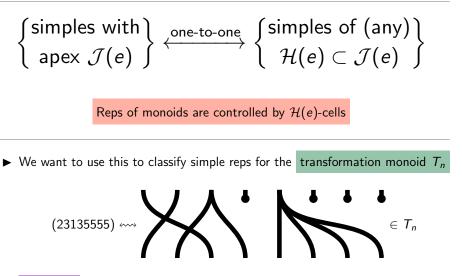
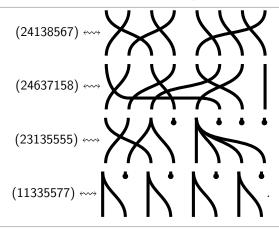
What are...the simples of the transformation monoid?

Or: Through strands, again



• To do list Find the J-cells, find idempotents and compute $\mathcal{H}(e)$ -cells

Bottom-middle-top

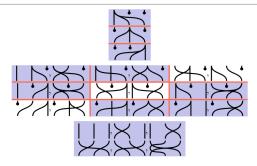


- Symmetric group $S_n = Aut(\{1, ..., n\})$
- Transformation monoid $T_n = \text{End}(\{1, ..., n\})$

Diagrammatic presentation using crossings, merges and dots:

crossings: \mathbf{X} , merges: \mathbf{N} , \mathbf{M} , ..., dots: \mathbf{A} .

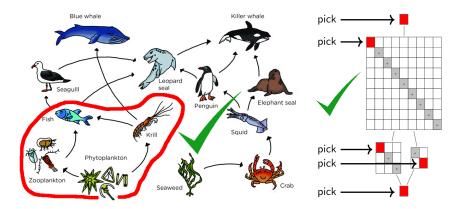
The cells - as for the Brauer monoid!



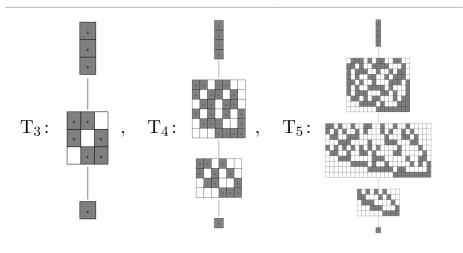
- ► Multiplication can only increase the number of through strands \u03c0 ⇒ J-cells are indexed by through strands \u03c0
- ► Multiplication form the left = top does not change the bottom ⇒ left cells have fixed bottom
- ► Multiplication form the right = bottom does not change the top ⇒ right cells have fixed top
- (123...(k-1)k...k) are idempotents for all k
- The middle is $S_{\lambda} \Rightarrow \mathcal{H}(e)$ -cells are S_{λ}

For reps of T_n over \mathbb{C} we get:

- ▶ The set of apexes is $\{n, n-1, n-2, ..., 1\}$ Through strands
- ► There are precisely (# partitions of λ) simples of apex λ $\mathcal{H}(e) \cong S_{\lambda}$



We even know the simple dims!



► For K not the sign rep of S_{λ} the associated T_n -simple has dim = $\binom{n}{\lambda}$ dim K with $\binom{n}{\lambda}$ = number of rows

▶ For K = the sign rep of S_{λ} the associated T_n -simple has dim = $\binom{n-1}{\lambda-1}$ Slightly unexpected

Thank you for your attention!

I hope that was of some help.