What is...Schur's lemma?

Or: Matrices rarely commute

The standard representation of S_n

- ▶ S_n act on an n-1 simplex by permuting the vertices Permutation rep
- ► Getting rid of the eigenvector "sum of vertices" gives the standard rep L_{stand}, which is simple

Commuting matrices

$$S = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$T = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$AS - SA = \begin{pmatrix} -c & a + 2b - d \\ -2c & c \end{pmatrix}$$
$$AT - TA = \begin{pmatrix} b & -2b \\ -a + 2c + d & -b \end{pmatrix}$$

$$AS - SA = 0$$
 and $AT - TA = 0 \Rightarrow a = d, b = c = 0$

- ▶ After some algebra one sees that only $(scalar \cdot id)$ commutes with S and T
- ► Could this be general ?

More commuting matrices

▶ The non-simple subrep of $\mathbb{Z}/3\mathbb{Z}$ above has nontrivial commuting matrices

 \blacktriangleright Precisely, $\left(\begin{smallmatrix} 0 & -1 \\ 1 & -1 \end{smallmatrix}\right)$ and $\left(\begin{smallmatrix} -1 & 1 \\ -1 & 0 \end{smallmatrix}\right)$ commute

 $\phi,\,\psi$ simple G-representation on $\mathbb K\text{-vector spaces}$ V, W

- \blacktriangleright Any G-intertwiner between ϕ and ψ is either 0 or an isomorphism
- For $\mathbb{K} = \overline{\mathbb{K}}$ any *G*-intertwiner between ϕ and itself is either 0 or (*scalar* · *id*)

Corollary We get that

 $\dim_{\mathbb{C}}\operatorname{Hom}_{G-\mathsf{REP}}(V,W)$

is given by counting simples in V and W and compare overlap

- \blacktriangleright For the symmetric group $\mathbb{K}=\mathbb{Q}$ is sufficient for the second statement
- ▶ In general the condition $\mathbb{K} = \overline{\mathbb{K}}$ is necessary
 - ▶ Take for example $\mathbb{Z}/3\mathbb{Z}$
 - Over \mathbb{Q} it has a 2d simple rep V
 - ▶ $\operatorname{End}_{\mathbb{Z}/3\mathbb{Z}-\mathsf{REP}}(V)$ is two dimensional

Abelian groups

 \blacktriangleright Corollary (of Schur's lemma) Abelian groups have only 1d simple reps over $\mathbb C$

▶ The converse is also true over \mathbb{C}

Thank you for your attention!

I hope that was of some help.