf{N}(\mathtt{i}))/\cong} Y$ and

- ▶ Theorem MMMT ⇒ there exists a coalgebra 1-morphism C_X in $\underline{\mathscr{A}}$ such that $\mathbf{N} \simeq \operatorname{inj}_{\underline{\mathscr{A}}}(C_X)$;
- inj_𝔅(C_X) ∈ 𝔅-afmod has a unique simple transitive subquotient, denoted by Ω(N), which contains inj_𝔅(C_X).

Then: Prove that Θ and Ω are inverses of each other.

- ◆ 臣 ◆ 臣 ◆ 王 → � � � �

A: a connected, basic, fin. dim. weakly symmetric algebra over $\Bbbk = \overline{\Bbbk}$

Define \mathscr{C}_A to be the 2-cat which has

one object: a small category equiv. to A-proj;

- ▶ 1-morphisms given by functors isomorphic to $X \otimes_A _$ where $X \in add(A \oplus A \otimes_k A)$;
- 2-morphisms given by natural transformation, i.e. bimodule homomorphisms.

The 2-cat \mathscr{C}_A is **fiat**.

4 E 5 4 E 5

э

A: a connected, basic, fin. dim. weakly symmetric algebra over $\Bbbk = \overline{\Bbbk}$

Define \mathscr{C}_A to be the 2-cat which has

▶ one object: a small category equiv. to A-proj;

▶ 1-morphisms given by functors isomorphic to $X \otimes_{A}$ where $X \in \text{add}(A \oplus A \otimes_{\Bbbk} A)$;

2-morphisms given by natural transformation, i.e. bimodule homomorphisms.

The 2-cat \mathscr{C}_A is **fiat**.

化压力 化压力

A: a connected, basic, fin. dim. weakly symmetric algebra over $\mathbb{k} = \overline{\mathbb{k}}$

Define \mathscr{C}_A to be the 2-cat which has

▶ one object: a small category equiv. to A-proj;

▶ 1-morphisms given by functors isomorphic to $X \otimes_{A^-}$ where $X \in \operatorname{add}(A \oplus A \otimes_{\Bbbk} A)$;

2-morphisms given by natural transformation, i.e. bimodule homomorphisms.

The 2-cat \mathscr{C}_A is **fiat**.

イヨト・イヨト

A: a connected, basic, fin. dim. weakly symmetric algebra over $\mathbb{k} = \overline{\mathbb{k}}$

Define \mathscr{C}_A to be the 2-cat which has

▶ one object: a small category equiv. to A-proj;

- ▶ 1-morphisms given by functors isomorphic to $X \otimes_{A^-}$ where $X \in \operatorname{add}(A \oplus A \otimes_{\Bbbk} A)$;
- 2-morphisms given by natural transformation, i.e. bimodule homomorphisms.

The 2-cat \mathscr{C}_A is **fiat**.

法国际 化基本

A: a connected, basic, fin. dim. weakly symmetric algebra over $\mathbb{k} = \overline{\mathbb{k}}$

Define \mathscr{C}_A to be the 2-cat which has

▶ one object: a small category equiv. to A-proj;

- ▶ 1-morphisms given by functors isomorphic to $X \otimes_{A^-}$ where $X \in \operatorname{add}(A \oplus A \otimes_{\Bbbk} A)$;
- 2-morphisms given by natural transformation, i.e. bimodule homomorphisms.

The 2-cat \mathscr{C}_A is **fiat**.

法国际 医耳道

$$\mathcal{J}_{0}: \begin{array}{c|c} \mathcal{L}_{1} & \cdots & \mathcal{L}_{n} \\ \mathcal{R}_{1} & \overline{F_{11}} & \cdots & \overline{F_{1n}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{R}_{n} & \overline{F_{n1}} & \cdots & \overline{F_{nn}} \end{array} : \mathcal{J}$$

where $F_{ij} := Ae_i \otimes_{\Bbbk} e_j A \otimes_{A} -$.

Theorem (Mazorchuk-Miemietz '16

For C_A in the above setup, we have STR = CR.

(E) < E)</p>

э

where $F_{ij} := Ae_i \otimes_{\Bbbk} e_j A \otimes_{A} -$.

Theorem (Mazorchuk-Miemietz '16`

For \mathscr{C}_A in the above setup, we have STR = CR.

$$\mathcal{J}_{0}: \underline{AA_{A} \otimes_{A-}} <_{J} \qquad \begin{array}{c} \mathcal{L}_{1} & \cdots & \mathcal{L}_{n} \\ \overline{F_{11}} & \cdots & \overline{F_{1n}} \\ \vdots & \ddots & \vdots \\ \mathcal{R}_{n} & \overline{F_{n1}} & \cdots & \overline{F_{nn}} \end{array} \qquad : \mathcal{J}$$

where $F_{ij} := Ae_i \otimes_{\Bbbk} e_j A \otimes_{A} -$.

Theorem (Mazorchuk-Miemietz '16

For \mathscr{C}_A in the above setup, we have STR = CR.

(E) < E)</p>

$$\mathcal{J}_{0}: \begin{array}{c} \mathcal{L}_{1} & \cdots & \mathcal{L}_{n} \\ \mathcal{J}_{0}: \begin{array}{c} \mathcal{A}A_{A} \otimes_{A} - \end{array} & <_{J} & \begin{array}{c} \mathcal{R}_{1} & \begin{array}{c} F_{11} & \cdots & F_{1n} \\ \vdots & \ddots & \vdots \\ \mathcal{R}_{n} & \begin{array}{c} \vdots & \ddots & \vdots \\ F_{n1} & \cdots & F_{nn} \end{array} \end{array} & : \mathcal{J}$$

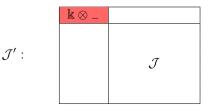
where $F_{ij} := Ae_i \otimes_{\Bbbk} e_j A \otimes_{A} -$.

Theorem (Mazorchuk-Miemietz '16)

For \mathscr{C}_A in the above setup, we have STR = CR.

化压力 化压力

Take $B := A \times \Bbbk$ and consider the non-identity two-sided cell \mathcal{J}' in the fiat 2-cat \mathscr{C}_B :

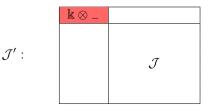


Define the \mathcal{H} -cell and \mathscr{A} as before. Then $\mathscr{A} = \mathscr{C}_{\Bbbk}$ has only one simple transitive 2-rep.

Main Theorem \mathscr{C}_B has only one equiv. class of simple transitive 2-reps with apex \mathcal{J}'

 \mathscr{C}_A has only one equiv. class of simple transitive 2-reps with apex \mathcal{J}

Take $B := A \times \Bbbk$ and consider the non-identity two-sided cell \mathcal{J}' in the fiat 2-cat \mathscr{C}_B :

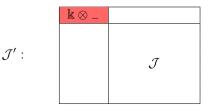


Define the \mathcal{H} -cell and \mathscr{A} as before. Then $\mathscr{A} = \mathscr{C}_{\Bbbk}$ has only one simple transitive 2-rep.

 ${\mathscr C}_B$ has only one equiv. class of simple transitive 2-reps with apex ${\mathcal J}'$

 \mathscr{C}_A has only one equiv. class of simple transitive 2-reps with apex \mathcal{J}

Take $B := A \times \Bbbk$ and consider the non-identity two-sided cell \mathcal{J}' in the fiat 2-cat \mathscr{C}_B :

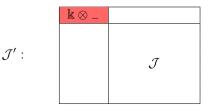


Define the \mathcal{H} -cell and \mathscr{A} as before. Then $\mathscr{A} = \mathscr{C}_{\Bbbk}$ has only one simple transitive 2-rep.

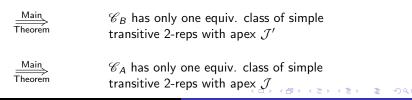
 \mathscr{C}_B has only one equiv. class of simple transitive 2-reps with apex \mathcal{J}'

 \mathscr{C}_A has only one equiv. class of simple transitive 2-reps with apex \mathcal{J}

Take $B := A \times \Bbbk$ and consider the non-identity two-sided cell \mathcal{J}' in the fiat 2-cat \mathscr{C}_B :



Define the \mathcal{H} -cell and \mathscr{A} as before. Then $\mathscr{A} = \mathscr{C}_{\Bbbk}$ has only one simple transitive 2-rep.



Thank you for your attention!

문어 문