What is...a local-global principle?

Or: Small determines big

Hasse's local-global principle

Hasse's local-global principle roughly asks when the following are equivalent:

 \blacktriangleright A Diophantine equation is solvable in $\mathbb Z$ global

► A Diophantine equation is solvable modulo every p^k local + in ℝ When can local solutions be joined to a global solution?

A local-global principle in rep theory?

```
T := CharacterTable(AlternatingGroup(5));
             Blocks(T,2);
             DefectGroup(T[1],2);
[
   \{1, 2, 3, 5\},\
    \{4\}
[2, 0]
Permutation group acting on a set of cardinality 5
0rder = 4 = 2^2
    (1, 2)(3, 4) Z/2Z X Z/2Z
    (1, 3)(2, 4)
```

e.g. $N_{A_4}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$ and only defect group is $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$

• Question What can subgroups tell us about group reps?

Refined question What can p subgroups tell us about group reps?

Brauer's local-global principle I

e.g. $N_{D_6}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$ and only defect group is $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$

Brauer's local-global principle I says that there is a bijection between:

• Blocks of G with defect group D global

• Blocks of $N_G(D)$ with defect group D local

For completeness: A formal statement

We have Brauer's three main theorems :

- Brauer I The one from the previous slide
- **Brauer II** Roughly, an element t of prime order and a criterion for a block of $C_G(t)$ to correspond to a given block of G
- Brauer III A strengthening/version of I for the principal block

More local-global in rep theory

Brauer's main theorems are just the tip of the iceberg

There are many (often conjectural) local-global principles in rep theory, e.g.:

- ► Brauer's height-zero conjecture
- McKay conjecture
- ▶ Broué's abelian defect group conjecture
- More...

Thank you for your attention!

I hope that was of some help.