What is...Schur's lemma?

Or: Matrices rarely commute

The standard representation of S_{n}

- S_{n} act on an $n-1$ simplex by permuting the vertices Permutation rep
- Getting rid of the eigenvector "sum of vertices" gives the standard rep $L_{\text {stand }}$, which is simple

Commuting matrices

$$
\begin{gathered}
S=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right) \\
T=\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right) \\
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
A S-S A=\left(\begin{array}{cc}
-c & a+2 b-d \\
-2 c & c
\end{array}\right) \\
A T-T A=\left(\begin{array}{cc}
b & -2 b \\
-a+2 c+d & -b
\end{array}\right)
\end{gathered}
$$

$$
A S-S A=0 \text { and } A T-T A=0 \Rightarrow a=d, b=c=0
$$

- After some algebra one sees that only (scalar •id) commutes with S and T
- Could this be general ?

- The non-simple subrep of $\mathbb{Z} / 3 \mathbb{Z}$ above has nontrivial commuting matrices
- Precisely, $\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ and $\left(\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right)$ commute

For completeness: A formal statement

ϕ, ψ simple G-representation on \mathbb{K}-vector spaces V, W

- Any G-intertwiner between ϕ and ψ is either 0 or an isomorphism
- For $\mathbb{K}=\overline{\mathbb{K}}$ any G-intertwiner between ϕ and itself is either 0 or (scalar $\cdot i d$)
- Corollary We get that

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{G-\operatorname{REP}}(V, W)
$$

is given by counting simples in V and W and compare overlap

- For the symmetric group $\mathbb{K}=\mathbb{Q}$ is sufficient for the second statement
- In general the condition $\mathbb{K}=\overline{\mathbb{K}}$ is necessary
- Take for example $\mathbb{Z} / 3 \mathbb{Z}$
- Over \mathbb{Q} it has a 2d simple rep V
- $\operatorname{End}_{\mathbb{Z} / 3 \mathbb{Z}-\text { REP }}(V)$ is two dimensional

Abelian groups

- Corollary (of Schur's lemma) Abelian groups have only 1d simple reps over \mathbb{C}
- The converse is also true over \mathbb{C}

Thank you for your attention!

I hope that was of some help.

