Or: The elements! Well, kind of...



Other elements?

7 9 10 11 12 13 14 15 16

» Simple representations are the ' no substructure elements
» Indecomposable “block” representations are the no decomposition elements

» For complex G-representations these notions agree | Finite group miracle
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» (1,1,1) is an eigenvector regardless of K | Substructure!

» We have det(P) = 3 and the block decomposition works only for char(K) # 3

» In char(K) = 3 the triangle representation

is indecomposable but not simple



A Jordan block
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» Jordan decomposition over F3 gives
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For completeness: A formal definition
¢: G — GL(V) G-representation on a K-vector space V

A K-linear decomposition is V = W @ X for G-invariant W, X Blocks

V # 0 is called indecomposable if V = W @ X implies W =0 or X =0 Elements

In general we have

simple = indecomposable, simple <= indecomposable

Simple «~ only trivial triangular blocks
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Elements? Maybe not quite...

[
representations «~» matter ‘ ‘

simples «~~ elements @ . ) .
indecomposables «~+ compounds ‘ , @ ’ ) .

» Wouldn't “simple=indecomposable” be weird?

» Well, it is true for complex representations of finite groups

Finite group miracle



| hope that was of some help.



