What is...chemical representation theory?

Or: Applications (rep theory in chemistry)

Symmetry groups of molecules

- ► Molecular symmetry describes the symmetry of molecules
- ► The main players are point set groups and their characters
- ► These can be used predict or explain many chemical properties

Characters of point set groups

- ▶ Up to notation, chemist like the same character tables as rep theorists
 - **Example** The character table for $D_3 = C_{3\nu}$ for ammonia

Predicting chemical behavior

- ▶ 1s and $\Delta \Phi$ both appear for molecules with D_3 symmetry
- ▶ We have $1s \cong A_1 \oplus E$ and $\Delta \Phi \cong A_2 \oplus E \Rightarrow$ should be related by reflection
- Indeed molecules such as ammonia show inverse phenomena

Molecular symmetry group = group that leave the Hamiltonian invariant (i) Space symmetries We have seen these

- (ii) Time symmetries
- (iii) Permutational symmetry of a set of particles

Symmetry of the Hamiltonian ++++ chemical properties

Linear symmetry <----> representations

Rep theory in chemistry: put both together!

Ammonia and Frobenius reciprocity

- ▶ $1s \cong A_1 \oplus E$ and $\Delta \Phi \cong A_2 \oplus E$ both restrict to the reg rep of $\mathbb{Z}/3\mathbb{Z} \subset D_3$
- Prediction Breaking the reflection symmetry of NH_3 stops it from turning out
 - Experiment Put *NH*₃ in a magnetic field works!

Thank you for your attention!

I hope that was of some help.