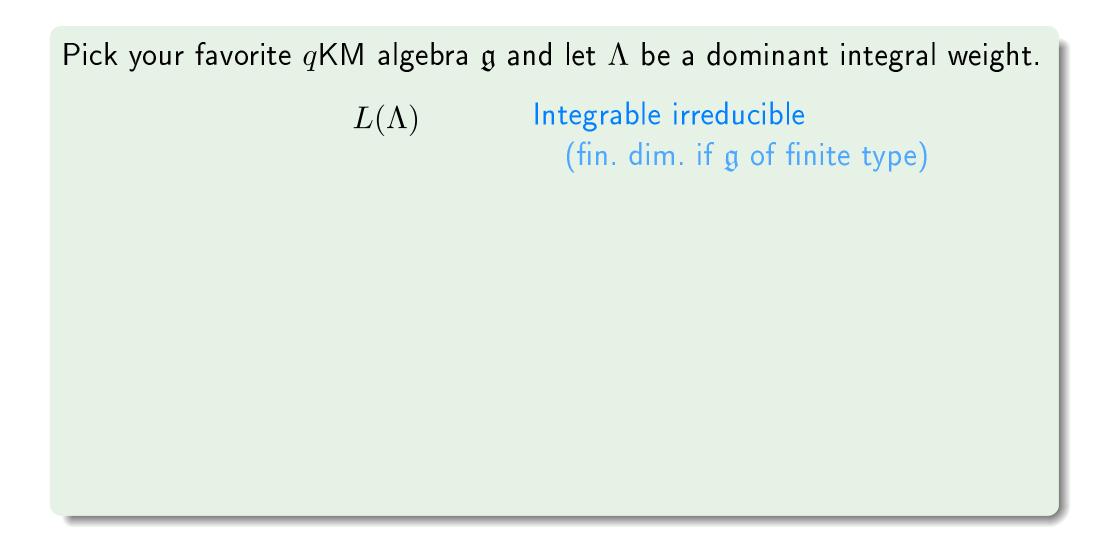
DG-enhanced cyclotomic KLR algebras and categorification of Verma modules

Pedro Vaz (Université catholique de Louvain)

 $M^{\mathfrak{p}}(V_{\beta}) = U_q(\mathfrak{g}) \otimes_{U_q(\mathfrak{p})} V_{\beta}$

Joint work with Grégoire Naisse and Ruslan Maksimau

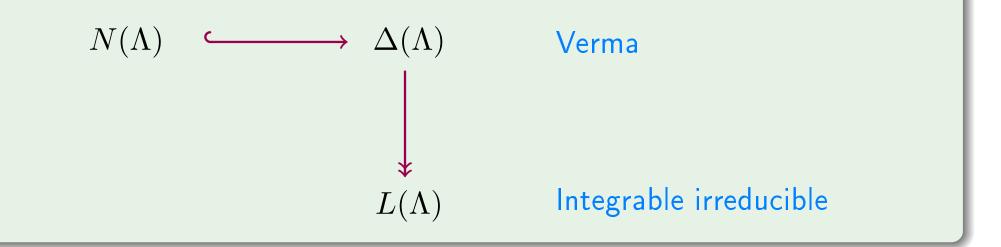
September 2018



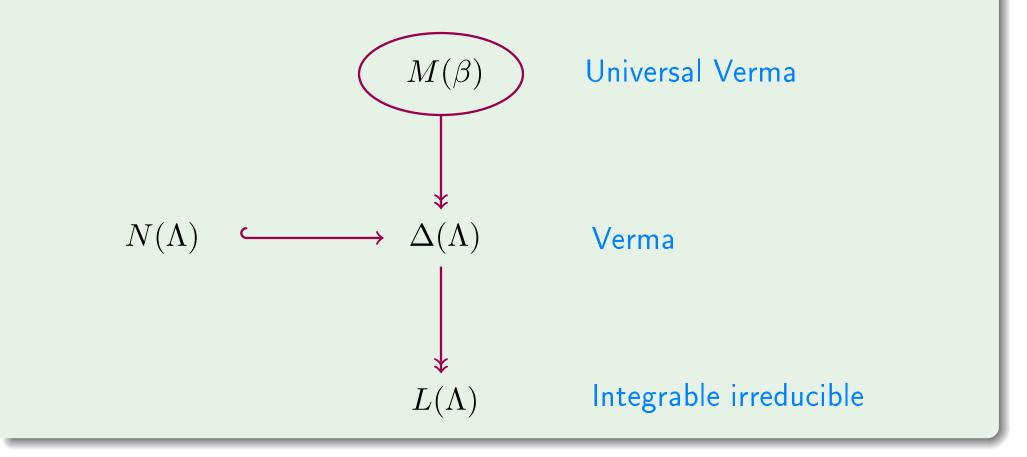
Pick your favorite qKM algebra \mathfrak{g} and let Λ be a dominant integral weight.

$L(\Lambda)$ Integrable irreducible

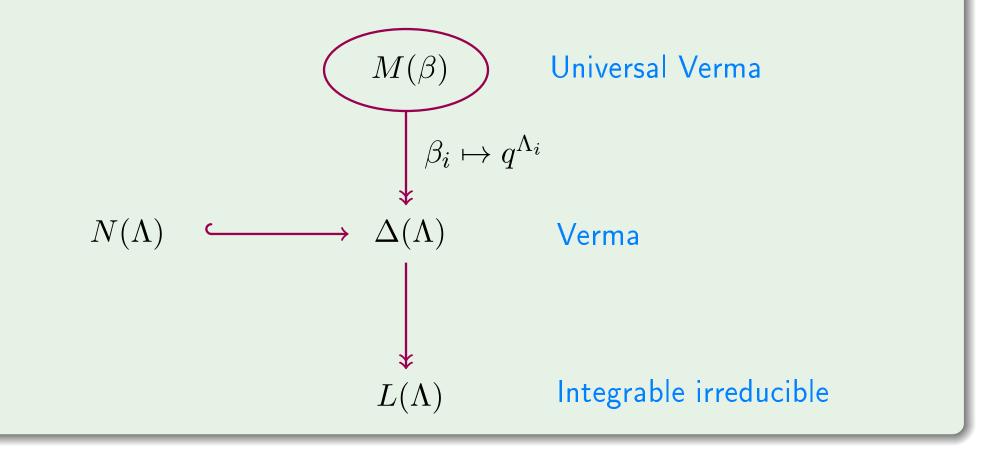
Pick your favorite qKM algebra \mathfrak{g} and let Λ be a dominant integral weight.



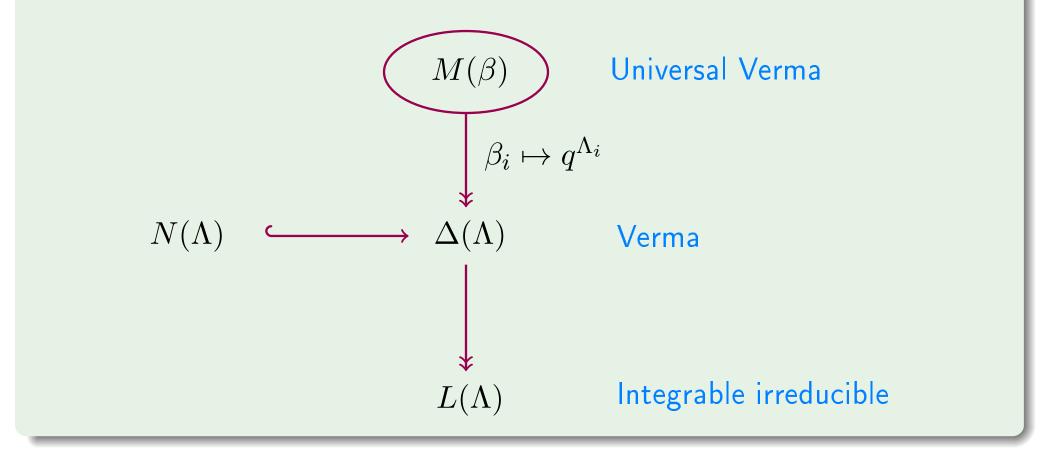
Pick your favorite qKM algebra \mathfrak{g} and let Λ be a dominant integral weight.



Pick your favorite qKM algebra \mathfrak{g} and let Λ be a dominant integral weight.

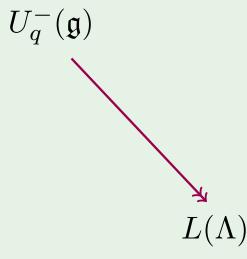


Pick your favorite qKM algebra \mathfrak{g} and let Λ be a dominant integral weight.

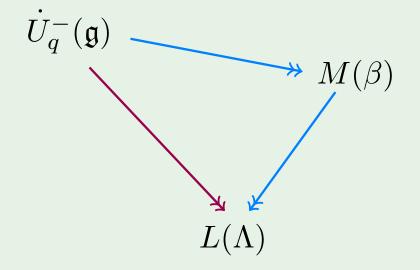


We think of these as modules over $\Bbbk(q)$ and $\Bbbk(q, \beta_1, \ldots, \beta_\ell)$.

It is well known that apart form the g-action, half quantum groups are "almost like universal Vermas" in the sense that we have a quotient map $U_q^-(\mathfrak{g}) \to L(\Lambda)$:



It is well known that apart form the g-action, half quantum groups are "almost like universal Vermas" in the sense that we have a quotient map $U_q^-(\mathfrak{g}) \to L(\Lambda)$:



Khovanov-Lauda and Rouquier categorified part of this picture :

Khovanov-Lauda and Rouquier categorified part of this picture :

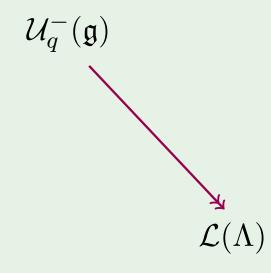
• Let R be the KLR algebra for $\mathfrak g$ and R^Λ its cyclotomic quotient w.r.t. Λ and put

$$\mathcal{U}_q^-(\mathfrak{g}) = R\operatorname{-mod}_{\mathrm{g}} \qquad \qquad \mathcal{L}(\Lambda) = R^{\Lambda}\operatorname{-mod}_{\mathrm{g}}$$

Khovanov-Lauda and Rouquier categorified part of this picture :

• Let R be the KLR algebra for $\mathfrak g$ and R^Λ its cyclotomic quotient w.r.t. Λ and put

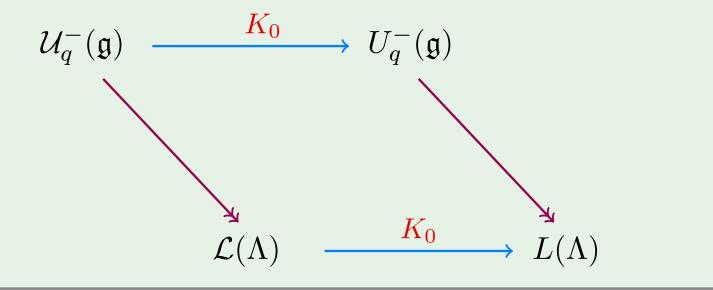
$$\mathcal{U}_q^-(\mathfrak{g}) = R\operatorname{-mod}_{\mathfrak{g}} \qquad \qquad \mathcal{L}(\Lambda) = R^{\Lambda}\operatorname{-mod}_{\mathfrak{g}}$$

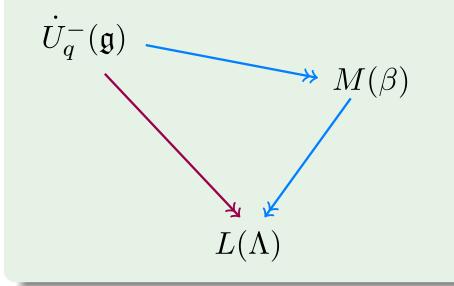


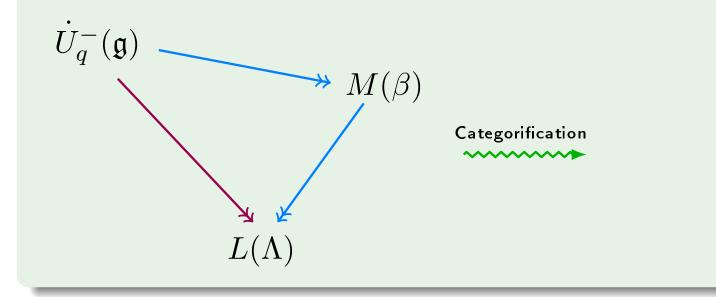
Khovanov-Lauda and Rouquier categorified part of this picture :

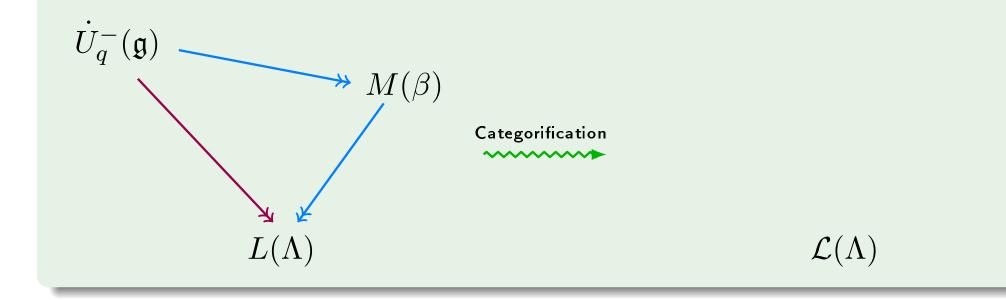
• Let R be the KLR algebra for $\mathfrak g$ and R^Λ its cyclotomic quotient w.r.t. Λ and put

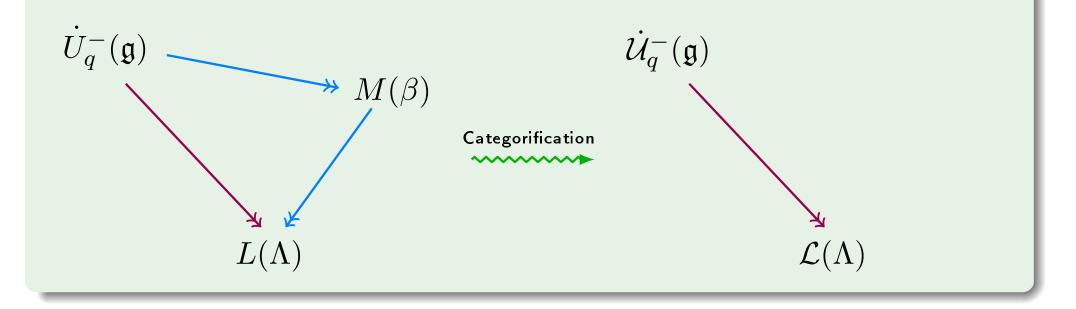
$$\mathcal{U}_q^-(\mathfrak{g}) = R \operatorname{-mod}_{g} \qquad \qquad \mathcal{L}(\Lambda) = R^{\Lambda} \operatorname{-mod}_{g}$$

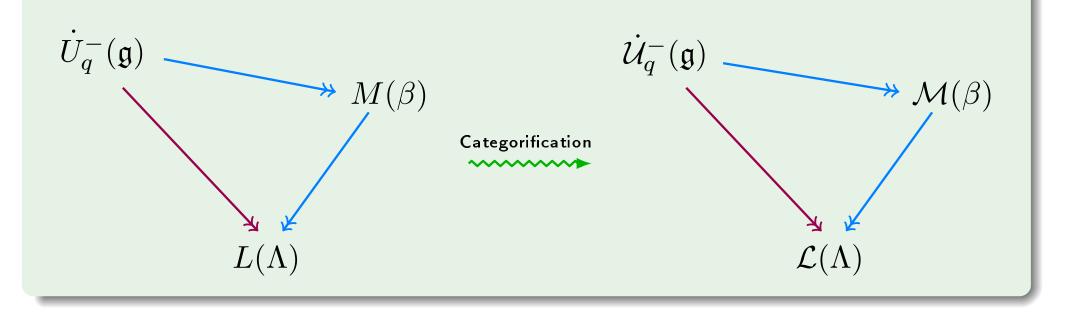












Categorifications of $U_q^-(\mathfrak{g})$ and of $L(\Lambda)$ are given through KLR algebras.

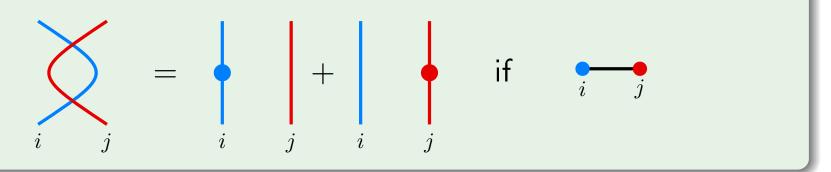
Categorifications of $U_q^-(\mathfrak{g})$ and of $L(\Lambda)$ are given through KLR algebras.

Fix $(\mathfrak{g}, I, \Lambda)$ and a ground ring \Bbbk .

KLR algebras can be defined by isotopy classes of diagrams / relations.

• Generators : \cdots and \cdots (for all $i, j \in I$).

• Relations (for example) :



For $\nu = \sum_{i \in I} \nu_i \cdot i \in \mathbb{N}[I]$ let $R(\nu)$ be the algebra consisting of ν_i strands labelled i. Define

$$R = \bigoplus_{\nu \in \mathbb{N}[I]} R(\nu)$$

Theorem (Khovanov-Lauda, Rouquier '08)

 $K_0(R) \cong U_q^-(\mathfrak{g}).$

For $\nu = \sum_{i \in I} \nu_i \cdot i \in \mathbb{N}[I]$ let $R(\nu)$ be the algebra consisting of ν_i strands labelled i. Define

$$R = \bigoplus_{\nu \in \mathbb{N}[I]} R(\nu)$$

Theorem (Khovanov-Lauda, Rouquier '08)

 $K_0(R) \cong U_q^-(\mathfrak{g}).$

cyclotomic KLR algebras

Let I^{Λ} be the 2-sided ideal generated by all pictures like

$$\begin{array}{c|c} \Lambda_i & & & \\ i & j & & \\ & i & j & & k \end{array}$$
$$R^{\Lambda} = R/(I^{\Lambda}).$$

and put

Categorical \mathfrak{g} -action

We define

$$\mathbf{F}_{i}^{\Lambda}(\nu) \colon R^{\Lambda}(\nu) \operatorname{-mod}_{g} \to R^{\Lambda}(\nu+i) \operatorname{-mod}_{g}$$

as the functor of *induction* for the map that adds a strand labeled i at the right of a diagram from $R^{\Lambda}(\nu)$, and $E_{i}^{\Lambda}(\nu)$ be its *right adjoint* (with an appropriated shift).

Categorical \mathfrak{g} -action

We define

$$\mathbf{F}_{i}^{\Lambda}(\nu) \colon R^{\Lambda}(\nu) \operatorname{-mod}_{g} \to R^{\Lambda}(\nu + i) \operatorname{-mod}_{g}$$

as the functor of *induction* for the map that adds a strand labeled i at the right of a diagram from $R^{\Lambda}(\nu)$, and $E_{i}^{\Lambda}(\nu)$ be its *right adjoint* (with an appropriated shift).

These functors have very nice properties, for example they are *biadjoint* and the composites $E_i^{\Lambda} F_i^{\Lambda}(\nu)$ and $F_i^{\Lambda} E_i^{\Lambda}(\nu)$ satisfy a *direct sum decomposition* lifting the commutator relation.

▲□▶ ▲□▶ ▲三▶ ▲三 ● ● ●

 $Categorical \ \mathfrak{g}\text{-}action$

We define

$$\mathbf{F}_{i}^{\Lambda}(\nu) \colon R^{\Lambda}(\nu) \operatorname{-mod}_{g} \to R^{\Lambda}(\nu + i) \operatorname{-mod}_{g}$$

as the functor of *induction* for the map that adds a strand labeled i at the right of a diagram from $R^{\Lambda}(\nu)$, and $\mathbf{E}_{i}^{\Lambda}(\nu)$ be its *right adjoint* (with an appropriated shift).

These functors have very nice properties, for example they are *biadjoint* and the composites $E_i^{\Lambda} F_i^{\Lambda}(\nu)$ and $F_i^{\Lambda} E_i^{\Lambda}(\nu)$ satisfy a *direct sum decomposition* lifting the commutator relation.

$$\begin{split} \mathbf{E}_{i}^{\Lambda} \mathbf{F}_{i}^{\Lambda}(\nu) &\simeq \mathbf{F}_{i}^{\Lambda} \mathbf{E}_{i}^{\Lambda}(\nu) \oplus \overset{\nu_{i\pm 1} - 2\nu_{i} - 1}{\bigoplus_{\ell = 0}} \mathrm{Id}_{\nu} \{2\ell\} & \text{if } \nu_{i\pm 1} \geq 2\nu_{i}, \\ \mathbf{F}_{i}^{\Lambda} \mathbf{E}_{1}^{\Lambda}(\nu) &\simeq \mathbf{E}_{i}^{\Lambda} \mathbf{F}_{i}^{\Lambda}(\nu) \oplus \overset{2\nu_{i} - \nu_{i\pm 1} - 1}{\bigoplus_{\ell = 0}} \mathrm{Id}_{\nu} \{2\ell\} & \text{if } \nu_{i\pm 1} \leq 2\nu_{i}, \\ \mathbf{F}_{k}^{\Lambda} \mathbf{E}_{j}^{\Lambda}(\nu) &\simeq \mathbf{E}_{k}^{\Lambda} \mathbf{F}_{j}^{\Lambda}(\nu) & \text{for } j \neq k. \end{split}$$

Categorical \mathfrak{g} -action

We define

$$\mathbf{F}_{i}^{\Lambda}(\nu) \colon R^{\Lambda}(\nu) \operatorname{-mod}_{g} \to R^{\Lambda}(\nu + i) \operatorname{-mod}_{g}$$

as the functor of *induction* for the map that adds a strand labeled i at the right of a diagram from $R^{\Lambda}(\nu)$, and $E_{i}^{\Lambda}(\nu)$ be its *right adjoint* (with an appropriated shift).

These functors have very nice properties, for example they are *biadjoint* and the composites $E_i^{\Lambda} F_i^{\Lambda}(\nu)$ and $F_i^{\Lambda} E_i^{\Lambda}(\nu)$ satisfy a *direct sum decomposition* lifting the commutator relation.

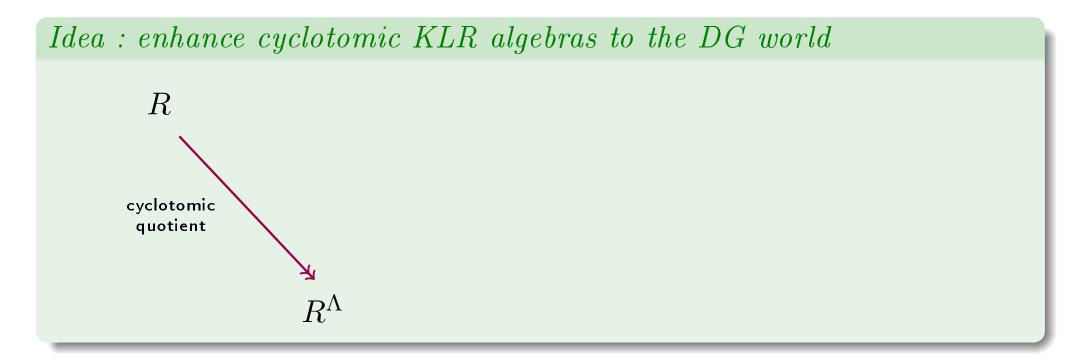
The Categorification Theorem (Kang-Kashiwara, Webster,...)

 $K_0(R^\Lambda) \cong L(\Lambda)$

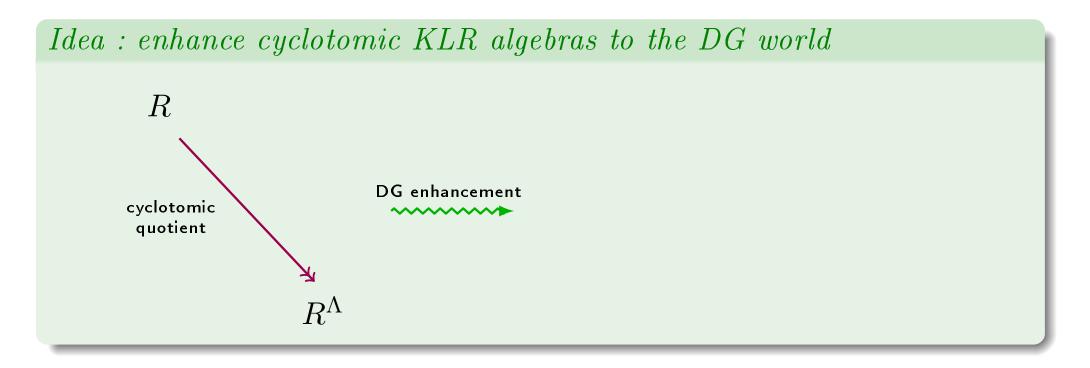
(as g-modules)

We cannot categorify $M(\lambda)$ (nor $\Delta(\Lambda)$) from R !

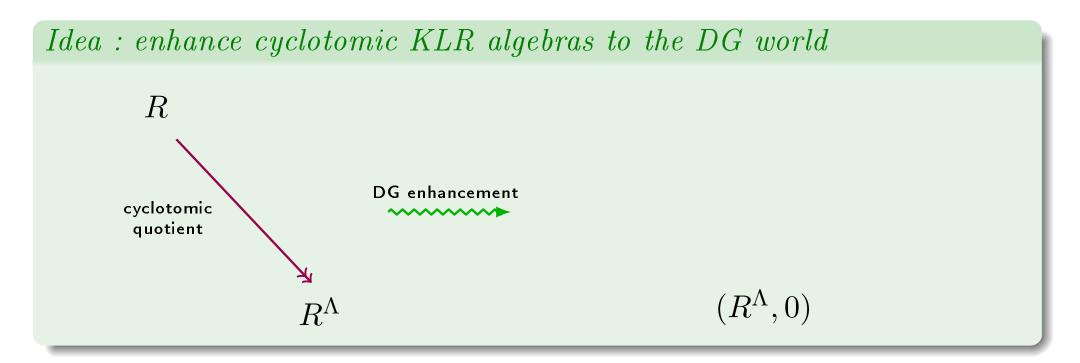
We cannot categorify $M(\lambda)$ (nor $\Delta(\Lambda)$) from R!



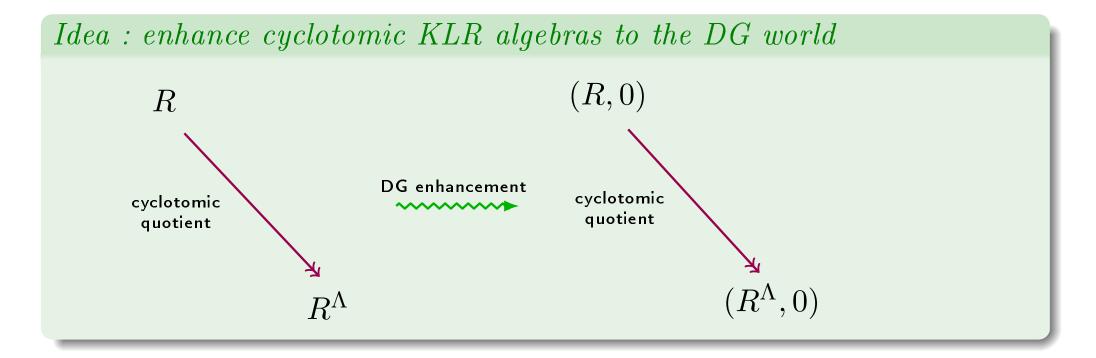
We cannot categorify $M(\lambda)$ (nor $\Delta(\Lambda)$) from R !



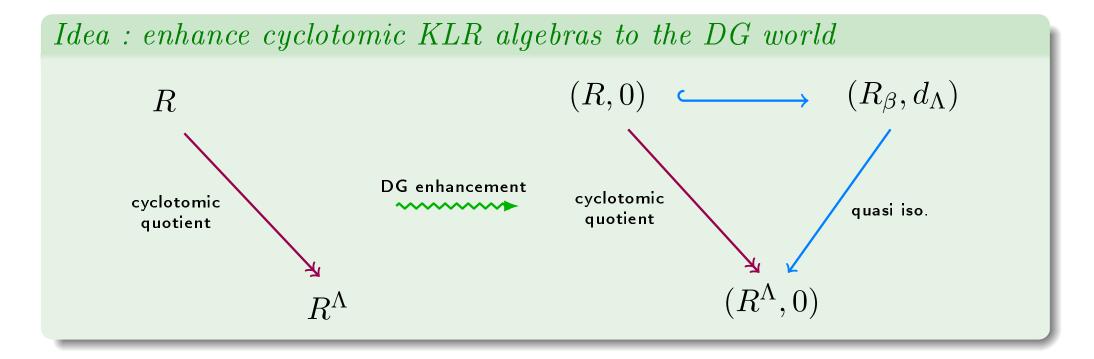
We cannot categorify $M(\lambda)$ (nor $\Delta(\Lambda)$) from R !



We cannot categorify $M(\lambda)$ (nor $\Delta(\Lambda)$) from R!



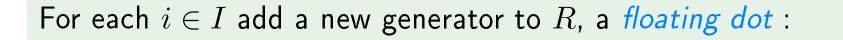
We cannot categorify $M(\lambda)$ (nor $\Delta(\Lambda)$) from R!



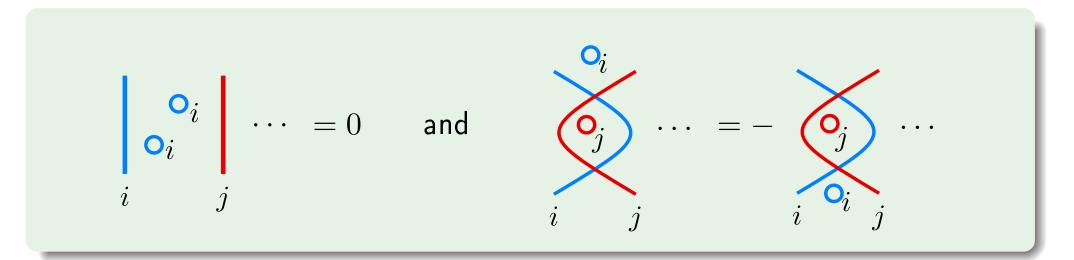
For each $i \in I$ add a new generator to R, a *floating dot* :

o...

(it floats)



and impose two relations



This is a multigraded superalgebra where the KLR generators are *even* while floating dot are *odd*. Call this algebra R_{β} . This is a *minimal presentation*.

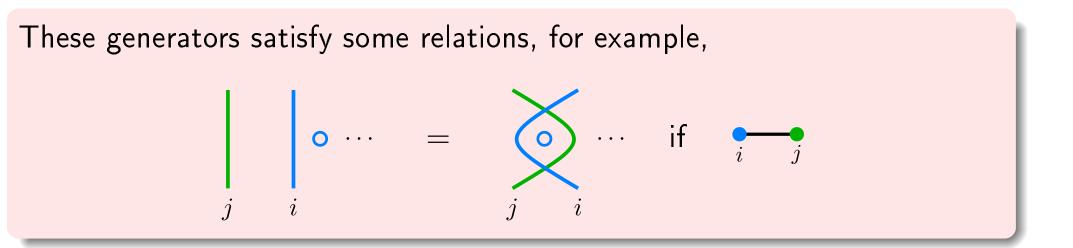
Extended KLR algebras - II

We have $R_{\beta} = \bigoplus_{\nu \in \mathbb{N}[I]} R_{\beta}(\nu)$.

Extended KLR algebras - II

We have $R_{\beta} = \bigoplus_{\nu \in \mathbb{N}[I]} R_{\beta}(\nu)$.

One can introduce more general floating dots, that can be placed in arbitray regions of the diagrams and get a presentation that is easier to handle in computations.



▲□▶▲□▶▲≡▶▲≡▶ ▲□▶

Differentials : DG enhanced KLR algebras

For Λ an integral dominant weight for ${\mathfrak g}$ put

$$d_{\Lambda} \left(\left| \begin{array}{c} \mathbf{o}_{i} \\ i \end{array} \right|_{j} \cdots \right) = \left| \begin{array}{c} \Lambda_{i} \\ i \\ i \end{array} \right|_{j} \cdot \cdots \right) = \left| \begin{array}{c} \Lambda_{i} \\ i \\ j \end{array} \right|_{j} \cdot \cdots \right)$$

This defines a differential on R_{β} .

Proposition (Naisse-V. '17

The DG-algebras (R_{β}, d_{Λ}) and $(R^{\Lambda}, 0)$ are quasi-isomorphic.

• We say that (R_{β}, d_{Λ}) is a *DG-enhancement* of R^{Λ} .

Categorifying the half quantum group

Let $R_{\beta}(\nu)$ -mod_{lf} be the category of *left bounded*, *locally finite* dimensional, *left supermodules* over $R_{\beta}(\nu)$, with *degree zero morphisms*, and R_{β} -pmod_{lf} the (full) subcategory of projectives.

Categorifying the half quantum group

Let $R_{\beta}(\nu)$ -mod_{lf} be the category of *left bounded*, *locally finite* dimensional, *left supermodules* over $R_{\beta}(\nu)$, with *degree zero morphisms*, and R_{β} -pmod_{lf} the (full) subcategory of projectives.

We can place diagrams aside each other to define an inclusion of algebras

$$R_{\beta}(\nu) \otimes R_{\beta-\mu}(\nu') \to R_{\beta}(\nu+\nu').$$

Theorem (Naisse-V. '17 :

There is an isomorphism of $\mathbb{Z}[q^{\pm 1}]$ -algebras

 $K_0(\bigoplus_{\delta \in \mathbb{Z}[I]} R_{\beta+\delta}\text{-}\mathrm{pmod}_{\mathrm{lf}}) \cong \dot{U}_q^-(\mathfrak{g}).$

Categorifying Verma modules

Categorification of the weight spaces of $M(\beta)$ Put

$$\mathcal{M}(\beta) = R_{\beta} \operatorname{-mod}_{\mathrm{lf}} = \bigoplus_{\nu \in \mathbb{N}[I]} R_{\beta}(\nu) \operatorname{-mod}_{\mathrm{lf}}.$$

Define the functor

$$\mathbf{F}_{i}(\nu) \colon R_{\beta}(\nu) \operatorname{-mod}_{\mathrm{lf}} \to R_{\beta}(\nu + i) \operatorname{-mod}_{\mathrm{lf}}$$

as the functor of *induction* for the map that adds a strand colored i at the right of a diagram from $R_{\beta}(\nu)$, and denote $E_i(\nu)$ its *right adjoint* (with some shift).

Categorifying Verma modules

There are several relations between these functors lifting the \mathfrak{g} -relations. For example,

Proposition (Naisse-V. '17)

There is a short exact sequence of functors

 $0 \to \mathbf{F}_i \mathbf{E}_i(\nu) \to \mathbf{E}_i \mathbf{F}_i(\nu) \to \mathbf{Q}(\nu) \langle q \mathsf{shift}_i, 1 \rangle \oplus \Pi \mathbf{Q}(\nu) \langle -q \mathsf{shift}_i, -1 \rangle \to 0$

for all $i \in I$, and isomorphisms

 $\mathbf{F}_{i} \mathbf{E}_{j}(\nu) \simeq \mathbf{E}_{j} \mathbf{F}_{i}(\nu) \quad \text{for } i \neq j.$

Categorifying Verma modules

Put

$$\mathbf{F}_{\boldsymbol{i}} = \bigoplus_{\nu \in \mathbb{N}[I]} \mathbf{F}_{\boldsymbol{i}}(\nu) \quad \text{and} \quad \mathbf{E}_{\boldsymbol{i}} = \bigoplus_{\nu \in \mathbb{N}[I]} \mathbf{E}_{\boldsymbol{i}}(\nu).$$

The Categorification Theorem (Naisse-V. '17) :

- Functors $(\mathbf{F}_i, \mathbf{E}_i)$ are *exact* and form an *adjoint* pair.
- These functors induce an action of $U_q(\mathfrak{g})$ on the (topological) Grothendieck group of $\mathcal{M}(\beta)$.

With this action we have an isomorphism

 $K_0(\mathcal{M}(\beta)) \cong M(\beta),$

of $U_q(\mathfrak{g})$ -representations.

Categorification of $L(\Lambda)$

There is a SES

$$\begin{split} 0 \to \left(\mathbf{F}_{i} \mathbf{E}_{i}(\nu), d_{\Lambda} \right) \to \left(\mathbf{E}_{i} \mathbf{F}_{i}(\nu), d_{\Lambda} \right) \to \\ \left(\mathbf{Q}(\nu) \langle q \mathsf{shift}_{i}, 1 \rangle \oplus \Pi \mathbf{Q}(\nu) \langle -q \mathsf{shift}_{i}, -1 \rangle, d_{\Lambda} \right) \to 0 \end{split}$$

Categorification of $L(\Lambda)$

There is a SES

$$\begin{aligned} 0 \to \left(\mathbf{F}_{i} \mathbf{E}_{i}(\nu), d_{\Lambda} \right) \to \left(\mathbf{E}_{i} \mathbf{F}_{i}(\nu), d_{\Lambda} \right) \to \\ \left(\mathbf{Q}(\nu) \langle q \mathsf{shift}_{i}, 1 \rangle \oplus \Pi \mathbf{Q}(\nu) \langle -q \mathsf{shift}_{i}, -1 \rangle, d_{\Lambda} \right) \to 0 \end{aligned}$$

This induces a *LES* in homology which splits! Depending on the sign of $\nu_{i\pm 1} - 2\nu_k$, the homology of the last term is concentrated in degree 0 or 1.

Corollary 1 :

$$\begin{split} \mathbf{E}_{i}^{\Lambda} \mathbf{F}_{i}^{\Lambda}(\nu) &\simeq \mathbf{F}_{i}^{\Lambda} \mathbf{E}_{i}^{\Lambda}(\nu) \oplus \overset{\nu_{i\pm 1} - 2\nu_{i} - 1}{\bigoplus_{\ell=0}} \mathrm{Id}_{\nu} \{2\ell\} & \text{if } \nu_{i\pm 1} \geq 2\nu_{i}, \\ \mathbf{F}_{i}^{\Lambda} \mathbf{E}_{1}^{\Lambda}(\nu) &\simeq \mathbf{E}_{i}^{\Lambda} \mathbf{F}_{i}^{\Lambda}(\nu) \oplus \overset{2\nu_{i} - \nu_{i\pm 1} - 1}{\bigoplus_{\ell=0}} \mathrm{Id}_{\nu} \{2\ell\} & \text{if } \nu_{i\pm 1} \leq 2\nu_{i}, \\ \mathbf{F}_{k}^{\Lambda} \mathbf{E}_{j}^{\Lambda}(\nu) &\simeq \mathbf{E}_{k}^{\Lambda} \mathbf{F}_{j}^{\Lambda}(\nu) & \text{for } j \neq k. \end{split}$$

Categorification of $L(\Lambda)$

There is a SES

$$\begin{aligned} 0 \to \left(\mathbf{F}_{i}\mathbf{E}_{i}(\nu), d_{\Lambda}\right) \to \left(\mathbf{E}_{i}\mathbf{F}_{i}(\nu), d_{\Lambda}\right) \to \\ \left(\mathbf{Q}(\nu)\langle q\mathsf{shift}_{i}, 1\rangle \oplus \Pi\mathbf{Q}(\nu)\langle -q\mathsf{shift}_{i}, -1\rangle, d_{\Lambda}\right) \to 0 \end{aligned}$$

This induces a *LES in homology which splits*! Depending on the sign of $\nu_{i\pm 1} - 2\nu_k$, the homology of the last term is concentrated in degree 0 or 1.

Corollary 2 :

We have an *isomorphism*

$$K_0(\mathcal{D}^c(R_\beta, d_\Lambda)) \cong L(\Lambda),$$

of $U_q(\mathfrak{g})$ -representations.

Parabolic Verma modules

A subset $I_f \subseteq I$ defines a parabolic subalgebra $\mathfrak{p} \subseteq \mathfrak{g}$ and the construction above allow to category parabolic Verma modules as induced modules from the Levi factor \mathfrak{l} of \mathfrak{p} by redefining the differential d_{Λ} .

Let N be an integral dominant weight for $\mathfrak l$ and put

$$d_N \left(\begin{array}{ccc} & \mathbf{o}_i & \\ i & \mathbf{o}_i & \\ i & j \end{array} \right) = \left\{ \begin{array}{ccc} 0 & & \text{if } i \in I_f \\ N_i & & \\ i & j \end{array} \right. \dots \text{if } i \in I \backslash I_f$$

• This results in a categorification of the parabolic Verma module $M^{\mathfrak{p}}(V_N)$.

(Affine) Hecke algebras

By Brundan-Kleshchev and Rouquier we know that in type A,

• (cyclotomic) KLR algebras are essentially (cyclotomic) Hecke algebras.

(Affine) Hecke algebras

By Brundan-Kleshchev and Rouquier we know that in type A,

• (cyclotomic) KLR algebras are essentially (cyclotomic) Hecke algebras.

Let \Bbbk be an algebraic closed field and fix $q\in \Bbbk^*$ and $d\in \mathbb{N}$ and let $H_d=H_d(q)$ be the

• degenerate affine Hecke algebra (over \Bbbk) if q = 1,

$$\{s_1,\ldots,s_{d-1},X_1,\ldots,X_d\}/\mathsf{relations},$$

or the

• (non-degenerate) affine Hecke algebra (over \Bbbk) if $q \neq 1$,

$$\{T_1, \ldots, T_{d-1}, X_1^{\pm 1}, \ldots, X_d^{\pm 1}\}$$
/relations.

Extended Hecke algebras

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Extended Hecke algebras

Definition :

Define the superalgebra \mathcal{H}_d by adding an *odd* variable θ to H_d and imposing the relations

$$\theta^2 = 0,$$

and

$$\begin{cases} \theta X_r = X_r \theta, & s_i \theta = \theta s_i & \text{for } i > 1 \\ s_1 \theta s_1 \theta + \theta s_1 \theta s_1 = 0 & \text{if } q = 1 \end{cases}$$

Extended Hecke algebras

Definition :

Define the superalgebra \mathcal{H}_d by adding an *odd* variable θ to H_d and imposing the relations

$$\theta^2 = 0,$$

and

$$\begin{cases} \theta X_r = X_r \theta, & s_i \theta = \theta s_i & \text{for } i > 1 \\ s_1 \theta s_1 \theta + \theta s_1 \theta s_1 = 0 & \text{if } q = 1 \end{cases}$$

or

$$\begin{cases} \theta X_r = X_r \theta, & T_i \theta = \theta T_i \text{ for } i > 1 \\ T_1 \theta T_1 \theta + \theta T_1 \theta T_1 = (q-1)\theta T_1 \theta & \text{if } q \neq 1 \end{cases}$$

DG-enhanced cyclotomic Hecke algebras

Introduce a differential ∂_{Λ} on \mathcal{H}_d :

• ∂_{Λ} acts as zero on H_d while

$$\partial_{\Lambda}(\theta) = \begin{cases} \Pi_{i \in I} (X_1 - i)^{\Lambda_i} & \text{if } q = 1, \\ \\ \Pi_{i \in I} (X_1 - q^i)^{\Lambda_i} & \text{if } q \neq 1, \end{cases} + \text{Leibniz rule}$$

Here, Λ is an integral dominant weight of Lie type A_{∞} or $A_{n-1}^{(1)}$.

DG-enhanced cyclotomic Hecke algebras

Introduce a differential ∂_{Λ} on \mathcal{H}_d :

• ∂_{Λ} acts as zero on H_d while

$$\partial_{\Lambda}(\theta) = \begin{cases} \Pi_{i \in I} (X_1 - i)^{\Lambda_i} & \text{if } q = 1, \\ \\ \Pi_{i \in I} (X_1 - q^i)^{\Lambda_i} & \text{if } q \neq 1, \end{cases} + \text{Leibniz rule}$$

Here, Λ is an integral dominant weight of Lie type A_{∞} or $A_{n-1}^{(1)}$.

Proposition (Maksimau-V. '18) :

The DG-algebras $(\mathcal{H}_d, \partial_\Lambda)$ and $(H_d^\Lambda, 0)$ are quasi-isomorphic.

$$\text{Cyclotomic Hecke algebra}: \quad H_d^{\Lambda} = \begin{cases} \frac{H_d}{\Pi_{i \in I}(X_1 - i)^{\Lambda_i}} & \text{ if } q = 1, \\ \frac{H_d}{\Pi_{i \in I}(X_1 - q^i)^{\Lambda_i}} & \text{ if } q \neq 1. \end{cases}$$

The DG-enhanced BKR isomorphism

DG-enhanced cyclotomic KLR algebras

are

DG-enhanced cyclotomic Hecke algebras :

- After a suitable completion, \mathcal{H}_d gets a block decomposition where blocks are labelled by elements of $\mathbb{N}[I]$.
- The differentials ∂_{Λ} give rise to differentials on blocks.

The DG-enhanced BKR isomorphism

DG-enhanced cyclotomic KLR algebras

are

DG-enhanced cyclotomic Hecke algebras :

- After a suitable completion, \mathcal{H}_d gets a block decomposition where blocks are labelled by elements of $\mathbb{N}[I]$.
- The differentials ∂_{Λ} give rise to differentials on blocks.

WIP (Maksimau-V.)

The DG-algebras $(\widehat{R}_{\nu}, d_{\Lambda})$ and $(\widehat{\mathcal{H}}_{d} 1_{\nu}, \partial_{\Lambda,\nu})$ are isomorphic.

Thanks for your attention !

