> What is...the Jordan-Hölder theorem?

Or: Like prime numbers

The fundamental theorem of arithmetic (FTA)

- Prime numbers are the elements of basic multiplicative arithmetic
- These are the elements without substructure
- However, only the FTA justifies their importance

Division $r \gg$ triangular block decomposition

- Simples are the elements of representation theory
- These are the elements without substructure
- Thus, we need an

FTA of representation theory

A tree type picture

Jordan-Hölder vastly generalize the FTA

$$
\phi: G \rightarrow \mathrm{GL}(V) G \text {-representation on a } \mathbb{K} \text {-vector space } V
$$

- A composition series of V is a sequence of subrepresentations

$$
0=V_{0} \subset V_{1} \subset \ldots \subset V_{k-1} \subset V_{k}=V
$$

such that the factor modules V_{i+1} / V_{i} are simple

- k is the length of the series

Theorem We have:

- Composition series exist Existence
- If V has two series

$$
\begin{gathered}
0=V_{0} \subset V_{1} \subset \ldots \subset V_{k-1} \subset V_{k}=V \\
0=W_{0} \subset W_{1} \subset \ldots \subset W_{l-1} \subset W_{l}=V
\end{gathered}
$$

then $k=I$ and the factors are the same up to permutation and isomorphism

$$
V_{i+1} / V_{i} \cong W_{\sigma(i+1)} / W_{\sigma(i)}
$$

Krull-Schmidt theorem

A Jordan block

- Jordan decomposition over \mathbb{C} gives
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) \xrightarrow[\text { change }]{\text { C base }}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & e^{2 \pi i / 3} & 0 \\ 0 & 0 & e^{4 \pi i / 3}\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & e^{4 \pi i / 3} & 0 \\ 0 & 0 & e^{2 \pi i / 3}\end{array}\right)$
- Jordan decomposition over \mathbb{F}_{3} gives

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \xrightarrow{\mathbb{F}_{3} \text { base }}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

There is also the analog theorem for indecomposable representations:

- Every rep is \cong to a finite \oplus sum of indecomposable reps Existence
- Such a decomposition is unique up to permutation of summands

Thank you for your attention!

I hope that was of some help.

