What is...a simple representation?

Or: The elements!

Elements and simple representations

Chemistry	Group theory	Rep theory
Matter	Groups	Reps
Elements	Simple groups	Simple reps
Simpler substances	Jordan-Hölder theorem	Jordan-Hölder theorem
Periodic table	Classification of simple groups	Classification of simple reps

- Question What are the simplest possible representations?
- Whatever these are, they should play the role of elements in rep theory!

ОПЫТЂ СИСТЕМЫ ЭЛЕМЕНТОВЂ,

Eigenvector $=$ smaller representation

- $(1,1,1)$ is an eigenvector of all matrices in the above representation ϕ
- The above is not an element : there is a simpler substructure $\mathbb{C}\{(1,1,1)\}$

Block decomposition

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right) \\
P^{-1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
P^{-1}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right) \\
P^{-1}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & 0
\end{array}\right)
\end{gathered}
$$

- A base change verifies that ϕ has two substructures
- These are $\mathbb{C}\{(1,1,1)\}$ and $\mathbb{C}^{2} / \mathbb{C}\{(1,1,1)\}$
- $\mathbb{C}\{(1,1,1)\}=$ trivial

$$
\phi: G \rightarrow \mathrm{GL}(V) G \text {-representation on a } \mathbb{K} \text {-vector space } V
$$

- A \mathbb{K}-linear subspace $W \subset V$ is G-invariant if $G . W \subset W$ Substructure
- $V \neq 0$ is called simple if $0, V$ are the only G-invariant subspaces Elements
- Careful with different names in the literature:

G-invariant subrepresentation, simple $\leadsto \leadsto$ irreducible

- A crucial goal of representation theory

Find the periodic table of simple G-representations

S_{3}	(1)	(12)	(123)
$\chi_{\text {triv }}$	1	1	1
$\chi_{\text {sgn }}$	1	-1	1
$\chi_{\text {stand }}$	2	0	-1

What happens for $\mathbb{Z} / 3 \mathbb{Z}$?

$$
\begin{gathered}
Q=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \frac{1}{2}(-1-i \sqrt{3}) & \frac{1}{2}(-1+i \sqrt{3}) \\
1 & \frac{1}{2}(-1+i \sqrt{3}) & \frac{1}{2}(-1-i \sqrt{3})
\end{array}\right) \\
Q^{-1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) Q=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
Q^{-1}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) Q=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} i(\sqrt{3}+i) & 0 \\
0 & 0 & -\frac{1}{2} i(\sqrt{3}-i)
\end{array}\right) \\
Q^{-1}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) Q=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{2} i(\sqrt{3}-i) & 0 \\
0 & 0 & \frac{1}{2} i(\sqrt{3}+i)
\end{array}\right)
\end{gathered}
$$

- $\mathbb{Z} / 3 \mathbb{Z}$ has three simple representations over \mathbb{C}, one for each solution of $X^{3}=1$
- These are of dimension 1
- Careful: simple G-representation need not to be of dimension 1!

Thank you for your attention!

I hope that was of some help.

