What is...a simple representation?

Or: The elements!

Elements and simple representations

Chemistry	Group theory	Rep theory	
Matter	Groups	Reps	
Elements	Simple groups	Simple reps	
Simpler substances	Jordan–Hölder theorem	Jordan–Hölder theorem	
Periodic table	Classification of simple groups	Classification of simple reps	

• Question What are the simplest possible representations?

▶ Whatever these are, they should play the role of elements in rep theory!

опыть системы элементовъ,

основанной на ихъ атомномъ въсъ и химическомъ сходствъ.

			Ti=50	Zr= 90	?=180.
			V=51	Nb= 94	Ta=182.
			Cr=52	Mo= 96	W=186.
			Mn=55	Rh=104,4	Pt=197,1.
			Fe=56	Ru=104,4	Ir=198.
		Ni	=Co=59	Pd=106,6	Os=199.
H=1			Cu=63,4	Ag=108	Hg=200.
	Be= 9,4	Mg=24	Zn=65,2	Cd=112	
	B=11	Al=27,3	?=68	Ur=116	Au=197?
	C=12	Si=28	?=70	Sn=118	
	N=14	P=31	As=75	Sb=122	Bi=210?
	O=16	S=32	Se=79,4	Te=128?	
	F=19	Cl=35,5	Br=80	I=127	
Li=7	Na=23	K=39	Rb=85,4	Cs=133	Tl=204.
		Ca=40	Sr=87,6	Ba=137	Pb=207.
		?=45	Ce=92		
		?Er=56	La=94		
		?Yt=60	Di=95		
		?In=75,6	Th=118?		

Eigenvector = smaller representation

▶ (1,1,1) is an eigenvector of all matrices in the above representation ϕ

▶ The above is not an element : there is a simpler substructure $\mathbb{C}\{(1,1,1)\}$

Block decomposition

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
$$P^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$P^{-1} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$
$$P^{-1} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

- \blacktriangleright A base change verifies that ϕ has two substructures
- ▶ These are $\mathbb{C}\{(1,1,1)\}$ and $\mathbb{C}^2/\mathbb{C}\{(1,1,1)\}$
- $\blacktriangleright \ \mathbb{C}\{(1,1,1)\} = \mathsf{trivial}$

 $\phi \colon \mathcal{G} \to \operatorname{GL}(\mathcal{V})$ *G*-representation on a \mathbb{K} -vector space \mathcal{V}

- ▶ A \mathbb{K} -linear subspace $W \subset V$ is *G*-invariant if *G* $W \subset W$ Substructure
- ▶ $V \neq 0$ is called simple if 0, V are the only G-invariant subspaces Elements
- ► Careful with different names in the literature:

G-invariant $\leftrightarrow \Rightarrow$ subrepresentation, simple $\leftrightarrow \Rightarrow$ irreducible

► A crucial goal of representation theory

Find the periodic table of simple G-representations

What happens for $\mathbb{Z}/3\mathbb{Z}$?

- ▶ $\mathbb{Z}/3\mathbb{Z}$ has three simple representations over \mathbb{C} , one for each solution of $X^3 = 1$
- ► These are of dimension 1
- ► Careful: simple *G*-representation need not to be of dimension 1!

Thank you for your attention!

I hope that was of some help.