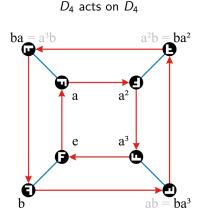
What are...Brauer characters?

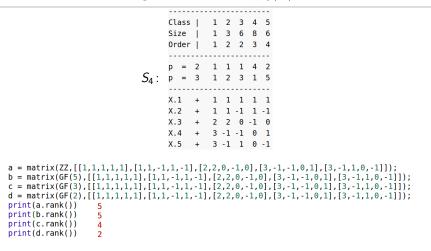
Or: Ignore the ground field

Vanishing traces



- $\blacktriangleright \text{ Every group can act on } itself \Rightarrow regular rep$
- \blacktriangleright The underlying geometric object can be thought of as the Cayley graph
- Huge problem The character of the regular rep is zero if $p \mid |G|$

It gets even worse if $p \mid |G|$



▶ The rep $\phi^{\oplus p}$ has always zero character \Rightarrow characters can not distinguish reps

▶ Naively specialized simple characters have dependencies \Rightarrow we have the wrong count

► Looks like character theory is dead

Brauer: Let's pretend we have complex numbers

$$permutation (142)(3): \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$e = matrix(CyclotomicField(3), [[0,1,0,0], [0,0,0,1], [0,0,1,0], [1,0,0,0]]);$$

$$= matrix(GF(2), [[0,1,0,0], [0,0,0,1], [0,0,1,0], [1,0,0,0]]);$$

$$= matrix(GF(3), [[0,1,0,0], [0,0,0,1], [0,0,1,0], [1,0,0,0]]);$$

$$print(e.eigenvalues()) \quad [zeta3, -zeta3 - 1, 1, 1]$$

$$print(f.eigenvalues()) \quad [1, 1, z2 + 1, z2]$$

$$print(g.eigenvalues()) \quad [1, 1, 1]$$

► Trace = sum of eigenvalues

e

g

▶ Eigenvalues are roots of unity (since elements of *G* have finite order)

• Pretend that these are complex numbers for $p \nmid order \Rightarrow$ Brauer characters

For $char(\mathbb{K}) = p$ the Brauer characters χ^{p}_{ϕ} are complex characters of *G*-reps such that:

(i) They distinguish simple *G*-reps:

$$\chi^{\mathbf{p}}_{\phi} = \chi^{\mathbf{p}}_{\psi} \Leftrightarrow \phi \cong \psi$$
 for ϕ, ψ simple

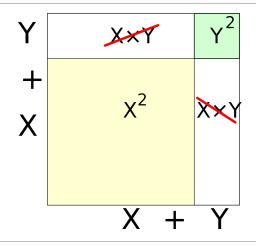
(ii) They form a basis of the class functions $G_{reg} \to \mathbb{C}$

In particular, iso classes of simple G-reps = conjugacy classes of p-regular elements

- $G_{reg} = p$ -regular = elements of G whose order is prime to p
- ▶ Over \mathbb{C} : $\chi^{p}_{\phi} = \chi^{p}_{\psi} \Leftrightarrow \phi \cong \psi$ for ϕ, ψ arbitrary reps
- ► Heuristic way to compute the simple Brauer characters:

D_5/\mathbb{C} :	Class Size Order	1 2 3 1 5 2 1 2 5			Class 1 Size 1 Order 1	3 4 2 2 5 5
	p = 2 p = 5	1 1 4 1 2 1	3	$, D_5/\overline{\mathbb{F}_2}$:		
	X.1 +	1 1 1	1		X.1 + 1 X.2 + 1 -	1 1 1 1
	X.2 + X.3 +	1 -1 1 2 0 Z1	. 1 . Z1#2		X.3 + 2 X.4 + 2	Z1 Z1#2 Z1#2 Z1
	X.4 +	2 0 Z1#2	Z1		Z1=gold	

Fresh's dream



• Over
$$\mathbb{F}_p$$
: $(X + Y)^p = X^p + Y^p$ so $(X + 1)^p = X^p + 1$

▶ ⇒ there are no primitive *p*th roots of unity over \mathbb{F}_p

Brauer We need to get rid of these anyway but everything else is ok!

Thank you for your attention!

I hope that was of some help.