What is...modular representation theory?

Or: Division made hard

## Jordan decomposition



► Apply Jordan decomposition over C:

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta & 0 \\ 0 & 0 & \zeta^2 \end{pmatrix} \quad \zeta^2 + \zeta + 1 = 0$$

Jordan decomposition over  $\mathbb{C} \Rightarrow$  regular  $\mathbb{Z}/3\mathbb{Z}$  rep decomposes nicely

## Let us try Jordan decomposition again

a = matrix(CyclotomicField(3),[[0,0,1],[1,0,0],[0,1,0]]); b = matrix(GF(3),[[0,0,1],[1,0,0],[0,1,0]]); print(a.jordan\_form()) print(b.jordan\_form())



▶ Apply Jordan decomposition over  $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ :

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Jordan decomposition over  $\mathbb{F}_3 \Rightarrow$  regular  $\mathbb{Z}/3\mathbb{Z}$  rep is indecomposable

## **Fixed vectors**



- $\blacktriangleright$  *v* is an eigenvector of the action independent of the field
  - ▶  $\Rightarrow$  The regular  $\mathbb{Z}/3\mathbb{Z}$  rep is not simple over  $\mathbb{F}_3$
  - ▶  $\Rightarrow$  Rep theory of  $\mathbb{Z}/3\mathbb{Z}$  over  $\mathbb{F}_3$  is not semisimple

For finite characteristic things get a bit nasty:

(i) G has a semisimple rep theory over  $\overline{\mathbb{F}_p}$  if and only if  $p \nmid |G|$  (Maschke's theorem)

(ii) Character theory falls apart:

$$p \nmid |G| \colon \chi_{\phi} = \chi_{\psi} \Leftrightarrow \phi \cong \psi \quad p \mid |G| \colon \chi_{\phi} = \chi_{\psi} \Leftrightarrow \phi \cong \psi$$

(iii) The notion of a character is fishy for  $p \mid |G| \Rightarrow$  need Brauer characters (iv) Many more crappy things happen

• Over  $\mathbb{F}_p$  for  $p \neq 3$  everything is fine for  $\mathbb{Z}/3\mathbb{Z}$ :

```
 \begin{array}{c} [1] & 0 | & 0 | \\ [\cdots + \cdots + \cdots + \cdots + \cdots + \cdots ] \\ d = matrix(GF(4), [[0,0,1], [1,0,0], [0,1,0]]); \\ d = matrix(GF(7), [[0,0,1], [1,0,0], [0,1,0]]); \\ print(c.jordan_form()) \\ print(d.jordan_form()) \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [0] \\ [
```

• Characters of  $\mathbb{Z}/3\mathbb{Z}$  over  $\mathbb{F}_3$ :

 $\chi_{\mathsf{triv} \oplus \mathsf{triv} \oplus \mathsf{triv}} = \mathbf{0} = \chi_{\mathsf{reg rep}} \quad \mathsf{but} \quad \mathsf{triv} \oplus \mathsf{triv} \oplus \mathsf{triv} \not\cong \mathsf{reg rep}$ 

## Eigenvalues of pseudo idempotents



- ▶ Maschke's theorem uses the total pseudo idempotent  $T = \sum_{g \in G} g$
- ▶ The leading eigenvalue of T is |G|
  - **Problem** We can not divide by |G| if p | |G|

Thank you for your attention!

I hope that was of some help.