What is...modular representation theory?

Or: Division made hard
$\mathbb{Z} / 3 \mathbb{Z}$ acts on $\mathbb{C}\{(1,0,0) \mathrm{cm},(0,1,0) \mathrm{cm},(0,0,1) \mathrm{cm} / \boldsymbol{c}$

$$
g \text { ぃぃ }\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

- Apply Jordan decomposition over \mathbb{C} :

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta & 0 \\
0 & 0 & \zeta^{2}
\end{array}\right) \quad \zeta^{2}+\zeta+1=0
$$

- Jordan decomposition over $\mathbb{C} \Rightarrow$ regular $\mathbb{Z} / 3 \mathbb{Z}$ rep decomposes nicely

```
a = matrix(CyclotomicField(3),[[0,0,1],[1,0,0],[0,1,0]]);
b = matrix(GF(3),[[0,0,1],[1,0,0],[0,1,0]]);
print(a.jordan_form())
print(b.jordan_form())
```


- Apply Jordan decomposition over $\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}$:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \rightsquigarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Jordan decomposition over $\mathbb{F}_{3} \Rightarrow$ regular $\mathbb{Z} / 3 \mathbb{Z}$ rep is indecomposable

Fixed vectors

$$
v=(1,1,1)=
$$

$+$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) v=v \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) v=v \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) v=v
\end{aligned}
$$

- v is an eigenvector of the action independent of the field
- \Rightarrow The regular $\mathbb{Z} / 3 \mathbb{Z}$ rep is not simple over \mathbb{F}_{3}
- \Rightarrow Rep theory of $\mathbb{Z} / 3 \mathbb{Z}$ over \mathbb{F}_{3} is not semisimple

For completeness: A formal statement

For finite characteristic things get a bit nasty:
(i) G has a semisimple rep theory over $\overline{\mathbb{F}_{p}}$ if and only if $p \nmid|G|$ (Maschke's theorem)
(ii) Character theory falls apart:

$$
p \nmid|G|: \chi_{\phi}=\chi_{\psi} \Leftrightarrow \phi \cong \psi \quad p| | G \mid: \chi_{\phi}=\chi_{\psi} \nLeftarrow \phi \cong \psi
$$

(iii) The notion of a character is fishy for $p||G| \Rightarrow$ need Brauer characters (iv) Many more crappy things happen

- Over \mathbb{F}_{p} for $p \neq 3$ everything is fine for $\mathbb{Z} / 3 \mathbb{Z}$:

```
c = matrix(GF(4),[[0,0,1],[1,0,0],[0,1,0]]);
d = matrix(GF(7),[[0,0,1],[1,0,0],[0,1,0]]);
print(c.jordan_form())
print(d.jordan_form())
```

1\|	0\| 0]	
[------+		
$0 \mid$	z21 0]	
$0 \mid$	$0 \mid z 2+1]$	
[4\|0	0]	
[-+-+-]		
[0\|2	0]	
[-+-+-]		
[0\|0	1]	

- Characters of $\mathbb{Z} / 3 \mathbb{Z}$ over \mathbb{F}_{3} :

$$
\chi_{\text {triv }}^{\text {triv }} \oplus \text { triv }=0=\chi_{\text {reg rep }} \quad \text { but } \quad \text { triv } \oplus \text { triv } \oplus \text { triv } \not \equiv \text { reg rep }
$$

Eigenvalues of pseudo idempotents

$$
v=(1,1,1)=
$$

$$
+
$$

$$
T=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

$$
\left.\left.\begin{array}{l}
e=\operatorname{matrix(z2,[}[11,1,1],[1,1,1],[1,1,1]]) ; \\
\text { e.eigenvalues }()
\end{array}\right], 0,0\right]
$$

- Maschke's theorem uses the total pseudo idempotent $T=\sum_{g \in G} g$
- The leading eigenvalue of T is $|G|$
- Problem We can not divide by $|G|$ if $p||G|$

Thank you for your attention!

I hope that was of some help.

