What is...a block?

Or: Decomposing a problem

Matrices? Well...

$$
\left.\begin{array}{c}
1 \\
1 \\
2 \\
3 \\
\vdots \\
m
\end{array} \begin{array}{cccc}
1 & 2 & \ldots & n \\
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
a_{31} & a_{32} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

- Over \mathbb{C} we get a decomposition into matrices
- All simple G-representations appear in $\mathbb{C}[G]$ and

$$
\mathbb{C}[G] \cong \bigoplus_{\text {simples }} L \oplus \operatorname{dim} L
$$

- We have

$$
|G|=\sum_{\text {simples }}(\operatorname{dim} L)^{2}
$$

- In general $\mathbb{K}[G] \cong \bigoplus_{i=1}^{k} B_{i}$ with B_{i} indecomposable Blocks

Let us look at S_{3}

- $\mathbb{C}\left[S_{3}\right] \cong M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) \oplus M_{2}(\mathbb{C}) \Rightarrow$ blocks are matrix algebras
- $\overline{\mathbb{F}}_{2}\left[S_{3}\right] \cong \overline{\mathbb{F}}_{2}[X] /\left(X^{2}\right) \oplus M_{2}\left(\overline{\mathbb{F}}_{2}\right) \Rightarrow$ blocks are not necessarily matrix algebras (The projective cover of the trivial rep is of dim 2)

S_{3} continued

- $\mathbb{C}\left[S_{3}\right] \cong M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) \oplus M_{2}(\mathbb{C}) \Rightarrow$ blocks are matrix algebras
- $\overline{\mathbb{F}}_{3}\left[S_{3}\right] \cong\left(\overline{\mathbb{F}}_{3}[X] /\left(X^{3}\right) \oplus \overline{\mathbb{F}}_{3}[X] /\left(X^{3}\right)\right) \Rightarrow$ no matrix blocks $\left(\chi_{3}=\chi_{1}+\chi_{2} \bmod 3\right)$

For completeness: A formal statement

For \mathbb{K} algebraically closed of characteristic p :

- There is an up to reordering unique decomposition

$$
\mathbb{K}[G] \cong \bigoplus_{i=1}^{k} B_{i} \quad B_{i} \text { is an indecomposable two-sided ideal summand }
$$

Existence and uniqueness

- Primitive central idempotents $\stackrel{1: 1}{\longleftrightarrow}$ blocks Construction
- The simples are partitioned by the blocks Decomposition of the problem
- Simple characters/ \mathbb{C} fit into blocks via simple Brauer characters

The principal block

T := CharacterTable(SymmetricGroup(10)); Blocks(T,3);

```
{ 1, 2, 5, 6, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 29, 30, 33, 34, 35, 38,
39, 42 },
{ 3, 8, 15, 18, 23, 26, 27, 31, 37 },
{ 4, 7, 16, 17, 24, 25, 28, 32, 36 },
{ 40 },
{ 41 }
```

- The principal block $B_{\text {triv }}=$ block of the trivial rep
- $B_{\text {triv }}$ is the "most complicated" block
- $B_{\text {triv }} \cong \mathbb{K} \Leftrightarrow \mathbb{K}[G]$ is semisimple

Thank you for your attention!

I hope that was of some help.

