What is...semisimplicity?

Or: The finite group miracle
S_{3} acting on itself
S_{3} acts on $\mathbb{C}\left[S_{3}\right]:$

	$i d$	(12)	(23)	(123)	(132)	(13)
$i d$						
(12)						
(23)						

0 \& 0 \& 1 \& 0 \& 0 \& 0

(123)

(132)

(13)\end{array}\right)\)

- Any group G acts on its group ring $\mathbb{K}[G]$ Action on itself
- $\mathbb{K}[G]$ is called the regular representation
- A miracle happens for $\mathbb{K}=\mathbb{C}$

A simultaneous base change

$$
\begin{aligned}
& S_{3} \text { acts on } \mathbb{C}\left[S_{3}\right]: \\
& \text { id (12) (23) (123) (132) } \\
& \text { (13) } \\
& \text { (132) ans } \\
& \text { (132) } \text { an }\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- After base change, the matrices take block form
- This works simultaneously (above only one of six matrices)

The miracle

$$
S_{3} \text { acts on } \mathbb{C}\left[S_{3}\right]:
$$

$$
\begin{aligned}
(12)
\end{aligned} \begin{gathered}
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right) \\
(132)<m\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

- One finds three simple S_{3}-representations $L_{\text {triv }}, L_{\text {stand }}, L_{s g n}$
- We have the miraculous formulas

$$
\left|S_{3}\right|=1^{2}+2^{2}+1^{1}=\left(\operatorname{dim} L_{\text {triv }}\right)^{2}+\left(\operatorname{dim} L_{\text {stand }}\right)^{2}+\left(\operatorname{dim} L_{\text {sgn }}\right)^{2}
$$

For completeness: A formal statement

G is semisimple over \mathbb{C} !

- Every G-representation on a \mathbb{C}-vector space V is completely reducible, that is

$$
V \cong L_{1} \oplus \ldots \oplus L_{k}
$$

for simple G-representations L_{j}

- All simple G-representations appear in $\mathbb{C}[G]$ and

$$
\mathbb{C}[G] \cong \bigoplus_{\text {simples }} L^{\oplus \operatorname{dim} L}
$$

- We have

$$
|G|=\sum_{\text {simples }}(\operatorname{dim} L)^{2}
$$

- The above is called Maschke's theorem
- It actually works more general, namely for $\operatorname{char}(\mathbb{K}) \nmid|G|$

This is weird and surprising!

representations $\longleftrightarrow \rightsquigarrow$ matter

simples \leadsto elements

indecomposables $\leadsto \rightarrow$ compounds

- Semisimplicity \Leftrightarrow "simple=indecomposable"
- Thus, for complex representations of finite groups we have

There are no nontrivial compounds!

Thank you for your attention!

I hope that was of some help.

