What are...intertwiners?

Or: Maps between representations

Equivariant maps

- Intertwiner $=$ the correct maps between representations
- Invertible intertwiners give the notion of equivalence of representations
- Remains to find the "correct" notion ;-)

The same representations！？

$$
\mathbb{Z} / 3 \mathbb{Z}=\{1, g, h\} \text { with } g^{2}=h, g^{3}=1
$$

$$
\begin{aligned}
& \mathbb{Z} / 3 \mathbb{Z} \text { acts on } \mathbb{C}\{(1,0,0) \mathrm{cm},(0,1,0) \mathrm{cm} \text {, }(0,0,1) \mathrm{cm} / \text { cn }\} \\
& g \text { an }\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad h \text { かん }\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$\mathbb{Z} / 3 \mathbb{Z}$ acts on $\mathbb{C}\{(1,1,1),(0,1,0),(0,0,1)\}$

$$
g \text { an }\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right), \quad h \text { «m }\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

－These representation are the same up to base change
－We want to identity them，so we need base change as allowed maps

Base change

$$
\begin{gathered}
\mathbb{C}^{3} \xrightarrow{\phi_{g}^{\prime}} \mathbb{C}^{3} \\
\mathbb{C}^{\downarrow} \xrightarrow[\phi_{g}]{ }{ }^{\sim} \mathbb{C}^{3} \\
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \\
\phi_{g}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad \phi_{g}^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right)
\end{gathered}
$$

- Changing bases satisfies the above diagram (similarly for 1 and h)
- An intertwiner should be a generalized base change
- Take the above diagram as the definition of an intertwiner

For completeness: A formal definition

An intertwiner $f: V \rightarrow W$ between G-representations V, W is a map such that:

- f is linear
- f satisfies the commutative "base change" diagram

for all $g \in G$

Intertwiners also come under different names, e.g.

- Maps of representations
- Morphisms of representations
- G-equivariant maps/morphisms

$$
\begin{aligned}
S_{2}= & \{1, s\} \text { acts on } V=\mathbb{C}\{(1,0),(0,1)\} \\
& 1 \text { \& }
\end{aligned}
$$

$$
\operatorname{End}_{\mathbb{C V E C T}}(V)=\mathbb{C}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

$$
\begin{aligned}
& V \xrightarrow[\binom{01}{10}]{ } V
\end{aligned}
$$

- Linear maps: $\operatorname{dim}_{\operatorname{End}}^{\text {CVECT }}(V)=4$ All matrices
- Intertwiners: $\operatorname{dim} \operatorname{End}_{S_{2} R E P}(V)=2$ Smaller!

Thank you for your attention!

I hope that was of some help.

