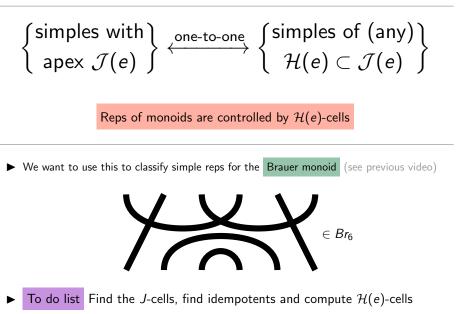
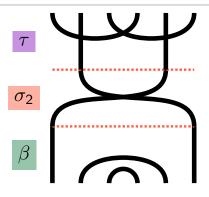
What are...the simples of the Brauer monoid?

Or: Through strands

The *H*-reduction in action

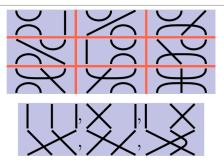


Bottom-middle-top



- Decompose Brauer diagrams into a bottom, a middle and a top part
- Bottom β Only caps and a minimal number of crossings
- Middle σ_{λ} Only crossings in some symmetric group S_{λ} on $\{1, ..., \lambda\}$
- Top τ Only cups and a minimal number of crossings

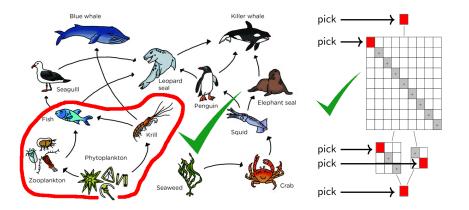
The cells



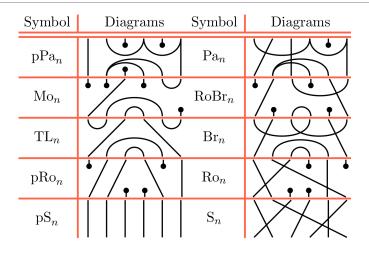
- ► Multiplication can only increase the number of through strands λ ⇒ J-cells are indexed by through strands λ
- ► Multiplication form the left = top does not change the bottom ⇒ left cells have fixed bottom
- ► Multiplication form the right = bottom does not change the top ⇒ right cells have fixed top
- ► Every ‡-symmetric diagram is idempotent
- The middle is $S_{\lambda} \Rightarrow \mathcal{H}(e)$ -cells are S_{λ}

For reps of Br_n over \mathbb{C} we get:

- ▶ The set of apexes is $\{n, n-2, n-4, ...\}$ Through strands
- ▶ There are precisely (# partitions of λ) simples of apex λ $\mathcal{H}(e) \cong S_{\lambda}$



H-reduction and diagram monoids



- ▶ The same works for many more diagram monoids
- ► Doing this is a fun exercise!

Thank you for your attention!

I hope that was of some help.